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Control theorems for `-adic Lie extensions of global function fields

ANDREA BANDINI AND MARIA VALENTINO

Abstract. LetF be a global function field of characteristic p>0, K/F an `-adic
Lie extension unramified outside a finite set of places S and A/F an abelian
variety. We study SelA(K )_` (the Pontrjagin dual of the Selmer group) and (un-
der some mild hypotheses) prove that it is a finitely generated Z`[[Gal(K/F)]]-
module via generalizations of Mazur’s Control Theorem. If Gal(K/F) has no
elements of order ` and contains a closed normal subgroup H such that
Gal(K/F)/H ' Z`, we are able to give sufficient conditions for SelA(K )_`
to be finitely generated as Z`[[H ]]-module and, consequently, a torsion
Z`[[Gal(K/F)]]-module. We deal with both cases ` 6= p and ` = p.

Mathematics Subject Classification (2010): 11R23 (primary); 11R58, 11G35
(secondary).

1. Introduction

One of the main features of Iwasawa theory is the link it provides between charac-
teristic ideals of (duals of) Selmer groups and p-adic L-functions. In the classical
abelian setting of Zd

` -extensions both its analytic and algebraic sides have been
well developed for general global fields, leading to the statements (and, in some
cases, to the proofs) of Main Conjectures. The foundations for the research in non-
commutative Iwasawa theory for a general `-adic Lie extension can be found in the
celebrated paper by Coates et al. [9] and the subject has been developed from there,
first in the number field setting and (more recently) for function fields of positive
characteristic.

In this work we deal with the function field setting. Namely let F be a global
function field of trascendence degree one over its constant field Fq , where q is a
power of a fixed prime p 2 Z. Let K be a Galois extension of F unramified outside
a finite set of primes S and such that G = Gal(K/F) is an infinite `-adic Lie group
(` 2 Z a prime number). Let 3(G) be the associated Iwasawa algebra (for precise
definitions of all notations and objects appearing in this Introduction see Section 2).
Finally, let A be an abelian variety defined over F and of finite dimension g.
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When G has no elements of order ` and contains a closed normal subgroup
H such that G/H ' Z` , Coates et al. ([9]) are able to define a characteristic
element for every 3(G)-module M which belongs to the category MH (G): a
finitely generated 3(G)-module M lies in the categoryMH (G) when the quotient
of M by the submodule of elements of order a finite power of ` is finitely generated
over the Iwasawa algebra of H . Moreover, for the number field setting, they stated
the following conjecture (which is [9, Conjecture 5.1]):
Conjecture 1.1. Let F be a number field and E/F an elliptic curve with good
ordinary reduction at p > 5. Put F1 := F(E[p1]), Qcyc as the cyclotomic Zp-
extension ofQ and H = Gal(F1/Qcyc). Then, SelE (F1)_p belongs to the category
MH (G) .
In order to generalize this statement to our extensions K/F , we shall study the
structure of SelA(K )_` (the Pontrjagin dual of the Selmer group) as a module over
both 3(G) and 3(H) via the classical tool provided by Mazur’s Control Theorem
(see [19] and, for recent generalizations to Zd

` -extensions of function fields, [3–5]
and [34]). We will prove that SelA(K )_` is a finitely generated 3(G)-module and,
in a similar way, we obtain that SelA(K )_` is a finitely generated 3(H)-module as
well, provided that G contains a suitable closed subgroup H (and, for ` = p, under
certain hypotheses on the splitting of primes in the Z`-extension K H/F). When
this is the case, since H has infinite index in G, SelA(K )_` is also a torsion 3(G)-
module. For some related results regarding the presence of pseudo-null submodules
in SelA(K )_` (for ` 6= p), see [7].

Working on the algebra 3(H) is often sufficient to gather information about
SelA(K )_` as a 3(G)-module, but we prefer to work on 3(G) as well for several
reasons. First of all, as one can see in [9], we always need finitely generated3(G)-
modules. Secondly, in our first control theorem (Theorem 3.2) it is possible to find
the path we will follow and the tools we will use in most of the proofs of the main
theorems (including the ones for 3(H)-modules involving the extensions K/K H ,
which are not, strictly speaking, control theorems since the base field will not be
allowed to vary). Finally, control theorems for 3(G)-modules sometimes allow us
to obtain results on general `-adic Lie extensions, regardless of G containing or not
an arithmetically interesting subgroup H .

We recall that recent papers have considered similar and/or more general top-
ics using different (somehow more sophisticated) techniques. For example, in [23],
the authors study the structure of Selmer groups using syntomic cohomology for p-
adic Lie extensions of fields of characteristic p containing the unique Zp-extension
of the constant field. Moreover [38] provides a comprehensive study of the whole
theory (including a proof of the main conjecture) in the language of schemes, for
`-adic extensions of a separated scheme X of finite type over the field Fpe ; the
proof uses K-theory, Waldhausen categories (and higher K -groups) and other co-
homological tools. Another approach to the main conjecture (for Zd

p-extensions) is
provided in [16].

Our method requires a careful study of Galois cohomology groups (both for
local and global fields), hence control theorems, in addition to being interesting in
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their own right, provide what can be now considered as an “elementary approach”
to the study of Selmer groups. Nevertheless this approach, fit also to investigate
some issues of the analytic side of Iwasawa theory (as done in [25]), guarantees a
lot of information on the structure of Selmer groups and, in particular, many cases
in which an analogue of Conjecture 1.1 is verified (see Corollaries 4.9 and 6.5).

Here is a summary of the paper. After recalling (in Section 2) the main objects
and the setting we will work with, we shall start with the case ` 6= p proving
the control theorem in Section 3 and examining its consequences on the 3(G)-
structure of SelA(K )_` in Section 4. In particular we shall prove the following (see
Theorem 3.2)

Theorem 1.2. For any finite extension F 0/F contained in K , the kernels and cok-
ernels of the maps

aK/F 0 : SelA(F 0)` �! SelA(K )
Gal(K/F 0)
`

are cofinitely generated Z`-modules. If all primes in S and all primes of bad re-
duction have decomposition groups open in G, then the coranks of kernels and
cokernels are bounded independently of F 0 . Moreover if A[`1](K ) is finite, then
such kernels and cokernels are of finite order.

An immediate application of Nakayama’s Lemma will show that SelA(K )` is a
cofinitely generated 3(G)-module. Then, in Section 4, we prove an analogous
statement (Theorem 4.8) for the kernel and cokernel of the map

aK/K 0 : SelA(K 0)` �! SelA(K )
Gal(K/K 0)
` ,

where Gal(K/K 0) = H and G/H ' Z` . We derive from that the structure of
SelA(K )_` as a3(H)-module and, as a consequence, some cases in which SelA(K )_`
is a torsion 3(G)-module. We also deal with the case K = F(A[`1]) which can
be included in this general case (with the only exception of the ad hoc result of
Theorem 3.7).

In Sections 5 and 6 we follow the same path and obtain analogous results for
the case ` = p, where definitions and statements need the use of flat cohomology
groups but most of the proofs only require the study of Galois cohomology groups
(as in the ` 6= p case). The main difference will be the presence of nontrivial
images for the Kummer maps in the definition of the Selmer groups. In particular
we shall show (see Theorem 5.3)

Theorem 1.3. Assume that all ramified primes are of good ordinary or split multi-
plicative reduction, then, for any finite extension F 0/F contained in K , the kernels
and cokernels of the maps

aK/F 0 : SelA(F 0)p �! SelA(K )
Gal(K/F 0)
p

are cofinitely generated Zp-modules. If all primes in S and all primes of bad re-
duction have decomposition groups open in G, then the coranks of kernels and
cokernels are bounded independently of F 0 .
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As in the case ` 6= p, we immediately find that SelA(K )_p is a finitely generated
3(G)-module (this can be seen as the non-commutative counterpart of [34, The-
orem 5]). Moreover we will prove that SelA(K )_p is often 3(G)-torsion: when
the ramified primes are of good ordinary reduction we provide a direct proof (see
Theorem 6.2, which depends on the control Theorem 5.3, for a precise statement),
when the ramified primes are of split multiplicative reduction we need to examine
the structure of SelA(K )_p as a 3(H)-module to get the result (see Corollary 6.5,
which depends on the control Theorem 6.4).

We note that the extension F(A[p1]) is not included here because it should
require the study of inseparable extensions which cannot be treated with the tech-
niques used in this paper.

ACKNOWLEDGEMENTS. The authors thank David Burns, Ki-Seng Tan and Ot-
mar Venjakob for useful discussions and comments on earlier drafts of this paper.
We are grateful to John Coates for pointing out (and providing) the thesis [27]. We
gratefully acknowledge the anonymous referee for comments which led to improve-
ments in the exposition. The second named author wishes to thank the Mathema-
tisches Institut of the Ruprecht-Karls Universität Heidelberg for hospitality and for
providing a nice and challenging environment to start working on this project.

2. Setting and notation

For the convenience of the reader we recall here the main objects we shall deal with
and give notation and definitions for them. The notations will be fairly standard for
Iwasawa theory so the expert reader can simply skip this section and go back to it
only when/if needed.

2.1. Fields

For any field L we let GL = Gal(Ls/L) (Ls a separable closure of L) and XL the
scheme Spec(L): they will essentially appear in Galois and flat cohomology groups
so whenever we write a scheme X we always mean X f l scheme on flat topology.
Let F be a global function field of trascendence degree one over its constant field
FF = Fq , where q is a power of a fixed prime p 2 Z. We put F for an algebraic
closure of F and Fs ⇢ F for a separable closure.

For any algebraic extension L/F , let 6L be the set of places of L: for any
v 2 6L we let Lv be the completion of L at v,Ov its ring of integers with maximal
ideal mv and residue field FLv . Whenever we deal with a local field E (or an
algebraic extensions of such field) the above notations will often be replaced by
OE , mE and FE .

For any place v 2 6F we choose (and fix) an embedding F ,! Fv (an alge-
braic closure of Fv ), in order to get a restriction map GFv := Gal(Fv/Fv) ,! GF .
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All algebraic extensions of F (respectively of Fv ) will be assumed to be contained
in F (respectively Fv ).

In general we will deal with `-adic Lie extensions K/F , i.e., Galois extensions
with Galois group an `-adic Lie group. We always assume that our extensions are
unramified outside a finite set S of primes of 6F .

2.2. `-adic Lie groups

The most useful (for us) characterization of `-adic analytic groups is due to Lazard
[17] and states that: a topological group G has the structure of `-adic Lie group
if and only if G contains an open subgroup which is a uniform pro-` group (see
also [11, Theorem 8.32]).

For the whole paper our `-adic Lie group G is the Galois group of a field
extension, so one must take into account that it is also compact and profinite. Com-
pactness implies it has finite rank and has an open, normal, uniform pro-` subgroup
which is always finitely generated (see [11, Corollary 8.34]). While being profinite
means that every open subgroup is of finite index.

Finally, note that if G is an `-adic Lie group without points of order `, then it
has finite `-cohomological dimension, which is equal to its dimension as an `-adic
Lie group ([28, Corollaire (1), page 413]).

For all basic definitions and facts about profinite groups, the reader is referred
to [11] and [37].

2.3. Modules and duals

For any `-adic Lie group G we denote by

3(G) = Z`[[G]] := lim
 �

U
Z`[G/U ]

the associated Iwasawa algebra (the limit is on the open normal subgroups of G).
From Lazard’s work (see [17]), we know that 3(G) is Noetherian and, if G is pro-
` and has no elements of order `, then 3(G) is an integral domain. From [11,
Theorem 4.5] we know that, for a finitely generated powerful pro-` group, being
torsion free is equivalent to being uniform. Because of this when we need 3(G) to
be without zero divisors we will take a torsion free G.

For a3(G)-module M, we denote its Pontrjagin dual by M_:=Homcont(M,C⇤).
In the cases considered in this paper, M will be a (mostly discrete) topological
Z`-module, so that M_ can be identified with Homcont(M, Q`/Z`) and it has a
natural structure of Z`-module (because the category of compact 3(G)-modules
and the category of discrete 3(G)-modules are both abelian and the Pontrjagin
duality defines a contravariant equivalence of categories between them).

The reader is reminded that to say that an R-module M (R any ring) is cofinitely
generated over R means that M_ is a finitely generated R-module.
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2.4. Selmer groups

Let A be an abelian variety of dimension g defined over F : we denote by B its dual
abelian variety. For any positive integer n we let A[n] be the scheme of n-torsion
points and, for any prime `, we put A[`1] := lim

!

A[`n] .
We define Selmer groups via the usual cohomological techniques and, since we

deal mostly with the flat scheme of torsion points, we shall use the flat cohomology
groups Hi

f l (for the basic definitions see [20, Chapter II and III]). Fix a prime ` 2 Z
and consider the exact sequence

0! A
⇥
`n

⇤
! A `n
�!A! 0

and, for any finite algebraic extension L/F , take flat cohomology with respect to
XL to get an injective Kummer map

A(L)/`n A(L) ,! H1f l
�
XL , A

⇥
`n

⇤�
.

Taking direct limits one has an injective map

 : A(L)⌦Q`/Z` ,! lim
�!n

H1f l
�
XL , A

⇥
`n

⇤�
:= H1f l

�
XL , A

⇥
`1

⇤�
.

Exactly in the same way one can define local Kummer maps

w : A(Lw)⌦Q`/Z` ,! lim
�!n

H1f l
�
XLw , A

⇥
`n

⇤�
:= H1f l

�
XLw , A

⇥
`1

⇤�

for any place w 2 6L .
Definition 2.1. The `-part of the Selmer group of A over L is defined to be

SelA(L)` = Ker

(
H1f l

�
XL , A[`1]

�
!

Y
w26L

H1f l
�
XLw, A[`1]

�
/ Im w

)

where the map is the product of the natural restrictions between cohomology groups.
For infinite extensions L/F the Selmer group SelA(L)` is defined, as usual,

via direct limits.
Letting L vary through subextensions of K/F , the groups SelA(L)` admit nat-

ural actions by Z` (because of A[`1] ) and by G = Gal(K/F). Hence they are
modules over the Iwasawa algebra 3(G).

If L/F is a finite extension the group SelA(L)` is a cofinitely generated Z`-
module (see, e.g. [21, III.8 and III.9]). One can define the Tate-Shafarevich group
III(A/L) as the group that fits into the exact sequence

A(L)⌦Q`/Z` ,! SelA(L)` ⇣ III(A/L)
⇥
`1

⇤
.
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The function field version of the Birch and Swinnerton-Dyer conjecture predicts
III(A/L) to be finite for any finite extension L of F (relevant results in this direction
can be found, for example, in [15] and [26]). Assuming the BSD conjecture and
taking Pontrjagin duals on the sequence above, one gets

rankZ` SelA(L)_` = rankZ A(L)

which provides motivation for the study of (duals of) Selmer groups (recall that the
cohomology groups Hi

f l , hence the Selmer groups, are endowed with the discrete
topology).
Remark 2.2. When ` 6= p the torsion subschemes are Galois modules and we can
define Selmer groups via Galois cohomology since, in this case,

H1f l
�
XL , A

⇥
`n

⇤�
' H1et

�
XL , A

⇥
`n

⇤�
' H1

�
GL , A

⇥
`n

⇤
(F)

�
(see [20, III.3.9]). In order to lighten notations, each time we work with ` 6= p we
shall use the classical notation Hi (L , ·) instead of Hi (GL , ·) and Hi (L/E, ·) in-
stead of Hi (Gal(L/E), ·). Moreover we write A[n] for A[n](F), putting A[`1] :=S
A[`n].

2.5. The fundamental diagram

We will consider `-adic Lie extensions K/F 0 (for any finite extension F 0/F) and
study the kernels and cokernels of the natural restriction maps

SelA(F 0)` �! SelA(K )
Gal(K/F 0)
` .

We shall do this via the snake lemma applied to the following diagram

SelA(F 0)`
aK/F 0

✏✏

� � // H1f l(XF 0, A[`1])

bK/F 0
✏✏

// // GA(F 0)
cK/F 0

✏✏
SelA(K )

Gal(K/F 0)
`

� � // H1f l(XK , A[`1])Gal(K/F 0) // GA(K )Gal(K/F 0),

(2.1)

where, for any field L , we put

GA(L) = Im

(
H1f l(XL , A[`1])!

Y
w26L

H1f l(XLw, A[`1])/ Im w

)
.

3. Control theorem for ` 6= p

As pointed out by Coates and Greenberg in [10, Proposition 4.1 and the subsequent
Remark], the image of the Kummer map w is trivial for any w 2 6L , because Lw
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has characteristic p 6= `. Therefore, in this case, the `-part of the Selmer group is
simply

SelA(L)` = Ker

(
H1

�
L , A

⇥
`1

⇤�
!

Y
w26L

H1
�
Lw, A

⇥
`1

⇤�)
.

The following lemma holds for any prime ` (including ` = p) and we shall need it
in most of our control theorems.

Lemma 3.1. Let G be any compact `-adic Lie group of finite dimension and let
M be a discrete 3(G)-module which is cofinitely generated over Z` (respectively
finite). Then, for any closed subgroup V of G, the cohomology groups H1(V,M)
and H2(V,M) are cofinitely generated (respectively finite) Z`-modules as well and
their coranks (respectively their orders) are bounded independently of V .
Proof. Obviously we can restrict our attention to pro-` subgroups of G and, by
[11, Chapter 1, Exercise 12], any group of this kind is contained in a pro-` Sylow
subgroup P` . Moreover any pro-` Sylow is open by [11, Corollary 8.34]. Let V be
any closed pro-` subgroup of some pro-` Sylow P` and put

di (V) := dimZ/`Z Hi (V, Z/`Z) i = 1, 2 .

Since P` has finite rank (in the sense of [11, Definition 3.12]) the cardinalities
of a minimal set of topological generators for V , i.e., the d1(V)’s, are all finite
and bounded by d1(P`). Moreover, since P` contains a uniform (see [11, Defini-
tion 4.1]) open subgroup U (by [11, Corollary 8.34]), one has

d1(V) 6 d1(U) = d := dimension of G

for all closed subgroups V of U . For d2(V) (i.e., the numbers of relations for a
minimal set of topological generators of V) the bound is provided by [11, Theorem
4.35] (see also [11, Chapter 4, Exercise 11]) again only in terms of the dimension
and rank of G (for example, if U is as above, then d2(U) =

d(d�1)
2 ). We put

d̃1 = d̃1(G) (respectively d̃2 = d̃2(G) ) as the upper bound for all the d1(V)’s
(respectively d2(V)’s) as V varies among the closed subgroups of any pro-` Sylow
of G.

Let Mdiv be the maximal divisible subgroup of M and consider the finite quo-
tient M/Mdiv . By [30, Chapter I, §4, Proposition 20] and the Corollaire right after
it, the finite group M/Mdiv admits a V-composition series with quotients isomor-
phic to Z/`Z. Hence, working as in [13, Proposition 3.1], one immediately finds

|Hi (V,M/Mdiv)| 6 |M/Mdiv|di (V) 6 |M/Mdiv|d̃i

for i = 1, 2.
Note that, if M is finite (hence equal to M/Mdiv ), we have already completed

the proof of the finiteness of the Hi (V,M).
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Moreover, in this case the orders are also bounded independently of V .
To deal with the divisible part note that Mdiv[`] is finite (say of order `� , where
� = corankZ`M), thus, by what we have just proved,

|Hi (V,Mdiv[`])| 6 `�d̃i (i = 1, 2) .

The cohomology of the exact sequence

Mdiv[`] ,! Mdiv
`
⇣ Mdiv

yields surjective morphisms

Hi (V,Mdiv[`]) ⇣ Hi (V,Mdiv)[`] (i = 1, 2) ,

therefore the groups on the right have finite and bounded orders as well.
Hence the Hi (V,Mdiv) are cofinitely generated Z`-modules with coranks

bounded by
d̃i� = d̃icorankZ`M

(which is a bound for the whole Hi (V,M) since the Z`-corank of the finite part
is 0).

Theorem 3.2. With the above notations, for every finite extension F 0 of F con-
tained in K , the kernels and cokernels of the maps

aK/F 0 : SelA(F 0)`! SelA(K )
Gal(K/F 0)
`

are cofinitely generated Z`-modules (i.e., their Pontrjagin duals are finitely gener-
ated Z`-modules). If all primes in S and all primes of bad reduction have decom-
position groups open in G, then the coranks of kernels and cokernels are bounded
independently of F 0 . Moreover if A[`1](K ) is finite, then such kernels and coker-
nels are of finite order.

Proof. We shall use the snake lemma for the diagram (2.1): hence, to prove the
theorem, we are going to bound the kernels and cokernels of the maps bK/F 0 and
cK/F 0 .

3.1. The maps bK/F 0

From the Hochschild-Serre spectral sequence we have that

Ker(bK/F 0)'H1
�
K/F 0,A[`1](K )

�
and Coker(bK/F 0)✓H2

�
K/F 0,A[`1](K )

�
.

We can apply Lemma 3.1 with G = Gal(K/F) and M = A[`1](K ). Hence
Ker(bK/F 0) and Coker(bK/F 0) are cofinitely generated Z`-modules whose coranks
are bounded by

d̃1(Gal(K/F))corankZ` A[`1](K ) and d̃2(Gal(K/F))corankZ` A[`1](K )
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respectively. Moreover, if A[`1](K ) is finite, we have the bound

|Hi �V, A[`1](K )
�
| 6 |A[`1](K )|d̃i (Gal(K/F))

(for i = 1, 2).

3.2. The maps cK/F 0

For every prime v 2 6F , let v0 be a place of F 0 lying above v. Observe that

Ker(cK/F 0) ,!
Y

v026F 0

\
w26K
w|v0

Ker(dw)

where
dw : H1

�
F 0v0, A[`1]

�
! H1

�
Kw, A[`1]

�
and, by the Inf-Res sequence,

Ker(dw) = H1
�
Kw/F 0v0, A[`1](Kw)

�
.

From the Kummer exact sequence one can write the following diagram

H1
�
F 0v0, A[`1]

�
dw

✏✏

� � // H1
�
F 0v0, A(Fsv )

�
fw

✏✏
H1 (Kw, A[`1])

� � // H1
�
Kw, A(Fsv )

�
and deduce from it the inclusion

Ker(dw) ,! Ker( fw) ' H1
�
Kw/F 0v0, A(Kw)

�
.

Since this last group is obviously trivial if the prime v0 splits completely we limit
ourselves to the study of these local kernels for primes which are not totally split in
K/F 0 .

If v is a prime of good reduction for A and unramified in K/F 0, then [21,
Chapter I, Proposition 3.8] yields

H1
��
F 0v0

�unr
/F 0v0, A

��
F 0v0

�unr��
= 0 .

Via the inflation map one immediately gets H1(Kw/F 0v0, A(Kw)) = 0.
Thus we are left with

Ker(cK/F 0) ,!
Y

v026F 0
v0|v2S⇤

\
w26K
w|v0

Ker(dw)
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where S⇤ is the finite set composed by:

- all primes in S;
- all primes not in S and of bad reduction for A.

To find bounds for these primes we shall use Tate’s theorems on (local) duality and
(local) Euler-Poincaré characteristic.

By [22, Theorem 7.1.8], the group H1(F 0v0, A[`1]) is finite and we can bound
its order using the Euler characteristic

�
�
F 0v0, A[`1]

�
:=

��H0 �
F 0v0, A[`1]

��� ��H2 �
F 0v0, A[`1]

�����H1 �
F 0v0, A[`1]

��� .

From the pairing on cohomology induced by the Weil pairing (see, for example,
[21, Chapter I, Remark 3.5]), the group H2(F 0v0, A[`1]) is the (Pontrjagin) dual
of H0(F 0v0, B[`1]), so all the orders in the formula are finite. Moreover, by [22,
Theorem 7.3.1], �(F 0v0, A[`1]) = 1 1, therefore

|H1(F 0v0, A[`1])| = |A[`1](F 0v0)||B[`1](F 0v0)| .

The inflation map

H1
�
Kw/F 0v0, A[`1](Kw)

�
,! H1

�
F 0v0, A[`1]

�
provides again the finiteness of the kernels (but note that here, in general, the orders
are not bounded).

Remark 3.3.

1. In the previous theorem (and in all control theorems which will follow, i.e., The-
orems 3.7, 4.8, 5.3 and 6.4) we do not require any assumption on the reduction
of A outside S. Hypotheses of that kind were used, for example, in [23, Theo-
rem 1.9].

2. Note that the local kernels are always finite, the additional hypothesis on the
finiteness of A[`1](K ) was only used to bound the orders of Ker(bK/F 0) and
Coker(bK/F 0).

3. Most of the bounds are independent of F 0 (in particular the ones for Ker(aK/F 0)),
but to get uniform bounds for Coker(aK/F 0) one also needs to bound the num-
ber of nontrivial groups appearing in the product which contains Ker(cK/F 0). In
particular one needs finitely many nontrivial Ker(dw)’s and the only way to get

1 The statement is for finite modules (i.e., it’s true for all the modules A[`n] for any n), but limits
are allowed here since the numerator stabilizes, i.e., there is an n such that

|A[`m ](F 0v0)||B[`m ](F 0v0)| = |A[`n](F 0v0)||B[`n](F 0v0)|

for all m > n.
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this is assuming that the decomposition groups are open. Note that if there is at
least one unramified prime of bad reduction such hypothesis on its decomposi-
tion group immediately yields that G contains a subgroup isomorphic to Z` with
finite index.

We can be a bit more precise with the local bounds for the unramified primes of bad
reduction thanks to the following

Proposition 3.4. If v is an unramified prime of bad reduction (with nontrivial de-
composition group) and v0|v, then H1(Kw/F 0v0, A[`1](Kw)) is finite and its order
is bounded independently of F 0 .

Proof. The `-part of the Galois group Gal(Kw/F 0v0) is a finite cyclic `-group or it
is isomorphic to Z` . Moreover

A[`1](Kw)Gal(Kw/F 0
v0

)
= A[`1](F 0v0)

is finite, so, in the Z` case (i.e., when Kw contains (F 0v0)
`,unr the unramified Z`-

extension of F 0v0 ), we can apply [5, Remark 3.5] to get���H1 �
Kw/F 0v0, A[`1](Kw)

���� 6
��A[`1](Kw)/A[`1](Kw)div

�� .

A similar bound (independent from F 0 ) holds for the finite case as well. One just
uses the inflation map to the group H1(Kw(F 0v0)

`,unr/F 0v0, A[`1](Kw(F 0v0)
`,unr ))

which has order bounded by |A[`1](Kw(Fv)
`,unr )/A[`1](Kw(Fv)

`,unr )div|.

We summarize the given bounds with the following

Corollary 3.5. In the setting of Theorem 3.2 assume that all primes in S and all
primes of bad reduction have decomposition groups open in G, then one has:

1. corankZ` Ker(aK/F 0) 6 d̃1corankZ` A[`1](K ) and
corankZ` Coker(aK/F 0) 6 d̃2corankZ` A[`1](K ) ;

2. if A[`1](K ) is finite, then |Ker(aK/F 0)| 6 |A[`1](K )|d̃1 and

��Coker(aK/F 0)
�� 6

��A[`1](K )
��d̃2 Y

v0|v2S⇤�S
↵v

Y
v0|v2S

�v0

(where

↵v =

���A[`1]

⇣
Kw(Fv)

`,unr
⌘

/A[`1]

⇣
Kw(Fv)

`,unr
⌘
div

���
and

�v0 =
��A[`1](F 0v0)

�� ��B[`1](F 0v0)
�� ) ;
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3. if, for all primes v 2 S, A[`1](Kw) is finite for all primes w|v0|v (hence
A[`1](K ) is finite as well), then |Ker(aK/F 0)| 6 |A[`1](K )|d̃1 and

��Coker(aK/F 0)
��6 ��A[`1](K )

��d̃2 Y
v0|v2S⇤�S

↵v

Y
v0|v2S

��A[`1](Kw)
�� ��B[`1](Kw)

�� .

The bounds in 1 are independent of F 0 (while the values appearing in 3 do not
depend on F 0 but the number of the factors in the product does).

3.3. The case K = F(A[`1])

The finiteness of A[`1](K ) is not a necessary condition to get finite kernels and
cokernels in the control theorem. An important example is provided by the exten-
sion K = F(A[`1]) (this extensions has been studied in details in [27] in the case
A = E , an elliptic curve). Fix a basis of A[`1] and consider the continuous Galois
representation

⇢ : Gal(Fs/F)! GL2g(Z`)

provided by the action of Gal(Fs/F) on the chosen basis. Since Ker(⇢) is given by
the automorphisms which fix A[`1], one gets an isomorphism

Gal(K/F) ' ⇢
�
Gal(Fs/F)

�
and, consequently, an embedding

Gal(K/F) ,! GL2g(Z`) .

Since Gal(Fs/F) is compact, its image under ⇢ must be a compact subgroup of
GL2g(Z`). As the latter is Hausdorff, ⇢(Gal(Fs/F)) is closed and so it is an `-adic
Lie group.
Remark 3.6. When A has genus 1 (i.e., it is an elliptic curve), a theorem of Igusa
(analogous to Serre’s open image theorem) gives a more precise description of
Gal(K/F) (for a precise statement and a proof see [6] and the references there).
For a general abelian variety such open image statements are not known: some
results in this direction for abelian varieties of “Hall type” can be found in [14]
and [1].

Theorem 3.7. Let K = F(A[`1]), then the kernels and cokernels of the maps

aK/F 0 : SelA(F 0)`! SelA(K )
Gal(K/F 0)
`

are finite.

Proof. Observe that thanks to [31, Corollary 2 (b), page 497] only primes of bad
reduction for A are ramified in the extension F(A[`1])/F ; so, in this case, the set
S is obviously finite and there are no unramified primes of bad reduction.
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The bounds for Ker(cK/F 0) are already in Theorem 3.2, so we only need to
provide bounds for Ker(bK/F 0) and Coker(bK/F 0), i.e., for H1(K/F 0, A[`1]) and
H2(K/F 0, A[`1]) (note that here A[`1](K ) = A[`1] ).

Consider the Tate module

T`(A) := lim
 �n

A[`n] and put V`(A) := T`(A)⌦Z` Q` ,

then one has an exact sequence (of Galois modules)

T`(A) ,! V`(A) ⇣ A[`1] .

By [29,Théorème 2] and the subsequent Corollaire (which hold in our setting aswell,
as noted in the Remarques following the Corollaire), one has Hi (K/F 0, V`(A)) = 0
for any i > 0, moreover the Hi (K/F 0, T`(A)) are all finite groups. Hence we get
isomorphism

Hi �K/F 0, T`(A)
�
' Hi�1 �

K/F 0, A[`1]

�
for any i > 1

which provide the finiteness of Ker(bK/F 0) and Coker(bK/F 0).

4. 3-modules for ` 6= p

In this section we assume that our Galois group G (still an `-adic Lie group) has no
elements of order ` and write 3(G) for the associated Iwasawa algebra. First we
describe the structure of SelA(K )_` as a 3(G)-module, showing that it is a finitely
generated (sometimes torsion) 3(G)-module. Then, assuming that G contains a
subgroup H such that G/H ' Z` , we will show that SelA(K )_` is finitely gen-
erated as a 3(H)-module as well. For the latter we shall need a slightly modified
version of Theorem 3.2. As usual the main tool for the proof (along with the control
theorem) is the following generalization of Nakayama’s Lemma.

Theorem 4.1. Let G be a topologically finitely generated, powerful and pro-`
group and I any proper ideal. Let M be a compact 3(G)-module, then:

1. if M/I M is finitely generated as a3(G)/I -module then M is finitely generated
as a 3(G)-module;

2. if G is soluble uniform and M/IGM is finite then M is a torsion 3(G)-module
(where IG = Ker(3(G)! Z`) is the augmentation ideal of 3(G) ).

Proof. See the main results of [2].

Let F(`)
p be the unramified Z`-extension of Fp . One of the most (arithmetically)

interesting example is provided by extensions K/F containing F(`)
p F , where one

can take H = Gal(K/F(`)
p F). This can be considered as a very general setting

thanks to the following lemma (which was brought to our attention by David Burns).
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Lemma 4.2. Let K/F be an `-adic Lie extension with ` 6= 2, p . Then there exist
a field K 0 ◆ K such that

1. K 0 contains F(`)
p F;

2. K 0/F is unramified outside a finite set of places;
3. Gal(K 0/F) is a compact `-adic Lie group without elements of order `.

Proof. Since ` 6= p the proof is the same of [8, Lemma 6.1] (where the statement
is for number fields). One basically considers the field K (µ`1) (which obviously
contains F(`)

p F), where µ`1 is the set of all `-power roots of unity, and then cuts
out elements of order ` in Gal(K (µ`1)/F(µ`1)) using Kummer theory to describe
generators for subextensions of degree `.

4.1. Structure of SelA(K )_` as 3(G)-module

We are now ready to prove the following:

Theorem 4.3. In the setting of Theorem 3.2, SelA(K )_` is a finitely generated
3(G)-module.

Proof. Consider any open, powerful and pro-` subgroup G 0 of G. Since 3(G) is
finitely generated over 3(G 0) it is obvious that SelA(K )_` is finitely generated over
3(G) if and only if it is finitely generated also over 3(G 0). So we are going to
prove the statement for such G 0.

Consider the exact sequence

0!Coker
�
aK/F 0

�
_

!

⇣
SelA(K )G

0

`

⌘
_

!SelA
�
F 0

�
_

`
!Ker

�
aK/F 0

�
_

!0 (4.1)

where F 0 is the fixed field of G 0. We know from Theorem 3.2 that Coker(aK/F 0)
_

and Ker(aK/F 0)
_ are finitely generated Z`-modules. Moreover, since F 0/F is fi-

nite, SelA(F 0)_` is a finitely generated Z`-module ( [21, III.8 and III.9]). Hence
(SelA(K )G

0

` )_ is a finitely generated Z`-module thanks to the exactness of the
sequence (4.1). Since (SelA(K )G

0

` )_ is isomorphic to SelA(K )_` /IG0 SelA(K )_` ,
where IG0 is the augmentation ideal, our claim follows from Theorem 4.1.

Remark 4.4. Note that in the above proof we do not need any hypothesis on the
elements of G of order `: it works in general for any compact `-adic Lie group G.
That additional hypothesis is necessary only to prove that SelA(K )_` is a torsion
module, because we need to avoid zero divisors.

Theorem 4.5. Suppose that there exists an open uniform, pro-` and soluble sub-
group G 0 of G, with fixed field F 0 . Assume that A[`1](K ) and SelA(F 0)_` are
finite. Then SelA(K )_` is a torsion 3(G 0)-module.

Proof. Just use Theorems 3.2 and 4.1.
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Remark 4.6. The hypothesis on the existence of the soluble subgroup G 0 is nec-
essary. Indeed, when G 0 is not soluble it is possible to find a non torsion ideal J
of 3(G 0) such that J/IG0 J is finite (see [2, page 228]). However, we observe that
when G is finitely generated (not only “topologically” finitely generated) such an
open soluble subgroup G 0 always exists (see [18]).
In the context of non-commutative Iwasawa algebras the right definition of torsion
module ([36, Definition 2.6]) can be stated in the following way: a finitely generated
3(G)-module M is a 3(G)-torsion module if and only if M is a 3(G 0)-torsion
module (classical meaning) for some open pro-` subgroup G 0 ✓ G such that3(G 0)
is integral. So Theorem 4.5 immediately yields.

Corollary 4.7. Let G be without elements of order ` and suppose that there exists
an open, uniform, pro-` and soluble subgroup G 0 of G. If A[`1](K ) and SelA(F 0)_`
(where F 0 is the fixed field of G 0 ) are finite, then SelA(K )_` is a torsion 3(G)-
module.

4.2. Structure of SelA(K )_` as 3(H)-module

Assume that G contains a closed normal subgroup H such that G/H = 0 ' Z`.
We are going to prove that SelA(K )_` is a finitely generated 3(H)-module under
some mild conditions, as predicted by Conjecture 5.1 of [9]. First note that, letting
F(`)
p be the unique Z`-extension of Fp , by [5, Proposition 4.3], one has K 0 :=

K H
= F(`)

p F . Hence all primes of F are unramified in K 0 and none of them is
totally split.

As mentioned before we need to prove a slightly modified version of the Con-
trol Theorem. We will work with the following diagram

SelA(K 0)`

a
✏✏

� � // H1
�
K 0, A[`1]

�
b

✏✏

// // GA(K 0)

c
✏✏

SelA(K )H`
� � // H1 (K , A[`1])H // GA(K )H

(4.2)

similar to the diagram (2.1) except for the “infinite level” of the upper row, and we
will again apply the snake lemma.

Theorem 4.8. With the above notations the kernel and cokernel of the map

a : SelA(K 0)`! SelA(K )H`

are cofinitely generated Z`-modules. Moreover if, for any w|w0|v 2 S, the group
A[`1](Kw) is finite, then Ker(a) and Coker(a) are finite.

Proof. As usual we are going to work on kernels and cokernels of the maps b and
c in diagram (4.2).
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4.3. The map b

From the Hochschild-Serre spectral sequence we have that

Ker(b) ' H1(K/K 0, A[`1](K )) and Coker(b) ✓ H2(K/K 0, A[`1](K )) .

One simply observes that Gal(K/K 0) is still an `-adic Lie group and then applies
Lemma 3.1. Hence Ker(b) and Coker(b) are cofinitely generated Z`-modules and
are finite if A[`1](K ) is finite.

4.4. The map c

For every prime v 2 6F let w0 be a place of K 0 lying above v. As in Section 3.2,
from the Inf-Res sequence, one gets

Ker(dw) = H1(Kw/K 0w0, A[`1](Kw)) .

Since Gal(Kw/K 0w0) is an `-adic Lie group, every Ker(dw) is a cofinitely generated
Z`-module. The result for Ker(c) will follow from Ker(dw) = 0 for all but finitely
many primes. As before the Kummer sequence provides the following diagram

H1
�
K 0w0, A[`1]

�
dw

✏✏

� � // H1
�
K 0w0, A(Fsv )

�
fw

✏✏
H1 (Kw, A[`1])

� � // H1
�
Kw, A(Fsv )

�

and, from it, one has the inclusion

Ker(dw) ,! Ker( fw) ' H1
�
Kw/K 0w0, A(Kw)

�
or, more precisely, the isomorphism

Ker(dw) ' H1
�
Kw/K 0w0, A(Kw)

�
[`1] .

Hence we are not going to consider places which are totally split in K/K 0, because
they obviously provide Ker(dw) = 0.

4.4.1. Unramified primes

Let v be unramified in K/F , then, since Gal(K 0w0/Fv) ' Z`, K 0w0 is the maximal
unramified pro-`-extension of Fv and the `-part of Gal(Kw/K 0w0) is trivial. There-
fore the `-part of the (torsion) module H1(Kw/K 0w0, A(Kw)) is trivial as well.

Because of the splitting of primes in K 0 , we are already left with finitely many
places. So Ker(c) is a cofinitely generated Z`-module and the first statement on
Ker(a) and Coker(a) being cofinitely generated over Z` is proved.
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4.4.2. Ramified primes

Let v 2 S and recall that K 0w0 is not a local field anymore. If for any w|w0|v

the group A[`1](Kw) is finite, then, by Lemma 3.1, H1(Kw/K 0w0, A[`1](Kw)) is
finite.

Corollary 4.9. In the setting of Theorem 4.8, one has

1. if SelA(K 0)` is a cofinitely generated Z`-module, then SelA(K )_` is finitely gen-
erated over 3(H);

2. suppose that there exists an open, soluble, uniform and pro-` subgroup H 0 of
H ; if the groups SelA(K H 0)` and A[`1](Kw), for any w|w0|v 2 S, are finite,
then SelA(K )_` is a torsion 3(H)-module.

Proof. The arguments are the same we used for the analogous results for 3(G)-
modules.

Remark 4.10. To get SelA(K )_` finitely generated over 3(G) we only need to as-
sume that finitely many primes of F are ramified in the Lie extension K/F . More-
over if SelA(F(`)

p F)` is a cofinitely generated Z`-module, then SelA(K )_` is finitely
generated also over 3(H). Since H has infinite index in G, being finitely gener-
ated over 3(G) and 3(H) implies that SelA(K )_` is 3(G)-torsion (assuming that
G does not contain any element of order `). So this is another way to obtain torsion
3(G)-modules without assuming the finiteness of A[`1](K ) (which we needed in
Corollary 4.7 and is obviously false for K = F(A[`1]) ). Moreover, as mentioned
in the introduction, proving the finitely generated condition over 3(G) and 3(H)
(as done also for all the cases included in Corollary 4.9) yields that SelA(K )_` is in
the categoryMH (G) , i.e., allows us to define a characteristic element for SelA(K )_`
(without the 3(H)-module structure, proving that a module is 3(G)-torsion is not
enough in the non-commutative case).
Example 4.11. Take K = F(A[`1]) as in Section 3.3. This kind of extension
realizes naturally most of our assumptions. First of all, from [31], S is just the set
of places of bad reduction for A and it is obviously finite (moreover S = S⇤ in
the notations of Section 3.2). As a consequence, by Theorem 4.3 we get SelA(K )_`
always finitely generated over3(G). Then, since Gal(K/F) embeds in GL2g(Z`),
it is easy to see that for ` > 2g + 1 the Galois group contains no elements of order
` so it makes sense to look for torsion modules. By the Weil-pairing we can take H
such that K 0/F is the unramified Z`-extension of the constant field of F . Because
of our choice of H , primes in K 0 above those in S are finitely many. So, thanks
to Theorem 4.8 if SelA(K 0)_` is finitely generated over Z`, then SelA(K )_` is also
finitely generated over 3(H) (hence 3(G)-torsion).

One can provide examples of Selmer groups SelA(K 0)` cofinitely generated
over Z` in the work of Pacheco ([24, Proposition 3.6], which generalizes to abelian
varieties the analogous statement of Ellenberg in [12, Proposition 2.5] for ellip-
tic curves). For more details on the application of Ellenberg’s results to the non-
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commutative setting of F(A[`1])/F (like computations of coranks and Euler char-
acteristic of Selmer groups) see Sechi’s (unpublished) PhD thesis [27].

5. Control theorem for ` = p

In order to work with the p-torsion part we need to use flat cohomology as men-
tioned in Section 2. We will work with diagram (2.1) but, as we will see, the ker-
nels and cokernels appearing in the snake lemma sequence will still be described in
terms of Galois cohomology groups. The main difference is provided by the fact
that the images of the local Kummer maps will be nontrivial.

To handle the local kernels we shall need the following:

Lemma 5.1. Let E be a local function field and let L/E be an (infinite) p-adic
Lie extension. Let A be an abelian variety defined over E with good ordinary
reduction. Let I be the inertia group in Gal(L/E) and assume it is nontrivial. Then
H1(L/E, A(L)) (Galois cohomology group) is a cofinitely generated Zp-module.
Moreover, if I has finite index (i.e., it is open) in Gal(L/E), then H1(L/E, A(L))
is finite.

Proof. Let bA (respectively A) be the formal group associated to A (respectively
the reduction of A at the prime of E). Because of good reduction the natural map
A(E 0)! A(FE 0) is surjective for any extension E 0/E . Hence the sequence

bA(OL) ,! A(L) ⇣ A(FL)

is exact. Taking Gal(L/E) cohomology (and recalling that A(E) ! A(FE ) is
surjective), one gets

H1
�
L/E, bA(OL)

�
,! H1 (L/E, A(L))! H1

�
L/E, A(FL)

�

and we will focus on the right and left terms of this sequence from now on.
By [34, Theorem 2 (a)], one has an isomorphism

H1
�
E, bA(OE )

�
' Hom

�
B[p1](FE ), Qp/Zp

�

(the statement of the theorem requires a Zd
p-extension but part (a) holds indepen-

dently of that). Therefore the inflation map provides an inclusion

H1
�
L/E, bA(OL)

�
,! Hom

�
B[p1](FE ), Qp/Zp

�

and, since A and B are isogenous, the term on the right is finite of order
|B[p1](FE )| = |A[p1](FE )|.
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For H1(L/E, A(FL)) we consider two cases:

5.1. Case 1: I is open in Gal(L/E).

Just considering p-parts we can assume that I is open in a p-Sylow Pp of Gal(L/E)

and we let L I be its fixed field. Let Pp := Gal(L I /E) (a finite group) and note that,
since L/L I is a totally ramified extension, one has that FL = FL I is still a finite
field. The Inf-Res sequence reads as

H1
⇣
L I /E, A(FL I )

⌘
,! H1

�
L/E, A(FL)

�
! H1

⇣
L/L I , A(FL)

⌘
.

The group on the left is obviously finite and for the one on the right we can use [13,
Proposition 3.1] as done previously in Lemma 3.1 (because I is still a p-adic Lie
group) to get ���H1 ⇣

L/L I , A(FL)
⌘��� 6

��A(FL)
��d̃1

where the exponent d̃1 = d̃1(Gal(L/E)) only depends on Gal(L/E).

5.2. Case 2: I has infinite index in Gal(L/E).

We use the same sequence

H1
⇣
L I /E, A(FL I )

⌘
,! H1

�
L/E, A(FL)

�
! H1

⇣
L/L I , A(FL)

⌘

but now FL is not a finite field anymore: indeed it contains the Zp-extension of FE
(because unramified extensions come from extensions of the field of constants). For
the group on the right we again use Lemma 3.1 to prove that H1(L/L I , A(FL)) is a
cofinitely generated Zp-module. The only difference with case 1 is that now the p-
divisible part of A(FL)might come into play (moreover note that H1(L/L I ,A(FL))
is a torsion abelian group, hence its p-primary part is exactly H1(L/L I,A(FL)[p1])
and A(FL)[p1] has finite Zp-corank). For H1(L I /E, A(FL I ))we observe that the
p-part of Gal(L I /E) is isomorphic to Zp and that the subgroup of A(FL I ) fixed by
that p-part is finite. Hence, by [5, Lemma 3.4 and Remark 3.5], one has that���H1 ⇣

L I /E, A
�
FL I

�⌘��� 6
��A �

FL I
�
/
�
A

�
FL I

��
div

��
is finite.

The lemma provides a bound for the order of H1(L/E, A(L)) which (when I is
open in Gal(L/E) ) can be written in terms of A[p1](FE ) and A(FL). If the inertia
is infinite (i.e., if I has order divisible by arbitrary high powers of p or, as we will
say from now on, has order divisible by p1) we can prove that the inflation map

H1
�
L/E, bA (OL)

�
,! H1

�
E, bA �

OE
��
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is actually an isomorphism but, since this is not going to improve the bound, we
decided to keep this statement out of the lemma and we include it here only for
completeness (the proof is just a generalization of the one provided for [34, Theo-
rem 2 (b)]).

Proposition 5.2. In the same setting of the previous lemma, assume that I has or-
der divisible by p1 , then

H1
�
L/E, bA (OL)

�
= H1

�
E, bA �

OE
��

Proof. The inflation map immediately provides one inclusion so we need to prove
the reverse one. By [34, Corollary 2.3.3], H1(L/E, A(L)) is the annihilator of
NL/E (B(L)) with respect to the local Tate pairing (where NL/E is the natural norm
map). This provides an isomorphism

H1 (L/E, A(L)) '
�
B(E)/NL/E (B(L))

�
_

. (5.1)

Working as in [34, Section 2] (in particular Subsections 2.3 and 2.6 in which the
results apply to general Galois extensions), one verifies that H1(E, bA(OE ))

is the annihilator of bB(OE ) with respect to the local pairing. Moreover, sincebA(OE ) is the kernel of the reduction map, one has

H1
�
E,bA(OE )

�
\ H1(L/E,A(L))✓Ker

n
H1(L/E,A(L))!H1

�
L/E,A(FL)

�o
= H1

�
L/E, bA(OL)

�
.

Therefore it suffices to show H1(E, bA(OE )) ✓ H1(L/E, A(L)) and, because of
the isomorphism (5.1), this is equivalent to proving NL/E (B(L)) ✓ bB(OE ).

Take ↵ 2 B(L) and put x = NL/E (↵): we can assume that ↵ belongs to the
p-part of B(L), so that x is in the p-part of B(E). Let E 0 be an intermediate field
containing L I and such that p1 divides [E 0 : L I ]. Consider z = NL/E 0(↵) 2 B(E 0)
and let z be the image of z in B(FE 0) = B(FL I ) (which is a torsion group). Hence
z has finite order, say pm , and we can find a field E 00 between E 0 and L I such that
pm |[E 00 : L I ] . Put y = NL/E 00(↵) = NE 0/E 00(z) 2 B(E 00), so that x = NE 00/E (y)
and note that y (the image of y in B(FE 00) = B(FL I ) ) has order dividing pm . Since
Gal(E 00/L I ) fixes y, one has that NE 00/L I (y) is trivial in B(FL I ), i.e., NE 00/L I (y) 2bB(OL I ) (which is the kernel of the reduction map). Hence

x = NE 00/E (y) = NLI /E
�
NE 00/L I (y)

�
2 NLI /E

�bB(OL I )
�
✓

bB(OE ) .

Now we proceed with our control theorem.

Theorem 5.3. Assume that all ramified primes are of good ordinary or split multi-
plicative reduction. Then, for any finite extension F 0/F contained in K , the kernels
and cokernels of the maps

aK/F 0 : SelA(F 0)p ! SelA(K )
Gal(K/F 0)
p
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are cofinitely generated Zp-modules. If all primes in S and all primes of bad re-
duction have decomposition groups open in G, then the coranks of kernels and
cokernels are bounded independently of F 0 . Moreover if the group A[p1](K ) is
finite, all places in S are of good reduction and have inertia groups open in their
decomposition groups, then the kernels and cokernels are finite (of bounded order
if the primes of bad reduction have open decomposition group).

Proof. We work with the usual diagram (2.1), where now we cannot substitute flat
cohomology with Galois cohomology and in the groups GA(·) the images of the
local Kummer maps are nontrivial (in general).

Since the map XK ! XF 0 is a Galois covering with Galois group Gal(K/F 0),
the Hochschild-Serre spectral sequence applies and we will study:

- Ker(bK/F 0) ' H1(K/F 0, A[p1](K ));
- Coker(bK/F 0) ✓ H2(K/F 0, A[p1](K ));
- Ker(cK/F 0)

noting that the cohomology groups on the right are Galois cohomology groups (see
[20, III.2.21 (a), (b) and III.1.17 (d)]).

5.3. The map bK/F 0

Just use Lemma 3.1.

5.4. The maps cK/F 0

As before we simply work with the maps

dw : H1f l(XF 0
v0
, A[p1])/ Im v0 ! H1f l

�
XKw, A[p1]

�
/ Im w .

From the Kummer sequence one gets a diagram

H1f l
⇣
XF 0

v0
, A[p1]

⌘
/ Im v0

dw

✏✏

� � // H1f l(XF 0
v0
, A)[p1]

fw
✏✏

H1f l
�
XKw, A[p1]

�
/ Im w

� � // H1f l(XKw, A)[p1] ,

and (from the Inf-Res sequence)

Ker(dw) ,! Ker( fw) ' H1(Kw/F 0v0, A(Kw))[p1] .

Before moving on observe that Kw/F 0v0 is a p-adic Lie extension because the de-
composition group of any place is closed in Gal(K/F 0). Now we distinguish two
cases depending on their behaviour in K/F 0 (and as usual, we do not consider
primes which split completely because they give no contribution to Ker(cK/F 0)).
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5.4.1. Unramified primes

If v0 is unramified, from [21, Proposition I.3.8], we have

H1
��
F 0v0

�unr
/F 0v0, A

��
F 0v0

�unr��
= H1

��
F 0v0

�unr
/F 0v0,⇡0

�
A

�
F 0v0

�
0
��

where ⇡0(A(F 0v0)0) is the set of connected components of the closed fiber of
the Néron model A(F 0v0) of A at v0 . The latter is a finite module and it is trivial
when v0 is a place of good reduction. Because of the inflation map

H1
�
Kw/F 0v0, A(Kw)

�
,! H1

��
F 0v0

�unr
/F 0v0, A

��
F 0v0

�unr��
the same holds for Ker(dw) as well. Note also that in finite unramified (hence cyclic)
extensions, since the group ⇡0(A(F 0v0)0) is finite, the order of the H

1 is equal to the
order of the H0 which is uniformly bounded (see for example [34, Lemma 3.3.1]).
Thus the order of H1((F 0v0)

unr/F 0v0,⇡0(A(F 0v0)0)) is bounded independently of F
0 .

5.4.2. Ramified primes

If v0 is of good ordinary reduction, just observe that Gal(Kw/F 0v0) is a p-adic Lie
group with nontrivial inertia and apply Lemma 5.1.

We are left with ramified primes of split multiplicative reduction. Let v0 be
such a prime. We have the exact sequence coming from Mumford’s uniformization

< q 0A,1, . . . , q
0

A,g >,!
�
(Fv)

⇤
�g ⇣ A(Fv)

(where we recall that g is the dimension of the variety A, the q 0A,i are parameters in
(F 0v0)

⇤ and the morphisms behave well with respect to the Galois action).
Taking cohomology (and using Hilbert’s Theorem 90) one finds an injection

H1
�
Kw/F 0v0, A(Kw)

�
,! H2

⇣
Kw/F 0v0,< q 0A,1, . . . , q

0

A,g >
⌘

.

Since q 0A,i 2 (F 0v0)
⇤, the action of the Galois group is trivial on them and we have

an isomorphism of Galois modules < q 0A,1, . . . , q
0

A,g >' Zg . Hence

H2
⇣
Kw/F 0v0,< q 0A,1, . . . , q

0

A,g >
⌘
'H2

�
Kw/F 0v0, Zg�

'

✓⇣
Gal

�
Kw/F 0v0

�ab⌘_◆g

(where the last one is the Pontrjagin dual of the maximal abelian quotient of
Gal(Kw/F 0v0)). The last one is a cofinitely generatedZp-module, since Gal(Kw/F 0v0)

ab

is virtually a finitely generated Zp-module. Indeed, [Gal(Kw/F 0v0),Gal(Kw/F 0v0)]
(the topological closure of the commutators) is a closed normal subgroup of
Gal(Kw/F 0v0) and their quotient is still a p-adic Lie group (see [11, Theorem 9.6 (ii)]
and, for the Zp-module structure, [11, Theorem 4.9] and [11, Theorem 4.17]).
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Remark 5.4.
1. The hypothesis on the reduction of A at ramified primes is necessary. Indeed,
if v is a ramified prime of good supersingular reduction and Gal(K/F) ' Zd

p
(a deeply ramified extension in the sense of [10, Section 2]), then K.-S. Tan has
shown that H1(Kw/F 0v0, A(Kw))[p1] has infinite Zp-corank (see [35, Theo-
rem 3.10]).

2. When A = E is an elliptic curve it is easy to see that the number of torsion points
of p-power order in a separable extension of F is finite (see, for example, [4,
Lemma 4.3]). For a general abelian variety K.-S. Tan has proved similar results
for local fields in [34, Lemma 2.5.1] and for Zd

p-extensions of global fields (in
[35, Proposition 2.11]). Hence, for a p-adic Lie extension, we are interested
only in the number of p-power torsion points in F(p)

p F (or F(p)
p F 0 for some

finite unramified extension F 0 of F).

6. 3-modules for ` = p

The Selmer groups are again 3(G)-modules and we will investigate their structure
as in the case l 6= p. We assume that G does not contain any element of order p.
6.1. Structure of SelA(K )_p as 3(G)-module

Theorem 6.1. With the above notations, if all places in S are of good ordinary or
split multiplicative reduction, then SelA(K )_p is a finitely generated 3(G)-module.
Proof. This is the same proof of Theorem 4.3, using Theorems 5.3 and 4.1.

Theorem 6.2. Assume that there exists an open soluble, uniform and pro-p sub-
group G 0 of G. Suppose that A[p1](K ) and SelA(F 0)_p , where F 0 is the fixed field
of G 0, are finite. If all ramified places of F are of good ordinary reduction for A
and have inertia groups open in their decomposition groups, then SelA(K )_p is a
torsion 3(G)-module.
Proof. It is sufficient to show that SelA(K )_p is a torsion 3(G 0)-module (classical
meaning). In order to do this just use Theorems 5.3 and 4.1.

6.2. Structure of SelA(K )_p as 3(H)-module

Assume that there exists a closed normal subgroup H in G such that G/H = 0 '
Zp and let K 0 be its fixed field.

We need the following:
Lemma 6.3. With notations as above, let K 0 := K H be the fixed field of H . If
v 2 6F is unramified in K/F , then
1. v splits completely in K 0/F or
2. the decomposition group, in H = Gal(K/K 0), of any prime w0 of K 0 dividing v
is finite and has order prime to p.
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Proof. Consider the diagram

K
Kw

K 0
K 0w0

F
Fv

H

eeeeee

0

eeeee

eeeeeee

G

where w|w0|v.
Assume v is unramified, then, since Gal(Kw/Fv) is still a p-adic Lie group

and the p-part of an unramified p-adic Lie extension of local fields is at most a
Zp-extension, we have to deal with two cases.

a. Gal(Kw/Fv) is finite. Then Gal(K 0w0/Fv) is a finite subgroup of 0 ' Zp , hence
it is trivial and v splits completely if K 0/F (i.e., 1 holds).

b. Gal(Kw/Fv) ' 0. Then Gal(K 0w0/Fv) can be trivial or isomorphic to 0. If it is
trivial we are back to case 1. If it is 0, then K 0w0 is the unramified Zp-extension
of Fv . Hence the extension Kw/K 0w0 is unramified of (finite) order prime to p
(i.e., 2 holds).

As in the ` 6= p case, we will show a slightly modified version of Theorem 5.3.

Theorem 6.4. Assume that:
1. all places in S are of split multiplicative reduction for A;
2. all places in S and all places of bad reduction for A split in finitely many primes
in K 0/F .

Then the map
a : SelA(K 0)p ! SelA(K )Hp

has cofinitely generated kernel and cokernel (viewed as Zp-modules).

Proof. We go directly to the local kernels for places which do not split completely

Ker(dw) ' H1
�
Kw/K 0w0, A(Kw)

� ⇥
p1

⇤
.

6.2.1. Unramified primes of good reduction

Let v be an unramified prime of good reduction for A. From Lemma 6.3 we know
that K 0w0 = Fv is a local field or Gal(Kw/K 0w0) has finite order prime with p. In
the first case [21, Chapter I, Proposition 3.8] shows that H1(Kw/K 0w0, A(Kw)) =

0 and we get our claim. In the second case the p-part of the torsion module
H1(Kw/K 0w0, A(Kw)) is obviously trivial.

Because of our hypothesis on the splitting of primes we are already left with
finitely many local kernels, now we check the behaviour of the remaining ones.
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6.2.2. Unramified primes of bad reduction

As above if Gal(K 0w0/Fv) ' 0 (i.e., K 0w0 is not a local field), then the p-part of
H1(Kw/K 0w0, A(Kw)) is trivial. The other case (i.e., K 0w0 = Fv ) cannot happen
because we are assuming that bad reduction primes do not split completely in K 0 .

6.2.3. Ramified primes

For the ramified ones we use Mumford’s parametrization as in Section 5.4.2. First
we get an exact sequence

< qA,1, . . . , qA,g >,!
�
K ⇤w

�g ⇣ A (Kw)

(where we can always assume that the periods are in the base field Fv ). Then
Gal(Kw/K 0w0)-cohomology provides an injection

H1
�
Kw/K 0w0, A(Kw)

�
,! H2

�
Kw/K 0w0, Zg�

'

✓⇣
Gal

�
Kw/K 0w0

�ab⌘_◆g
.

As a consequence we have the following (which generalizes [23, Theorem 1.9]).

Corollary 6.5. In the setting of Theorem 6.4, assume that SelA(K 0)_p is a finitely
generated Zp-module. Then SelA(K )_p is finitely generated over 3(H) (hence tor-
sion over 3(G) ).

6.3. Final summary

Take the function fields K and K 0 such that the hypothesis on the splitting of primes
in Theorem 5.3 is verified.

For SelA(K )_p to be finitely generated as3(G)-module we need just to assume
that all primes in S are of good ordinary or split multiplicative reduction for A. To
move a step further and find 3(G)-torsion modules we can assume

1. all ramified primes are of good ordinary reduction and have open inertia groups;
2. A[p1](K ) and SelA(F 0)_p are finite (where F 0 is the fixed field of an open sol-
uble, uniform and pro-p subgroup G 0 of G, if such a subgroup exists),

and use Theorem 6.2.
Another way to find 3(G)-torsion modules is provided by Corollary 6.5. It

somehow complements the previous one because it requires a different type of re-
duction for the ramified places. The assumptions for this case are:

3. all ramified primes are of split multiplicative reduction;
4. SelA(K 0)p is cofinitely generated over Zp .

One example for this second case is given by the usual arithmetic extension K 0 =
F(p)
p F for which the hypothesis 1 above obviously does not hold and the hypothe-
sis 4 is proved (in some cases) in [23, Theorem 1.8].
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Remark 6.6. We found conditions to get3(G)-torsion modules for different types
of reduction for the ramified primes, but we remind that, to get a characteristic
element for a 3(G)-torsion module for a non-commutative group G, one needs to
examine the3(H)-module structure as well. Hence our results provide characteris-
tic elements for SelA(K )_p only when the ramified primes are of split multiplicative
reduction.
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