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Higher K-theory of toric stacks

ROY JOSHUA AND AMALENDU KRISHNA

Abstract. In this paper we develop several techniques for computing the higher
G-theory and K-theory of quotient stacks. Our main results for computing these
groups are in terms of spectral sequences. We show that these spectral sequences
degenerate in the case of many toric stacks, thereby providing an efficient com-
putation of their higher K-theory.

We apply our main results to give an explicit description for the higher K-
theory of many quotient stacks, including smooth toric stacks. We also show that
our techniques apply to compute the higher K-theory of all spherical varieties
over fields of characteristic 0 and all projective smooth spherical varieties over
fields of arbitrary characteristics. As another application, we describe the higher
K-theory of toric stack bundles over smooth base schemes.

Mathematics Subject Classification (2010): 19L47 (primary); 14M25 (sec-
ondary).

1. Introduction

Toric varieties form a good testing ground for verifying many conjectures in alge-
braic geometry. This becomes particularly apparent when one wants to understand
cohomology theories for algebraic varieties. Computations of cohomology rings of
smooth toric varieties such as the Grothendieck ring of vector bundles, the Chow
ring and the singular cohomology ring have been well-understood for many years.
These computations facilitate predictions on the structure of various cohomology
rings of a general algebraic variety.

Just like toric varieties, one would like to have a class of algebraic stacks on
which various cohomological problems about stacks can be tested. The class of
toric stacks, which can be studied in terms of combinatorial data called stacky fans,
is precisely such a class of algebraic stacks.

These stacks are expected to be the toy models for understanding cohomology
theories of algebraic stacks, a problem which is still very complicated in general.
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Nevertheless, almost nothing has been worked out till now regarding the higher
K-groups of toric stacks, even when they are Deligne-Mumford stacks, though the
higher K-groups of toric varieties had been well understood (cf. [41]) and the higher
Chow groups of toric varieties have been computed recently in [23]. Furthermore,
we still do not know how to compute even the Grothendieck K-theory ring of a
general smooth toric stack.

In this paper we develop general techniques for computing the (integral) higher
K-theory of smooth toric stacks, the main results being Theorems 1.1, 1.2 and 1.3.
In fact, our results apply to a much bigger class of stacks than just toric stacks. For
example, these results can be used to describe the higher equivariant K-theory of all
projective smooth spherical varieties in any characteristic and all spherical varieties
over a field of characteristic 0. Our general results are in terms of spectral sequences
as in (1.1) which we show degenerate in various cases of interest. This allows us to
give explicit description of the higher K-theory of toric stacks.

As a consequence of this degeneration of spectral sequences, we recover (the
integral versions of) and generalize all the previously known computations of the
Grothendieck group of toric Deligne-Mumford stacks. We show how our main
results can be used to describe the equivariant K-theory of spherical varieties. As
further applications of the main results, we completely describe the (integral) higher
K-theory of weighted projective spaces. As another application, we give a complete
description of the higher K-theory of toric stack bundles over a smooth base scheme.

1.1. Overview of the main results

The following is an overview of our main results. We shall fix a base field k through-
out this text. A scheme in this paper will mean a separated and reduced scheme of
finite type over k. A linear algebraic group G over k will mean a smooth and affine
group scheme over k. By a closed subgroup H of an algebraic group G, we shall
mean a morphism H ! G of algebraic groups over k which is a closed immersion
of k-schemes. In particular, a closed subgroup of a linear algebraic group will be of
the same type and hence smooth. An algebraic group G will be called diagonaliz-
able if it is a product of a split torus over k and a finite abelian group of order prime
to the characteristic of k. In particular, we shall be dealing with only those tori
which are split over k. Unless mentioned otherwise, all products of schemes will
be taken over k. A G-scheme will mean a scheme with an action of the algebraic
group G.

For a G-scheme X , let GG(X) (respectively KG(X)) denote the spectrum of
the K-theory of G-equivariant coherent sheaves (respectively vector bundles) on
X . Let R(G) denote the representation ring of G. This is canonically identi-
fied with KG

0 (k). If X denotes an algebraic stack, we let K(X) (G(X)) denote
the Quillen K-theory (G-theory) of the exact category of vector bundles (coherent
sheaves, respectively) on the stack X. For a quotient stack X = [X/G], the spec-
trum K(X) (respectively G(X)) is canonically weakly equivalent to the equivariant
K-theory KG(X) (respectively G-theory GG(X)) of X . See Section 2.3 for more
details.
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Recall (see below) that a stacky toric stack X is of the form [X/G] where X is
a toric variety with dense torus T and G is a diagonalizable group acting on X via
a given morphism � : G ! T of algebraic groups.

Our first result is the construction of a spectral sequence which allows one to
compute the higher K-theory of the stack [X/G] from the K-theory of the stack
[X/T ], whenever a torus T acts on a scheme X and � : G ! T is a morphism of
diagonalizable groups. This is related to the spectral sequence in ( [27, Theorem
5.3]), whose E2-terms are expressed in terms of G⇤([X/T ]) and which converges
to the ordinary G-theory G⇤(X). Merkurjev’s construction is based on a similar
construction of Levine [24].

Our spectral sequence is a generalization of [27, Theorem 5.3] in that the E2-
terms are given in terms of the T -equivariant G-theory of a T -scheme and converge
to the equivariant G-theory, equivariant with respect to a diagonalizable group map-
ping into the torus. This generalization allows one to write down the expression for
the higher G-theory of all toric stacks. This is one of the main results of this paper.
Furthermore, our spectral sequence can be used to compute the higher equivari-
ant G-theory of all spherical varieties in characteristic zero and smooth projective
spherical varieties in positive characteristic. In contrast to the spectral sequence
of [27], our construction is much more elementary and is only based on a system-
atic study of the equivariant G-theory of linear varieties.

We also prove the degeneration of our spectral sequences in many cases, which
provides an efficient tool for computing the higher K-theory of many quotient
stacks, including toric stacks.

Theorem 1.1. Let T be a split torus acting on a scheme X and let � : G ! T be
a morphism of diagonalizable groups so that G acts on X via �. Then, there is a
spectral sequence:

Es,t2 = TorR(T )
s

�
R(G),Gt ([X/T ])

�
) Gs+t ([X/G]). (1.1)

Moreover, the edge map G0([X/T ]) ⌦

R(T )
R(G) ! G0([X/G]) is an isomorphism.

The spectral sequence (1.1) degenerates at the E2-terms if X is a smooth toric
variety with dense torus T such that K0([X/T ]) is a projective R(T )-module and
we obtain the ring isomorphism:

K⇤([X/T ]) ⌦

R(T )
R(G)

'

�! K⇤([X/G]). (1.2)

In particular, this isomorphism holds when X is a smooth and projective toric vari-
ety with dense torus being T .

Observe that stackiness is allowed since the map � : G ! T is not required
to be injective. This makes the construction of the above spectral sequence and the
identification of its E2-terms rather surprising.

If X = [X/G] is a generically stacky toric stack associated to the data X =

(X,G �
�! T ), then the above results apply to the G-theory and K-theory of X. We
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shall apply Theorem 1.1 in Subsection 4.1 to give an explicit presentation of the
Grothendieck K-theory ring of a smooth toric stack. If we specialize to the case of
smooth toric Deligne-Mumford stacks, this recovers the main result of [4].

Another useful application of Theorem 1.1 is that it tells us how we can read
off the T 0-equivariant G-groups of a T -scheme X in terms of its T -equivariant G-
groups, whenever T 0 is a closed subgroup of T . The special case of the isomorphism
G0([X/T ]) ⌦

R(T )
R(G)

'

�! G0([X/G])when G is the trivial group and X is a smooth

toric variety, recovers the main result of [28].
We should also observe that Theorem 1.1 applies to a bigger class of schemes

than just toric varieties. In particular, one can use them to compute the equivari-
ant K -theory of many spherical varieties. Another special case of the isomorphism
G0([X/T ]) ⌦

R(T )
R(G)

'

�! G0([X/G]) when G is the trivial group and X is a spher-

ical variety, recovers the main result of [35].

Theorem 1.2. Let T be a split torus acting on a smooth and projective scheme X
which is T -equivariantly linear (cf. Definition 3.1). Let � : G ! T be a morphism
of diagonalizable groups so that G acts on X via �. Then the map

⇢ : K0([X/G])⌦
Z
K⇤(k) ' K0([X/G]) ⌦

R(G)
KG

⇤
(k) ! K⇤([X/G]) (1.3)

is a ring isomorphism.

When X is a smooth projective toric variety and G = T , then the above theo-
rem recovers a result of Vezzosi-Vistoli [41, Theorem 6.9].

More generally, it turns out that Theorem 1.2 applies to all smooth projective
spherical varieties. See Section 3 for related computations on the G-theory of equiv-
ariantly T -linear (not necessarily projective) schemes which, we show, includes all
spherical varieties over fields of characteristic 0 (Corollary 3.7).

As an illustration of how the spectral sequence (1.1) degenerates in the cases
not covered by Theorems 1.1 and 1.2, we prove the following result which describes
the higher K-theory of toric stack bundles. As an intermediate step, we obtain a
stacky version of the very useful Leray-Hirsch Theorem.

Theorem 1.3. Let B be a smooth scheme over a perfect field k and let [X/G] be
a toric stack where X is smooth and projective. Let RG (K⇤(B),1) denote the
Stanley-Reisner algebra (cf. Definition 7.1) over K⇤(B) associated to a closed
subgroup G of T . Let ⇡ : X ! B be a toric stack bundle with fiber [X/G]. Then
there is a ring isomorphism

8G : RG (K⇤(B),1)
'

�! K⇤(X). (1.4)

When G is the trivial group, the Grothendieck group K0(X), was computed in [32,
Theorem 1.2(iii)]. When [X/G] is a Deligne-Mumford stack, a computation of
K0(X) appears in [19].
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The paper [21] will continue the study begun here, by discussing the motivic
cohomology (higher Chow groups) of toric stacks.

Here is an outline of the paper. The second section is a review of toric stacks
and their K-theory. In Section 3, we define the notion of equivariantly linear
schemes and study their G-theory. We prove Theorem 1.1 in Section 4, which is
the most general result of this paper. We conclude this section with a detailed de-
scription of the Grothendieck K-theory ring of general smooth toric stacks.

In Section 5, we prove a derived Künneth formula and prove Theorem 1.2 as
a consequence. We conclude this section by working out the higher K-theory of
(stacky) weighted projective spaces. We study the K-theory of toric stack bundles
over smooth base schemes in the last two sections and conclude by providing a
complete determination of these.

ACKNOWLEDGEMENTS. Parts of this work were carried out while the first author
was visiting the Tata Institute of Fundamental Research, while the second author
was visiting the Mathematics department of Ohio state university, Columbus and
also while both the authors were visiting the Mathematics department of the Harish
Chandra Research Institute, Allahabad. The first author was also supported by an
adjunct professorship at the same institute. They would would like to thank these
departments for the invitation and financial support during these visits. They also
would like to thank Michel Brion and Hsian-Hua Tseng for helpful comments on
an earlier version of this paper.

2. A review of toric stacks and their K-theory

In this section, we review the concept of toric stacks from [14] and set up the nota-
tions for the G-theory and K-theory of such stacks. This is done in some detail for
the convenience of the reader.

In what follows, we shall fix a base field k and all schemes and algebraic groups
will be defined over k. Let Vk denote the category of k-schemes and let V Sk denote
the full subcategory of smooth k-schemes. If G is an algebraic group over k, we
shall denote the category of G-schemes with G-equivariant maps by VG . The full
subcategory of smooth G-schemes will be denoted by V SG .

2.1. Toric stacks

Definition 2.1. Let T be a torus and let X be a toric variety with dense torus T .
According to [14], a toric stack X is an Artin stack of the form [X/G] where G is
a subgroup of T .

A generically stacky toric stack is an Artin stack of the form [X/G] where G
is a diagonalizable group with a morphism � : G ! T . In this case, the stack X
has an open substack of the form [T/G] which acts on it. The action of T = [T/G]
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on X is induced from the torus action on X . The stack T is often called the stacky
dense torus of X. A generically stacky toric stack [X/G] as above will often be
described by the data X = (X,G �

�! T ).
Examples 2.2. Generically stacky toric stacks arise naturally while one studies
toric stacks. This is because a toric variety X with dense torus T has many T -
invariant subvarieties which are toric varieties and whose dense tori are quotients of
T . If Z ( X is such a subvariety, and G is a diagonalizable subgroup of the torus
T , then [Z/G] is not a toric stack but only a generically stacky toric stack.

A (generically stacky) toric stack X is called a toric Deligne-Mumford stack if
it is a Deligne-Mumford stack after forgetting the toric structure. It is called smooth
if X is a smooth scheme.

One extreme case of a toric stack is when G is the trivial group, in which case
X is just a toric variety. The other extreme case is when G is all of T : clearly such
toric stacks are Artin. In general, a toric stack occupies a place between these two
extreme cases. If X is a toric Deligne-Mumford stack, then the stacky torus T is of
the form T 0

⇥ Bµ, where T 0 is a torus and Bµ is the classifying stack of a finite
abelian group µ.

In general, every generically stacky toric stack can be written in the form X ⇥

BG , where X is a toric stack and BG is the classifying stack of a diagonalizable
group G. This decomposition often reduces the study of the cohomology theories of
generically stacky toric stacks to the study the cohomology theories of toric stacks
and the classifying stacks of diagonalizable groups.

The coarse moduli space ⇡ : X ! X of a Deligne-Mumford toric stack is a
simplicial toric variety whose dense torus is the moduli space of T. Conversely,
every simplicial toric variety is the coarse moduli space of a canonically defined
toric Deligne-Mumford stack (cf. [11, Section 4.2]).

2.2. Toric stacks via stacky fans

In [14], Geraschenko and Satriano showed that all (generically stacky) toric stacks
are obtained from stacky fans in much the same way toric varieties are obtained
from fans. They describe in detail the dictionary between toric stacks and stacky
fans.

Associated to the toric variety X is a fan 6 on the lattice of 1-parameter sub-
groups of T , L = Homgp(Gm, T ) (see [12, Section 1.4] or [8, Section 3.1]). The
surjection of tori T ! T/G corresponds to the homomorphism of lattices of 1-
parameter subgroups, � : L ! N = Homgp(Gm, T/G). The dual homomorphism,
�⇤

: hom(N , Z) ! hom(L , Z), is the induced homomorphism of characters. Since
T ! T/G is surjective, �⇤ is injective, and the image of � has finite index. There-
fore, one may define a stacky fan as a pair (6,�), where 6 is a fan on a lattice L ,
and � : L ! N is a homomorphism to a lattice N such that �(L) has finite index
in N . Conversely, any stacky fan (6,�) gives rise to a toric stack as follows.

Let X6 be the toric variety associated to 6. The dual of �, �⇤
: N_

! L_,
induces a homomorphism of tori T� : TL ! TN , naturally identifying � with the
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induced map on lattices of 1-parameter subgroups. Since �(L) is of finite index in
N , �⇤ is injective, so T� is surjective. Let G� = ker(T�). Note that TL is the torus
of X6 and G� ✓ TL is a subgroup. If (6,�) is a stacky fan, the associated toric
stack X6,� is defined to be [X6/G�], with the torus TN = TL/G� .

A generically stacky fan is a pair (6,�), where 6 is a fan on a lattice L , and
� : L ! N is a homomorphism to a finitely generated abelian group. If (6,�) is a
generically stacky fan, the associated generically stacky toric stack X6,� is defined
to be [X6/G�], where the action of G� on X6 is induced by the homomorphism
G� ! D(L⇤) = TL .

One can give a more explicit description of X6,� considered above which will
show that it is a generically stacky toric stack. Let (6,� : L ! N ) be a generically
stacky fan and let C(�) denote the complex L �

�! N . Let

Zs Q
�! Zr

! N ! 0

be a presentation of N , and let B : L ! Zr be a lift of � (which exists). One defines
the fan 60 on L � Zs as follows. Let ⌧ be the cone generated by e1, . . . , es 2 Zs .
For each � 2 6, let � 0 be the cone spanned by � and ⌧ in L�Zs . Let60 be the fan
generated by all the � 0. Corresponding to the cone ⌧ , we have the closed subvariety
Y ✓ X60 , which is isomorphic to X6 since6 is the star (sometimes called the link)
of ⌧ [8, Proposition 3.2.7]. One defines

β = B ⊕ Q : L ⊕ Zs Zr

(l, a) B(l) + Q(a).

Then (60,� 0) is a generically stacky fan and we see that X6,� ' [Y/G� 0]. Note
that C(� 0) is quasi-isomorphic to C(�), so G� 0 ' G� .

Toric stacks and generically stacky toric stacks arise naturally, especially in
the solution of certain moduli problems. Any toric variety naturally gives rise to a
toric stack. In fact, it is shown in [15, Theorem 6.1] that if k is algebraically closed
field of characteristic zero, then every Artin stack with a dense open torus substack
is a toric stack under certain fairly general conditions. We refer the readers to [14]
where many examples of toric and generically stacky toric stacks are discussed.

In the rest of this paper, a toric stack will always mean any generically stacky
toric stack. A toric stack as in Definition 2.1 will be called a reduced toric
stack or a toric orbifold.

2.3. K-theory of quotient stacks

Let G be a linear algebraic group acting on a scheme X . The spectrum of the
K-theory of G-equivariant coherent sheaves (respectively vector bundles) on X is
denoted byGG(X) (respectivelyKG(X)). We will letKG denoteKG(Spec k). The
direct sum of the homotopy groups of these spectra are denoted by GG

⇤
(X) and

KG
⇤
(X). The latter is a graded ring.

The natural map KG(X) ! GG(X) is a weak equivalence if X is smooth. (2.1)
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This follows from [31, Theorem 3, Corollary 1.1]. In view of this, GG(X) may be
viewed as a ring spectrum when X is smooth.

For a quotient stack X of the form [X/G], one writes KG(X) and K(X) in-
terchangeably. The ring KG

0 (k) will be denoted by R(G). This is same as the
representation ring of G.

The functor X 7! GG(X) onVG is covariant for proper maps and contravariant
for flat maps. It also satisfies the localization sequence and the projection formula.
It satisfies the homotopy invariance property in the sense that if f : V ! X is
a G-equivariant vector bundle, then the map f ⇤

: GG(X) ! GG(V ) is a weak
equivalence. The functor X 7! KG(X) on VG is a contravariant functor with values
in commutative graded rings. For anyG-equivariant morphism f : X ! Y ,GG(X)
is a module spectrum over the ring spectrum KG(Y ). In particular, GG

⇤
(X) is an

R(G)-module. We refer to [36, Section 1] to verify the above properties.

3. Equivariant G-theory of linear schemes

Wewill prove Theorem 1.1 as a consequence of a more general result (Theorem 4.1)
on the equivariant G-theory of schemes with a group action. In this section, we
study the equivariant G-theory of a certain class of schemes which we call equiv-
ariantly linear. Such schemes in the non-equivariant set-up were earlier considered
in [40]. The G-theory of such schemes in the non-equivariant set-up was studied
in [20]. We end this section with a proof of Theorem 4.1 for equivariantly linear
schemes.

Definition 3.1. Let G be a linear algebraic group over k and let X 2 VG .

(1) We will say X is G-equivariantly 0-linear if it is either empty or isomorphic to
Spec (Sym(V ⇤)) where V is a finite-dimensional rational representation of G.

(2) For a positive integer n, we will say that X is G-equivariantly n-linear if there
exists a family of objects {U,Y, Z} in VG such that Z ✓ Y is a G-invariant
closed immersion with U its complement, Z and one of the schemes U or Y
are G-equivariantly (n � 1)-linear and X is the other member of the family
{U,Y, Z}.

(3) We will say that X is G-equivariantly linear (or simply, G-linear) if it is G-
equivariantly n-linear for some n � 0.

Definition 3.2. Let G be a linear algebraic group over k. A scheme X 2 VG is
called G-equivariantly cellular (or, G-cellular) if there is a filtration

; = Xn+1 ( Xn ( · · · ( X1 ( X0 = X (3.1)

by G-invariant closed subschemes such that each Xi \ Xi+1 is isomorphic to a
rational representation Vi of G. These representations of G are called the (affine)
G-cells of X .
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It is immediate from the above definition that if G ! G 0 is a morphism of
algebraic groups then every G 0-equivariantly linear scheme is also G-equivariantly
linear. It is also obvious that a G-equivariantly cellular scheme is G-equivariantly
linear.

Before we provide examples of equivariantly linear schemes, we state the fol-
lowing two elementary results which will be used throughout this paper.

Lemma 3.3. Let G be a diagonalizable group over k and let H ✓ G be a closed
subgroup. Then H is also defined over k and is diagonalizable. If T is a split torus
over k, then all subtori and quotients of T are defined over k and are split over k.

Proof. The first statement follows from [3, Proposition 8.2]. If T is a split torus
over k, then any of its subgroups is defined over k and is split by the first assertion.
In particular, all quotients of T are defined over k. Furthermore, all such quotients
are split over k by [3, Corollary 8.2].

Lemma 3.4. Let T be a split torus acting on a reduced scheme X with finitely many
orbits. Then:

(1) Any T -orbit in X of minimal dimension is closed;
(2) Any T -orbit in X of maximal dimension is open.

Proof. The first assertion is well known and can be found in [3, Proposition 1.8].
The second assertion is easily proved using (1) and an ascending induction on the
number of T -orbits. The case where there is only one orbit is clear. In general,
assume that X has n orbits and that (2) is true for T -schemes having up to (n � 1)
orbits with n � 2.

Let U ✓ X be a T -orbit of maximal dimension. If all T -orbits have same
dimension, then it follows from (1) that all orbits are closed and open. Otherwise,
let us choose a T -orbit Z of minimal dimension different from U . Then Z ( X
is closed by (1) and X \ Z is a T -scheme with smaller number of T -orbits. Since
U ✓ (X \ Z), it follows that U is open in X \ Z and hence in X .

Remark 3.5. The reader can verify that Lemma 3.4 is also true for the action of
any diagonalizable group. But we do not need this general case.

The following results yield many examples of equivariantly linear schemes.

Proposition 3.6. Let T be a split torus over k and let T 0 be a quotient of T . Let T
act on T 0 via the quotient map. Then the following hold:

(1) T 0 is T -linear;
(2) A toric variety with dense torus T is T -linear;
(3) A T -cellular scheme is T -linear;
(4) If k is algebraically closed, then every T -scheme with finitely many T -orbits is

T -linear.
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Proof. We first prove (1). It follows from Lemma 3.3 that T 0 is a split torus. Hence,
it is enough to show using the remark following the definition of T -linear schemes
that a split torus T is T -linear under the multiplication action.

We can write T = (Gm)n and consider An as the toric variety with the dense
torus T via the coordinate-wise multiplication so that the complement of T is the
union of the coordinate hyperplanes. Since An is T -linear, it suffices to show that
the union of the coordinate hyperplanes is T -linear.

We shall prove by induction on the rank of T that any union of the coordinate
hyperplanes in An is T -linear. If n = 1, then this is obvious. So let us assume
that n > 1 and let Y be a union of some coordinate hyperplanes in An . After
permuting the coordinates, we can write Y as Yn

{1,··· ,m}
= H1 [ · · · [ Hm where

Hi = {(x1, · · · , xn) 2 An
|xi = 0}. If m = 1, then Yn

{1} is T -equivariantly 0-linear.
So we assume by an induction on m that Yn

{2,··· ,m}
is T -linear.

Set U = Yn
{1,··· ,m}

\ Yn
{2,··· ,m}

. Then U is the complement of a union of hyper-
planes Wn�1

{2,··· ,m}
in H1 ' An�1. Notice that T acts on H1 through the product T1 of

its last (n � 1) factors. By induction on n, we conclude that Wn�1
{2,··· ,m}

is T1-linear.
Since H1 is clearly T1-linear, we conclude that U is T1-linear and hence T -linear.
Thus we have concluded that both Yn

{2,··· ,m}
andU are T -linear. It follows from this

that Yn
{1,··· ,m}

is T -linear too.
The assertion (2) easily follows from (1) and an induction on the number of

T -orbits in a toric variety. The assertion (3) is immediate from the definitions, using
an induction on the length of the filtration of a T -cellular scheme. To prove (4), let
X be a T -scheme with only finitely many T -orbits. It follows from Lemma 3.4 that
X has an open T -orbitU . Since k is algebraically closed, such an open T -orbit must
be isomorphic to a quotient of T . In particular, it is T -linear by the first assertion.
An induction of the number of T -orbit implies that X \U is T -linear. We conclude
that X is also T -linear.

Spherical varieties

Recall that ifG is a connected reductive group over k, then a normal variety X 2 VG
is called spherical if a Borel subgroup of G has a dense open orbit in X . The
spherical varieties constitute a large class of varieties with group actions, including
toric varieties, flag varieties and all symmetric varieties. It is known that a spherical
variety X has only finitely many fixed points for the T -action where T is a maximal
torus of G contained in B.

It follows from a theorem of Bialynicki-Birula [2] (generalized to the case of
non-algebraically closed fields by Hesselink [18]) that if T is a split torus over k
and if X is a smooth projective variety with a T -action such that the fixed point
locus XT is isolated, then X is T -equivariantly cellular. In this case, the filtration
(3.1) gives rise to a T -equivariant stratification of X , known as the Bialynicki-Birula
decomposition. We conclude that a smooth and projective spherical variety is T -
cellular and hence T -linear.
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Using the Bialynicki-Birula decomposition and Proposition 3.6, we can now
prove the following more general result in characteristic 0. In particular, the results
of the next two sections in this paper apply to all spherical varieties over fields of
characteristic 0.

Corollary 3.7. All spherical varieties over a field of characteristic 0 are T -linear.

Proof. The following argument was shown to us by Michel Brion [5]. Since every
spherical variety has a stratification by finitely many B-orbits, it suffices to show
that every B-orbit is T -equivariantly linear.

To prove this, one proceeds as follows. Let O be a fixed B-orbit, and let GO
denote the G-orbit containing O. Since we are in characteristic 0, we can find a
smooth toroidal compactification of GO. Let us call this Y .

It follows from a result of Brion and Luna [6] that O is the intersection of
GO with a T -cell of Y , coming from the above Bialynicki-Birula decomposition.
Furthermore, this intersection is T -equivariantly isomorphic to An

\ H , where H is
a union some coordinate hyperplanes.

The T -representation An is T -linear and it follows from (the proof of) Propo-
sition 3.6 that H is T -linear. We conclude thatO is T -linear.

3.1. Equivariant G-theory of equivariantly linear schemes

Recall that if a linear algebraic group G acts on a scheme X , then the G-theory
and K-theory of the quotient stack [X/G] are same as the equivariant G-theory and
K-theory of X for the action G. We shall use this identification throughout this text
without further mention. The following result will be used repeatedly in this text.

Theorem 3.8. Let G be a linear algebraic group over k and let H ✓ G be a closed
subgroup of G. Then for any X 2 VH , the map of spectra

G
✓✓

X
H
⇥ G

◆
/G
�◆

! G([X/H ])

is a weak equivalence. In particular, the map of spectra

G([(X ⇥ G/H)/G]) ! G([X/H ])

is a weak equivalence if X 2 VG . These are weak equivalences of ring spectra if X
is smooth.

Proof. Recall that the inclusion X ⇥ H ,! X ⇥ G induces a regular closed im-

mersion ◆ : X ' X
H
⇥ H ,! X

H
⇥ G which is H -equivariant, where H acts on

X
H
⇥ G by h ? (x, g) = (x, gh�1). In fact, this extends to a G-action on X

H
⇥ G.

We conclude that there are morphisms of stacks

[X/H ] !

✓
X

H
⇥ G

◆
/H
�

!

✓
X

H
⇥ G

◆
/G
�
, (3.2)
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where the first map is a regular closed immersion and second map is smooth. In
particular, there are pull-back maps of spectra

G
✓✓

X
H
⇥ G

◆
/G
�◆

!G([X/H ]); K
✓✓

X
H
⇥ G

◆
/G
�◆

! K([X/H ]). (3.3)

Since the second map is induced by pulling back vector bundles and preserves their
tensor products, it is a morphism of ring spectra, as is well-known (see [39, Sec-
tion 1.4]). It is shown in [38, Proposition 6.2] that the maps in (3.3) are weak equiv-
alences. It follows that the second map (hence the first map as well if X is smooth:
see (2.1)) is a weak equivalence of ring spectra. Recall here that a weak equivalence
of ring spectra means a morphism of ring spectra which is a weak equivalence after
forgetting the ring structures.

Remark 3.9. We remark here that the weak equivalences of Theorem 3.8 are in
fact natural in the category VH . This is because the morphisms in (3.2) are natural
in X 2 VH .
3.1.1. Derived smash product of spectra

Recall that for a stack X, the K-theory spectrum K(X) is a commutative ring spec-
trum and G(X) is a module spectrum over K(X). In the following results, we make
essential use of the derived smash products of module spectra over ring spectra.
This is the derived functor of the smash product of spectra in their homotopy cat-
egory. We refer to [10, Chapter II, Section 3] (see also [33, Section 3] and [20,
Section 3]) for notion of commutative ring spectra and their module spectra. The
commutative ring spectra are also called E1 rings in [10] .

For a commutative ring spectrum R, the category ModR of R-module spectra
inherit a model structure, where the weak equivalence and cofibrations are the same
as the (stable) weak equivalence and cofibrations of ordinary spectra (see [33, Theo-
rem 4.1]). The associated homotopy category is denoted byDR . The smash product
of R-module spectra induces a derived smash product functor

(�)
L
^

R
(�) : DR ⇥DR ! DR . (3.4)

For M, N 2 ModR , the derived smash product M
L
^

R
N is the class (in DR) of the

smash product C(M)^
R
N , where C(M) ! M is a cofibrant replacement of M

in ModR . In fact, as is true with any model category, there is a functor C(�) :

ModR ! ModR and a natural transformation ⌧ : C ! Id such that C(M) ! M
is a cofibrant replacement for every M 2 ModR . The cofibrant replacement has the
property that C(M)^

R
� preserves weak equivalences and cofibration sequences in

the argument�. The cofibrant replacementC(M) ! M coincides with a projective
resolution in the abelian case (i.e., for chain complexes).
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We refer to [10, page 60] for the construction of the above derived smash prod-
uct functor, where M

L
^

R
N is simply written as M^

R
N . In ibid., the cofibrant replace-

ments C(M) are explicitly constructed in terms of cell (free) R-modules (see [ibid.,
Chapter III, Section 2]).

The homotopy groups of the derived smash product M
L
^

R
N is computed using

the Eilenberg-Moore type spectral sequence:

E2s,t = Tor⇡⇤(R)
s,t (⇡⇤(M),⇡⇤(N )) ) ⇡s+t

✓
M

L
^

R
N
◆

. (3.5)

This spectral sequence is obtained as a special case of [10, Chapter IV, (6.1)] by
taking E there to be the sphere spectrum.

We shall now prove the following special case of Theorem 4.1. The proof
follows a trick used in [20, Theorem 4.1] in a different context. Let G ! H denote
a homomorphism of diagonalizable groups and let H act on a scheme X . In the
notation above, we let R = KH , M = KG and N = G([X/H ]). This gives us
maps in DR:

KG L
^

KH
G([X/H ])

⌧
�! KG

^

KH
G([X/H ]) ! G([X/G]). (3.6)

The functoriality of KG L
^

KH
(�) and naturality of ⌧ show that the first map is natural

in X . The last map is clearly natural in X . (This map uses the pairing that sends aG-
representation tensored with an H -equivariant coherent sheaf on X to the obvious
G-equivariant coherent sheaf on X .) We shall denote this composite map by ⌧G,H

X .

Proposition 3.10. Let T be a split torus and let X 2 VT be T -linear. Let � : G !

T be a morphism of diagonalizable groups such that G acts on X via �. Then the
natural map of spectra

⌧G,T
X : K([Spec (k)/G])

L
^

K([Spec (k)/T ])
G([X/T ]) ! G([X/G]) (3.7)

is a weak equivalence.

Proof. We assume that X is T -equivariantly n-linear for some n � 0. We shall
prove our result by an ascending induction on n. If n = 0, then X ' An and
hence by the homotopy invariance, we can assume that X = Spec (k), and the
result is immediate in this case. We now assume that n > 0. By the definition of
T -linearity, there are two cases to consider:

(1) There exists a T -invariant closed subscheme Y of X with complement U such
that Y and U are T -equivariantly (n � 1)-linear.
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(2) There exists a T -scheme Z which contains X as a T -invariant open subscheme
such that Z and Y = Z \ X are T -equivariantly (n � 1)-linear.

In the first case, the localization fiber sequence in equivariant G-theory gives us
a commutative diagram of fiber sequences in the homotopy category of spectra1:
The left and the right vertical maps are weak equivalences by the induction. We

KG
L
∧
KT

G([Y/T ]) KG
L
∧
KT

G([X/T ]) KG
L
∧
KT

G([U/T ])

G([Y/G]) G([X/G]) G([U/G])

conclude that the middle vertical map is a weak equivalence too.
In the second case, we obtain as before, a commutative diagram of fiber se-

quences in the homotopy category of spectra:

KG
L
∧
KT

G([Y/T ]) KG
L
∧
KT

G([Z/T ]) KG
L
∧
KT

G([X/T ])

G([Y/G]) G([Z/G]) G([X/G]).

The first two vertical maps are weak equivalences by induction and hence the last
vertical map must also be a weak equivalence. This completes the proof of the
proposition.

Lemma 3.11 ([36, Lemma 5.6]). Let G ! H be an epimorphism of diagonaliz-
able groups and let X be an affine scheme with an H -action. Then the following
hold:

(1) The natural map at the level of homotopy groups

R(G) ⌦

R(H)
G⇤([X/H ]) ! G⇤([X/G])

is an isomorphism;
(2) The map of spectra

⌧G,H
X : KG L

^

KH
G([X/H ]) ! G([X/G])

is a weak equivalence.

Proof. Item (1) follows directly from [36, Lemma 5.6]. (In fact, though the notation
in [36, Lemma 5.6] suggests a statement at the level of spectra, it is essentially a
statement at the level of the homotopy groups of the equivariant G-theory spectra.)

1 For spectra, this is same as a cofiber sequence
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One can deduce (2) using (1) and the spectral sequence (3.5) as follows and (2)
may be viewed as the correct spectrum-level version of [36, Lemma 5.6].

We need to show that the map of spectra in (2) induces isomorphism between
the homotopy groups. In view of (1), it suffices to show that the spectral sequence
(3.5) degenerates and its E2-terms are identified with R(G) ⌦

R(H)
G⇤([X/H ]).

However, the epimorphism G ⇣ H implies that the map of character groupsbH !
bG is a monomorphism of finitely generated abelian groups. Since the repre-

sentation ring of a split diagonalizable group is the group ring of its characters, it
follows from Lemma 3.12 that R(G) is a free R(H)-module.

Using this and applying (1) for X = Spec (k), we see that KG
⇤
(k) is a free

KH
⇤

(k)-module. But this implies that (3.5) degenerates, identifying the homotopy
groups on the left-hand-side with R(G) ⌦

R(H)
G⇤([X/H ]).

The following result should be known to experts. We provide a proof due to
lack of a suitable reference.

Lemma 3.12. Let M ,! N be a monomorphism of finitely generated abelian
groups. Let S ✓ N be a complete set of representatives of cosets of M in N .
Then Z[N ] is a free Z[M]-module with basis S.

Proof. Let F denote the free Z[M]-module generated by S. Let us define a Z[M]-
linear map

✓ : F ! Z[N ]; ✓

 X
g2S

xg ? g

!
=

X
g2S

xg[g].

To show the surjectivity of ✓ , let x 2 Z[N ]. We can write x = x1+ · · ·+ xn , where
xi 2 Z[si M]. This gives us x =

Pn
i=1(xi (si )�1)si and xi (si )�1 2 Z[M].

To show the injectivity of ✓ , suppose that
P

g2S xg[g] = 0 in Z[N ] and take
any h 2 S. Then we get

P
g2S xg[g][h�1

] = 0. Since gh�1
2 M if and only if

g = h (by choice of S), we see that the term on the left side of the last identity is
simply xh , which must thus be zero.

We end this section with the following (rather technical) result which will be
used in the proof of Theorem 4.1. Taking V to be Spec (k), this becomes a special
case of what is considered in the last Proposition.

Lemma 3.13. Let T be a split torus over k and let T 0 be a quotient of T . Let T act
on T 0 via the quotient map and let it act trivially on an affine scheme V . Consider
the scheme X = V ⇥ T 0 where T acts diagonally. Let � : G ! T be a morphism
of diagonalizable groups such that G acts on any T -scheme via �. Then the map of
spectra

⌧G,T
X : K([Spec (k)/G])

L
^

K([Spec (k)/T ])
G([X/T ]) ! G([X/G]) (3.8)

is a weak equivalence.
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Proof. Let H denote the image of G in T 0 under the composite map G �
�! T ⇣ T 0

and let H 0
= T 0/H . Notice that T 0 is a split torus by Lemma 3.3. Since T (and

hence G) acts trivially on the scheme V , it follows that T and G act on X via their
quotients T 0 and H , respectively. Since X is affine and all the underlying groups
are diagonalizable, it follows from Lemma 3.11 that the maps of spectra

KT L
^

KT 0

G([X/T 0

]) ! G([X/T ]);

KG L
^

KH
G([X/H ]) ! G([X/G])

(3.9)

are weak equivalences. Using the first weak equivalence, we obtain

KG L
^

KT
G([X/T ]) ' KG L

^

KT

✓
KT L

^

KT 0

G([X/T 0
])

◆

' KG L
^

KT 0

G([X/T 0
])

'

✓
KG L

^

KH
KH

◆
L
^

KT 0

G([X/T 0
])

' KG L
^

KH

✓
KH L

^

KT 0

G([X/T 0
])

◆
.

(3.10)

On the other hand, we have

KH L
^

KT 0

G([X/T 0
]) '

1 G([H 0/T 0
])

L
^

KT 0

G([X/T 0
])

'
2 G([(H 0

⇥ X)/T 0
])

'
3 G([X/H ]),

(3.11)

where the isomorphisms '
1 and '

3 follow from Theorem 3.8. The isomorphism
'
2 follows from Propositions 3.6 and 5.1. Combining (3.9), (3.10) and (3.11), we

get the weak equivalences

KG L
^

KT
G([X/T ]) ' KG L

^

KH
G([X/H ]) ' G([X/G])

and this proves the lemma.

4. G-theory of general toric stacks

This section is devoted to the determination of the G-theory of a general (generically
stacky) toric stack. We prove our main results in a much more general set-up where
the underlying scheme with a T -action need not be a toric variety.
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Our first result is a spectral sequence that computes the G-equivariant G-theory
of a T -scheme X in terms of its T -equivariant G-theory and the representation ring
of G whenever there is a morphism of diagonalizable groups � : G ! T . When
the underlying scheme is assumed to be smooth, these conclusions may be stated in
terms of K-theory instead of G-theory.

This result specializes to the case of all (generically stacky) toric stacks when
X is assumed to be a toric variety. We conclude this section with an explicit pre-
sentation of the Grothendieck K-theory ring of a smooth toric stack which may not
necessarily be Deligne-Mumford.

We now prove the following main result of this section and derive its conse-
quences.
Theorem 4.1. Let T be a split torus acting on a scheme X and let � : G ! T be a
morphism of diagonalizable groups such that G acts on X via �. Then the natural
map of spectra

K([Spec (k)/G])
L
^

K([Spec (k)/T ])
G([X/T ]) ! G([X/G]) (4.1)

is a weak equivalence. In particular, one obtains a spectral sequence:

E2s,t = TorK
T
⇤
(k)

s,t

⇣
KG

⇤
(k),G⇤([X/T ])

⌘
) Gs+t ([X/G]). (4.2)

Proof. We shall prove the theorem by the Noetherian induction on T -schemes. The
statement of the theorem is obvious if X is the empty scheme so that both sides of
(4.1) are contractible. Suppose X is any T -scheme such that (4.1) holds when X is
replaced by all its proper T -invariant closed subschemes. We show that (4.1) holds
for X . This will prove the theorem.

By Thomason’s generic slice theorem [37, Proposition 4.10], there exists a T -
invariant dense open subset U ✓ X which is affine. Moreover, T acts on U via its
quotient T 0 which in turn acts freely onU with affine geometric quotientU/T such
that there is a T -equivariant isomorphism U ' (U/T ) ⇥ T 0. Here, T acts trivially
on U/T , via the quotient map on T 0 and diagonally on U . The weak equivalence
of (4.1) holds for U by Lemma 3.13.

We now set Y = X \U . Then Y is a proper T -invariant closed subscheme of X .
The localization sequence induces the commutative diagram of the fiber sequences
in the homotopy category of spectra:

KG
L
∧
KT

G([Y/T ]) KG
L
∧
KT

G([X/T ]) KG
L
∧
KT

G([U/T ])

G([Y/G]) G([X/G]) G([U/G]).

We have shown above that the right vertical map is a weak equivalence. The left
vertical map is a weak equivalence by the Noetherian induction. We conclude that
the middle vertical map is a weak equivalence too. The existence of the spectral
sequence now follows from (3.5).
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Proof of Theorem 1.1. To obtain the spectral sequence (1.1), it is enough to identify
this spectral sequence with the one in (4.2).

To see this, we recall from Lemma 3.11 that the maps

R(T )⌦
Z
K⇤(k) ! K⇤([Spec (k)/T ])

and R(G)⌦
Z
K⇤(k) ! K⇤([Spec (k)/G]) are ring isomorphisms. Since R(T ) and

R(G) are flat Z-modules, these isomorphisms can be written as

R(T )
L
⌦

Z
K⇤(k)

'

�! K⇤([Spec (k)/T ]) and R(G)
L
⌦

Z
K⇤(k)

'

�! K⇤([Spec (k)/G]),

(4.3)

where
L
⌦ denotes the derived tensor product.

Let M•
⇠

�! R(G) be a flat resolution of R(G) as an R(T )-module. Since R(T )

is a flat Z-module, we see that M•
⇠

�! R(G) is a flat resolution of R(G) also as a
Z-module. In particular, we obtain

KG
⇤
(k)

L
⌦

KT
⇤
(k)
G⇤([X/T ]) '

✓
R(G)

L
⌦

Z
K⇤(k)

◆
L
⌦

R(T )⌦
Z
K⇤(k)

G⇤([X/T ])

'

✓
M•

L
⌦

Z
K⇤(k)

◆
L
⌦

R(T )⌦
Z
K⇤(k)

G⇤([X/T ])

'
1
✓
M•

⌦

Z
K⇤(k)

◆
L
⌦

R(T )⌦
Z
K⇤(k)

G⇤([X/T ])

'
2
✓
M•

⌦

Z
K⇤(k)

◆
⌦

R(T )⌦
Z
K⇤(k)

G⇤([X/T ])

'M•
⌦

R(T )

✓
R(T )⌦

Z
K⇤(k)

◆
⌦

R(T )⌦
Z
K⇤(k)

G⇤([X/T ])

'M•
⌦

R(T )
G⇤([X/T ])

'
3M•

L
⌦

R(T )
G⇤([X/T ])

' R(G)
L
⌦

R(T )
G⇤([X/T ]),

(4.4)

where the isomorphism '
1 follows because M• is a complex of flat Z-modules,

'
2 follows because M•

⌦

Z
K⇤(k) is a complex of flat R(T )⌦

Z
K⇤(k)-modules and the

isomorphism '
3 follows because M• is a complex of flat R(T )-modules. Taking
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the homology groups on the both sides, we obtain

TorK
T
⇤
(k)

s,t

⇣
KG

⇤
(k),G⇤([X/T ])

⌘
' TorR(T )

s,t (R(G),G⇤([X/T ]))

which yields the spectral sequence (1.1). The isomorphism of the edge map
G0([X/T ]) ⌦

R(T )
R(G) ! G0([X/G]) follows immediately from (1.1) and the fact

that the equivariant G-theory spectra appearing in Theorem 1.1 are all connective
(have no negative homotopy groups).

Let us now assume that X is a smooth toric variety with dense torus T such
that K0([X/T ]) is a projective R(T )-module. In this case, we can identify the G-
theory and the K-theory. To show the degeneration of the spectral sequence (1.1),
it suffices to show that the map

R(G) ⌦

R(T )
G⇤([X/T ]) ! R(G)

L
⌦

R(T )
G⇤([X/T ]) (4.5)

is an isomorphism. However, we have

R(G)
L
⌦

R(T )
G⇤([X/T ]) ⇠

=
0 R(G)

L
⌦

R(T )

✓
G0([X/T ]) ⌦

R(T )
KT

⇤
(Spec(k))

◆

⇠
=
1 R(G)

L
⌦

R(T )

✓
G0([X/T ])

L
⌦

R(T )
KT

⇤
(Spec(k))

◆

⇠
=
2
✓
R(G)

L
⌦

R(T )
G0([X/T ])

◆
L
⌦

R(T )

✓
R(T )

L
⌦

Z
K⇤(Spec(k))

◆

⇠
=
3
✓
R(G) ⌦

R(T )
G0([X/T ])

◆
L
⌦

R(T )

✓
R(T )

L
⌦

Z
K⇤(Spec(k))

◆

⇠
=
4
✓
R(G) ⌦

R(T )
G0([X/T ])

◆
L
⌦

Z
K⇤(Spec(k))

⇠
=
5
✓
R(G) ⌦

R(T )
G0([X/T ])

◆
⌦

Z
K⇤(Spec(k))

⇠
=
6 R(G) ⌦

R(T )

✓
G0([X/T ])⌦

Z
K⇤(Spec(k))

◆
⇠
=
7 R(G) ⌦

R(T )
G⇤([X/T ]).

The isomorphism '
0 follows from [41, Proposition 6.4] in general and also from

Theorem1.2 when X is projective.The isomorphism'
1 follows becauseG0([X/T ])

is projective R(T )-module. The isomorphism '
2 follows from Lemma 3.11 be-

cause R(T ) is flat Z-module. The isomorphism '
3 follows again from the pro-

jectivity of G0([X/T ]) as an R(T )-module. The isomorphisms '
4 and '

6 are the
associativity of the ordinary and derived tensor products. The isomorphism '

5 fol-
lows because R(G) is a free Z-module and R(G) ⌦

R(T )
G0([X/T ]) is a projective

R(G)-module and hence is flat as a Z-module. The isomorphism '
7 follows again
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from [41, Proposition 6.4] in general and also from Theorem 1.2 when X is projec-
tive. This proves (4.5). The projectivity of G0([X/T ]) as R(T )-module when X
is a smooth and projective toric variety, is shown in [41, Proposition 6.9] (see also
Lemma 6.1). The proof of Theorem 1.1 is now complete.

Remark 4.2. It was shown by Baggio [1] that there are examples of non-projective
smooth toric varieties X such that G0([X/T ]) is a projective R(T )-module. This
shows that there are smooth non-projective toric varieties for which the spectral
sequence in Theorem 1.1 degenerates. In all these cases, one obtains a complete
description of the K-theory of the toric stack [X/G]. We shall see in Section 5.2
that there are examples where the spectral sequence of Theorem 1.1 degenerates
even if G0([X/T ]) is not a projective R(T )-module.

The following generalization of [27, Theorem 4.3] follows immediately from
Theorem 1.1, [34, Theorem 1.3] and [27, Proposition 4.1].

Corollary 4.3. Let G be a connected and reductive group over k with a split max-
imal torus T such that ⇡1(G) is torsion-free. Suppose that G acts on scheme X .
Let � : H ! T be a morphism of diagonalizable groups. Then there is strongly
convergent spectral sequence

Es,t2 = TorR(G)
s (R(H),Gt ([X/G])) ) Gs+t ([X/H ]). (4.6)

Moreover, the edge map R(H) ⌦

R(G)
G0([X/G]) ! G0([X/H ]) is an isomorphism.

4.1. Grothendieck group of toric stacks

In [4], Borisov and Horja had computed the Grothendieck K -theory ringK0([X/G])
when [X/G] is a smooth toric Deligne-Mumford stack. Recall from Section 2 that
the dense stacky torus of a Deligne-Mumford stack is of the form T 0

⇥Bµ where T 0

is a torus andµ is a finite abelian group. The following consequence of Theorem 1.1
generalizes the result of [4] to the case of all smooth toric stacks, not necessarily
Deligne-Mumford. Even in this latter case, we obtain a simpler proof.

Theorem 4.4. Let X = [X/G] be a smooth and reduced toric stack associated
to the data X = (X,G �

�! T ). Let 1 be the fan defining X and let d be the
number of rays in 1. Let I G1 denote the ideal of the Laurent polynomial algebra
Z[t±11 , · · · , t±1d ] generated by the relations:

(1) (t j1 � 1) · · · (t jl � 1), 1  jp  d such that the rays ⇢ j1, · · · , ⇢ jl do not span
a cone of 1;

(2)

 
dQ
j=1

(t j )<��,v j>

!
� 1, � 2 (T/G)_.
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Then there is a ring isomorphism

� :

Z[t±11 , · · · , t±1d ]

I G1

'

�! K0(X). (4.7)

Proof. It follows from Theorem 1.1 that the mapK0([X/T ])⌦
R(T )

R(G)
'

�!K0([X/G])

is a ring isomorphism. Since G is a diagonalizable subgroup of T ([X/G] is re-
duced), the ring R(G) is a quotient of R(T ) by the ideal JG1=

�
�� 1,� 2 (T/G)_

�
(cf. Lemma 7.8). This implies that

K0([X/G]) '

K0([X/T ])

JG1K0([X/T ])
. (4.8)

If we let 1(1) = {⇢1, · · · , ⇢d}, then for each 1  j  d, there is a unique T -
equivariant line bundle L j on X which has a T -equivariant section s j : X ! L j
and whose zero locus is the orbit closure Vj = O⇢ j . Then every character � 2 T_

acts on K0([X/T ]) by multiplication with the element (
Qd

j=1([L j ])
<�,v j>) (cf.

[32, Proposition 4.3]). We conclude that there is a ring isomorphism

K0([X/T ]) 
dQ
j=1

⇣h
L_

j

i⌘<��,v j>
� 1, � 2 (T/G)_

! '

�! K0([X/G]). (4.9)

If I T1 denotes the ideal of Z[t±11 , · · · , t±1d ] generated by the relations (1) above,
then it follows from [41, Theorem 6.4] that there is a ring isomorphism

Z
h
t±11 , · · · , t±1d

i
I T1

'

�! K0([X/T ]). (4.10)

Setting �(t j ) = [L_

j ], we obtain the isomorphism (4.7) by combining (4.9) and
(4.10).

Remark 4.5. If [X/G] is not a reduced stack and there is an exact sequence

0 ! H ! G ! F ! 0

where F = Im(�), then the stack [X/G] is isomorphic to [X/F] ⇥ BH . In
this case, one obtains an isomorphism K⇤([X/G]) ' K⇤([X/F]) ⌦

R(F)
R(G) (cf.

Lemma 3.11). In particular, if H is a torus, one obtains

K⇤([X/G]) ' K⇤([X/F])⌦
Z
R(H).

Thus, we see that the calculation of the K-theory of a (generically stacky) toric stack
can be easily reduced to the case of reduced stacks.
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5. A Künneth formula and its consequences

Our goal in this section is to prove Theorem 1.2 and give applications. We shall
deduce this theorem from a Künneth spectral sequence for the equivariant K-theory
for the action of diagonalizable groups. A spectral sequence of this kind in the
non-equivariant setting was constructed by the first author in [20, Theorem 4.1].

5.1. Künneth formula

Suppose that X and X 0 are schemes acted upon by a linear algebraic group G.
In this case, the flatness of X and X 0 over k implies that the spectra G([X/G])
and G([X 0/G]) are module spectra over the ring spectrum K([Spec (k)/G]). This
flatness also ensures that the external tensor product of coherentO-modules induces
a pairing G([X/G]) ^ G([X 0/G]) ! G([(X⇥X 0)/G]), where the action of G on
X⇥X 0 is the diagonal action. This pairing is compatible with the structure of the
above spectra as module spectra over the ring spectrum K([Spec (k)/G]) so that
one obtains the induced pairing:

p⇤

1 ^ p⇤

2 : G([X/G])
L
^

K([Spec (k)/G])
G([X 0/G]) ! G([(X ⇥ X 0)/G]).

This is a map of ring spectra if X and X 0 are smooth.

Proposition 5.1. Let T be a split torus and let X, X 0 be in VT such that X is T -
linear. Let � : G ! T be a morphism of diagonalizable groups such that G acts
on X and X 0 via �. Then the natural map of spectra

G([X/G])
L
^

K([Spec (k)/G])
G([X 0/G]) ! G([(X ⇥ X 0)/G]) (5.1)

is a weak equivalence.
In particular, there exists a first quadrant spectral sequence

E2s,t = TorK
G
⇤

(k)
s,t (G⇤([X/G]),G⇤([X 0/G])) ) Gs+t ([(X ⇥ X 0)/G]). (5.2)

Proof. We assume that X is T -equivariantly n-linear for some n � 0. The proposi-
tion is proved by an ascending induction on n, along the same lines as the proof of
Proposition 3.10. We sketch the argument.

If n = 0, then X ' An and hence by the homotopy invariance, we can assume
that X = Spec (k), and the result is immediate in this case. We now assume that
n > 0. By the definition of T -linearity, there are two cases to consider:

(1) There exists a T -invariant closed subscheme Y of X with complement U such
that Y and U are T -equivariantly (n � 1)-linear.

(2) There exists a T -scheme Z which contains X as a T -invariant open subscheme
such that Z and Y = Z \ X are T -equivariantly (n � 1)-linear.
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In the first case, the localization fiber sequence in equivariant G-theory gives us a
commutative diagram of fiber sequences in the homotopy category of spectra:

G([X /G])
L
∧
KG

G([Y/G]) G([X /G])
L
∧
KG

G([X/G]) G([X /G])
L
∧
KG

G([U/G])

G([(Y × X )/G]) G([(X × X )/G]) G([(U × X )/G]).

The left and the right vertical maps are weak equivalences by the induction on n.
We conclude that the middle vertical map is a weak equivalence. The second case
is proved in the same way where we now use induction on Y and Z (see the proof
of Proposition 3.10). The existence of the spectral sequence now follows from
(3.5).

Remark 5.2. As an application of Proposition 5.1, one can obtain another proof
of the special case of the spectral sequence (1.1) when G is a closed subgroup of
T . This is done by taking G = T , X 0

= T/G in (5.2) and using the Morita weak
equivalences G([X 0/T ]) ' G([Spec (k)/G]) and G([(X ⇥ X 0)/T ]) ' G([X/G]).
Notice that X 0

= T/G is T -linear by Proposition 3.6.

Corollary 5.3 (Künneth decomposition). Let T be a split torus over k and let X
be a T -linear scheme. Then the class of the diagonal [1] 2 G0([(X ⇥ X)/G]) ad-
mits a strong Künneth decomposition, i.e., may be written as 6n

i=1 p
⇤

1(↵i )⌦ p⇤

2(�i ),
where ↵i ,�i 2 G0([X/G]).

Proof. The spectral sequence of Proposition 5.1 shows in general that

G0([(X ⇥ X 0)/G]) ' G0([X/G]) ⌦

R(G)
G0([X 0/G]). (5.3)

The Künneth decomposition now follows by taking X = X 0.

Proof of Theorem 1.2. Let X be a smooth and projective T -linear scheme. Since
the group G is diagonalizable, we apply Lemma 3.11 to obtain the isomorphism:

R(G)⌦
Z
K⇤(k)

'

�! KG
⇤
(k) (5.4)

and this provides the first isomorphism of (1.3). Since X is smooth, we can identify
G⇤([X/G]) with K⇤([X/G]).

Let [x] 2 K⇤([X/G]). Then [x] = p1⇤(1� p⇤

2([x])). Now we use the Künneth
decomposition for1 obtained in Corollary 5.3 and the projection formula (since X
is projective) to identify the last term with

Pn
i=1 ↵i � p1⇤ p⇤

2(�i � [x]). The Cartesian
square

X × X
p2

p1

X

p1

X
p2

Spec (k)
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and the flat base-change for the equivariant G-theory show that p1⇤(p⇤

2(�i � [x]))
identifies with p0

2
⇤ p0

1⇤(�i � [x]) so that

[x] =

nX
i=1

↵i � p0

2
⇤

(p0

1⇤(�i � [x])). (5.5)

The class p0

1⇤(�i � [x]) 2 G([Spec (k)/G]). It follows that the classes {↵i } generate
⇡⇤(G[X/G]) as a module over KG

⇤
(k). This shows that the map in question is

surjective.
Next we prove the injectivity of the map ⇢. The key is the following diagram:

K∗([X/G])

µ

K0([X/G]) ⊗
KG

0 (k)
KG

∗ (k)
ρ

α

HomKG
0 (k)(K0([X/G]),KG

∗ (k))

(5.6)

where ↵(x ⌦ y) (respectively µ(x), x 2 K⇤([X/G])) is defined by ↵(x ⌦ y) =

the map x 0
7! f⇤(x 0

� x) � y (respectively, the map x 0
7! f⇤(x 0

� x)). Here, f
denotes the projection map X ! Spec (k) and x 0

� x denotes the product in the ring
K⇤([X/G]). The commutativity of the above diagram is an immediate consequence
of the projection formula: observe that ⇢(x ⌦ y) = x � f ⇤(y). Therefore, to show
that ⇢ is injective, it suffices to show that the map ↵ is injective. For this, we define
a map � to be a splitting for ↵ as follows.

If � 2 HomKG0 (k)(K0([X/G]),KG
⇤
(k)), we let �(�) =

nP
i=1

↵i ⌦ (�(�i )). Ob-

serve that

�(↵(x ⌦ y)) = �
�
the map x 0

! f⇤(x 0
� x) � y

�
=

✓ nP
i=1

↵i ⌦ f⇤
�
�i · x

�◆
� y.

We next observe that f⇤(�i · x) 2 KG
0 (k), so that we may write the last term as

(
Pn

i=1 ↵i . f ⇤ f⇤(�i · x)) � y. By (5.5), the last term = x � y. This proves that ↵ is
injective and hence that so is ⇢. This completes the proof.

The following result generalizes (1.2) to a bigger class of schemes.

Corollary 5.4. Let T be a split torus over k and let X be a smooth and projective
T -linear scheme. Let � : G ! T be a morphism of diagonalizable groups such
that G acts on X via �. Then the map

R(G) ⌦

R(T )
K⇤([X/T ]) ! K⇤([X/G])

is an isomorphism. In particular, K0([X/G]) is a free R(G)-module (and hence a
free Z-module) if X is T -cellular.



HIGHER K-THEORY OF TORIC STACKS 1213

Proof. To prove the first part of the corollary, we trace through the sequence of
isomorphisms:

R(G) ⌦

R(T )
K⇤([X/T ]) ⇠

= R(G) ⌦

R(T )

✓
K0([X/T ]) ⌦

R(T )
KT

⇤
(Spec(k))

◆

⇠
=

✓
R(G) ⌦

R(T )
K0([X/T ])

◆
⌦

R(T )

✓
R(T )⌦

Z
K⇤(Spec(k))

◆
⇠
=
† K0([X/G])⌦

Z
K⇤(Spec(k))

⇠
= K⇤([X/G]).

The first and the last isomorphisms in this sequence follow from Theorem 1.2 and
the isomorphism '

† follows from Theorem 1.1. This proves the first part of the
corollary. If X is T -cellular, the freeness ofK0([X/G]) as an R(G)-module follows
from Lemma 6.1.

Remark 5.5. In the special case when [X/G] is a smooth toric Deligne-Mumford
stack (with X projective), the freeness of K0([X/G]) as a Z-module was earlier
shown in [17, Theorem 2.2] and independently in [13] using symplectic methods.
It is known (cf. [17, Example 4.1]) that the freeness property may fail if X is not
projective.

5.2. K-theory of weighted projective spaces

In the past, there have been many attempts to study the K-theory and Chow rings of
weighted projective spaces. However, there are only a few explicit computations in
this regard. We end this section with an explicit description of the integral higher
K-theory of stacky weighted projective spaces. These are examples of toric stacks,
where the spectral sequence (1.1) degenerates even though K0([X/T ]) is not a
projective R(T )-module. We also describe the rational higher G-theory of weighted
projective schemes as another application of Theorem 1.2.

5.2.1. Weighted projective spaces

Let q={q0, · · ·,qn}be anordered set of positive integers and let d=gcd(q0, · · ·,qn).
This ordered set of positive integers gives rise to a morphism of tori � : Gm !

(Gm)n+1 given by �(�) = (�q0, · · · , �qn ).
The (stacky) weighted projective space P(q0, · · · , qn) is the stack

[(An+1
k \ {0})/Gm],

where Gm acts on An+1
k by � · (a0, · · · , an) = (�q0a0, · · · , �qnan). Notice that

An+1
\{0} is a toric variety with dense torus T = (Gm)n+1 acting by the coordinate-

wise multiplication. We see that P(q) is the toric stack associated to the data

((An+1
k \ {0}), Gm

�
�! T ). It is known that P(q) is a Deligne-Mumford toric stack

and is reduced (an orbifold) if and only if d = 1.
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5.2.2. K-theory of P(q)

To describe the higher K-theory of P(q), we consider An+1 as the toric variety with
dense torus T = (Gm)n+1 acting by the coordinate-wise multiplication. Let V be
the (n + 1)-dimensional representation of T which represents An+1 as the toric
variety. Let ◆ : Spec (k) ! An+1 and j : U ! An+1 be the T -invariant closed and
open inclusions, where we setU = An+1

\ {0}. Observe that V is the T -equivariant
normal bundle of Spec (k) sitting inside An+1 as the origin.

We have the localization exact sequence:

· · · ! Ki ([Spec (k)/Gm])
◆⇤
�! Ki ([An+1/Gm])

j⇤
�! Ki ([U/Gm]) ! · · · . (5.7)

Our first claim is that this sequence splits into short exact sequences

0 ! Ki ([Spec (k)/Gm])
◆⇤
�! Ki ([An+1/Gm])

j⇤
�! Ki ([U/Gm]) ! 0 (5.8)

for each i � 0.
Using [41, Proposition 4.3], it suffices to show that

��1(V ) =

nX
i=0

(�1)i [^i (V )]

is not a zero-divisor in the ringK⇤([Spec (k)/Gm]). However, we can write V =

n
�

i=0
Vi , whereGm acts on Vi ' k by � · v = �qi v. Since each qi is positive, we see that
no irreducible factor of V is trivial. It follows from [41, Lemma 4.2] that ��1(V )
is not a zero-divisor in the ring K⇤([Spec (k)/Gm]), and hence (5.8) is exact. We
have thus proven our claim.

We can now use (5.8) to compute K⇤([U/Gm]). We first observe that the
map K⇤([Spec (k)/Gm]) ! K⇤([An+1/Gm]) induced by the structure map is an
isomorphism by the homotopy invariance. So we can identify the middle term of
(5.8) with Ki ([Spec (k)/Gm]). Furthermore, it follows from the Self-intersection
formula [41, Theorem 2.1] that the map ◆⇤ is multiplication by ��1(V ) under this
identification.

Since V =

n
�

i=0
Vi , we get ��1(V ) =

Qn
i=0 ��1(Vi ). Furthermore, since the

class of Vi in R(Gm) = Z[t±1] is tqi , we see that ��1(Vi ) = 1� tqi . We conclude
that ��1(V ) =

Qn
i=0(1� tqi ). We have thus proven:

Theorem 5.6. There is a ring isomorphism
K⇤(k)

⇥
t±1
⇤

nQ
i=0

(1� tqi )

'

�! K⇤

�
P(q)

�
.

Remark 5.7. In the above calculations, we can replaceGm by the dense torus T to
get a similar formula. In this case, the exact sequence (5.8) shows thatK0([(An+1

\

{0})/T ]) is a quotient of R(T ) and hence is not a projective R(T )-module.
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5.2.3. G-theory of weighted projective scheme

The weighted projective scheme is the scheme theoretic quotient ofAn+1
\{0} by the

above action ofGm . This is the coarse moduli scheme of P(q). We shall denote this
scheme by gP(q). It is known that this is a normal (but singular in general) projective
scheme. There was no computation available for the higher G-theory or K-theory
of this schematic weighted projective space. As an application of Theorem 1.2, we
now give a simple description of the rational higher G-theory of gP(q). We still do
not know how to compute its K-theory. (See [25] for very partial results in this
direction.)

In order to describe the higher G-theory of gP(q), we shall use the following
presentation of this scheme which allows us to use our main results. We assume
that the characteristic of k does not divide any qi .

The torus T = Gn
m acts on Pnk as the dense open torus by (�1, · · · , �n) ?

[z0, · · · , zn] = [z0, �1z1, · · · , �nzn]. Let G = µq0 ⇥ · · · ⇥ µqn be the prod-
uct of finite cyclic groups. Then G acts on Pnk by (a0, · · · , an) • [z0, · · · , zn] =

[a0z0, · · · , anzn]. It is then easy to see that gP(q) is isomorphic to the scheme Pnk/G.
Define � : G ! T by �(a0, · · · , an) = (a1/a0, · · · , an/a0). Then one checks

that
H := Ker(�) = {(a0, · · · , an) 2 G|a0 = · · · = an}

= {� 2 Gm |�q0 = 1 = · · · = �qn }
= {� 2 Gm |�d = 1}
' µd .

Moreover, it is easy to see that

(a0, · · · , an) • [z0, · · · , zn] = [a0z0, · · · , anzn]
= [a�1

0 (a0z0), · · · , a�1
0 (anzn)]

= [z0, (a1/a0)z1, · · · , (an/a0)zn]
= �(a0, · · · , an) ? [z0, · · · , zn].

In particular, G acts on Pnk through �. We conclude that X = [Pnk/G] is a smooth

toric Deligne-Mumford stack associated to the data (Pnk ,G
�
�! T ) and there is an

isomorphism X ' [Pnk/F] ⇥ Bµd , where F = Im(�).

Theorem 5.8. There is a ring isomorphism

Z[t, t0, · · · , tn]�
(t � 1)n+1, tq00 � 1, · · · , tqnn � 1

�⌦
Z
K⇤(Spec(k))

⇠
=

�! K⇤(X). (5.9)

Proof. It follows from Corollary 5.4 and Theorem 1.2 that there is a ring isomor-
phism

R(G) ⌦

R(T )
K0
�⇥

Pnk/T
⇤�

⌦

Z
K⇤(Spec(k))

⇠
=

�! K⇤(X)).
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On the other hand, the projective bundle formula implies that the left side of this
isomorphism is same as R(G) ⌦

R(T )

R(T )[t]
((t�1)n+1)⌦Z

K⇤(Spec(k)), which in turn is isomor-

phic to R(G)[t]
((t�1)n+1)⌦Z

K⇤(Spec(k)). The theorem now follows from the isomorphism

R(G) '
Z[t0,··· ,tn]

(tq00 �1,··· ,tqnn �1)
.

Corollary 5.9. There is an isomorphism

G⇤(k)[t]�
(t � 1)n+1

� '

�! G⇤

⇣gP(q)
⌘

with rational coefficients.

Proof. All the groups in this proof will be considered with rational coefficients. Let
⇡ : Pn+1k !

gP(q) be the quotient map. The assignment F 7! (⇡⇤(F))G defines
a covariant functor from the category of G-equivariant coherent sheaves on Pn+1k
to the category of ordinary coherent sheaves on gP(q). Since the characteristic of k
does not divide the order of G, this functor is exact and gives a push-forward map
⇡⇤ : GG

⇤
(Pn+1k ) ! G⇤

⇣gP(q)
⌘
.

Let CHG
⇤
(Pn+1k ) denote the equivariant higher Chow groups of Pn+1k ( [9]).

By [9, Theorem 3], there is a push-forward map ⇡⇤ : CHG
⇤
(Pn+1k ) ! CH⇤

⇣gP(q)
⌘

which is an isomorphism. It follows from [22, Theorem 9.8, Lemma 9.1] that there
is a commutative diagram

GG
∗ (Pn+1

k ) ⊗
R(G)

Q τG

π∗

CHG
∗ (Pn+1

k )

π∗

G∗ P(q) τ CH∗ P(q) ,

where the horizontal arrows are the Riemann-Roch maps which are isomorphisms
( [22, Theorem 8.6]). It follows that the left vertical arrow is an isomorphism. The
corollary now follows by combining this isomorphism with Theorem 5.8.

6. Toric stack bundles and the stacky Leray-Hirsch theorem

Toric bundle schemes and their cohomology were first studied by Sankaran and
Uma in [32]. They computed the Grothendieck group of a toric bundle over a
smooth base scheme. A description of the Grothendieck group of toric Deligne-
Mumford stack bundles was given by Jiang and Tseng in [19].

In this section, we give a general definition of toric stack bundles over a base
scheme in such a way that every fiber of this bundle is a (generically stacky) toric
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stack in the sense of [14]. We prove a stacky version of the Leray-Hirsch theorem
for the algebraic K-theory of stack bundles. This Leray-Hirsch theorem will be used
in the next section to describe the higher K-theory of toric stack bundles.

6.1. Toric stack bundles

Let T be a split torus of rank n and let X be a scheme with a T -action. Let G be a
diagonalizable group over k and let � : G ! T be a morphism of algebraic groups
over k.

Let p : E ! B be a principal T -bundle over a scheme B. Let G act on E ⇥ X
by g(e, x) = (e, gx) := (e,�(g)x) and let T act on E ⇥ X via the diagonal action.
It is easy to see that these two actions commute and the projection map E⇥X ! E
is equivariant with respect to these actions.

The commutativity of the actions ensures that the G-action descends to the

quotients E(X) := E
T
⇥ X and E/T = B such that the induced map of quotients

p : E(X) ! B is G-equivariant. Since E has trivial G-action, so does B and
we see that G acts on E(X) fiber-wise and the map p canonically factors through
the stack quotient ⇡ : [E(X)/G] ! B. Notice that E is a Zariski locally trivial
T -bundle and so are E(X) ! B and [E(X)/G] ! B. SettingX = [E(X)/G], we
conclude that the map ⇡ : X ! B is a Zariski locally trivial fibration each of whose
fiber is the stack [X/G]. The morphism ⇡ will be called a stack bundle over B.

If X is a toric variety with dense torus T , then ⇡ : X ! B will be called a
toric stack bundle over B. In this case, each fiber of ⇡ is the toric stack [X/G] in
the sense of [14]. If [X/G] is a Deligne-Mumford stack, this construction recovers
the notion of toric stack bundles used in [19].

6.2. Leray-Hirsch theorem for stack bundles

First we prove the following lemma.

Lemma 6.1. Let X be a T -equivariantly cellular scheme with the T -equivariant
cellular decomposition

; = Xn+1 ( Xn ( · · · ( X1 ( X0 = X (6.1)

and let Ui = X \ Xi for 0  i  n + 1. Let G be a diagonalizable group provided
with a morphism of algebraic groups � : G ! T . Then for any 0  i  n, the
sequence

0 ! GG
⇤

(Ui+1 \Ui ) ! GG
⇤
(Ui+1) ! GG

⇤
(Ui ) ! 0 (6.2)

is exact. In particular, GG
0 (X) is a free R(G)-module of rank equal to the number

of T -invariant affine cells in X with basis given by the closures of the affine cells.

Proof. To prove the exactness part of the proposition, we first make the following
claim. Suppose X is a G-scheme and j : U ,! X is a G-invariant open inclusion
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with complement Y . Suppose that U is isomorphic to a representation of G. Then
the localization sequence

0 ! GG
⇤
(Y ) ! GG

⇤
(X)

j⇤
�! GG

⇤
(U) ! 0 (6.3)

is (split) short exact.
To prove the claim, let ↵ : X ! Spec (k) and � : U ! Spec (k) be the struc-

ture maps (which are G-equivariant) so that � = ↵ � j . The homotopy invariance
of equivariant K-theory shows that �⇤ is an isomorphism. Let � = ↵⇤

� (�⇤)�1.
Then one checks that � is a section of j⇤ and hence the localization sequence splits
into short exact sequences. This proves the claim.

We shall prove (6.2) by induction on the number of T -invariant affine cells
in X . For i = 0, (6.2) is immediate. So we assume i � 1 and consider the
commutative diagram:

0 0 0

0 GG
∗ (Xi \ Xi+1) GG

∗ (X1 \ Xi+1) GG
∗ (X1 \ Xi) 0

0 GG
∗ (Xi \ Xi+1) GG

∗ (X \ Xi+1) GG
∗ (X \ Xi) 0

GG
∗ (X \ X1) GG

∗ (X \ X1) 0

0 0.

(6.4)

The top row is exact by induction on the number of affine cells since X1 is T -
equivariantly cellular with fewer number of cells. The two columns are exact by the
above claim. It follows that the middle row is exact, which proves (6.2).

To prove the last (freeness) assertion, we apply (6.3) to the inclusion X1 ⇢ X
and see that GG

0 (X) ' GG
0 (X1) � R(G). An induction on the number of affine

G-cells now finishes the proof.

Proposition 6.2. Let X be a T -equivariantly cellular scheme and let B be any
scheme with trivial T -action. Then the external product map

GG
0 (X)⌦ZG⇤(B) ! GG

⇤
(B ⇥ X) (6.5)

is an isomorphism. In particular, the natural map GG
0 (X)⌦ZK⇤(Spec(k)) !

GG
⇤
(X) is an isomorphism.

Proof. Since the map
R(G) ⌦Z G⇤(B)

⇠
=

�! GG
⇤
(B) (6.6)
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is an isomorphism (see [36, Lemma 5.6]), the lemma is equivalent to the assertion
that the map

GG
0 (X)⌦R(G)GG

⇤
(B) ! GG

⇤
(B ⇥ X) (6.7)

is an isomorphism.
Consider the cellular decomposition of X as in Lemma 6.1. Then each Ui =

X \ Xi is also a T -equivariantly cellular scheme. It suffices to show by induction
on i � 0 that (6.7) holds when X is any of these Ui ’s. There is nothing to prove for
i = 0 and the case i = 1 follows by the homotopy invariance since U1 is an affine
space.

To prove the general case, we use the short exact sequence

0 ! GG
0
�
Ui+1 \Ui

�
! GG

0
�
Ui+1

�
! GG

0
�
Ui
�

! 0 (6.8)

given by Lemma 6.1. This sequence splits, since each GG
0 (Ui ) was shown to be

free over R(G) in Lemma 6.1. Tensoring this with GG
⇤
(B) over R(G), we obtain a

commutative diagram

0 GG
0 (Ui+1 \ Ui)⊗GG

∗ (B) GG
0 (Ui+1)⊗GG

∗ (B) GG
0 (Ui)⊗GG

∗ (B) 0

GG
∗ (B × (Ui+1 \ Ui)) i∗

GG
∗ (B × Ui+1)

j∗
GG

∗ (B × Ui)

where the top row remains exact since the short exact sequence in (6.8) is split. The
bottom row is the localization exact sequence. The left vertical arrow is an isomor-
phism by the homotopy invariance and the right vertical arrow is an isomorphism
by the induction. In particular, j⇤ is surjective in all indices. We conclude that i⇤ is
injective in all indices and the middle vertical arrow is an isomorphism.

Theorem 6.3 (Stacky Leray-Hirsch theorem). Suppose that k is a perfect field
and B is a smooth scheme over k. Let X be a T -equivariantly cellular scheme.
Let F

i
�! X

⇡
�! B be a Zariski locally trivial stack bundle (Section 6.1) each of

whose fiber F is a smooth stack of the form [X/G]. Assume that there are elements
{e1, · · · , er } in K0(X) such that { f1 = i⇤(e1), · · · , fr = i⇤(er )} is an R(G)-basis
of K0(Xb) for each fiber Xb = F of the fibration. Then the map

8 : KG
⇤
(B) ⌦

R(G)
K0(F) ! K⇤(X)

8

 X
1ir

bi ⌦ fi

!
=

X
1ir

⇡⇤(bi )ei
(6.9)

is an isomorphism of R(G)-modules. In particular, K⇤(X) is a free KG
⇤
(B)-module

and the map ⇡⇤
: KG

⇤
(B) ! K⇤(X) is injective.
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Proof. Since k is perfect and since the fibration p is Zariski locally trivial, we can
find a filtration

; = Bn+1 ( Bn ( · · · ( B1 ( B0 = B (6.10)

of B by closed subschemes such that for each 0  i  n, the scheme Bi \ Bi+1
is smooth and the given fibration is trivial over it. We set Ui = B \ Bi and Vi =

Ui \Ui�1 = Bi�1 \ Bi . Observe then that each of Ui ’s and Vi ’s is smooth.
Set Xi = ⇡�1(Ui ) and Wi = ⇡�1(Vi ) = Vi ⇥ F. Let ⌘i : Xi ,! X and

◆i : Wi ,! X be the inclusion maps. We prove by induction on i that the map
K0(F) ⌦

R(G)
KG

⇤
(Ui ) ! K⇤(Xi ) is an isomorphism, which will prove the theorem.

Since U0 = ; and X1 = U1 ⇥ F, the desired isomorphism for i  1 follows
from Proposition 6.2 and the isomorphism U1 ⇥ F ' [(U1 ⇥ X)/G]. We now
consider the commutative diagram:

KG
∗ (Ui)
⊗

K0(F)

KG
∗ (Vi+1)
⊗

K0(F)

KG
∗ (Ui+1)
⊗

K0(F)

KG
∗ (Ui)
⊗

K0(F)

KG
∗ (Vi+1)
⊗

K0(F)

K∗(Xi) K∗(Wi+1) K∗(Xi+1) K∗(Xi) K∗(Wi+1).

(6.11)

The top row in this diagram is obtained by tensoring the K-theory long exact local-
ization sequence withK0(F) over R(G), and the bottom row is just the localization
exact sequence. Since K0(F) is a free R(G)-module (cf. Lemma 6.1), the top row
is also exact.

It is easily checked that the second and the third squares commute using the
commutativity property of the push-forward and pull-back maps of K-theory of
coherent sheaves in a Cartesian diagram of proper and flat maps. We show that the
other squares also commute. It is enough to show that the first square commutes as
the fourth one is same as the first. Let � denote the connecting homomorphism in a
long exact localization sequence for higher K-theory.

If we start with an element b ⌦ i⇤(e j ) 2 K⇤(Ui )⌦K0(F) and map this hori-
zontally, we obtain �b ⌦ i⇤(e j ) which maps vertically down to ⇡⇤(�b) · ◆⇤i+1(e j ).
On the other hand, if we first map vertically, we obtain ⇡⇤(b) · ⌘⇤

i (e j ) which maps
horizontally to �

�
⇡⇤(b) · ⌘⇤

i (e j )
�
.

Now, we recall that these elements in the higher K-theory of coherent sheaves
are represented by the elements in the higher homotopy groups of the various in-
finite loop spaces. Moreover, if we have a closed immersion of smooth stacks
F ,! X with open complement U, then we have a fibration sequence of ring spec-
tra

K(F) ! K(X) ! K(U). (6.12)

The homotopy groups of these ring spectra form graded rings and the connecting
homomorphism in the long exact sequence of the homotopy groups associated to
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the above fibration sequence satisfies the Leibniz rule (e.g., see [7, Appendix A]
and [29, Section 2.4]).

Applying this Leibniz rule, we see that the term �
�
⇡⇤(b) · ⌘⇤

i (e j )
�
is same as

�⇡⇤(b) · ◆⇤i+1(e j ) = ⇡⇤ (�b) · ◆⇤i+1(e j ) since �(⌘⇤

i (e j )) = 0. We have shown that the
above diagram commutes.

The first and the fourth vertical arrows in (6.11) are isomorphisms by induc-
tion. The second and the fifth vertical arrows are isomorphisms by Proposition 6.2.
Hence the middle vertical arrow is also an isomorphism by 5-lemma.

To show that ⇡⇤ is injective, consider the T -invariant filtration of X as in (6.1)
and let j : [E(U1)/G] = X1 ! X be the open inclusion. If we apply (6.9) to the
map X1 ! B, we see that the composite map KG

⇤
(B) ! K⇤(X) ! K⇤(X1) is

an isomorphism (since U1 is a T -invariant cell of X). We conclude that ⇡⇤ is split
injective.

7. Higher K-theory of toric stack bundles

In this section, we give explicit descriptions of the higher K-theory of toric stack
bundles in terms of the higher K-theory of the base scheme.

Let T be a split torus of rank n. Let N = Hom(Gm, T ) be the lattice of one-
parameter subgroups of T and let M = Hom(T, Gm) = N_ be its character group.
Let X = X (1) be a smooth projective toric variety associated to a fan 1 in NR.
Let

0 ! G ! T ! T 0

! 0 (7.1)

be an exact sequence of diagonalizable groups. This yields the exact sequence of
the character groups

0 ! T 0_

! T_

! G_

! 0. (7.2)

7.1. The Stanley-Reisner algebra associated to a subgroup of T

We fix an ordering {�1, · · · , �m} of 1max and let ⌧i ⇢ �i be the cone which is
the intersection of �i with all those � j such that j � i and which intersect �i in
dimension n � 1. Let ⌧ 0

i ⇢ �i be the cone such that ⌧i \ ⌧ 0

i = {0} and dim(⌧i ) +

dim(⌧ 0

i ) = n for 1  i  m. It is easy to see that ⌧ 0

i is the intersection of �i with
all those � j such that j  i and which intersect �i in dimension n � 1. Since X is
smooth and projective, it is well known that we can choose the above ordering of
1max such that

⌧i ⇢ � j ) i  j and ⌧ 0

i ⇢ � j ) j  i. (7.3)

Let11 = {⇢1, · · ·, ⇢d} be the set of one-dimensional cones in1 and let {v1,· · ·,vd}
be the associated primitive elements of N . We choose {⇢1, · · · , ⇢n} to be a set of
one dimensional faces of �m such that {v1,· · ·,vn} is a basis of N . Let {�1, · · · ,�n}
be the dual basis of M . Let {� 0

1, · · · ,� 0

r } be a chosen basis of T 0_
= M 0. We will

denote the group operations in all the lattices additively.
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Definition 7.1. Let A be a commutative ring with unit and let {r1, · · · , rn} be a
set of invertible elements in A. Let I T1 denote the ideal of the Laurent polynomial
algebra A[t±11 , · · · , t±1d ] generated by the elements

�
t j1 � 1

�
· · ·

�
t jl � 1

�
, 1  jp  d (7.4)

such that ⇢ j1, · · · , ⇢ jl do not span a cone of 1. Let JG1 denote the ideal of

A[t±11 , · · · , t±1d ]

generated by the relations

si :=

 
dY
j=1

�
t j
�<�� 0

i ,v j>

!
� ri , 1  i  r. (7.5)

We define the A-algebras RT (A,1)and RG(A,1) to be quotients of A[t±11 ,· · ·,t±1d ]

by the ideals I T1 and I G1 = I T1 + JG1 , respectively.
The ring RG(A,1) will be called the Stanley-Reisner algebra over A associ-

ated to the subgroup G. Every character � 2 M acts on RT (A,1) via multiplica-
tion by the element t� =

⇣Qd
j=1(t j )<��,v j>

⌘
and this makes RT (A,1) (and hence

RG(A,1)) an
⇣
A⌦

Z
R(T )

⌘
-algebra.

7.2. The K-theory of toric stack bundles

Let T be a split torus over a perfect field k and let G be a closed subgroup of T
(which may not necessarily be a torus). Let X be a smooth projective toric variety
with dense torus T and let ⇡ : X = [(E(X)/G] ! B be a toric stack bundle over
a smooth k-scheme B associated to a principal T -bundle p : E ! B. We wish to
describe the K-theory of X in terms of the K-theory of B.

Any T -equivariant line bundle L ! X uniquely defines a G-equivariant line

bundle E(L) = E
T
⇥ L on E(X), where the G-action on E(L) is given exactly as

on E(X). Every ⇢ 2 11 defines a unique T -equivariant line bundle L⇢ on X with
a T -equivariant section s⇢ : X ! L⇢ which is transverse to the zero-section and
whose zero locus is the orbit closure V⇢ = O⇢ .

For any � 2 1, let u� denote the fundamental class [OV� ] of the T -invariant
subscheme V� in KT

0 (X) and let y� denote the fundamental class of [E (V� )] in
KG
0 (E(X)) = K0(X).
Notice that p� : E (V� ) ! B is a G-equivariant smooth projective toric sub-

bundle of p : E(X) ! B with fiber V� . In particular, ⇡� : [E (V� ) /G] ! B
is a toric stack sub-bundle of ⇡ : X ! B with fiber [V� /G]. We set X� =

[E (V� ) /G].
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Suppose that ⇢ j1, · · · , ⇢ jl do not span a cone in 1. Then s = (s j1, · · · , s jl )
yields a G-equivariant nowhere vanishing section of E(L⇢ j1

) � · · · � E(L⇢ jl
) and

hence the Whitney sum formula for Chern classes in K-theory implies that

y⇢ j1 · · · y⇢ jl = 0 in KG
0 (E(X)) . (7.6)

We now consider the commutative diagram

Xl
ι

πl

E(X)

p

E × X

pE

pXp
X

πX

Spec(l) B Ep πE
Spec(k),

(7.7)

where Spec(l) is any point of B. It is clear that all squares are Cartesian and all the
maps in the right square are T -equivariant.

We define (T ⇥G)-actions on any T -invariant subscheme Y ✓ X and on E by
(t, g) · y = tg · y and (t, g) · e = t · e, respectively. An action of (T ⇥G) on E ⇥ X
is defined by (t, g) · (e, x) = (t · e, tg · x). It is clear that these are group actions
such that the square on the right in (7.7) is (T ⇥ G)-equivariant. This implies that
the middle square is also (T ⇥ G)-equivariant and the map p is G-equivariant with
respect to the trivial action of G on B. The square on the left is G-equivariant.

Let L� denote the T -equivariant line bundle on Spec(k) associated to a charac-
ter � of T . Let (T⇥G) act on L� by (t, g)·v = �(t)�(g)·v. If � 2 M 0

= T 0_, then
G acts trivially on L� and hence it acts trivially on ⇡⇤

E (L� ). Recall that (T ⇥ G)
acts on E via T . Hence ⇡⇤

E (L� ) ! E is a (T ⇥ G)-equivariant line bundle on
which G-acts trivially. Since the T -equivariant line bundles on E are same as ordi-
nary line bundles on B, we find that for every � 2 M 0, there is a unique ordinary
line bundle ⇣� on B such that ⇡⇤

E (L� ) = p⇤(⇣� ).
Since G acts trivially on B, there is a canonical ring homomorphism cB :

K⇤(B) ! KG
⇤
(B) such that the composite K⇤(B)

cB
�! KG

⇤
(B) ! K⇤(B) is iden-

tity. These maps are simply the maps K⇤(B)
cB
�! KG

⇤
(B) = K⇤(B) ⌦Z R(G) !

K⇤(B). Since p⇤

X � ⇡⇤

X (L� ) = p⇤

E � ⇡⇤

E (L� ) and since the (T ⇥ G)-equivariant
vector bundles on E ⇥ X are same as G-equivariant vector bundles on E(X), we
conclude that for every � 2 M 0, there is a unique ordinary line bundle ⇣� on B such
that

E(⇡⇤

X (L� )) = p⇤(⇣� ) = p⇤
�
cB(⇣� )

�
. (7.8)

Notice also that on each open subset of B where the bundle p is trivial, the restric-
tion of ⇣� is the trivial line bundle since ⇣� is obtained from the T -line bundle L�

on Spec (k).
We define a homomorphism ofK⇤(B)-algebrasK⇤(B)[t±11 , · · ·,t±1d ]!K⇤(X)

by the assignment ti 7! [E(L_

⇢i )/G] for 1  i  d. If we let ri = ⇣� 0

i
for 1  i  r

(cf. Section 7.1), then it follows from (7.6) and (7.8) that this homomorphism
descends to a K⇤(B)-algebra homomorphism

8G : RG (K⇤(B),1) ! K⇤(X). (7.9)
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Given a sequence � = {i1, · · · , id} of integers, set

E(� ) = E
✓⇣

L_

⇢1

⌘i1
⌦ · · · ⌦

⇣
L_

⇢d

⌘id◆
.

We then see that for a monomial � (t) = t i11 · · · t idd , we have

8G(� (t)) = [E(� )/G]. (7.10)

The following result describes the higher K-theory of the toric stack bundle ⇡ :

X ! B.

Theorem 7.2. The homomorphism 8G is an isomorphism.

Before we prove this theorem, we consider some special cases which will be
used in the final proof. The following observations will be used throughout the
proofs.

The first observation is that the cell closures of X are the T -equivariant sub-
schemes V⌧i . So the classes ofOV⌧i

form an R(G)-basis of KG
0 (X) by Lemma 6.1.

Since ◆⇤(y⌧i ) = [OV⌧i
], we see that Theorem 6.3 applies to the toric stack bundle

⇡ : X ! B.
Second observation is that G is a diagonalizable group which acts trivially

on B. Hence the map K⇤(B)⌦
Z
R(G) ! KG

⇤
(B) is a ring isomorphism by [36,

Lemma 5.6]. This identification will be used without further mention. Since any
character � 2 M acts on RT (K⇤(B),1) and KG

⇤
(E(X)) via multiplication by t�

and 8G(t� ) respectively (cf. [32, Proposition 4.3]), we observe that the composite
map RT (K⇤(B),1) ! RG(K⇤(B),1) ! KG

⇤
(E(X)) is KT

⇤
(B)-linear.

Remark 7.3. We remark that the result of Thomason in [36, Lemma 5.6] is stated
for affine schemes, but his proof works for all schemes. Another way to deduce the
general case from the affine case is to get a stratification of B by affine subschemes
as in (6.10), use induction on the number of affine strata, the localization sequence
and the fact that R(G) is free over Z.

Lemma 7.4. The homomorphism 8G is an isomorphism when G = T .

Proof. In this case, we first notice that the map RT (Z,1)
�
�! KT

0 (X) which takes
ti to [L_

⇢i ], is an isomorphism of R(T )-algebras by [41, Theorem 6.4]. On the other
hand, we have the maps

K⇤(B)⌦
Z
RT (Z,1)

'

�! RT (K⇤(B),1)
8T
��! KT

⇤
(E(X)), (7.11)

where the first map takes ↵ ⌦ ti to ↵ · ti for 1  i  d. This map is clearly an
isomorphism (see (7.4)). It is clear from the definition of 8T that the composite
map is the same as the map 8 in (6.9) (with G = T ). It follows from Theorem 6.3
that the composite map in (7.11) is an isomorphism. We conclude that 8T is an
isomorphism.
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Corollary 7.5. For any closed subgroup G ✓ T , the ring RG(K⇤(B),1) is a free
K⇤(B)-module.

Proof. We have seen above that the image of a character � 2 M in RT (K⇤(B),1)
is t� . If we let JG denote the ideal

�
� 0

1�⇣� 0

1
, · · · ,� 0

r�⇣� 0

r

�
inKT

⇤
(B), then it follows

from (7.5) that JG1 = JG RT (K⇤(B),1) under the mapKT
⇤
(B) ! RT (K⇤(B),1).

It follows from Lemma 7.4 and Theorem 6.3 (with G = T ) that RT (K⇤(B),1)
is a free KT

⇤
(B)-module. This implies that RG(K⇤(B),1) = RT (K⇤(B),1)/JG1

is a free KT
⇤
(B)/JG-module. Thus, it suffices to show that KT

⇤
(B)/JG is a

free K⇤(B)-module. Since KT
⇤
(B) is isomorphic to a Laurent polynomial ring

K⇤(B)[x±1
1 , · · · , x±1

n ] and since each character � 2 M 0 is a monomial in this ring,
the desired freeness follows from Lemma 7.7.

Lemma 7.6. The homomorphism 8G is an isomorphism when p : E ! B is a
trivial principal bundle.

Proof. Since p : E ! B is a trivial bundle, we have observed before that ⇣� 0

i
= 1

for each 1  i  r . In particular, the mapKT
⇤
(B)/JG ! KG

⇤
(B) is an isomorphism

by Lemma 7.8, where JG is as in Corollary 7.5.
It follows from Theorem 6.3 and Lemma 7.4 that8T is an isomorphism of free

KT
⇤
(B)-modules. This implies that RG(K⇤(B),1) = RT (K⇤(B),1)/JG1 is a free

KT
⇤
(B)/JG = KG

⇤
(B)-module. It follows from this and Theorem 6.3 that 8G is a

basis preserving homomorphism of free KG
⇤
(B)-modules of same rank. Hence, it

must be an isomorphism.

Lemma 7.7. Let S = A[x±1
1 , · · · , x±1

n ] be a Laurent polynomial ring over a com-
mutative ring A with unit. Let {t1, · · · , tr } be a set of monomials in S and let
{u1, · · · , ur } be a set of units in A. Then the ring S

(t1�u1,··· ,tr�ur ) is free over A.

Proof. This is left as an easy exercise using the fact that S is a free A-module on
the monomials.

Lemma 7.8. Let A be a commutative ring with unit and let

0 ! L ! M ! N ! 0

be a short exact sequence of finitely generated abelian groups. Let IL be the ideal
of the group ring A[M] generated by the set {s � 1|s 2 S}, where S is a generating
set of L . Then the map of group rings A[M]

IL ! A[N ] is an isomorphism.

Proof. This is an elementary exercise and a proof can be found in [26, Proposi-
tion 2].

Proof of Theorem 7.2. We shall prove this theorem along the same lines as the
proof of Theorem 6.3. Recall that our base field k is perfect. We consider the
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stratification of B by smooth locally closed subschemes as in (6.10). We shall fol-
low the notations used in the proof of Theorem 6.3. It suffices to show by induction
on i that the theorem is true when B is replaced by each Ui . Since U0 = ; and
since E p

�! B is trivial over U1, the desired isomorphism for i  1 follows from
Lemma 7.6.

Given a smooth locally closed subscheme j : U ,! B, let ⇣Ui = j⇤(⇣� 0

i
) 2

K⇤(U) for 1  i  r and set JGU =

�
� 0

1 � ⇣U1 , · · · ,� 0

r � ⇣Ur
�
.

We have seen in the proof of Lemma 7.4 that for any such inclusion U ✓ B,
RT (K⇤(U),1) is same as KT

0 (X)⌦
Z
K⇤(U). Moreover, the maps

RG(K⇤(B),1) ⌦

K⇤(B)
K⇤(U)

'

RT (K⇤(B),1)

JG RT (K⇤(B),1)
⌦

K⇤(B)
K⇤(U) !

RT (K⇤(U),1)

JGU RT (K⇤(U),1)

! RG(K⇤(U),1)

(7.12)

are all isomorphisms.
We now consider the diagram:

RG(K∗(Ui), ∆)

Φ
Ui
G

RG(K∗(Vi+1), ∆)

Φ
Vi+1
G

RG(K∗(Ui+1), ∆)

Φ
Ui+1
G

RG(K∗(Ui), ∆)

Φ
Ui
G

RG(K∗(Vi+1), ∆)

Φ
Vi+1
G

K∗(Xi) K∗(Wi+1) K∗(Xi+1) K∗(Xi) K∗(Wi+1).
(7.13)

Using (7.12), we see that the top row of (7.13) is obtained by tensoring the local-
ization exact sequence

· · · ! K⇤(Ui ) ! K⇤(Vi+1) ! K⇤(Ui+1) ! K⇤(Ui ) ! K⇤(Vi+1) ! · · ·

of K⇤(B)-modules with RG(K⇤(B),1). Hence, this row is exact by Corollary 7.5.
The bottom row is anyway a localization exact sequence.

We now show that the diagram (7.13) commutes. It is clear that the third square
commutes and the fourth square is same as the first. So we need to check that the
first two squares commute.

Let ↵ : Vi+1 ,! Ui+1 and � : Mi+1 ,! Xi+1 be the closed immersions of
smooth schemes and stacks. Following the notations in the proof of Theorem 6.3,
we see that for any u 2 K⇤(Ui ) and for any monomial � (t) = t i11 · · · t idd ,

� � 8
Ui
G (u ⌦ � (t)) = �

⇣
⇡⇤

Ui (u) · ⌘⇤

i ([E(� )/G])
⌘

= �
⇣
⇡⇤

Ui (u)
⌘

· ◆⇤i+1 ([E(� )/G])

= ⇡⇤

Vi+1(�(u)) · ◆⇤i+1 ([E(� )/G])

= 8
Vi+1
G

�
�(u) ⌦ � (t)

�
= 8

Vi+1
G � �

�
u ⌦ � (t)

�
,

(7.14)
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where E(� ) 2 K⇤(X) is as in (7.10). The second equality follows from the Leibniz
rule and the third equality follows from the commutativity of (6.11). This shows
that the first (and the last) square commutes.

To show the commutativity of the second square, let v 2 K⇤(Vi+1). We then
have

�⇤ � 8
Vi+1
G (v ⌦ � (t)) = �⇤

⇣
⇡⇤

Vi+1(v) · ◆⇤i+1 ([E(� )/G])
⌘

= �⇤

⇣
⇡⇤

Vi+1(v) · �⇤
� ⌘⇤

i+1 ([E(� )/G])
⌘

= �⇤

⇣
⇡⇤

Vi+1(v)
⌘

· ⌘⇤

i+1 ([E(� )/G])

= ⇡⇤

Ui+1(↵⇤(v)) · ⌘⇤

i+1 ([E(� )/G])

= 8
Ui+1
G

�
↵⇤(v) ⌦ � (t)

�
= 8

Ui+1
G � ↵⇤

�
v ⌦ � (t)

�
,

(7.15)

where third equality follows from the projection formula and the fourth equality
follows from the commutativity of (6.11). This shows that the second square com-
mutes.

The first and the fourth vertical arrows are isomorphisms by induction. The
second and the fifth vertical arrows are isomorphisms by Lemma 7.6. Hence the
middle vertical arrow is also an isomorphism by 5-lemma. This concludes the proof
of Theorem 7.2.

Remark 7.9. It was assumed in Theorem 7.2 that G is a subgroup of T . Since X is
just the toric stack [E(X)/G] associated to the data (E(X),G �

�! T ), the general
case can always be reduced to the case of Theorem 7.2. We refer to Remark 4.5 for
how this can be done.
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