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Ricci surfaces

ANDREI MOROIANU AND SERGIU MOROIANU

Abstract. A Ricci surface is a Riemannian 2-manifold (M, g) whose Gaus-
sian curvature K satisfies K1K + g(dK , dK ) + 4K 3 = 0. Every minimal
surface isometrically embedded in R3 is a Ricci surface of non-positive curva-
ture. At the end of the 19th century Ricci-Curbastro has proved that, conversely,
every point x of a Ricci surface has a neighborhood which embeds isometri-
cally in R3 as a minimal surface, provided K (x) < 0. We prove this result in
full generality by showing that Ricci surfaces can be locally isometrically em-
bedded either minimally in R3 or maximally in R2,1, including near points of
vanishing curvature. We then develop the theory of closed Ricci surfaces, pos-
sibly with conical singularities, and construct classes of examples in all genera
g � 2.

Mathematics Subject Classification (2010): 49Q05 (primary); 53C27, 53C42
(secondary).

1. Introduction

In 1873 Ludwig Schläfli asked the following question, still unanswered today
(cf. [28, 29]):

Can every Riemannian surface (M2, g) be locally isometrically embedded in
the flat space R3?

The problem reduces to a non-linear equation of Monge-Ampère type. This equa-
tion can be easily solved near points x where the Gaussian curvature K (x) is non-
vanishing, but it is degenerate at points where K (x) = 0. A partial positive answer
was recently obtained provided that the gradient of the Gaussian curvature has a
special behavior in the neighborhood of the zero set of K (see [10] and references
therein).
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A related question was asked in 1895 by Gregorio Ricci-Curbastro [18] about
minimal embeddings in R3:

When does a Riemannian surface (M2, g) carry minimal local isometric em-
beddings in the flat space R3?

The answer is known near points of non-zero Gaussian curvature:

Theorem 1.1 ([18], [4, page 124]). A Riemannian surface (M2, g) with negative
Gaussian curvature K < 0 has local isometric embeddings as minimal surface in
the flat space R3 if and only if one of the two equivalent conditions below holds:

(i) The metric
p

�Kg is flat;
(ii) The Gaussian curvature satisfies

K1K + g(dK , dK ) + 4K 3 = 0 (1.1)

where 1 = �gd denotes the scalar Laplace operator of the metric g.

Condition (i) is usually referred to as the Ricci condition. This condition does not
hold in general for minimal surfaces in Rn for n � 4, see [13, 17]. In [26] Vlachos
obtains some necessary conditions for the existence of local minimal immersions
of (Mn, g) in Rn+p for all n � 2 and p � 1. A generalization of Theorem 1.1 to
pluriharmonic submersions of Kähler manifolds (M2n, g, J ) inR2n+1 was obtained
by Furuhata [9].

Our main result is the extension of Theorem 1.1 to the general case, with no
assumption on the Gaussian curvature. Of course, the Ricci condition (i) no longer
makes sense at points where K vanishes, but we simply use the Ricci condition (ii)
instead. It turns out that if K satisfies (1.1), then it either vanishes identically, or
does not change sign on M . Both signs might appear, and they correspond to min-
imal immersions in the Euclidean space and, respectively, to maximal immersions
in the Lorentz space:

Theorem 1.2. Let (M2, g) be a connected Riemannian surface whose Gaussian
curvature K satisfies (1.1). Then K does not change its sign on M . If K  0, then
M can be locally isometrically immersed inR3 as a minimal surface. If K � 0, then
M can be locally isometrically immersed in the Lorentz space R2,1 as a maximal
surface.

Using the spinorial characterization of isometric embeddings of surfaces in
R3 or R2,1, a significant step in the proof of this theorem reduces to a statement
formulated only in terms of holomorphic and harmonic functions on C.

Theorem 1.3. Let � ⇢ C be a simply connected domain and F 2 C1(�, R).
Assume that log |F | is harmonic at every point where F 6= 0. Then F does not
change sign, and there exists a holomorphic function h with |F | = |h|2.
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The main difficulty in Theorem 1.3 is to show that the zeros of F are isolated.
This is accomplished in Theorem 4.6 below, using ideas stemming from potential
theory. We assume that the function F has some non-isolated zeros. We prove
in Lemma 4.7 that at its non-isolated zeros F vanishes to infinite order. Then we
show that the connected components of the complement of the set of non-isolated
zeros cannot be simply connected, so there exist simple closed curves avoiding the
zero set of F and confining some non-isolated zeros of F . For every simple closed
curve � on which F does not vanish, we define a “virtual measure" of the zero set
of F lying in the region � bounded by � . For example, in the case where log(F)
is defined by convolution of the Green kernel of the Laplacian with a measure µ
supported on some compact set C , the zero set of F is C and the virtual mea-
sure of � is just µ(C). The main properties of the virtual measure are positivity
(Lemma 4.9) and additivity. To obtain a contradiction we divide F by a sufficiently
large power n of the distance function to a non-isolated zero. We obtain again
a smooth non-negative function whose logarithm is harmonic outside the zero-set
and whose virtual measure decreases by 2⇡n compared to that of F , thus contra-
dicting the positivity of the virtual measure. This proof is carried out in detail in
Section 4.

In a second part of the paper we study the existence and uniqueness question, in
a given conformal class, of metrics satisfying the Ricci condition, also called Ricci
metrics. We construct Ricci metrics of non-positive (respectively non-negative)
curvature from spherical (respectively hyperbolic) metrics with conical points of
angles integer multiples of 2⇡ . For non-positive curvature we get for instance that
every hyperelliptic surface of odd genus admits a Ricci metric. In the non-negative
case, on a closed surface there exist conical Ricci metrics of positive curvature with
prescribed conical singularities. These results are grouped in Section 6.

For the convenience of those readers more familiar with the classical viewpoint
of minimal surfaces, we describe in the Appendix the link between our approach
and the standard Weierstrass-Enneper representation.

The theory of minimal surfaces, although more than two centuries old, is still
a very active field of research, and it is somehow surprising that the intrinsic char-
acterization of minimal surfaces in R3 obtained here was only available so far in
the case of non-vanishing Gaussian curvature. For the analytical aspects of min-
imal surfaces we refer to the recent monograph by Colding and Minicozzi [5].
From the huge literature in the subject, we would like to single out Taubes’ recent
study [21] of the moduli space of minimal surfaces embedded in H3, and Weber
and Wolf’s construction [27] of embedded minimal surfaces in R3 using the notion
of orthodisks, which seems to be somewhat related to our method of constructing
compact Ricci surfaces in Section 6 below.

ACKNOWLEDGEMENTS. We have benefited from many enlightening discussions
with Christophe Margerin. His suggestions coming from potential theory inspired
us the key ideas used in the proof of Theorem 4.6.
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2. Preliminaries

2.1. Conformal metric changes on surfaces

We start by recalling some well-known facts in conformal geometry. Assume that
g0 and g := e�2 f g0 are Riemannian metrics on a surface M . Let 1 = �gd and K ,
respectively 10 = �g0d and K0, denote the Laplacian and the Gaussian curvature
of g and g0. Then the following formulas hold (cf. [3, page 59]):

1 = e2 f10, (2.1)
K = e2 f (K0 �10 f ). (2.2)

If we fix a spin structure and denote by D and D0 the Dirac operators correspond-
ing to g and g0 respectively, then Hitchin’s classical conformal covariance relation
reads

D = e
3 f
2 D0

⇣
e�

f
2  
⌘

. (2.3)

2.2. Ricci surfaces

Motivated by Ricci-Curbastro’s local characterization of minimal surfaces in R3
(Theorem 1.1), we make the following:
Definition 2.1. A Riemannian surface (M, g) whose Gaussian curvature K satis-
fies the identity (1.1)

K1K + g(dK , dK ) + 4K 3 = 0

is called a Ricci surface, and g is called a Ricci metric.
As mentioned in the introduction, Ricci metrics have several nice characteri-

zations near points where the Gaussian curvature is negative:

Lemma 2.2. Let (M, g) be a Riemannian surface with negative curvature K < 0.
The following four conditions are equivalent:

• g is a Ricci metric;
• 1 log(�K ) + 4K = 0;
• the metric (�K )1/2g is flat;
• the metric (�K )g is spherical, i.e., of constant Gaussian curvature 1.

Proof. We compute directly 1 log(�K ) + 4K = K�2(K1K + |dK |
2

+ 4K 3),
hence the first two conditions are equivalent. For r 2 R set gr := (�K )r g. By Eq.
(2.2), the Gaussian curvature Kr of the metric gr equals

Kr = (�K )�r
⇣
K +

1
21(log(�K )r )

⌘
. (2.4)
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Assuming 1 log(�K ) + 4K = 0 we get Kr = (1 � 2r)(�K )�r K , hence g1/2 is
flat and g1 has constant Gaussian curvature equal to 1. Conversely, if K1/2 = 0
then (2.4) for r =

1
2 implies 1 log(�K ) + 4K = 0, and the same conclusion holds

if K1 = 1.

We thus see that the conformal class of a negatively curved Ricci metric con-
tains both a flat and a round metric. Conversely, we can construct Ricci metrics in
any conformal class known a priori to contain both a spherical and a flat metric:

Lemma 2.3. Let g1/2 be a flat metric on a surface M and V 2 C1(M), V > 0 such
that g1 := Vg1/2 is spherical. Then g := V�1g1/2 is a Ricci metric of curvature
�V 2.

Proof. Denote by K , K1/2, K1 and 1,11/2,11 the Gaussian curvatures and the
Laplacians of g, g1/2, respectively g1. From (2.2),

K1 = V�111/2
⇣
1
2 log V

⌘
, (2.5)

K = V11/2
⇣
�
1
2 log V

⌘
. (2.6)

From (2.5), since g1 is spherical, we get 11/2 log V = 2V and so from (2.6) K =

�V 2. Therefore

1 log(�K ) = 2V11/2 log V = 4V 2 = �4K ,

hence g is a Ricci metric by Lemma 2.2.

The corresponding statements in positive curvature are similar and left to the
reader:

Lemma 2.4. Let (M, g) be a Riemannian surface of positive curvature K > 0. The
following conditions are equivalent:

• g is a Ricci metric;
• 1 log K + 4K = 0;
• the metric K 1/2g is flat;
• the metric Kg is hyperbolic, i.e., of constant Gaussian curvature �1.

Lemma 2.5. Let g1/2 be a flat metric on a surface M and V 2 C1(M), V > 0 such
that g1 := Vg1/2 is hyperbolic. Then g := V�1g1/2 is a Ricci metric of Gaussian
curvature V 2.
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3. Spinorial characterization of isometric embeddings in R3

In [8] Friedrich remarked that local isometric embeddings of a Riemannian surface
in the Euclidean space R3 are characterized by special spinor fields on the surface
called generalized Killing spinors (see also [2]):

Lemma 3.1 ([8], Theorem 13). Let W be a symmetric tensor on the spin surface
(M2, g). There exists a locally isometric embedding (M, g) ! R3 with Weingarten
tensor W if and only if M carries a non-zero spinor  satisfying

rX =
1
2W (X)· , (8) X 2 T M. (3.1)

Moreover, due to the algebraic structure of spinors in two dimensions, a generalized
Killing spinor can be characterized by a seemingly weaker condition:

Lemma 3.2. A non-zero spinor  on a Riemannian surface (M2, g) satisfies (3.1)
for some symmetric tensor W if and only if it has constant length and there exists a
real function w such that D = w . In this situation, w = �

1
2 tr(W ).

Proof. Assume first that  satisfies (3.1). Taking the Clifford contraction in this
equation yields D = �

1
2 tr(W ) . Moreover d| |

2(X) = 2hrX , i =

hW (X)· , i = 0 for every tangent vector X , so  has constant length.
Conversely, assume that  has constant length and D = w . Since  is

non-zero, one may assume that | | = 1. Let e1, e2 be a local orthonormal basis of
the tangent bundle. For dimensional reasons, the spinors , e1· , e2· and e1·e2· 
define a local orthonormal basis (over R) of the spin bundle. Since hrX , i =

1
2d| |

2(X) = 0 for every tangent vector X , there exist an endomorphism field A of
T M and a 1-form a such that

rX = A(X)· + a(X)e1·e2· (3.2)

for every X 2 T M . Let (ai j ) be the matrix of A in the basis e1, e2 and a =

a1e⇤1 + a2e⇤2. After Clifford contraction, (3.2) yields

w = D = �(a11 + a22) + (a12 � a21)e1·e2· + (a2e1 � a1e2)· .

Using again that  , e1· , e2· and e1·e2· are linearly independent over R, we
get w + tr(A) = 0, a12 = a21 and a = 0. Thus (3.2) is equivalent to (3.1) for
W = 2A.

Specializing to the case of minimal surfaces, we get:

Corollary 3.3. A Riemannian surface has local isometric minimal embeddings in
R3 if and only if it carries local non-zero harmonic spinors of constant length.

This provides a simple characterization of metrics which embed locally as min-
imal surfaces in R3, in terms of the conformal factor of the metric in isothermal
coordinates.
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Corollary 3.4. Let g0 = dx2 + dy2 be the flat metric on some domain � ⇢ C,
and f : � ! R any smooth function. The metric g = e�2 f g0 has (locally) an
isometric embedding inR3 as minimal surface if and only if near every x 2 � there
exists a pair of holomorphic functions (a, b) such that e� f

= |a|2 + |b|2.

Proof. Let x 2 � and assume that some U ⇢ �, x 2 U, has a local isometric
embedding as minimal surface in R3. The previous corollary shows the existence
of a harmonic spinor  of unit length with respect to g defined on some open set
V ⇢ U , x 2 V . By (2.3), e� f/2 is a harmonic spinor on (V, g0) of square length
e� f . The (complex) spin bundle of (�, g0) is trivial and spanned by two parallel
spinors  ±

2 C1(6±�). Write  = a +
+ b̄ � for some complex-valued

functions a, b on V . Since D0 =


0 �@z
@z̄ 0

�
with respect to the basis { +, �

},

D0 = 0 is equivalent to a and b being holomorphic. The converse statement is
similar.

We consider now the case of Riemannian surfaces (M2, g) (locally) isometri-
cally embedded as space-like surfaces in the Lorentz space R2,1. The restriction
of the (complex) spin bundle 6R2,1 to M can be identified with the spin bun-
dle 6M = 6+M � 6�M of (M, g). With respect to this identification, the
Clifford action of the time-like normal vector ⌫ of square norm �1 is given by
⌫· =  ̄ :=  +

�  � and the natural (indefinite) Hermitian product h on 6R2,1
corresponds to h( , ) := | +

|
2

� | �
|
2 for  =  +

+  �. The restriction
 of a parallel spinor from 6R2,1 to 6M satisfies rX =

1
2W (X)· ̄ . The argu-

ments from the previous subsection remain valid mutatis mutandis and we obtain
the following characterization of maximal embeddings in the Lorentz space:

Lemma 3.5. Let g0 = dx2 + dy2 be the flat metric on some domain � ⇢ C and
f : � ! R any smooth function. The metric g = e�2 f g0 admits local isometric
embeddings in R2,1 as maximal surface if and only if locally on � there exist pairs
of holomorphic functions (a, b) such that e� f

= |a|2 � |b|2.

As a corollary we recover the well-known property that the curvature of mini-
mal surfaces in R3 and of maximal surfaces in R2,1 satisfies the Ricci condition.
Lemma 3.6. Let (M2, g) ⇢ R3 be either a minimal surface in R3 or a maximal
surface in the Lorentz space R2,1. Then the Gaussian curvature K of M satisfies
the Ricci condition (1.1), namely K1K + g(dK , dK ) + 4K 3 = 0.

Proof. We write g = e�2 f g0 where g0 is flat. By (2.2) we have

K = �e2 f10 f. (3.3)

Moreover, Corollary 3.4 and Lemma 3.5 show that e� f
= |a|2 + "|b|2 for some

holomorphic functions a, b. Here the sign " is 1 if we work inR3 and�1 in Lorentz
space. The Laplacian10 of the flat metric g0 := dx2+dy2 = |dz|2 on R2 satisfies

10 = �4@z@z̄, (3.4)
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where

@z :=
@
@z =

1
2

⇣
@
@x � i @@y

⌘
, @z̄ :=

@
@ z̄ =

1
2

⇣
@
@x + i @@y

⌘
.

Using (3.4) we infer

1
410 f = � @z@z̄ f = �@z@z̄ log

⇣
|a|2 + "|b|2

⌘
= @z

 
aa0

+ "bb0

|a|2 + "|b|2

!

=

⇣
a0a0

+ "b0b0

⌘ ⇣
|a|2 + "|b|2

⌘
�

⇣
aa0

+ "bb0

⌘ ⇣
a0a + "b0b

⌘
�
|a|2 + "|b|2

�2
="

|ab0
� ba0

|
2�

|a|2 + "|b|2
�2 .

We thus obtain e�2 f10 f = 4"|ab0
� ba0

|
2, and since the logarithm of the norm of

a non-vanishing holomorphic function is harmonic, we get from (2.1) and (3.3) at
points where K does not vanish

0 =10
⇣
log

��e�2 f10 f ��⌘ = 10
⇣
log

��e2 f10 f ��� 4 f
⌘

= 10(log |K |) � 410 f

=10(log |K |) + 4e�2 f K = e�2 f (1(log |K |) + 4K )

whence 1(log |K |) + 4K = 0. Using the formula 1 = �gd we obtain

�4K = 1(log |K |) = �g
✓
dK
K

◆
=

1K
K

+

g(dK , dK )

K 2
,

which is equivalent to (1.1).

Let us remark that there is a close link, already noted by Alías [1], between
minimal surfaces in R3 and maximal surfaces in R2,1. In our setting, this duality is
obtained by associating to any Ricci metric of the form (|a|2+|b|2)2|dz|2, which by
Corollary 3.4 embeds as a minimal surface inR3, the Ricci metric (|a|2�|b|2)2|dz|2
which by Lemma 3.5 embeds as maximal surface in R2,1. This correspondence is
not intrinsic since it depends on the choice of the holomorphic functions a and b
representing the conformal factor e� f

= |a|2 + |b|2.

4. Log-harmonic and holomorphic functions

In this section we prove Theorem 1.3, which is one of the central results of this
paper.
Definition 4.1. A real-valued function F defined on some open set� ⇢ C is called
log-harmonic if F 2 C1(�, R) and log |F | is harmonic on the open set where
F 6= 0.
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It is clear that for every holomorphic function h on some � ⇢ C, its square
norm F := |h|2 is log-harmonic. Conversely, if F is log-harmonic, and, say, non-
negative, does there exist a holomorphic function h on � such that F = |h|2? If
F > 0 and � is simply connected, the answer is standard:

Lemma 4.2. Let F > 0 be a positive log-harmonic function on some simply con-
nected domain � ⇢ C. Then there exists a holomorphic function h on � such that
F = |h|2.

Proof. By (3.4) @z log F is holomorphic on � and since � is simply connected,
there exists a holomorphic function g1 on � with @z log F = @zg1. Thus g2 :=

log F � g1 is holomorphic on � and log F = g1 + g2. Since log F is real, we have

log F = <(g1 + g2), so F = |h|2 for h := e
g1+g2
2 .

The question, answered by Theorem 1.3, is whether the local solutions extend
globally including on the zero set. We need some preliminary results first.

Lemma 4.3. If two holomorphic non-vanishing functions h1 and h2 have the same
norm on a connected open subset � ⇢ C then there exists ✓ 2 [0, 2⇡) such that
h1 = ei✓h2 on �.

Proof. Clear from the maximum principle applied to h1/h2.

For a vector G = (G1,G2) 2 C2 we denote |G|
2

:= |G1|2 + |G2|2 and
|G|

2
�

:= |G1|2 � |G2|2.

Lemma 4.4. Let � ⇢ C be a connected domain and G = (G1,G2) : � !

C2 \ {(0, 0)} be a holomorphic map. If |G(0)|2 > 0 then another holomorphic map
H : � ! C2 satisfies |G|

2
= |H |

2 if and only if there exists A 2 U(2) such that
H = AG. Similarly, if |G(0)|2

�
> 0 then another holomorphic map H : � ! C2

satisfies |G|
2
�

= |H |
2
�
if and only if there exists A 2 U(1, 1) such that H = AG.

Moreover, if 10 log |G|
2, respectively 10 log |G|

2
�
are not identically 0, then the

matrix A is unique.

Proof. The “if” part is obvious. Assume now that |G|
2

= |H |
2. Since G(0) 6= 0,

one of its components, say G1 does not vanish at 0, and thus on some smaller
domain �0

⇢ �. The three functions a := G2/G1, b := H1/G1 and c := H2/G1
are holomorphic on �0 and satisfy

1+ |a|2 = |b|2 + |c|2. (4.1)

Taking the double derivative @z@z̄ (i.e., �1
410) in this relation yields |a0

|
2

= |b0
|
2
+

|c0|2. If a0
⌘ 0 on �0 then a, b, c are constant, hence G2, H1, H2 are constant

multiples of G1 and the conclusion follows from the transitivity of the action of
U(2) on the unit sphere S3. Assume that a0 does not vanish on some disc �00

⇢ �0.
The holomorphic functions ↵ := b0/a0 and � := c0/a0 satisfy

|↵|
2
+ |�|

2
= 1 (4.2)
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on �00. Differentiating again with respect to @z@z̄ we get |↵0
|
2

+ |� 0
|
2

= 0, so ↵
and � are constant on �00, and thus on �0. We then have b0

= ↵a0 and c0 = �a0 on
�0, so there exist constants � and � such that b = ↵a + � and c = �a + � on �0.

This reads H = AG on �0, thus on �, where A =


� ↵
� �

�
. It remains to check that

A 2 U(2). From (4.1) we get

1+ |a|2 = |↵a + � |
2
+ |�a + �|2 = |a|2 +

⇣
|� |

2
+ |�|2

⌘
+ 2<

�
a
�
↵�̄ + ��̄

��
,

so the imaginary part of the holomorphic function a(↵�̄ + ��̄) vanishes. Since a
is non-constant (see above) we deduce that ↵�̄ + ��̄ = 0 and |� |

2
+ |�|2 = 1.

Together with (4.2), this shows that A 2 U(2).
In the semi-definite case the proof proceeds similarly with the same notation:

we have 1 � |a|2 = |b|2 � |c|2 hence |a0
|
2

= |c0|2 � |b0
|
2. If a0

= 0 then G2 =

�G1 for some constant � and by Lemma 4.3 b0
= ei✓c0, which implies easily that

H1, H2 are constant multiples of G1 and the conclusion follows. If a0
6= 0 the

functions ↵ := b0/a0 and � := c0/a0 satisfy |↵|
2

� |�|
2

= 1 so |↵0
|
2

� |� 0
|
2

= 0.
These two identities easily imply that ↵,� are constants. The rest of the proof is
unchanged.

Now let F be a log-harmonic function. By Lemma 4.2 every point where F is
non-zero has an open neighborhood on which there exists a holomorphic function
h with F = |h|2. The case of isolated zeros is only slightly more involved.
Lemma 4.5. Let F : D ! R be a smooth non-negative function on the unit disc
D ⇢ C such that F does not vanish on D⇤

:= D \ {0}. If log(F) is harmonic on
D⇤, then there exists a holomorphic function h on D such that F = |h|2.

Proof. We identify the universal cover fD⇤ of D⇤ with {z 2 C;<(z) < 0} and the
projection fromfD⇤ to D⇤ with the exponential map. The function z 7! log(F(ez))
is harmonic on eD⇤, so by Lemma 4.2 there exists a holomorphic function G onfD⇤

with F(ez) = |G(z)|2 for all z 2
fD⇤. By Lemma 4.3, there exists ✓ 2 [0, 1) such

that G(z + 2⇡ i) = e�2⇡ i✓G(z). The function

H(z) := ez✓G(z)

is thus invariant by translation with 2⇡ i , hence it descends to a holomorphic func-
tion h on D⇤ with h(ez) = H(z). Denoting w := ez we get

F(w) = |G(z)|2 =

���e�2z✓H(z)
���2 = |w|

�2✓
|h(w)|2.

This shows in particular that the function h is bounded near the origin, so it extends
to a holomorphic function h on D.

Let k be the vanishing order of h at 0. One has h(w) = h1(w)wk with h1
holomorphic and h1(0) 6= 0. Since w 7! |w|

2k�2✓
= F/|h1|2 is smooth near 0, the

exponent 2k � 2✓ is an even integer. By the choice of ✓ in [0, 1) we get ✓ = 0, so
F = |h|2 as claimed.
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The main difficulty in Theorem 1.3 is to show that a log-harmonic function
does not have non-isolated zeros.

Theorem 4.6. Let F : D ! R be a smooth function on the unit disc D ⇢ C such
that log(|F |) is harmonic on D \ F�1({0}). Then either F vanishes identically, or
F�1({0}) is a discrete set. In particular, log-harmonic functions onD have constant
sign.

Proof. The proof will be divided in several steps.

Lemma 4.7. Let z0 2 D be a non-isolated zero of a log-harmonic function F . Then
F vanishes at infinite order at z0.

Proof. On the open set D \ F�1({0}) the function log(|F |) is harmonic, thus

0 = 10(log(|F |)) = �0(dF/F) = 10(F)/F + |dF |
2/F2,

therefore
F10(F) + |dF |

2
= 0. (4.3)

By restricting to a small disc centered at z0 and composing F with a translation
one may take z0 = 0. Assume that F does not vanish at infinite order at 0 and
let P be the principal part of F near 0. Then P is a homogeneous polynomial in
x , y such that F � P = o(rn), where r :=

p
x2 + y2 and n is the degree of P .

Clearly 10(F) = 10(P) + o(rn�2) and dF = dP + o(rn�1). From (4.3) we get
P10(P) + |dP|

2
= o(r2n�2). On the other hand the left-hand side in this equality

is a homogeneous polynomial in x , y of degree 2n � 2, thus showing that

P10(P) + |dP|
2

= 0. (4.4)

In polar coordinates we can write P = rnQ(✓), where Q(✓) = P(cos ✓, sin ✓) is a
trigonometric polynomial with real coefficients. Using the formulae

dx2 + dy2 = dr2 + r2d✓2, 10 = �

⇣
1
r
@
@r +

@2

@r2 +
1
r2

@2

@✓2

⌘
,

equation (4.4) becomes

�rnQ
h
nrn�2Q + n(n � 1)rn�2Q + rn�2Q00

i
+ n2r2n�2Q2 + r2n�2Q02

= 0

i.e., Q02
= QQ00. The solutions of this differential equation are Q(✓) = aeb✓

for a, b 2 R. Since Q is a trigonometric polynomial, we necessarily have b = 0
and thus Q is constant. Therefore P(x, y) = a(x2 + y2)n/2 and a 6= 0 by the
assumption that P 6= 0. Incidentally this implies that n is even, but we do not need
this observation. More importantly, since F(z) = P(z) + o(|z|n) = |z|n(a+ o(1)),
it turns out that 0 is an isolated zero of F , contradicting the hypothesis. This proves
the lemma.
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Let Z denote the (closed) set of non-isolated zeros of F . Assume that F does
not vanish identically onD and let E denote a connected component of the open set
D\Z . By changing the sign of F if necessary, we can assume that F is non-negative
on E .

If E is simply connected, by Lemma 4.2 we can construct a holomorphic func-
tion h on E such that F = |h|2. Since by Lemma 4.7 F must vanish to infinite order
at every point of Z , the function F�E is smooth onD, where �E is the characteristic
function of E . Moreover, for every z0 2 D \ E we have F(z)�E (z) = o(|z � z0|).

Extend the holomorphic function h2 from E toD by setting it to be 0 onD\ E .
At a point z0 2 D \ E we have

��h2(z) � h2(z0)
��

|z � z0|
=

F(z)�E (z)
|z � z0|

tends to 0 as z ! z0. Therefore h2 is holomorphic on D, and thus its zeros are
isolated, which is the conclusion of Theorem 4.6.

We are left with the case where there are no simply connected components of
D \ Z . Thus, we may assume that E is not simply connected, hence we can find
a smooth simple curve C in E containing at least one non-isolated zero of F in its
interior. By slightly deforming C if necessary, we can assume that C avoids also the
isolated zeros of F , i.e., F does not vanish onC . Using the Riemann uniformization
theorem, we can identify the interior of C with the unit disk D. We can thus from
now on assume that F :

¯D ! R is smooth, non-negative, has at least one non-
isolated zero, is log-harmonic outside its zero-set, and does not vanish on S1.

Using the solution to the Dirichlet problem, we find a harmonic function � :

D ! R such that � = log(F) on S1. Replacing F with e��F (whose logarithm is
clearly harmonic outside its zero set), we can thus assume that F equals 1 on S1.

Wenowrecall that for everyharmonic functiondefinedonanannulusC(r1,r2) :=
{z | r1  |z|  r2}, its mean values along the concentric circles |z| = r have a spe-
cial behavior.

Lemma 4.8. Assume that f : C(r1, r2) ! R is harmonic. Then there exist real
constants a, b such that

Z
C(r)

f dl = r(µ log(r) + ⌫)

for every r 2 [r1, r2], where dl denotes the length element. We call µ the virtual
measure of f and denote it by µ( f ). If f extends to a harmonic function on the
disk {|z|  r2}, then its virtual measure vanishes.

Proof. Let us set

K (r) := r�1
Z
C(r)

f dl =

Z 2⇡

0
f (r cos t, r sin t)dt.
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Then

K 0(r) :=

Z 2⇡

0
[@x f (r cos t, r sin t) cos t + @y f (r cos t, r sin t) sin t]dt

=r�1
Z
C(r)

@x f dy � @y f dx .
(4.5)

Using this and the Green-Riemann theorem on C(r1, r2) we get

0 =

Z
C(r1,r2)

10( f )dxdy =

Z
C(r2)

@ f
@y
dx �

@ f
@x
dy �

Z
C(r1)

@ f
@y
dx �

@ f
@x
dy

=r1K 0(r1) � r2K 0(r2).

This shows that there exists a constant µ such that r K 0(r) = µ, thus proving the
first claim.

If f is defined on the whole disk, then K (r) is bounded as r tends to 0, so
necessarily µ( f ) = 0.

Notice that the virtual measure defined in Lemma 4.8 is additive: µ( f1+ f2) =

µ( f1) + µ( f2).
Returning to our log-harmonic function F and setting f := log(F), we shall

exploit the fact that f is harmonic on some annulus C(r1, 1) and vanishes on the
outer circle C(1).

Lemma 4.9. Let F : D ! [0,1) be a smooth log-harmonic function with at
least one non-isolated zero in D and identically equal to 1 on S1. Then the virtual
measure of f = log(F) is positive.

Proof. We apply (4.3) and the Green-Riemann formula on the disk D to get

0<2
Z

D
|dF |

2dx ^ dy=

Z
D

⇣
|dF |

2
� F10(F)

⌘
dx ^ dy=

Z
S1
F
@F
@x

dy � F
@F
@y

dx .

Using (4.5) and the fact that F ⌘ 1 on S1, the right-hand term readsZ
S1
F
@F
@x

dy � F
@F
@y

dx =

Z
S1

@ f
@x
dy �

@ f
@y
dx = µ( f ),

so the virtual measure of f is positive.

Let z0 2 D be a non-isolated zero of F . By composing with an element of
Aut(D) if necessary, we can assume z0 = 0. The virtual measure of the function
log |z| is by direct computation equal to 2⇡ . For every positive integer n, the func-
tion Fn(z) := |z|�n F(z) is smooth by Lemma 4.7. The logarithm fn := log(Fn) =

f �n log |z| is clearly harmonic on its domain of definition, and the restriction of fn
to S1 vanishes. We can thus apply Lemma 4.9 to fn and deduce that µ( fn) > 0. On
the other hand the virtual measure is additive, so µ( fn) = µ( f ) � 2⇡n is negative
for n large enough. This contradiction shows that F does not have any non-isolated
zeros, and proves the theorem.
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Proof of Theorem 1.3. By Lemma 4.5 and Theorem 4.6, for every ↵ 2 � there
exists an open disk U↵ 3 ↵ and a holomorphic function h↵ : U↵ ! C with |F | =

|h↵|2. Lemma 4.3 shows that for every ↵ and � there exists a unique A↵� 2 S1 with
h↵ = A↵�h� onU↵ \U� . The Čech cocycle (A↵�)must be exact since ⇡1(�) = 1.
Thus A↵� = A�1

↵ A� for some A↵ 2 S1, and so A↵h↵ agree on intersections, thus
defining a global solution h on � satisfying |F | = |h|2.

5. Local embedding of Ricci metrics

This section is devoted to the following:

Proof of Theorem 1.2. Every point in M has a neighborhood where the metric g
can be written as g = e�2 f g0, where g0 is flat and f is smooth. By (2.1) and (2.2),
1 f = �K . By Lemma 2.2, the Ricci condition (1.1) implies 1(log |e�4 f K |) = 0
at points where K does not vanish, in other words e�4 f K is log-harmonic. Theorem
4.6 implies that if K does not vanish identically, then it has only isolated zeros and
does not change sign on M .

Case 1: K  0 on M . Let P be an arbitrary point of M . Choose a neighborhood
D 3 P such that K < 0 on D \ {P}. We can identify (D, g0) with a disk in C
endowed with the Euclidean metric |dz|2 so that P corresponds to 0.

Case 1.1: K  0, K (0) 6= 0. This was originally treated by Ricci-Curbastro [18],
we give here an argument in our framework. By Lemma 2.2, the Ricci condition
(1.1) implies that the metric gr := (�K )r g is flat for r =

1
2 and has constant

Gaussian curvature equal to 1 for r = 1. Consequently, by shrinkingD if necessary,
we may assume that there exist isometries

' : (D, g1/2) !

⇣
U0, |dz|2

⌘
, U0 ⇢ C

and

 : (D, g1) !

 
U1,

4|dz|2�
1+ |z|2

�2
!

, U1 ⇢ C.

The maps ' and  are holomorphic functions of z, so we can write

g1/2 =

p

�Ke�2 f |dz|2 =

��'0

��2
|dz|2, g1 = (�K )e�2 f |dz|2 =

4| 0
|
2
|dz|2�

1+ | |
2�2

whence

e� f
=

�
1+ | |

2� |'0
|
2

2| 0
|

.
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Since  0 does not vanish on D, there exists a holomorphic map ⇣ : D ! C with
⇣ 2 = 2 0. Thus e� f

= |a|2+|b|2 for holomorphic functions a :=
'0

⇣ and b :=
 '0

⇣ ,
so by Corollary 3.4, (D, g) has an isometric minimal embedding in R3.
Case 1.2: K  0, K (0) = 0. Using Case 1.1 treated above, for every point
↵ 2 D \ {0} there exists an open diskU↵ ⇢ D \ {0} containing ↵ and a holomorphic
function g↵ : U↵ ! C2 \{0} such that e� f

= |g↵|2 onU↵ . Moreover, since K does
not vanish on U↵ , we have 10 log(|g↵|2) 6= 0. By Lemma 4.4, there exist unique
matrices A↵� 2 U(2) with g↵ = A↵�g� on U↵ \ U� , which clearly form a Čech
cocycle.

Consider the universal coverfD⇤
= {z 2 C;<(z) < 0} ofD⇤ and the projection

p :
fD⇤

! D⇤ given by the exponential map. We denote V↵ := p�1(U↵) and
G↵(z) := g↵(ez). Since Ȟ1(eD⇤

;U(2)) = 0, the Čech cocycle (V↵, A↵�) is exact,
so there exist locally constant functions A↵ : V↵ ! U(2) with A↵� = A�1

↵ A� on
V↵ \ V� . This shows the existence of a global holomorphic map G :

eD⇤
! C2

(given by G = A↵G↵ on V↵), with e� f (ez)
= |G(z)|2 for all z 2

fD⇤. By Lemma
4.3, there exists A 2 U(2) such that G(z + 2⇡ i) = AG(z). We diagonalize A =

P

e2⇡ i✓1 0
0 e2⇡ i✓2

�
P�1 for P 2 U(2), ✓1, ✓2 2 [0, 1).

The map

H(z) :=


e�z✓1 0
0 e�z✓2

�
P�1G(z)

is invariant by translation with 2⇡ i , hence it descends to a holomorphic map h =

(h1, h2) : D⇤
! C2 with h(ez) = H(z). Setting w := ez we get

e� f (w)
= |G(z)|2 =

����

ez✓1 0
0 ez✓2

�
h(w)

����
2

= |h1(w)|2|w|
2✓1

+ |h2(w)|2|w|
2✓2 .

Let k j be the vanishing order of h j at 0. One has h j (w) = l j (w)wk j with l j
holomorphic and l j (0) 6= 0. We thus have

e� f (w)
= l1(w)|w|

r1
+ l2(w)|w|

r2

where li are smooth functions which do not vanish near 0 and r j = 2k j +2✓ j . Such
a function is smooth if and only if r1 and r2 are both even integers, which implies
✓ j = 0, so e� f

= |h|2 and the conclusion follows from Corollary 3.4.
Case 2: K � 0 on M .
Case 2.1: K � 0, K (0) 6= 0. For r 2 R let gr := Krg. Then as in Case 1.1,
using Lemma 2.4 we find holomorphic maps ', from D0

⇢ D to C, respectively
to H2

= D, satisfying8><
>:
g1/2 :=

p

Ke�2 f |dz|2 = |'0
|
2
|dz|2,

g1 := Ke�2 f |dz|2 =

4| 0
|
2
|dz|2�

1� | |
2�2 .
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It follows that e� f
= |a|2 � |b|2 for holomorphic functions a :=

'0

⇣ and b :=
 '0

⇣ ,
for some square root ⇣ of 2 0. By Lemma 3.5, a neighborhood of 0 in the disk
(D0, g) has an isometric maximal embedding in R2,1.
Case 2.2: K � 0, K (0) = 0. The proof is more involved than in Case 1.2,
essentially because the group U(1, 1) of isometries of the indefinite Hermitian form
| · |� is non-compact. Using Case 2.1 we obtain like before a holomorphic map
G :

fD⇤
! C2 with |G(z)|2

�
= e� f (ez). By the second part of Lemma 4.4, G(z +

2⇡ i) = AG(z) for some matrix A 2 U(1, 1). We wish to show that A = 1, and
then that G descends to a map fromD⇤

! C2 which extends holomorphically toD.
Every element A of U(1, 1) is conjugated (inside U(1, 1)) to a matrix of the

form e2⇡ i✓ B with ✓ 2 [0, 1) and B one of

A1 =


e2⇡ i↵ 0
0 e�2⇡ i↵

�
, A2 =


1+ 2⇡ ia 2⇡a
2⇡a 1� 2⇡ ia

�
,

A3 =


cosh(2⇡ t) � sinh(2⇡ t)

� sinh(2⇡ t) cosh(2⇡ t)

�

for some real constants ✓,↵, a, t . The three cases occur according to whether |tr(A)|
is smaller, equal or larger than 2. Consider the group morphisms Bj : (C,+) !

GL2(C) defined by

B1(z) =


ez↵ 0
0 e�z↵

�
, B2(z) =


1+ za za
za 1� za

�
,

B3(z) =


cosh(i zt) sinh(i zt)
sinh(i zt) cosh(i zt)

�
.

We clearly have Bj (2⇡ i) = A j , j = 1, 2, 3. It follows that, if A = Pe2⇡ i✓ A j P�1,
then

H(z) := e�z✓ Bj (z)�1PG(z)

is invariant by the translation with 2⇡ i , hence it descends to a map h : D⇤
! C2

satisfying h(ez) = H(z). Since Bj depends holomorphically on z, the map h is also
holomorphic. Let w = ez , z = x + iy and r := |w|. Denoting Bj = (bkl)1k,12
we have

e� f (w)
=|G(z)|2

�
=

��ez✓ Bj (z)h(w)
��2
�

= r2✓ |Bj (z)h(w)|2
�

=r2✓
⇣
(|b11|2 � |b12|2

�
|h1|2 �

�
|b22|2 � |b21|2

�
|h2|2

+ 2<
��
b11b̄12 � b21b̄22

�
h1h̄2

�⌘
.

In each of the three cases we compute

r�2✓e� f (w)
=

8><
>:
r2↵|h1|2 � r�2↵

|h2|2, j = 1,
|h1|2(1+ 2a log r) + |h2|2(�1+ 2a log r) + 2=(h1h̄2)ay, j = 2,
(|h|2

�
cos(2t log r) + 2=(h1h̄2) sin(2t log r)), j = 3.
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For j = 1 it is clear from the Picard theorem that h1 cannot have a essential singu-
larity at 0, and then the same reasoning applies to h2 to deduce that h is meromor-
phic in 0. Then since e� f is smooth, it follows that ↵ 2 Z, hence A = e2⇡ i✓ I2.

For j = 2, the right-hand side must be 2⇡-periodic in y so if a 6= 0 then h1, h2
are proportional, which would imply that the curvature vanishes identically. Hence
a = 0 and so A = I2.

For j = 3 take rk = e�k⇡/t for k 2 N. On the circles of radii rk ! 0, the
function |h1| is uniformly bounded from below since ✓ � 0. By the maximum
principle, it must be bounded from below in a neighborhood of 0 and hence h1 is
meromorphic in 0. Picard’s theorem again shows that h2 is meromorphic at 0. With
a little more effort one sees that t must be 0.

In all three cases we have obtained A = e2⇡ i✓ I2 and h meromorphic at 0. In
order for r2✓ |h|2

�
to be smooth, it is necessary that ✓ = 0 (we cannot have |h|2

�
= 0

since this would entail the vanishing of the Gaussian curvature K ). Then clearly h
is holomorphic at 0, so Lemma 3.5 ends the proof.

6. Compact Ricci surfaces

In this section we study compact Ricci surfaces without boundary. From Theorem
1.2, for any such surface, the Gaussian curvature K does not change sign on M , so
integrating (1.1) over M we see that K has to be non-positive. In the non-negative
curvature case we enlarge therefore the class of compact Ricci surfaces by allowing
conical singularities. Our examples of compact Ricci surfaces stem from three main
sources: triply periodic surfaces, branched coverings of S2, and spherical manifolds
with conical singularities.

6.1. Triply periodic minimal surfaces

A complete minimal surface S ⇢ R3 is called triply periodic if it is invariant under
the translation group defined by a lattice 3 ⇢ R3. By Lemma 3.6, the quotient
M := S/3 is a compact Ricci surface.

Triply periodic minimal surfaces in R3 are abundant in the literature. The first
five examples were constructed by Schwarz at the end of the 19th century. Later on,
in his 1970 NASA technical report [20] (see also [11]), Schoen constructed 17 new
examples of such surfaces. A significant number of papers appeared since then on
this subject, a partial account of which can be found in [15]. Recently Traizet [22]
proved that for every lattice 3 ⇢ R3 and for every g � 3, there exists a minimal
surface S in R3 invariant by 3 such that S/3 has genus g. In particular, this shows
the existence of compact Ricci surfaces in any genus g � 3.

Recall now that for every minimal surface S ⇢ R3, the Gauss map G : S ! S2
is a branched covering whose branching points are precisely the zeros of the Gaus-
sian curvature of S (see [15, Proposition 2.1 and Corollary 2.1]). Consequently, if
S is triply periodic, the compact Ricci surface M := S/3 is a branched covering of
S2 too.
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Note that the compact Ricci surfaces obtained in this way are branched cover-
ings of S2 with n sheets and have genus g = n + 1 � 3 ([15, Theorem 3.1]).

6.2. Spherical surfaces with conical singularities

We have seen in Lemma 2.2 that the metric g1 := (�K )g is locally isometric to
S2 and the metric g1/2 :=

p

�Kg is flat for every Ricci surface (M, g) with non-
positive Gaussian curvature K . Of course, the metrics g1/2 and g1 have (conical)
singularities at points where K vanishes. This suggests the idea of constructing a
flat metric g1/2 with conical singularities on a given Riemann surface M , then a
spherical metric g1 = Vg1/2 with conical singularities in the same conformal class,
and then use Lemma 2.3 to show that the metric g := V�1g1/2 is a Ricci metric.

Lemma 6.1. Let (M, J ) be a Riemann surface,P ⇢ M a discrete set and � : P !

R a function. In case M is closed, assume that
X
P2P

(�(P) � 2⇡) = �2⇡�(M).

Let z be a complex coordinate on M near P . Then there exists a flat metric g on
M \ P compatible with J which near each P 2 P is of the form

g = e2v|z|
�(P)
⇡ �2

|dz|2

for some v 2 C1(M, R).

Proof. Consider a metric h in the conformal class of M (i.e., compatible with J ),
such that h = |dz|2 near P . Let u be a smooth positive function on M \ P which
equals |z|

�(Pj )
⇡ �2 near every Pj 2 P . Since 1h log u vanishes near P , it extends to

a smooth function on M . We try to solve the Laplace equation

1hv + Kh +
1
21h log u = 0 (6.1)

with v 2 C1(M, R). Like every elliptic equation with the unique continuation
property, (6.1) can be solved inside C1 functions on any non-compact manifold [14,
Theorem 5, page 341]. When M is a closed surface, the equation 1v = H has
solutions if and only if H has zero mean. The set P is finite, P = {P1, . . . , Pk}.
By Gauss-Bonnet and [16, Lemma 4], the integral of Kh +

1
21h log u equals

Z
M

⇣
Kh +

1
21h log u

⌘
volh = 2⇡�(M) + ⇡

kX
j=1

✓
�(Pj )
⇡

� 2
◆

,

which vanishes precisely when (6.3) holds. Let therefore v be a solution to (6.1).
From (2.2), the metric g := e2vuh is flat, and by construction near each Pj 2 P it
takes the desired form.
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The above result is due to Troyanov [23] in the case where M is closed, see
also [16].

We define a conical spherical metric on M to be a metric g1 of curvature 1
outside an isolated setP which in some holomorphic coordinate z near each Pj 2 P
takes the form

g1 =

4n2j |z|
2n j�2

|dz|2�
1+ |z|2n j

�2 (6.2)

for some n j 2 (0,1). The number ↵ j = 2⇡n j is the cone angle at Pj . This
definition makes sense for real n j but for us it will be useful for n j 2 N⇤.

Proposition 6.2. Let (M, g1) be a Riemannian surface with a spherical metric with
conical singularities of angles ↵ j = 2⇡n j with n j � 2, n j 2 Z at each Pj 2 P ⇢

M . If M is closed, assume additionally that the conical angles ↵1, . . . ,↵k at the
conical points P1, . . . , Pk satisfy

kX
j=1

(↵ j � 2⇡) = �4⇡�(M) (6.3)

where �(M) is the Euler characteristic of M . Then M admits a Ricci metric in the
conformal class of g1.

Proof. Near every conical point of angle ↵ j , there exists a complex parameter z
with respect to which the spherical metric takes the form (6.2). The function Pj 7!

�(Pj ) :=

↵ j
2 + ⇡ satisfies the hypothesis of Lemma 6.1 if and only if (6.3) holds.

From Lemma 6.1, there exists on M \ P a flat metric g1/2 conformal to g1 which
near Pj 2 P is of the form

g1/2 = e2v|z|n j�1|dz|2

for some smooth v 2 C1(M, R). Let V be the conformal factor defined by g1 =

Vg1/2. Near a conical point, V equals

V = e�2v
4n2j |z|

n j�1

�
1+ |z|2n j

�2 .

By hypothesis, n j � 2 and n j 2 Z. Hence V vanishes precisely at the conical
points, and the metric g := V�1g1/2 is smooth on M , including at the points Pj
where it reads

g =
1
4n

�2
j e4v

⇣
1+ |z|2n j

⌘
�2

|dz|2.

By Lemma 2.3, g satisfies the Ricci condition outside the isolated zeros of V and
so it is a Ricci metric on M .
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Using this result, we can give more examples of Ricci metrics on compact
Riemann surfaces.

Corollary 6.3. Let M be a compact Riemann surface of genus g, and � : M ! S2
a branched cover of degree n = g � 1. Then M admits Ricci metrics.

Proof. Pull back the spherical metric from S2 to M via �, i.e., g1 := �⇤gsph. Every
branching point of order n j becomes a conical point of (M, g1) of angle 2⇡n j . By
the Riemann-Hurwitz formula,

�

kX
j=1

�
n j � 1

�
+ 2n = 2� 2g

hence the conical angles of g1 satisfy the constraint (6.3) if and only if n = g � 1.
It follows from Proposition 6.2 that for covers of this degree, the surface M admits
Ricci metrics.

By composing � with a conformal transformation of S2 which is not an isom-
etry (an element in PSL2(C) \ SO3) we obtain another Ricci metric, hence Ricci
metrics arising from branched coverings are not unique in their conformal class.

Generically, a surface M of genus g does not admit branched coverings over
S2 of degree n  g � 1 with a branching point of order n, cf. [7].
Example 6.4. Let M be a hyperelliptic Riemann surface of odd genus. Then M
admits Ricci metrics. Indeed, if � : M ! S2 is a branched double cover, then
�(g�1)/2 is a branched cover of degree g � 1 and we can apply Corollary 6.3.

6.3. An explicit Ricci metric with one zero for the Gauss curvature
in every genus g � 2

We give below a different way of constructing compact Ricci surfaces of every
genus g � 2, which shows that there are definitely more Ricci surfaces than triply
periodic minimal surfaces.

Let M be a closed oriented topological surface of genus g � 1. Fix a homology
basis consisting of 2g simple closed curves ↵1, . . . ,↵2g such that ↵ j is disjoint from
↵i unless {i, j} = {2k � 1, 2k} for some k 2 {1, . . . , g}, and ↵2k�1 meets ↵2k in
precisely one point. Choose a point p 2 M and choose simple loops � j freely
homotopic to ↵ j such that they meet only in p. By cutting along � j , we obtain a
4g-gon Q with vertices P1, . . . , P4g. To recover M , one must identify in Q the
pairs of sides � 0

j and �
00

j corresponding to the cut along � j .
By joining P1 with P3, . . . , P4g�1 we obtain a (combinatorial) decomposition

of Q into triangles. To define a spherical metric on M it is enough to endow each of
these triangles with the structure of a spherical triangle with geodesic sides, and then
glue them in the obvious way provided that the lengths of � 0

j and �
00

j coincide. A
basic remark is that the result of such a gluing is a smooth spherical metric along the
interiors of the edges. In the unique vertex P , we get a conical point of total angle
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equal to sum of the angles of the 4g � 2 triangles. We get moreover a conformal
structure on M , since the singularity of the conformal structure at P is removable.

Example 6.5. For every g � 2 and for every ⇡(4g � 2) < ✓ < 5⇡(4g � 2) there
exists at least one spherical metric on a surface of genus g with a unique conical
point of angle ✓ . We construct it by requiring the 4g � 2 triangles in the 4g-gon
Q to be equilateral (and congruent) of angle ↵ =

✓
3(4g�2) (an equilateral spherical

triangle of angle ↵ exists for every ↵ 2 (⇡/3, 5⇡/3)). In particular, by choosing
↵ = ⇡ 4g�36g�3 , the conical angle becomes 2⇡(4g � 3), and so the hypothesis of
Proposition 6.2 holds.

In general, there are 12g � 6 edges which must be identified in pairs, hence
6g � 3 parameters giving the lengths of the edges. In each triangle, the edges
e1, e2, e3 must satisfy a spherical triangle inequality of the form

e1 + e2 > min{e3, 2⇡ � e3}.

We want to prescribe the conical angle at P to be equal to 2⇡(4g � 3). There seem
therefore to be 6g�4 degrees of freedom for this construction. This coincides with
the dimension of the total space of the tautological fibration over the Teichmüller
space of M , which is a surface fibration of fiber (M, c) over the conformal structure
c. Fixing the conical point P amounts to choosing a point in the fiber. So we
conjecture that in every conformal class on M and for every point P 2 M there
exists a spherical metric on M with a conical singularity at P of angle 2⇡(4g � 3).

An existence result for spherical conical metrics was proved by Troyanov [24],
but it does not cover the case needed here. Indeed, when there exists a unique con-
ical point, in [24, Theorem C] requires the angle to be comprised strictly between
⇡(4g�2) and ⇡(4g+2). The upper bound is due to the explicit Trudinger constant
4⇡ in the Trudinger-Sobolev inequalities. Thus we cannot so far prove that in every
conformal class there exist spherical metrics, but we can at least construct one Ricci
surface in every genus g � 2 with curvature vanishing at precisely one point.

Theorem 6.6. For every g � 2 there exists an oriented closed surface of genus
g with a Ricci metric whose curvature vanishes precisely at one point, to order
8g � 1.

Proof. Apply Proposition 6.2 to the spherical metric on M with one conical point
of angle 2⇡(4g � 3) constructed in Example 6.5.

6.4. Conical Ricci metrics of positive curvature

A metric on the unit disk D is called conical at z0 2 D of angle ↵ 2 R if it is of
the form g = |z � z0|

↵
⇡ �2h where h is a smooth conformal metric. This definition

extends directly to Riemann surfaces.
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Theorem 6.7. Let M be a Riemann surface of genus g � 2, P1, . . . , Pk 2 M
marked points and ↵ j = 2⇡n j prescribed real angles satisfying

kX
j=1

�
↵ j � 2⇡

�
= 2⇡(4g � 4). (6.4)

Then there exists a positively curved Ricci metric on M \ {P1, . . . , Pk} with conical
singularity of angle ↵ j at Pj for all j = 1, . . . , k.

Proof. Let g�1 be the unique smooth hyperbolic metric in the conformal class of M
given by the Riemann uniformization theorem. The hypothesis (6.4) on the angles
implies

kX
j=1

⇣
⇡ +

↵ j

2
� 2⇡

⌘
= 2⇡(2g � 2),

so Lemma 6.1 gives us a conical flat metric g0 on M with cone angle ⇡ +

↵ j
2 at

Pj . Let V be the conformal factor such that g0 = Vg�1. Then by Lemma 2.5
the metric defined by gR := Vg0 is Ricci outside the conical points, with positive
Gaussian curvature K = V 2. Near Pj , V is by construction of the form |z|

↵ j
2⇡ �1

times a smooth function on M , so the metric gR = V 2g�1 is conical on M in the
sense of our definition, of angle ↵ j at Pj .

More generally, in a given conformal class with marked points, there exist
unique hyperbolic metrics of prescribed conical singularities (see [24, Theorem
A]). The condition (6.4) in the above theorem can therefore be relaxed. By the
same argument, we can construct conical Ricci metrics of non-positive curvature.
However we do not have a definitive answer to the uniqueness question, so we leave
open the classification of conical Ricci metrics.

Appendix

A. Link with the Weierstrass-Enneper parametrization

We adopted in this paper the viewpoint of differential geometry. There exists an
alternate local description of minimal surfaces, found by Enneper and Weiertrass,
as being governed by 3 holomorphic functions with certain additional properties.
In this appendix we show how to translate some of our preliminary results in the
language of the Weierstrass-Enneper parametrization.

Let A : � ! R3 be an isothermal parametrization of a surface (M, g) ⇢ R3.
This means that the vector fields Ax := @x , Ay := @y are mutually orthogonal and
of equal length:

|Ax | = |Ay| = e� f , hAx , Ayi = 0 (A.1)
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and so the (pull-back by A of the) metric on M inherited from R3 is given by
g = e�2 f |dz|2. The second fundamental form is computed in terms of the unit-
length normal field ⌫ = e2 f Ax ⇥ Ay :

hW (X),Y i = hX (Y ), ⌫i

for every vector fields X,Y tangent to M . In the basis @x , @y ,

W = e2 f

hAxx , ⌫i hAxy, ⌫i
hAyx , ⌫i hAyy, ⌫i

�
= e4 f


hAxx , Ax ⇥ Ayi hAxy, Ax ⇥ Ayi
hAyx , Ax ⇥ Ayi hAyy, Ax ⇥ Ayi

�
.

We deduce

tr(W ) = e2 f
�
hW (Ax ), Ax i + hW (Ay), Ayi

�
= e2 f hAxx + Ayy, ⌫i.

Notice that the tangential component of Axx + Ayy vanishes (we compute r@x @x =

fy@y� fx@x = �r@y@y for the Levi-Civita connection on M). Hence, M is minimal
if and only if A is harmonic. From now on we assume this to be the case.

Let C := Ax � i Ay = 2@z A. Since A is harmonic, the C3-valued function
C must be holomorphic. Moreover, if h·, ·i denotes the C-bilinear extension of the
standard scalar product on R3, the identities (A.1) encoding the fact that A is an
isothermal parametrization mean precisely

hC,Ci = 0, hC,Ci = 2e�2 f .

Define a complex-valued function from the coefficients of W :

h := e�2 f (W11 � iW12) = e2 f hAxx � i Axy, Ax ⇥ Ayi.

Lemma A.1. The function h is holomorphic.

Proof. We can re-write h as

h=e2 f
⌦
C 0, Ax ⇥ Ay

↵
=e2 f hC 0,C ⇥ Ayi = e2 f hC 0,C ⇥

1
i (@z̄ A � @z A)i

=
1
2i e

2 f
hC 0,C ⇥ Ci =

1
2i e

2 f
hC 0

⇥ C,Ci.
(A.2)

Let us show that @z̄h = 0. Since C and C 0 are holomorphic, it is enough to show
D
C 0

⇥ C, @z̄
�
e2 f C

�E
= 0. (A.3)

For this, note the orthogonality relations (always with respect to the complexified
inner product)

hC,Ci = 0, hC,C 0

i = 0, (A.4)
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the second one being deduced from the first by applying @z . Also, from
⌦
C,C

↵
= 2e�2 f (A.5)

we get, applying @z̄ , D
C,C 0

E
= �4 fze�2 f

and so
D
C,C 0

+ 2 fzC
E
= 0. (A.6)

We have found three vectors (C,C 0 and C 0
+ 2 fzC) orthogonal to C , they must

therefore be linearly dependent since the complexified inner product is non-degen-
erate. This implies the vanishing (A.3).

Since W is trace-free and symmetric we get det(W ) = �W 2
11 � W 2

12 =

�e4 f |h|2. By the Gauss equation, the curvature of g equals K = det(W ).
On the other hand, since g = e�2 f |dz|2, we get K = �e2 f1 f . Therefore

e�2 f1 f equals the norm squared of the holomorphic function h.
We are now in position to compute h in terms of the Weierstrass-Enneper rep-

resentation of A, exploiting the fact that C = 2@z A is holomorphic and isotropic
for the complexified inner product. We assume that Ax , Ay are linearly independent
(since they are the tangent vector fields to M in a chart). Write C = (a, b, c) with
holomorphic components a, b, c. We claim that since a2 + b2 + c2 = hC,Ci = 0,
there exist holomorphic functions ↵,� such that

a = ↵
⇣
1+ �2

⌘
, b = i↵

⇣
1� �2

⌘
, c = 2i↵�. (A.7)

To this end, set ↵ :=
a�ib
2 and � =

c
ia+b . It is immediate (using c

2
= �(a +

ib)(a � ib)) that (A.7) holds. Furthermore,

Lemma A.2. The holomorphic function h is given by

h = �2i↵� 0.

Proof. We use the expression (A.2) for h. From (A.5),

2e�2 f = |a|2 + |b|2 + |c|2

= |↵|
2
⇣��1+ �2

��2
+

��1� �2
��2

+ 4|�|
2
⌘

= 2|↵|
2
⇣
1+ |�|

2
⌘2

.
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Next, we write using determinants

⌦
C 0,C ⇥ C

↵
=

���������

↵
�
1+ �2

�
↵
⇣
1+ �

2⌘
↵0

�
1+ �2

�
+ 2↵� 0�

i↵
�
1� �2

�
�i↵

⇣
1� �

2⌘ i↵0

�
1� �2

�
� 2i↵� 0�

2i↵� �2i↵� 2i↵0� + 2i↵� 0

���������
.

In the third column, the first terms form a multiple (namely, ↵0/↵ times) the first
column, hence they do not contribute to the determinant. We extract ↵, ↵, respec-
tively ↵� 0 which are common factors in the first, second, respectively third column.
We also extract i , respectively 2i as common factors in the second, respectively
third line. We are left with

⌦
C 0,C ⇥ C

↵
= � 2|↵|

2↵� 0

��������

1+ �2 1+ �
2 2�

1� �2 �

⇣
1� �

2⌘
�2�

� �� 1

��������
.

The above determinant yields (after adding the second line to the first for simplicity)

2
⇣
�|�|

2
� 1� �

2 ⇣1+ �2
⌘⌘

= �2
⇣
1+ |�|

2
⌘2

.

Gathering the above formulas we get the lemma.
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