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C1-hypoellipticity and extension of CR functions

MAURO NACINOVICH AND EGMONT PORTEN

Abstract. Let M be a CR submanifold of a complex manifold X . The main
result of this article is to show that CR-hypoellipticity at p0 2 M is necessary
and sufficient for holomorphic extension of all germs at p0 of CR functions on
M to an ambient neighborhood of p0 in X . As an application, we obtain that
CR-hypoellipticity implies the existence of global generic embeddings and prove
holomorphic extension for a large class of CRmanifolds satisfying a higher order
Levi pseudoconcavity condition. We also obtain results on the relationship of
holomorphic wedge-extension and the C1-wave front set for CR distributions.
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Introduction

The main result of this paper is the proof of the equivalence, for a smooth embed-
ded CR manifold M , of CR-hypoellipticity and the holomorphic extension prop-
erty. CR-hypoellipticity means that germs of distribution solutions to the tangential
Cauchy-Riemann equations are C1-smooth, while the holomorphic extension prop-
erty means that germs of C1-smooth solutions to the tangential Cauchy-Riemann
equations are restrictions of germs of holomorphic functions in a complex ambient
space. In particular, we obtain the holomorphic extension property for essentially
pseudoconcave manifolds (see [2, 20]).

Both CR-hypoellipticity and holomorphic extendability imply minimality.
Thus our main result can be restated by saying that CR-hypoellipticity and holo-
morphic extendability are equivalent at minimal points.

Despite several contributions, the problem of finding a geometric characteriza-
tion for the holomorphic extension property is still wide open, even for real analytic
hypersurfaces. The interest of our main result is that it establishes a link between
holomorphic extension and C1 regularity, a central and better understood topic in
PDE theory. We illustrate this point of view by recalling in Section 5 the weak
pseudoconcavity assumptions of [2], which generalize the essential pseudoconcav-
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ity of [20], and insure CR-hypoellipticity, and illustrating in Section 6, by some
examples, how this approach leads to the proof of the holomorphic extension prop-
erty for manifolds with highly degenerate Levi forms. Extension theorems had
been obtained before under stronger non-degeneracy assumptions on the Levi form
(see e.g. [9, 14, 31]), or for CR manifolds satisfying a third order pseudoconcavity
condition (see [3]).

An interesting consequence is the existence and uniqueness result for the ge-
neric local embeddings of M of Theorem 3.7 and Corollary 3.8, where we also
deal with non-generic local embeddings (this topic recently got some consideration;
view e.g. [17]). An equivalent formulation is that, when M is CR-hypoelliptic and
locally embeddable at all points, its CR structure completely determines its hypo-
analytic structure (see [36]).

We also point out that our result applies to give concrete applications for the
Siegel-type theorems proved in [21,22] about the transcendence degree of the fields
of CR-meromorphic functions.

We notice that, by [7], minimality is a necessary condition forCR-hypoelliptic-
ity, and that some sort of pseudoconcavity is also necessary, as holomorphic exten-
sion does not hold e.g. when M lies in the boundary of a domain of holomor-
phy.

In general, when germs of CR functions on a generically embedded CR mani-
fold M ,! X fail to holomorphically extend to a full neighborhood U of p0 in X ,
we can instead look for open subsets W of X for which M \ @W is a neighbor-
hood of p0 in M . A fundamental result of Tumanov [37] states that holomorphic
local wedge extension is valid if M is minimal at p0. By [7], this condition is
also necessary. However, the known proofs of local holomorphic wedge extension
merely yield existence, but no explicit information on its shape. The analytic or
hypo-analytic wave front sets tautologically give the directions of holomorphic ex-
tension. We conjecture that, in analogy with Theorem1.4, the union of the C1

wave front sets of all germs of CR distributions and that of their hypo-analytic wave
front sets coincide. The results of Section 4 give some first partial results in this
direction.

Let us shortly describe the contents of the paper. In Section 1 we set notation,
make precise the notion of CR-hypoellipticity, and formulate our main result (The-
orem1.4). Section 2 and Section 3 are devoted to its proof. In Section 3 we also
establish various equivalences of the extension property and show that this leads to
the uniqueness of the generic CR embeddings. Section 4 contains our result about
wedge extension and the common C1 wave front set of germs of CR distributions.
In Section 5 we review the subellipticity result of [2], obtaining a substantial ame-
lioration of the extension result of [3]. In Section 6 we give some examples.

Finally, we want to thank the referee for his comments, which helped us to
improve and make more understandable the exposition, and especially for outlining
a serious gap in the original proof of Theorem4.6, that has been filled by utilizing
some results of [11, 15].
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1. Statement of the main Theorem

Let M be an abstract smooth CRmanifold, of CR dimensionm and CR codimension
d. The CR structure on M is defined by the datum of a C1-smooth m-dimensional
subbundle T 0,1M of its complexified tangent bundle CT M , with

T 0,1M \ T 0,1M = 0 and
⇥
0
�
M, T 0,1M

�
,0
�
M, T 0,1M

�⇤
⇢ 0

�
M, T 0,1M

�
.

We say that the CR manifold M is real-analytic when, in addition, T 0,1M is a real-
analytic subbundle of CT M for a given real-analytic structure of M .

For Uopen ⇢ M and a real a � 0, let Ca(U) be the space of complex valued
functions on U , which are Hölder continuous of exponent a� [a] with all their
derivatives up to order [a]. For a > 0, we set C�a(U) for the space of distributions
u on U which have bounds in terms of continuous seminorms in Ca(U). We write
C1(U) and C�1(U) for the spaces of smooth functions and of distributions on U ,
respectively.

For each a 2 [�1,1] we denote by Oa
M(U) the set of Ca-smooth solutions

on U to the tangential Cauchy-Riemann equations:

Oa
M(U) =

�
u 2 Ca(U) | Zu = 0, 8Z 2 0

�
U, T 0,1M

� 
.

When a < 1 the homogeneous Cauchy-Riemann equations are understood to be
satisfied in the weak sense, i.e. u 2 Oa

M(U) if

u 2 Ca(U) and
Z
u Z 0� dµ = 0, 8� 2 C1

0 (U), 8Z 2 0
�
U, T 0,1M

�
,

where µ is a positive measure with smooth density on M and the formal adjoint Z 0

of Z 2 0(U, T 0,1M) is defined by
Z

Zv � dµ =

Z
v Z 0� dµ, 8v,� 2 C1

0 (U).

The assignmentsUopen ! Oa
M(U) define sheaves of germs. We denote byOa

M,(p0)
the stalk at p0 2 M . Note that O�1

M,(p0) =

S
a2ROa

M,(p0). Likewise, if M is
real-analytic, we denote by O!

M the sheaf of germs of real-analytic CR functions
on M . When M is a complex manifold we drop the superscript a, because the
sheaves corresponding to different exponents coincide by the regularity theorem
for holomorphic functions.
Definition 1.1. We say that M is CR-hypoelliptic at p0 2 M ifO�1

M,(p0) =O
1

M,(p0).
A real-analytic M is CR-analytic-hypoelliptic at p0 2 M ifO�1

M,(p0) = O!
M,(p0).

A local CR-embedding of M at p0 is the datum of C1-smooth solutions
z1, . . . , z⌫ to the homogeneous tangential Cauchy-Riemann equations on a neigh-
borhood U of p0 in M such that the map p 7! (z1(p), . . . , z⌫(p)) is a smooth
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embedding U ,! C⌫. We have ⌫ � m + d = n, and when we have equality we
say that the local CR-embedding is generic. From any local CR-embedding we can
obtain a generic local CR-embedding of a smaller neighborhood of p0, by choosing
any subset zi1, . . . , zin of z1, . . . , z⌫ with dzi1(p0) ^ · · · ^ dzin (p0) 6= 0.

We will consider in the sequel different instances of the local holomorphic
extension property:
Definition 1.2. Let �1  a  1. We say that:

(H⇤

a) M has the weak holomorphic extension property for Oa
M at p0 if for every

germ u 2 Oa
M,(p0) there are an open neighborhood Uu of p0 in M , a generic

local CR-embedding �u : Uu ,! Cn , and a germ of holomorphic function
ũ 2 OCn,(�(p0)) such that �⇤

u(ũ) = u;
(Ha) M has the strong holomorphic extension property for Oa

M at p0 if there are
an open neighborhood U of p0 in M and a generic local CR-embedding
� : U ,! Cn , such that, for every germ of smooth CR function u 2 Oa

M,(p0)
there is a germ of holomorphic function ũ 2 OCn,(�(p0)) such that�⇤(ũ) = u.

We drop the clause “at p0” when the property holds at all points of M .
For �1  a  b  1 we have the obvious implications

We shall prove in Section 3 that actually Ha , H⇤

a , Hb ) H⇤

b for all �1 

a < b  1, leading to a nicer and simpler notion of local holomorphic extension.
Note that the validity of any of the properties (Ha), (H⇤

a) includes local CR
embeddability at p0, as the constants are CR functions.
Remark 1.3. In [7, Theorem 2, Corollary 1] it is shown that, for a generic CR
submanifold M of a complex manifold X , minimality is not only a sufficient, but
also a necessary condition for wedge extendability of all smooth CR functions. The
argument in [7] only works in the case of a fixed CR embedding of M . Thus, in
particular, although H1 implies minimality at p0, the sufficiency of the weaker
condition H⇤

1
for minimality remains an open question.

Theorem 1.4 (Main Theorem). Let M be a CR manifold, locally CR-embeddable
at p0 2 M , and a, b 2 [�1,1], with a < 1. Then the following are equivalent:

(1) M is CR hypoelliptic at p0;
(2) M has the weak extension property (H⇤

a) at p0;
(3) M has the strong extension property (Hb) at p0.
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The proof of the main theorem will be done in the next two sections. First we will
prove in Section 2 that CR-hypoellipticity is equivalent to (H�1) and (H⇤

�1
). This

gives in particular that (H�1) , (H⇤

�1
) and shows thatCR-hypoellipticity implies

(Ha) and (H⇤

a) for all �1  a  1. In Section 3 we will complete the proof by
deriving the equivalence (H�1) , (H⇤

a), for all �1  a < 1, which implies
that all different (H⇤

a) and (Hb), with a, b 2 [�1,1] and a < 1, are equivalent.
We conclude this section by stating a straightforward consequence of Theo-

rem 1.4 for the real-analytic case. Since real-analytic CR manifolds are locally
CR-embeddable (see [5]), and holomorphic functions are real-analytic, we obtain:

Corollary 1.5. Assume that M is a real-analytic CR-manifold, and let p0 2 M .
Then the following are equivalent:

(1) M is CR-hypoelliptic at p0;
(2) M is CR-analytic-hypoelliptic at p0;
(3) O1

M,(p0) = O!
M,(p0).

Condition (3) means that all smooth solutions to the homogeneous tangential Cauchy-
Riemann equations on a neighborhood of p0 are real-analytic at p0.

2. CR-hypoellipticity and holomorphic extendability of CR distributions

In this section we prove that CR-hypoellipticity is equivalent to (H�1) and (H⇤

�1
).

Since the implications (H�1) ) (H⇤

�1
) ) CR-hypoellipticity are trivial, it suf-

fices to show that, if M is locally embeddable at p0, then CR-hypoellipticity implies
(H�1) at p0. We consistently keep the notation of Section 1. In particular, M is a
C1-smooth CR manifold, of CR dimension m and CR codimension d.

Since we are dealing with local properties, we can as well assume that M is a
generic CR submanifold of an open subset � of Cn , with n = m + d, that p0 = 0,
and that the holomorphic coordinates of Cn have been chosen in such a way that M
is the graph

y0

= h
�
x 0, z00

�
(2.1)

of a smooth map h : V ! Rd , with h(0) = 0, dh(0) = 0, for an open neighborhood
V of 0 in Rd

⇥Cm . Here z = (z0, z00) 2 Cd
⇥Cm , and z0 = x 0

+ iy0, z00 = x 00
+ iy00

with x 0, y0
2 Rd , x 00, y00

2 Rm .
Every open wedge attached to M near 0 contains an open wedgeW which, in

the chosen coordinates, is described by

W =

�
z +

�
iy0, 0

�
| z 2 E, y0

2 C
 
, (2.2)

for an open set E = Edge(W) ⇢ M and a truncated open cone C ⇢ Rd , with vertex
at the origin. The wedgeW is foliated by the translates Ey0 = {z+(iy0, 0) : z 2 E},
y0

2 C, of the edge, approaching E0 = E , for y ! 0. Recall that f 2 OCn (W)
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attains the weak boundary value f ⇤
2 O�1

M (E) along E if, for every test function
� 2 C1

0 (V ), we have

lim
y0

2C
y0

!0

Z
f
�
x 0

+ ih
�
x 0, z00

�
+ iy0, z00

�
�
�
x 0, z00

�
dmd+2m = f ⇤

[�]. (2.3)

Here dmd+2m denotes the standard Lebesgue measure on Rd
⇥ Cm . A function

f 2 OCn (W) has polynomial growth along E if, for every compact K b E , there
are an integer NK � 0 and a constant aK > 0 such that

lim sup
y0

2C
y0

!0

��y0

��NK �� f �z0 + iy0, z00
���

 aK , 8z =

�
z0, z00

�
2 K , 8y0

2 C. (2.4)

Holomorphic functions of polynomial growth attain unique distribution boundary
values on E , which weakly satisfy the homogeneous tangential CR equations.

Proof that CR-hypoellipticity implies (H�1). Ist part

We assume CR-hypoellipticity at 0 and we want to show that it implies holomor-
phic extension of CR distributions defined on a neighborhood of 0 in M to full
neighborhoods of 0 in Cn .

First we note that M is minimal at 0. Indeed, otherwise, M contains a germ
of proper CR submanifold N through 0, of the same CR dimension m, and CR
codimension d 0 < d, which would be the support of the germ of a non smooth
CR-distribution (see [7, 34]).

We will argue by contradiction. We begin by taking an open neighborhood U
of 0 in M for which we assume there is a u 2 O�1

M (U) that cannot be holomorphi-
cally extended to a full neighborhood of 0 in Cn .

By the approximation theorem [36, Theorem II.3.2] we know that there is an
open neighborhood U 0 of 0 in U such that for all w 2 O�1

M (U), w|U 0 is the limit,
in the sense of distributions, of the restrictions to U 0 of a sequence of holomorphic
polynomials. By the minimality of M at 0, we can find an open neighborhood E
of 0 in U 0 and an open wedgeW , of the form (2.2), such that the restrictions to E
of all elements of O�1

M (U) are boundary values of holomorphic functions on W
(see [34,37]).

Runge Hull

To continue our argument, we need first to review some facts on open Runge subsets
of Cn (see e.g. [25, Section 2.7]).

For a compact K ⇢ Cn , let

K̃ =

�
z 2 Cn

| | f (z)|  sup
⇣2K

| f (⇣)|, 8 f 2 OCn
�
Cn� 
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denote its polynomial hull. An openU ⇢ Cn is Runge if K̃ ⇢ U for every compact
K ⇢ U . For an arbitrary open U ⇢ Cn , let us define its Runge hull by

Ũ =

[
K compact
K⇢U

˚̃K ,

where we used Å for the set of interior points of a subset A of Cn .

Lemma 2.1. For every openU ⇢ Cn the set Ũ is open and Runge. If f 2 OCn (U)
can be uniformly approximated by entire functions on compact subsets of U , then
f admits a unique holomorphic extension to Ũ . If U is connected, then Ũ is also
connected.

Note that, since envelopes of holomorphy may be multi-sheeted, there may be
functions f 2 OCn (U) which have no holomorphic extension to Ũ .

Proof. Let K be compact in Ũ . By the maximum modulus principle we have

˚̃K = int

0
@ \

f 2C[z1,...,zn]\C

(
z 2 Cn

| | f (z)| < sup
⇣2K

| f (⇣)|

)1
A .

We claim that ˚̃K is Runge. Indeed, each V f = {z 2 Cn
| | f (z)| < sup⇣2K | f (⇣)|}

is polynomially convex and hence Runge. To verify that the interior part of the
intersection of the V f ’s is still Runge, we can use the distance functions �{V f (z) =

inf⇣/2V f |z � ⇣|. Since V f is Runge, we have infz2F̃ �(z) = infz2F �(z) for all
compact F ⇢ V f . Thus, if F is any compact subset of the interior of ˚̃K , we have

inf
z2F̃
�

{ ˚̃K
(z) = inf

f 2C[z1,...,zn]\C
inf
z2F̃
�{V f (z)

= inf
f 2C[z1,...,zn]\C

inf
z2F
�{V f (z) = inf

z2F
�

{ ˚̃K
(z) > 0,

showing that also F̃ ⇢
˚̃K .

Let {K⌫} be any sequence of compact subsets of U with K⌫ b K̊⌫+1 andS
1

⌫=1 K⌫ = U . Then Ũ =

S
1

⌫=1
˚̃K⌫ is Runge, because it is the union of an

increasing sequence of Runge open sets.
If f 2 O(U) can be uniformly approximated by entire functions on compact

subsets of U , there is a sequence { f⌫} ⇢ C[z1, . . . , zn] of polynomials approxi-
mating f on all compact subsets of U . By construction, the sequence { f⌫} also
converges on compact subsets of Ũ to a holomorphic function f̃ 2 OCn (Ũ), with
f̃ = f on U .

Assume now that U is connected. Clearly Ũ is the smallest Runge open set
which contains U . Then Ũ is connected because all connected components of a
Runge open set are Runge domains and hence Ũ coincides with the unique con-
nected component of Ũ containing U .
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Proof that CR-hypoellipticity implies (H�1). IInd part

Let V =
˜W be the Runge hull of W . The CR distribution u 2 O�1

M (U) is,
on the edge E , the boundary value of a holomorphic function ũ on W . By the
continuous dependence of the extension on its boundary value, ũ can be uniformly
approximated by holomorphic polynomials on compact subsets of W . Then, by
Lemma 2.1, the function ũ has a holomorphic extension to V , that for simplicity we
shall still denote by ũ.

By the uniqueness of the limit and of the boundary value, it follows that, if
0 2 V , then u holomorphically extends to a neighborhood of 0 in Cn . Thus, to find
a contradiction, it will suffice to show that, if 0 /2 V , and therefore 0 2 @V , then M
is not CR-hypoelliptic at 0.

We shall consistently use in the following the notation �A(z) = inf{|z � ⇣| |

⇣ 2 A} for the distance function from a subset A of Cn .
For each nonnegative integer k, let

O(k)
Cn (V) =

�
f 2 OCn (V)) | �k{V · f is bounded on V

 
be the space of holomorphic functions on V , with k-polynomial growth along @V .
It is a Banach space with the norm k f kO(k)

Cn (V)
= supp2V |�k{V(p) f (p)|.

Lemma 2.2. LetW 0 be any open wedge of the form (2.2), contained inW . Assume
that 0 2 @V . Then there is a sequence {p j } j=1,2,... in W 0, with p j ! 0, and a
function f 2 O(2n+1)

Cn (V) such that | f (p j )| ! 1.

In the proof of this lemma, we will use the following result, which is a partic-
ular case of [26, Proposition 2.5.4]:

Lemma 2.3. There is a constant C > 0, only depending on V , such that

8p 2 V, 9 f p 2 O(2n+1)
Cn (V) with f p(p) = 1 and k f pkO(2n+1)

Cn (V)
 C�{V(p).

Proof of Lemma 2.2. We construct by recurrence a sequence {p j } j>0 of points in
W 0, and { f j } j�0 of functions in O(2n+1)

Cn (V), with f0 = 0, which satisfy, for all
integers j > 0,

(a) p j 2 W 0, |p j | < 1
j ,

(b) | f j (p j )| � j ,
(c) k f j � f j�1kO(2n+1)

Cn (V)
 21� j , and

(d) supK� j�1
| f j � f j�1|  21� j ,

where we set � j = �{V(p j ) and Kr = {p 2 V : �{V(p) � r}. Note that {Kr }r>0
is a decreasing family of closed sets, and that V =

S
r>0Kr . Set B0(r) = {|z| <

r} ⇢ Cn .
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Conditions (a)-(d) are satisfied with f1 ⌘ 1 and any choice of p1 2 W 0
\

B0(1). This is our first recursive step. Assume that, for some k > 1, we already
found p1, . . . , pk�1 and f1, . . . , fk�1 2 O(2n+1)

Cn (V) satisfying (a)-(d) for 1  j 

k�1. Choose pk 2 W 0
\ B0(1/k) such that �k  �2n+1k�1 /(k2kC). If | fk�1(pk)| � k

holds, the choice fk = fk�1 obviously satisfies (a)-(d) for j = k. Otherwise, we
utilize Lemma 2.3 to pick a function f pk corresponding to the choice p = pk , and
set fk = fk�1 + k⌧ f pk , with ⌧ = 1 if fk�1(pk) = 0 and ⌧ = fk�1(pk)/| fk�1(pk)|
otherwise.

This yields (a) and (b) for j = k.
We get (c) for j = k from the estimate

k fk � fk�1kO(2n+1)
Cn (V)

= kk f pkkO(2n+1)
Cn (V)

 kC�k  2�k .

Let us show that, with this choice of fk , (d) is also satisfied.
From k f pkkO(2n+1)

Cn (V)
 C�k we obtain that

�� f pk (p)��  C�k/�
2n+1
@V (p)  C�k/�

2n+1
k�1  2�k/k

holds for p 2 K�k�1 , which shows that

sup
K�k�1

�� fk � fk�1
��
= k sup

K�k�1

�� f pk ��  2�k .

This completes the proof of the recursive step. Because of (c), the sequence { f j }
converges in O(2n+1)

Cn (V). By (b) and (d) the limit f 2 O(2n+1)
Cn (V) satisfies

| f (p j )| � j � 1 for all j . This completes the proof of Lemma 2.2.

SinceW ⇢ V , we have �{W(p)  �{V(p) for all p 2 W . Moreover, for a
sufficiently large constant C1 > 0, there is a coneW 0

⇢ W , with edge E , such that
�E (p)  C1�@W(p) for p 2 W 0. The function f obtained in Lemma 2.2 from a
sequence {p j } inW 0 is holomorphic and has polynomial growth while approaching
the edge E withinW 0. In particular, f |W 0 has a boundary value f ⇤, which is a CR
distribution on E . By [10, Lemma 7.2.6], f is continuous up to the edge near every
point in E near which f ⇤ happens to be continuous. Hence f ⇤ is not continuous
on a neighborhood of 0, because f is unbounded on a sequence inW 0 which con-
verges to 0. This completes the proof of the equivalence of CR-hypoellipticity and
(H�1), (H⇤

�1
).

3. On the holomorphic extension property

In this section we prove that the holomorphic extension properties (Ha) and (H⇤

b),
with �1  a  1 and �1  b < 1 are all equivalent and that, when they
are valid, all local generic CR embeddings are related by changes of holomorphic
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coordinates. To that end, it will be convenient to consider also, in Theorem 3.1
below, holomorphic extensions related to non generic CR embeddings.

Let us fix the notation. Let M be a CR submanifold, of CR dimension m and
CR codimension d, of a ⌫-dimensional complex manifold X . This means that M is
a smooth real submanifold of X and T 0,1M = T 0,1X \ CT M .

Let p0 2 M and let (G; z1, . . . , z⌫) be any coordinate neighborhood in X ,
centered at p0. When ⌫ = n = m + d, the embedding M ,! X is generic and
(G; z1, . . . , zn) provides a generic CR-embedding of M \ G into an open neigh-
borhood of 0 in Cn . If ⌫ > n, we can reorder the coordinates in such a way that
the restrictions of dz1(p), . . . , dzn(p) are linearly independent in CT ⇤

p M , for p
in an open neighborhood of p0 in M \ G. Then the map � : p 7! �(p) =

(z1(p), . . . , zn(p)) yields a generic CR-embedding of a neighborhood U of p0 in
M \ G into an open neighborhood � of 0 in Cn . Denote by �M : U ! �
the restriction of � to U ⇢ M . We can also assume that (U, t1, . . . , tm+n), with
ti = Re zi for 1  i  n, ti = Im zi�n for n < i  m + n is a smooth real chart on
M .

With this notation, we have:

Theorem 3.1. The following are equivalent:

(1) the restriction mapOX,(p0) ! O1

M,(p0) is onto;
(2) the restriction mapOX,(p0) ! O�1

M,(p0) is onto;
(3) the map �⇤

M : OCn,(p0) ! O1

M,(p0) is an isomorphism;

(4) the map �⇤

M : OCn,(p0) ! O�1

M,(p0) is an isomorphism.

Proof. The implications (2))(1) and (4))(3) are obvious and both (2) and (4)
imply CR-hypoellipticity at p0. Moreover, since �⇤

M is the composition of �⇤
:

OCn,(p0) ! OX,(p0) and the restriction maps OX,(p0) ! O±1

M,(p0), we also obtain
that (3))(1) and (4))(2).

Thus it suffices to prove that (1))(4). To that end, we will show that (1)
implies CR-hypoellipticity and then use the fact, proved in Section 2, that CR-
hypoellipticity implies (H�1). In the proof, to simplify the notation, we reduce, as
we can, to the case where X is an open neighborhood of 0 in C⌫ and p0 = 0. With
U ⇢ M, � ⇢ Cn, �M as above, we can also assume for simplicity that U = M ,
so that �M(M) = M̃ is a generic CR submanifold of an open neighborhood � of 0
in Cn .

We need to show that any CR-distribution, defined on an open neighborhood
W of 0 in M , is equivalent to a smooth function, on some possibly smaller neigh-
borhood W 0 of 0 in M .

Fix an open neighborhood W of 0 in M and let V be another open neighbor-
hood of 0 in M , whose dependence on W will be made precise later. Denote by
Br = {z 2 C⌫

| |z| < r} the open ball in C⌫ of radius r > 0, centered at 0.
By using the approximation theorem of Baouendi and Trèves of [8] in the stronger
formulation of [36, Theorem II.2.1], we can choose a sufficiently small r > 0 in
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such a way that Br \ M b V and, for every integer ` � 0, all u 2 O`
M(V ) can

be approximated, uniformly with all their derivatives up to order `, on Br \ M , by
holomorphic polynomials of z1, . . . , zn .

Next we consider, for every positive integer  , the set

F =

�
(u, v) 2 O1

M (Br \ M) ⇥OC⌫ (Br/2 )
�� u = v on M \ Br/2k

 
.

It is a closed subspace of the product O1

M (Br \ M) ⇥OC⌫ (Br/2 ), endowed with
its standard Fréchet topology, and hence a Fréchet space. The projections into the
first coordinate restrict to continuous linear maps ⇡k : Fk ! O1

M (Br \ M). By
Assumption (1),

S
k ⇡k(Fk) = O1

M (V ). Hence some ⇡(F) is of the second Baire
category. Then ⇡ : F ! O1

M (V ) is surjective and open by the Banach-Schauder
theorem. In particular, the image of

{(u, v) 2 F | sup
Br/2k+1

|v| < 1}

contains an open neighborhood of 0 inO1

M (V ). Thus we get:

8>><
>>:

9C > 0, ` 2 Z+, K b Br \ M such that
8u 2 O1

M (Br \ M) 9 ũ 2 OC⌫(B2�r )

with ũ|M\Br/2 = u|M\Br/2 , and sup
Br/2+1

|ũ|  C kuk`,K ,
(3.1)

where kuk`,K = supK sup|↵|`

��� @ |↵|u
@t↵

���.
From (3.1) we obtain that every u 2 O`

M(V ) is C1-smooth on Br/2+1 \ M .
Let indeed { fµ} be a sequence of polynomials inC[z1, . . . , zn]which approximates
u uniformly with all derivatives, up to order `, on Br \ M . For each µ we can find
vµ 2 OC⌫(Br/2 ) with vµ = fµ on Br/2 \ M and kvµk0,Br/2+1  Ck fµk`,Br\M .
Then the sequence {vµ} is uniformly bounded on Br/2+1 and, by Montel’s Theo-
rem, after passing to a subsequence, we may assume that the sequence {vµ|Br/2+1 }

converges to a ũ 2 OC⌫(Br/2+1), which agrees with u on Br/2+1 \ M . Since ũ
is C1-smooth on Br/2+1 , by taking its restriction to Br/2+1 \ M we find that u is
C1-smooth on Br/2+1 \ M .

To show that all CR distributions defined on W are smooth on a neighborhood
of 0 in M , we will reduce to the previous argument by a regularization technique.
This process is intrinsic on M , so that we are allowed to work on the projectioneM ⇢ � ⇢ Cn . Following [8], we construct a second order linear elliptic partial
differential operator on M , with C1 coefficients, in the following way. We may
assume that dz1, . . . , dzn, dz̄1, . . . , dz̄m define a maximal set of independent dif-
ferentials on M . We obtain a set of commuting smooth complex vector fields

L1, . . . , Ln, Z1, . . . , Zm
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on M by requiring that

Li z j = �i, j , Li z̄k = 0, Zhz j = 0, Zh z̄k = �h,k, for 1  i, j  n, 1  h, k  m.

Then, for a large c 2 R,

1L ,cZ =

nX
i=1

L2i + c2
mX
h=1

Z2h (3.2)

is elliptic on a neighborhood U 0 of 0 in eM . As a special case of a general theorem
proved in [36, Theorem II.5.2], we have the following:

Lemma 3.2. Let W be any open neighborhood of 0 in M . Then we can find an
open neighborhood V of 0 inW , with V b W \U 0, such that for every nonnegative
integer ` and for every u 2 O�1eM (W ) there is w 2 O`eM(V ) and an integer k � 0
such that

u|V = 1k
L ,cZw. (3.3)

Now we can conclude. Having fixedW , we choose the open neighborhood V above
in such a way that V b W\U 0 andW, V satisfy the statement of Lemma 3.2. If u 2

O�1

M (W ), then, by the first part of the proof, a solution w of (3.3) is C1-smooth
on a neighborhood of 0 in M and therefore also u is C1-smooth on a neighborhood
of 0 in M . This completes the proof of Theorem 3.1.

Remark 3.3. Fix any ` with �1 < ` < +1. Clearly (1) and (2) are also equiva-
lent to the fact that the restriction mapOX,(p0) ! O`

M,(p0) is onto.
We also explicitly state, as a corollary, the equivalence of the different notions

of holomorphic extendability.

Corollary 3.4. The following are equivalent:

(1) There is an a 2 [�1,1) such that (H⇤

a) holds at p0;
(2) There is an a 2 [�1,1] such that (Ha) holds at p0;
(3) (H⇤

a) holds at p0 for all a 2 [�1,1];

(4) (Ha) holds at p0 for all a 2 [�1,1].

Definition 3.5. We say that M has the holomorphic extension property (H) at p0 if
any of the equivalent condition of Corollary 3.4 is valid.

As a corollary of Lemma 3.2, we also state the following regularity result,
which will be useful to apply [2] to obtain holomorphic extension.

Corollary 3.6. Let M be a CR submanifold of a complex manifold X , p0 2 M and
assume that, for some `, with �1  ` < 1, all germs in O`

M,(p0) are actually in
O1

M,(p0). Then M is CR-hypoelliptic at p0, i.e. O�1

M,(p0) = O1

M,(p0).

Next we turn to investigate CR-embeddings.
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Theorem 3.7. Let M be a CR submanifold of a complex manifold X . If M has the
holomorphic extension property at all points, then we can find a complex submani-
fold Y of X , containing M , such that the embedding M ,! Y is generic.

The submanifold Y is essentially unique, in the sense that, if Y 0 is another
complex submanifold of X in which M embeds generically, then Y \ Y 0 is still a
complex submanifold of X containing M as a generic CR submanifold.

Proof. We begin by constructing a local embedding near a chosen point p0 2 M .
We use the notation set up at the beginning of the section.

We can assume that M \ G is, in the coordinates z1, . . . , z⌫, a graph

z j = Z j (q), j = n + 1, . . . ,⌫,

where q ranges in a neighborhood of the origin in eMG = �(M \ G), on which the
Z j ’s are smooth CR functions. By (3.1) of Theorem 3.1 the Z j ’s uniquely extend
to holomorphic functions Z̃ j , defined on an ambient neighborhood !0 of 0 in Cn .
Then

Yp0 =

�
p 2 G | �(p) 2 !0, zi (p) = Z̃i

�
z1(p), . . . , zn(p)

�
, n < i  ⌫

 
is a complex submanifold of X in which an open neighborhood of p0 in M generi-
cally embeds.

The submanifold Y will be constructed by patching together, using the argu-
ments of [5], the local Yp constructed in this way about different points p of M .
To finish the proof, we only need to show that a different choice of the coordinates
about p0 yields the same germ of complex manifold (Yp0, p0) at p0.

Let (E; ⇣1, . . . , ⇣⌫) be another holomorphic chart at p0 in X . We rearrange the
indices in such a way that d⇣1, . . . , d⇣n are linearly independent on an open neigh-
borhood of p0 in M . We write for simplicity z = (z1, . . . , z⌫), z0 = (z1, . . . , zn),
z00 = (zn+1, . . . , z⌫) and ⇣ = (⇣1, . . . , ⇣⌫), ⇣0

=(⇣1, . . . , ⇣n), ⇣00
=(⇣n+1, . . . , ⇣⌫).

We have, on an open neighborhood G0 of p0 in G \ E ,

z = 2(⇣) and ⇣ = 4(z),

for functions 2 = (21, . . . ,2⌫) = (20,200) and 4 = (41, . . . ,4⌫) = (40,400)
which are holomorphic on an open neighborhood of 0 in C⌫.

Repeating the preceding construction in the new coordinates, we obtain a ge-
neric CR embedding of an open neighborhood of p0 in M into a complex subman-
ifold Y 0

p0 of X , which is described, with obvious notation, by

Y 0

p0 =

�
p 2 E | ⇣0(p) 2 ⌘0, ⇣i (p) = 3̃i

�
⇣0(p)

�
, n < i  ⌫

 
,

where ⌘0 is an open neighborhood of 0 in Cn and the 3̃i ’s are holomorphic on ⌘0.
To show that (Y 0

p0, p0) = (Yp0, p0) we observe that

Y 0

p0 \ G0 =

�
p 2 G0 | zi = 2i

�
⇣ 0(p), 3̃(p)

�
, 1  i  ⌫

 
,
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where 3̃ = (3̃n+1, . . . , 3̃⌫). Then we notice that, by (3.1) of Theorem 3.1,
�
z0(p), Z̃i

�
z0(p)

��
= 2

�
⇣ 0(p), 3̃(p)

�
for �(p) on an open neighborhood of 0 in Cn , because this is true for p on an open
neighborhood of p0 in M . This shows that Yp0 and Y 0

p0 define the same germ of
n-dimensional complex submanifold at p0. The proof is complete.

Corollary 3.8. Let M be a CR manifold of CR dimension m and CR codimension
d, and n=m+d. Assume that M is locally CR-embeddable and CR-hypoelliptic at
all points. Then M admits a global smooth generic CR-embedding M ,! X into
an n-dimensional complex manifold X .

This embedding is essentially unique. Indeed, assume M is CR-hypoelliptic,
that X1, X2 are complex manifolds and that there are generic CR embeddings �i :

M ,! Xi , i = 1, 2. Then we can find open neighborhoods Yi of �i (M) in Xi and
a biholomorphism  : Y1 ! Y2 that fit into a commutative diagram

(3.4)

Proof. The first part of the corollary is proved by using the abstract construction
of [5] to patch together the different generic local CR-embeddings.

Let us turn to the proof of uniqueness. We consider the product manifold
X = X1⇥ X2 and the CR-embedding8 : M 3 p ! (�1(p),�2(p)) 2 X . Denote
by ⇡i : X ! Xi the canonical projection of the Cartesian product onto its Xi -
factor. By Theorem 3.7, the image 8(M) of M is a generic CR submanifold of a
complex submanifold Y of X , which, after substituting to Y an open neighborhood
of8(M) in Y , can be taken to be the graph of a biholomorphic : Y1 = ⇡1(Y ) !

Y2 = ⇡2(Y ), that fits into the commutative diagram (3.4).

4. Holomorphic wedge extension and the C1 wave front set

Theorem1.4 relates holomorphic extension to a full neighborhood to C1-regularity.
Here we make some remarks on the relationship between holomorphic wedge ex-
tension and the C1 wave front set. It is known that the directions of wedge ex-
tension are nicely reflected by the analytic wave front set, which provides infor-
mation on the extension of any individual CR distribution. We will prove below a
result which relates the local wedge of simultaneous extension of all the elements
ofO1

M,(p0) to the wave front sets of the elements ofO
�1

M,(p0).
We need to introduce some notation. Let M be a C1-smooth CR manifold,

of CR dimension m and CR codimension d. We denote by HM the subbundle of
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T M consisting of the real parts of vectors in T 0,1M and by JM : HM ! HM
the anti-involution which associates to X 2 HpM the unique JM X 2 HpM such
that X + i J X 2 T 0,1M . Let Ṫ ⇤M be the cotangent bundle of M minus its zero
section andD0(U), forUopen ⇢ M , the space of complex valued distributions inU .
The wave front set1 of u in D0(U) is a closed conic subset WF(u) of Ṫ ⇤U . When
u 2 O�1

M (U), its wave front set is contained in the characteristic bundle

H0M =

�
⇠ 2 T ⇤M | ⇠(X) = 0, 8X 2 H⇡(⇠)M

 
for the tangential Cauchy-Riemann equations on M .

The following is a simple consequence of [11,15].

Theorem 4.1. Assume that the CR manifold M , of CR dimension m and CR codi-
mension d, is a smooth real hypersurface in a CR manifold N , of CR dimension
m + 1 and CR codimension d � 1. We also assume that M divides N into two open
submanifolds N+, N�, with N+

[ N�
= N \ M , and N̄+

\ N̄�
= M .

Let f 2 O1N (N+) be such that, for every compact K in N , there are constants
CK , `K > 0 such that

| f (p)|  CK dist(p,M)�`K , 8p 2 N+

\ K . (4.1)

Then f admits a boundary value u 2 D0(M), which is a CR distribution on M .
Let p0 2 M and X p0 a nonzero tangent vector in Hp0N pointing into2 N+,

with JN X p0 2 Tp0M . Then

WF(u) \ T ⇤

p0M ⇢

�
⇠ 2 H0p0M |

⌦
⇠, JN X p0

↵
 0

 
. (4.2)

Remark 4.2.

(a) In (4.1) we can use any distance which is locally quasi-isometric to a Rieman-
nian distance on N .

(b) The boundary value u of f can be locally described in the following way. If
 : U 3 p ! (t (p), s(p)) 2 R1 ⇥ R2m+d is a coordinate chart in N , defined
on an open subset U of N and with (U) = R1 ⇥ R2m+d , such that M \U =

{t = 0} and N+
\U = {t > 0}, then, consistently with (2.3),

hu � s,�i = limt!0+h ft , ,�i, 8� 2 D(2m+d)
�
R2m+d�,

where D(2m+d)(R2m+d) is the space of smooth complex valued top degree
alternated forms with compact support in R2m+d , and we indicate by ft the
complex valued C1 function s ! f � �1(t, s) on R2m+d .

1 For basic definitions and a thorough introduction to this topic we refer to [23].
2 This means that X p0 /2 T M and there is a smooth curve � : [0, 1] ! N with � (0) = p0,
� (t) 2 N+ for 0 < t  1 and �̇ (0) = X p0 .
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(c) The vector X p0 in (4.2) exists and is uniquely determined modulo Hp0M and
multiplication by a positive scalar.

(d) The analogue of (4.2) for the hypo-analytic wave front set WFha(u) is stated
in [35].

Proof. The intersection T M \ HN is a real vector bundle of rank 2m + 1 on M ,
which contains HM as a subbundle of hyperplanes, and X p0 is a vector of the form
�JNYp0 for a Yp0 2 Hp0N \ Hp0M . We can find an open neighborhood ! of p0
in M and a section Y 2 0(!, T M \ HN ) such that �JNYp points into N+ for
every p 2 !. We can extend Y to a section Ỹ 2 0(U, HN ), defined on an open
neighborhoodU of p0 in N . After shrinking, we can assume that onU a coordinate
patch is defined as in point (b) of Remark 4.2, with JN Ỹ =

@
@t . Then a multiple of

JN Ỹ � i Ỹ 2 0(U, T 0,1N ) has the form

L =

@

@t
+

2m+dX
i=1

ai (t, s)
@

@si
.

An f 2 O1N (N+) satisfies in particular the equation L f = 0 on N+ \ U . Thus, if
(4.1) is also satisfied, its boundary value u 2 O�1

M (M \U) is well defined by [11,
Lemma 1.2]. The inclusion (4.2) is then a consequence of [11, Theorem2.1].

Then we have:

Proposition 4.3. Let M , N be as in the statement of Theorem 4.1. Let p0 2 M ,
and assume that N is locally CR embeddable at p0. Assume that(

8! open in M with p0 2 ! and 8 f 2 O1

M (!), 9 V open in N , with
p02V and 9 f̃ 2O1N (N+

\ V ) \ C0(N̄+

\ V ), so that f̃ = f on! \ V .
(4.3)

Let X p0 be a nonzero tangent vector in Hp0N pointing into N+, with JN X p0 2

Tp0M . Then

WF(u) \ T ⇤

p M ⇢

�
⇠ 2 H0pM |

⌦
⇠, JN X p0

↵
 0

 
, 8u 2 O�1

M,(p0). (4.4)

Proof. Using a functional analysis argument and the approximation theorem of
Baouendi and Trèves, we obtain, as in the proof of Theorem 3.1, that, having fixed
an open neighborhood ! of p0 in M , there exist a fixed open neighborhood V of
p0 in N and an integer ` � 0 such that

8 f 2 O`
M(!) 9 f̃ 2 O1N (N+

\V )\C0(N̄+

\V ) so that f̃ = f on! \ V . (4.5)

Then we obtain (4.4) by using Lemma 3.2: if U is an open neighborhood of p0
in M and u 2 O�1

M (U), then the restriction of u to a neighborhood U 0 b U
belongs to Oa

M(U 0) for some integer a. Using Lemma 3.2, we can write u|! =
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1k
L ,cZ f , where 1L ,cZ was defined in (3.2), ! is an open neighborhood of p0 in

U 0 and f 2 O`
M(!). By (4.5) and Theorem 4.1 we have WF ( f ) \ T ⇤

p0M ⇢

{⇠ 2 H0pM | h⇠, JN Xi < 0} and (4.4) follows because 1L ,cZ is elliptic and hence
WF(u|!) ⇢ WF ( f ).

Let us consider now a more general situation. Namely, we assume that M is
a generic CR submanifold, of CR dimension m and CR codimension d, of a CR
manifold Q of CR dimension µ and CR codimension , with m < µ, d >  and
m+d = µ+ = n. Let� be an open subset of Q. If p 2 @�, we say that v 2 TpQ
points into � if, for every � 2 C1([0, 1], Q) with � (0) = p and �̇ (0) = v, there
is a 0 < � < 1 such that � (t) 2 � for 0 < t < �. Assume now that M ⇢ @�.
We consider the subset of the pullback T Q|M on M of the tangent bundle of Q
consisting of the vectors that point inside � and denote by Ṫ�M its interior part in
T Q|M . We set:

Ṫ�M = int{v 2 T Q|M | v points into �},

Ṫ�,p0M = Ṫ�M \ Tp0Q,

H�,p0M =

�
X 2 Tp0M \ Hp0Q | JQX 2 Ṫ�,p0M

 
,

for p0 2 M . We note that Ṫ�,p0M and H�,p0M are cones, and that H�,p0M ⇢

Tp0M \ Hp0Q.
As a consequence of Proposition 4.3 we obtain:

Corollary 4.4. Let M , Q, � be as above. Let p0 2 M and assume that
(

8U open in M with p0 2 U and 8 f 2 O1

M (U), 9V open in Q, with
p02V and 9 f̃ 2 O1N (� \ V ) \ C0((� [ M)\V ) with f̃ = f on U\V .

(4.6)

Then

WF(u)\ T ⇤

p0M⇢

�
⇠2H0p0M |h⇠,Xi�0, 8X 2 H�,p0M

 
, 8u 2 O�1

M,(p0). (4.7)

Proof. It suffices indeed to apply Proposition 4.3 to CR submanifolds N of CR
dimension m + 1 and CR codimension d � 1 of a neighborhood of p0 in Q, with
N \ M = N+

[ N�, N+ and N� connected and open in N , N+
⇢ N \ �, and

N̄+
\ N̄� containing an open neighborhood of p0 in M .

Let M be locally CR embeddable and minimal at p0. Fix a local generic CR
embedding  : U ! � ⇢ Cn of an open neighborhood U of p0 in M into an
open neighborhood of 0 in Cn , with  (p0) = 0 and  (U) having the form (2.1).
We know from [34, 37] that there is an open neighborhood! of p0 in U such that,
for every CR distribution u 2 O�1

M (U), the restriction u|! is the pullback of the
boundary value of a holomorphic function, defined on an open wedge W ⇢ �,
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with edge E =  (!), that can be chosen in the form (2.2). We note that, in the
corresponding coordinates, we have8><

>:
H0p0M = hdx1(0), . . . , dxd(0)i ' Rd ,

HW,p0M = Hp0M �

(
dX
i=1

ai
⇣

@
@x1

⌘
x=0

����
dX
i=1

ai ei 2 C

)
,

(4.8)

where e1, . . . , ed is the canonical basis of Rd .
Then, from Corollary 4.4 we obtain:

Corollary 4.5. Assume that M is minimal at p0 and that, for every u 2 O�1

M (U)
there is an open neighborhood V of p0 in Cn such that, for E =  (M \ V ), the
restriction u|M\V is the pullback of the the boundary value of some ũ 2 OCn (W \

V ), for the wedgeW described by (2.2). Then

WF(u) \ H0p0M ⇢

�
⇠ | ⇠ 2 C0

 
. (4.9)

Here we used the identification H0p0M ' Rd of (4.8) and C0 = {⇠ | h⇠, vi 

0, 8v 2 C} is the polar cone of C .
In the last part of this section, we shall discuss the relationship of C1 wave

front set and minimality. For each p 2 M we denote by M(p) its CR orbit in M ,
i.e. the set of points in M that can be linked with p by a piecewise smooth curve
with velocities in HM . A fundamental result of Sussmann ( [33]) tells us that each
CR orbit M(p) is a smooth CR submanifold of the same CR dimension of M . If
U is an open neighborhood of p in M we can consider the orbit U (p), computed
by restricting to piecewise smooth HM-curves with support in U . Clearly, if U
and V are open subsets of M with V ⇢ U , then V (p) ⇢ U (p) for all p 2 V .
For a fixed p, the family of CR orbits U (p), indexed by the filter of its open
neighborhoods, uniquely defines a germ of CRmanifold M,loc(p), which is called
its local CR orbit. Tumanov’s theorem in [37] yields local holomorphic extension
to open wedges if U (p0) is open (see also [7,27,29,30,34]), so that Corollary 4.5
applies to this case. More generally, the dimension of U (p0) is related to the
maximal number of linearly independent directions of CR extension (cf. [38]).

Given an open subset U of M and a distribution u 2 D0(U), it is convenient,
to state the next theorem, to introduce the notation WF(u) for the union of its C1

wave front set and the zero section of T ⇤U .
We prove the following:

Theorem 4.6. Let M be a smooth CR submanifold, of CR dimension m and CR
codimension d, of a complex manifold X , and p0 2 M . Then the following are
equivalent
(1) dimR M,loc(p0) = 2m + k (0  k  d);
(2) there is a CR distribution u, defined on an open neighborhood U of p0, such

thatWF(u) \ T ⇤

p0M contains a (d�k)-dimensional R-linear subspace, and k
is the smallest integer with this property.



C1-HYPOELLIPTICITY AND EXTENSION OF CR FUNCTIONS 695

Assume that (1) holds true and that M,loc(p0) does not have the holomorphic
extension property (H) at p0. Then there exists a CR distribution u, defined on an
open neighborhood U of p0, such thatWF(u) \ T ⇤

p0M properly contains a (d�k)-
dimensional R-linear subspace.

Remark 4.7. Using Theorem4.6, Tumanov’s theorem (see [37]) can be restated
by saying that all CR functions defined on any fixed neighborhood of p0 admit a
holomorphic extension to an open wedge with edge containing p0 if and only if no
CR distribution u has a WF(u) which contains a real line of T ⇤

p0M . Theorem4.6
can be considered a generalization of that result to the non minimal case.

Proof. Since (1) and (2) are local statements, we can assume in the proof that M is
a generic CR submanifold of an open subset � of Cn .

Let dimR M,loc(p0) = 2m + k. Fix an open neighborhood U of p0 in
M . By Tumanov’s theorem [37], there are generic CR manifolds with bound-
ary M+

1 , . . . ,M+

k in Cn , of dimension 2m+ d + 1, whose boundary contain an
open neighborhood E of p0 in M , and such that every continuous CR function
u on U uniquely extends to each M+

j as a CR function, continuous up to the
boundary. These Mj can be chosen so that there are smooth real vector fields
X1, . . . , Xk 2 0(E, T M), with X1(p), . . . , Xk(p) linearly independent modulo
HpM at all points p 2 E , and with J X j (p) pointing into M+

j for all p 2 E and
j = 1, . . . , k. According to [27, Lemma 10], we can assume that the M+

j are C1-
smooth up to M . Thus each Mj can be slightly enlarged to a C1-smooth open
manifold eMj , containing E . Thus, by Proposition 4.3 we have

WF(u) \ T ⇤

p0M ⇢

�
⇠ 2 H0M | ⇠(X j ) � 0

 
, (4.10)

and hence WF(u) cannot contain any real linear subspace of dimension larger than
d�k.

On the other hand, assume that there are on M an open neighborhood U and a
CR submanifold E through p0 of U , having the same CR dimension m of M . By
taking U small, we can find a nonzero CR distribution on U carried by E .

Indeed: When E is open, there is nothing to prove. If E has a smaller di-
mension, we fix a positive measure µ with smooth density on E . A construction
in [7] yields a function v which is C1-smooth in a neighborhood of p0 in E , with
v(p0) = 1, and such that

TE [�] =

Z
E

v� dµ, � 2 D(U), (4.11)

is a CR distribution on a possibly smaller neighborhood U of p0 in M . In this
case WF(u) \ T ⇤

p0M = (Tp0E)?. This completes the proof of the implication
(1))(2). The argument also shows that, if there is a CR distribution u, defined
on a neighborhood U of p0, such that WF(u) \ T ⇤

p0M contains an `-dimensional
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R-subspace, then dimR M,loc(p0)  2m+d�`. Thus we obtain also the opposite
implication (2))(1).

Let us turn to the proof of the last statement of Theorem 4.6. If M,loc(p0) is
open, it is a consequence of Theorem 1.4, because a distribution u with WF(u) \

T ⇤

p0M = ; is smooth near p0. If M,loc(p0) is lower-dimensional, let E be a CR
submanifold of an open neighborhood U of p0 in M with (E, p0) = M,loc(p0).
After shrinking, we can assume that there is a CR isomorphism ⇡ : E ! E 0,
where E 0 is a CR submanifold of an open subset �0 of Cn0 , with n0

= n + k < n.
By choosing holomorphic coordinates as at the beginning of Section 3, we may
assume that ⇡ is induced by the projection of Cn onto the complex subspace Cn0

of the first n0 coordinates z1, . . . , zn0 . The Baouendi-Trèves approximation theorem
says that there is a measure µ0 on E 0, with a smooth density on E 0, such that any
CR distribution S on E 0 can be approximated by polynomials Q j (z1, . . . , zn0), in
the sense that Z

E 0

Q j� dµ0

! S[�], 8� 2 D
�
U 0
�
, (4.12)

holds on an appropriate neighborhood U 0 b E 0 of 0 = ⇡(p0). We can choose
µ = ⇡⇤µ0 in (4.11).

To complete the proof, we will use the following lemma:

Lemma 4.8. There is a neighborhood U ⇢ M of p0 such that for any CR distribu-
tion u on E 0 the formula

Tu[�] = u
⇥
(v�) � ⇡�1⇤, 8� 2 D(U), (4.13)

defines a CR distribution Tu on U with support contained in E \U .

Proof of Lemma 4.8. Let {Q j = Q j (z1, . . . , zn0)} be a sequence of holomorphic
polynomials, approximating u on some neighborhood U 0 of 0 in E 0, as in (4.12).
Since µ = ⇡⇤µ0, the distributions Q jTE : � 7!

R
E Q jv� dµ approximate the

distribution in (4.13), provided we take � with compact support in an open neigh-
borhood U of p0 in M , with U \ E b ⇡�1(U 0). Being the products of a CR
distribution by the restriction toU of holomorphic functions, the Q jTE are CR dis-
tributions on U , and therefore also their limit in the sense of distributions is a CR
distribution on U . This completes the proof of the lemma.

End of the proof of Theorem 4.6 Since E 0 does not have the extension property,
by Theorem 1.4 there is a CR distribution u with WFE 0(u) \ T ⇤

0 E
0
6= ;. It remains

to check that WF(Tu) has the desired properties.
For this purpose, we introduce smooth coordinates (s1, . . . , s2m+k, t1, . . . , t`),

` = d � k, centered at p0, such that E = {t1 = 0, . . . , t` = 0}. The distribution Tu
is a tensor product

Tu = (vgu⇤) ⌦ �t ,

where u⇤ is the pullback of u on E , and �t is the Dirac delta in the t-variables and g
is a smooth nonvanishing function such that dµ0

= g ds1 . . . ds2m+k . Since v(p0) =
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1, we can assume after shrinking that v 6= 0 on U . Then WF(u⇤vg) = WF(u⇤) and
the general rule to compute the wave front set of a tensor product [23, Theorem
8.2.9] yields

WF(Tũ) \ T ⇤

p0M =

�
WFE (u⇤) ⇥

⌦
dt1, . . . , dt`

↵�
\ {(0, 0)}. (4.14)

The proof is complete.

Theorem 4.6 is closely related to continuity properties of CR measures. We
say that a CR manifold M has the Riesz property at p0 2 M if every CR measure
µ, defined on a neighborhood U of p0 in M , is absolutely continuous with respect
to the Lebesgue measure on a neighborhood! of p0 in U .

As a consequence of Theorem 4.6 we reobtain a result of Chirka and Rea [16].
Theorem 4.9. Let M be a CR manifold, locally CR embeddable at p0 2 M . Then
M has the Riesz property at p0 if and only if it is minimal at p0.
Proof. If M is not minimal at p0, the existence ofCRmeasures as in (4.11) excludes
the Riesz property. If M is minimal at p0, and µ is a CR measure defined on an
open neighborhoodU of p0 in M , it follows from Theorem 4.6 that there is an open
neighborhood ! of p0 in U such that WF(µ) \ T ⇤! does not contain any real
line, because, for µ 2 O�1

M (U), the set of points p 2 U such that WF(µ) \ T ⇤

p M
contains a real line is closed in U . Then [15, Theorem 1.4] implies that µ|! is
absolutely continuous with respect to Lebesgue measure.

For recent generalizations of the F. and M. Riesz theorem to the solutions of
more general differential operators we refer to [11–13,15].

5. Some subellipticity conditions

In this section we recall some results of [2] that are relevant for our applications. In
the following, M is an abstract CR manifold, Z(M) = 0(M, T 0,1M) is the distri-
bution of complex vector fields of type (0, 1) on M , andH (M) = 0(M, HM) the
distribution of the real vector fields which are real parts of elements ofZ(M).

5.1. The system 2(M)

Definition 5.1. Set

2(M) =

8><
>:Z 2 Z (M)

�������
9r � 0, 9Z1, . . . , Zr 2 Z (M), so that

i[Z , Z̄ ] + i
rX
j=1

⇥
Z j , Z̄ j

⇤
2 H (M)

9>=
>; . (5.1)

We denote by A(M) the Lie subalgebra of X(M) generated by the real parts of
vectors in 2(M). IfH 0(M) = {Re Z | Z 2 2(M)},
A(M) = H 0(M) + [H 0(M), H 0(M)] + [H 0(M), [H 0(M), H 0(M)]] + · · ·

We showed in [2, Lemma 2.5] that:
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Proposition 5.2. With the notation introduced above, 2(M) is a left C1(M)-sub-
module of XC(M). For every Z 2 2(M) and every relatively compact open subset
U of M there are a finite set Z1, . . . , Zr of vector fields in Z (M) and a constant
C > 0 such that

��Z̄u��20  C

 
kuk20 +

rX
i=1

kZiuk20

!
, 8u 2 C1

0 (U).

Hence, by [2, Corollary 1.15], we obtain:

Theorem 5.3. Let M(M) be the A(M)-Lie submodule of X(M) generated by
H (M):

M (M) = H (M) +

⇥
AZ (M), H (M)

⇤
+

⇥
AZ (M),

⇥
AZ (M), H (M)

⇤⇤
+ · · ·

(5.2)

If �
X p0 | X 2 M(M)

 
= Tp0M, (5.3)

then the system Z (M) is subelliptic at p0. This means that there exists an open
neighborhood U of p0 in M , vector fields Z1, . . . , Zm 2 Z (M), and constants
C, " > 0 such that

kuk2"  C

 
kuk20 +

mX
i=1

kZiuk20

!
, 8u 2 C1

0 (U). (5.4)

5.2. The systemK (M)

Under a certain constant rank assumption on Z (M), we can give a more explicit
description of 2(M).
Definition 5.4. The characteristic bundle H0M of Z (M) is the set of the real
covectors ⇠ with hZ , ⇠i = 0 for all Z 2 Z (M).

The scalar Levi form at ⇠ 2 H0pM is the Hermitian symmetric form

L⇠ (Z1, Z̄2) = i⇠
�⇥
Z1, Z̄2

⇤�
for Z1, Z2 2 Z (M). (5.5)

The value of the right hand side of (5.5) only depends on the values Z1(p), Z2(p)
of Z1, Z2 at the base point p = ⇡(⇠). Thus (5.5) is a Hermitian symmetric form on
T 0,1p M . Set:

H�M =

n
⇠ 2 H0M | L⇠ � 0

o
, (5.6)

K(M) =

�
Z 2 Z (M) | L⇠ (Z , Z̄) = 0, 8⇠ 2 H�M

 
, (5.7)

KM =

[̇
p2M

KpM with KpM =

�
Z p | Z 2 Z(M)

 
. (5.8)

We have (see [2, Proposition 2.13])
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Proposition 5.5. K(M) is a left C1(M) submodule of 2(M). Assume in addition
that H�M and KM are smooth vector bundles on M . Then

K (M) = 2(M). (5.9)

5.3. Hypoellipticity

Subelliptic estimates imply regularity. We have indeed (see [2, Theorem 4.1], [20,
Theorem 4.3]):

Theorem 5.6. Let M be a ⌫-dimensional smooth manifold. LetU be an open subset
of M , and Z1, . . . , Zm complex vector fields on U such that, for some positive
constants C, ✏ > 0 (5.4) is valid. If u 2 L2loc(U), ai 2 L1

loc(U), fi 2 L2loc(U) for
i = 1, . . . , n satisfy

Ziu + aiu = fi , for i = 1, . . . ,m on U, (5.10)

then:

(1) u 2 W ✏
loc(U);

(2) if 0 < s 
m
2 , ai 2 Cs(U) and fi 2 Ws

loc(U), then u 2 Ws+✏
loc (U);

(3) if s > m
2 , ai 2 Ws

loc(U) and fi 2 Ws
loc(U), then u 2 Ws+✏

loc (U);

(4) in particular, if ai 2 C1(U), fi 2 Ws
loc(U), then u 2 Ws+✏

loc (U).

Here we indicate by Ws
loc(U) the L2-Sobolev space of order s.

Then we obtain from Lemma 3.6:

Corollary 5.7. If (5.3) holds true, then �1

M,(p0) =

1

M,(p0).

5.4. Trace concave CRmanifolds

We elaborate the above results for a class of CR manifolds for which we obtain a
geometric characterization of the extension property. A CR manifold M is said to
be trace concave at p 2 M if for every ⇠ 2 H0pM the directional Levi form L⇠ is
either indefinite or identically zero. A trace concave CR manifold is a CR manifold
which is trace concave at every point. We set

G1(M) = H (M),

and define inductively for k � 1

Gk+1(M) = Gk(M) + [H (M), Gk(M)].

Moreover we set Gk,pM = {Z(p) : Z 2 Gk(M)}. Trace concavity implies that
H�

p M is the annihilator of G2,pM . The following result gives a geometric charac-
terization of the extension property under a constant rank condition.
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Theorem 5.8. Let M be a trace concave CR manifold, locally CR-embeddable at
p0 2 M . Assume that dimGk,pM is constant for all k. Then M has the holo-
morphic extension property at p0 if and only if dimGk,p0M = dimM holds for k
sufficiently large.

Note that this result substantially strengthens the main theorem of [3].

Proof. The condition is sufficient by Theorems 5.3, 5.6 and 1.4. If dimGk,p0M <
dimM for all k, these dimensions eventually stabilize and the Frobenius theorem
implies that the CR orbit through p0 is lower-dimensional. In the same way as at the
beginning of the proof of Theorem 1.4, it follows that the holomorphic extension
property fails at p0. Hence the condition is necessary.

In particular we see that for the CR manifolds of Theorem 5.8, extension to
open wedges and extension to full neighborhoods are equivalent. Several examples
of such manifolds arise in the study of homogeneous CR manifolds, as outlined in
the next section.

6. Examples

A large class of examples of CR submanifolds of complex manifolds is provided by
the orbits of the real forms in complex flag manifolds. We recall that a complex flag
manifold is a compact homogeneous space X of a semisimple complex Lie groupG.
The isotropy of a point of X is a parabolic subgroupQ ofG, i.e. a closed connected
subgroup whose Lie algebra q contains a maximal solvable Lie subalgebra b of the
Lie algebra g of G. If G0 is a real form of G, i.e. a connected real Lie subgroup
of G0 with Lie algebra g0 such that g=g0�ig0, then G0 has finitely many orbits
in X . In particular, there are open orbits and a minimal orbit M which is compact
(see [39]). The structures of the orbits only depend on the Lie algebras involved,
and are therefore completely determined by the pairs (g0, q), which are called CR
algebras, consisting of the Lie algebra of the real formG0 and of the Lie algebra of
the parabolic subgroup Q.

The embedding of M in X defines a CR structure on M . The minimal orbits are
classified by their cross-marked Satake diagrams. A complete list of these diagrams
is given e.g. in the appendix to [4]. Many properties of the minimal orbits are read
off from these diagrams: minimality is equivalent to the fact that the corresponding
CR algebra (g0, q) is fundamental and is described by [4, Theorem9.3]. In [4, Sec-
tion 13] all essentially pseudoconcaveminimal orbits are classified in terms of their
associated diagrams. Since essential pseudoconcavity (see [20]) implies (5.3), all
these orbits are at every point CR-hypoelliptic and therefore have the holomorphic
extension property by Theorem1.4. Globally defined CR functions on this class of
CR manifolds and their properties were considered in [1].

We give below some more explicit examples to illustrate this application.
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Let X be the complex flag manifold consisting of the flags

`1 ⇢ `3 ⇢ · · · ⇢ `2k�1 ⇢ `2k+2 ⇢ · · · ⇢ `4k�2 ⇢ C4k,

where k is an integer� 2 and `i is aC-linear subspace of dimension i ofC4k . Let M
be the minimal orbit for the action of the group SU(2k, 2k) of complex 4k⇥4k ma-
trices that leave invariant a Hermitian symmetric form of signature (2k, 2k). Then
M has CR dimension 2k and CR codimension 8k2 � 6k � 1 and we need 2k com-
mutators ofH (M) to span T M (these numbers were computed in [28]). However,
M is minimal and essentially pseudoconcave and therefore is CR-hypoelliptic and
has the holomorphic extension property at all points.

Another example is the minimal orbit of the special group G0 of type E6 I I I
corresponding to the cross-marked Satake diagram

It corresponds to a CRmanifold of CR dimension 4 and CR codimension 25, with 6
commutations needed to span T M fromH (M). This is also essentially pseudocon-
cave and therefore is CR-hypoelliptic and has the holomorphic extension property
at each point.
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