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On Harnack inequalities and optimal transportation

DOMINIQUE BAKRY, IVAN GENTIL AND MICHEL LEDOUX

Abstract. We develop connections between Harnack inequalities for the heat
flow of diffusion operators with curvature bounded from below and optimal trans-
portation. Through heat kernel inequalities, a new isoperimetric-type Harnack
inequality is emphasized. Commutation properties between the heat and Hopf-
Lax semigroups are developed consequently, providing direct access to heat flow
contraction in Wasserstein spaces
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53C21, 46E35, 35B65 (secondary).

1. Introduction

Harnack inequalities classically provide strong tools towards regularity properties
of solutions of partial differential equations and heat kernel bounds. A renowned
result on the topic is the parabolic inequality by P. Li and S.-T. Yau [29]
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for the heat semigroup (Pt )t�0 on an n-dimensional Riemannian manifold (M, g)
with non-negative Ricci curvature, and every t > 0 and positive (measurable) func-
tion f : M ! R. By integration along geodesics, it yields the Harnack inequality

Pt f (x)  Pt+s f (y)
✓
t + s
t

◆n/2
ed(x,y)2/4s (1.2)

for f : M ! R non-negative and t, s > 0, where d(x, y) is the Riemannian
distance between x, y 2 M . The results (1.1) and (1.2) admit versions for any
lower bound on the Ricci curvature (cf. [18,29]). A heat flow proof of (1.1), in the
spirit of the arguments developed in this work, has been provided in [10].

In the context of diffusion operators, the Harnack inequality (1.2) may actu-
ally loose its relevance due to the infinite-dimensional feature of some models. Let
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L = 1� rV · r be a diffusion operator on a smooth complete connected Rieman-
nian manifold (M, g), where V : M ! R is a smooth potential, with associated
Markov semigroup (Pt )t�0 and invariant and symmetric measure dµ = e�V dx
(where dx is the Riemannian volume element). A notion of curvature-dimension
CD(K , N ), K 2 R, N � 1, of such operators L has been introduced by D. Bakry
and M. Émery [7] (cf. [5, 8]), which is by now classically referred to as the 02
criterion, through the Bochner-type inequality
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+

1
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�
L f
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for any smooth f : M ! R. (The 02 operator in this context is precisely the
expression on the right-hand side of (1.3).) For example, by the standard Bochner
formula from Riemannian geometry, the Laplace operator 1 on an n-dimensional
Riemannian manifold with Ricci curvature bounded from below by K satisfies the
curvature-dimension condition CD(K , N ) with N � n. On the other hand, on
M = Rn with V the quadratic potential, the associated Ornstein-Uhlenbeck op-
erator L is intrinsically of infinite dimension N = 1 since (1.3) cannot hold for
some K 2 R with N finite. (It actually holds in this example with K = 1 and
N = 1.) In particular a Harnack inequality (1.2) cannot hold in this case, as well
as in further similar infinite-dimensional models. Note that, when N = 1, again
by the Bochner formula, the curvature condition CD(K ,1), K 2 R, amounts to
the local geometric lower bound

Ric+ Hess(V ) � K (1.4)

(as symmetric matrices) uniformly over the manifold (cf. e.g. [8]).
To circumvent the drawbacks attached to the case K = 1, F.-Y. Wang in-

troduced in [38] (see also [39]) a new form of Harnack inequalities for infinite-
dimensional diffusion operators of the type L = 1 � rV · r (and more general
ones). Wang’s Harnack inequalities indicate that, under the curvature condition
CD(K ,1) (equivalent to (1.4)), for every non-negative (Borel measurable) func-
tion f on M , every t > 0, every ↵ > 1, and every x, y 2 M ,

�
Pt f (x)

�↵
 Pt ( f ↵)(y) e↵d(x,y)2/2(↵�1)� (t) (1.5)

where � (t) =
1
K (e2Kt � 1) (= 2t if K = 0). The proof of (1.5) is based on the

interpolation
Ps
�
(Pt�s f )↵

�
(xs), s 2 [0, t],

along a geodesic (xs)s2[0,t] joining x to y together with the commutation, for all
t � 0 and smooth g : M ! R,

|rPt g|  e�Kt Pt
�
|rg|

�
(1.6)

as an equivalent formulation of the curvature lower bound CD(K ,1) (cf. [8]). In
a sense, the gradient bound (1.6) may be thought of as the counterpart of the Li-Yau
inequality (1.1) in this context.
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Changing f into f 1/↵ , in the asymptotics f 1/↵ ⇠ 1 +
1
↵ log f as ↵ ! 1 in

(1.5), a log-Harnack inequality

Pt (log f )(x)  log Pt f (y) +

d(x, y)2

2� (t)
(1.7)

also holds (cf. [12, 40]). It was further shown in [38, 40] that either (1.5) (for one
↵ > 1) or (1.7) imply back, as t ! 0, the curvature condition CD(K ,1) (in its
infinitesimal form (1.4)).

The aim of this work is two-fold. We will first show how the previous infinite-
dimensional Harnack inequalities may actually be seen as consequences of a suit-
able functional inequality of isoperimetric type. On the basis of this observation,
we establish next a kind of isoperimetric-type Harnack inequality. These results
naturally lead to develop connections between isoperimetric-type Harnack inequal-
ities (in direct or reverse form) and commutation properties between diffusion and
Hopf-Lax semigroups. By the dual Kantorovich optimal transportation formalism,
Wasserstein contraction properties along the heat flow are then derived.

Two observations are actually at the starting point of this work. For simplicity
in the (somewhat informal) discussion below, we restrict ourselves to the curvature
condition CD(0,1) (with thus K = 0).

First, the gradient bound (1.6) (and thus the curvature condition CD(0,1))
is known to imply (to be equivalent) to logarithmic Sobolev inequalities under the
heat kernel measures Pt , in particular in reverse form

t
|rPt f |2

Pt f
 Pt ( f log f ) � Pt f log Pt f (1.8)

for every (bounded measurable) f > 0 and every t > 0 (cf. [8]). Inequalities
like the preceding one are understood point-wise throughout this work. Now, as
was noticed by M. Hino [24], the latter ensures that whenever 0 < f  1 and
 =

p
log(1/Pt f ), then
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In other words,  is Lipschitz with Lipschitz coefficient less than or equal to
(2t)�1/2. In particular, for every x, y 2 M ,
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where we recall that d(x, y) is the Riemannian distance between x and y. After
some work, it may then be shown that for each " > 0, there exists C(") > 0 such
that �

Pt f (x)
�2

 C(") Pt ( f 2)(y) ed(x,y)2/2(1+")t ,

that is as close as possible to (1.5) (for ↵ = 2).
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It should be mentioned that it is precisely the dimensional version of the re-
verse logarithmic Sobolev inequality (1.8) which has been used in [10] to provide
a monotonicity proof of the Li-Yau parabolic inequality (1.1). We will exploit this
information towards dimensional statements in Section 5 below. For further dimen-
sional Harnack inequalities under the curvature-dimension condition CD(K , N ),
comparing in particular different times, see [20,27,41].

The second observation at the starting point of this investigation is the link
between Harnack-type inequalities and optimal transportation already put forward
in [12] where semigroup tools were developed towards a proof of the Otto-Villani
HWI inequality [32] (cf. [36, 37]). We briefly recall the basic step. Namely, the
log-Harnack inequality (1.7) may be translated equivalently as

Pt (log f )  Q2t (log Pt f ) (1.9)

where (Qs)s>0 is the Hopf-Lax infimum-convolution semigroup

Qs'(x) = inf
y2M

"
'(y) +

d(x, y)2

2s

#
, x 2 M, s > 0.

Assume now that µ is a probability measure and let f > 0 be a (bounded) probabil-
ity density with respect to µ. Then, by time reversibility and (1.9) applied to Pt f ,
t > 0,Z

M
Pt f log Pt f dµ =

Z
M
f Pt (log Pt f )dµ 

Z
M
f Q2t (log P2t f )dµ.

Now
R
M log P2t f dµ  0 by Jensen’s inequality. Hence, combining with the scal-

ing properties of (Qs)s>0,Z
M
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where ' = 2t log P2t f . Recall then the (quadratic) Wasserstein distance W2(⌫, µ)
between two probability measures µ and ⌫ on M defined by

W2(⌫, µ) =

✓Z
M⇥M

d(x, y)2d⇡(x, y)
◆1/2

where the infimum is taken over all couplings ⇡ with respective marginals ⌫ and µ.
The Kantorovich dual description

1
2
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Z
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where the supremum runs over all bounded continuous functions ' : M ! R
(cf. e.g. [36]) then yields with d⌫ = f dµZ

M
Pt f log Pt f dµ 

1
4t
W2
2(⌫, µ). (1.11)
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Note that the preceding argument similarly yields, for every t > 0,Z
M
Pt f log Pt f dµ 

1
4t
W2
2( f µ, gµ) +

Z
M
g log g dµ (1.12)

where g is a further probability density with respect to µ, and where, for simplicity
here, f µ and gµ denote the probability measures f dµ and gdµ. Indeed, write in
the preceding notation thatZ

M
Pt f log Pt f dµ 

1
2t

Z
M
Q1' f dµ �

Z
M
'gdµ

�
+

Z
M
g log P2t f dµ.

Since by convexity
R
M g log P2t f dµ 

R
M g log gdµ, the claim follows.

Now (1.11) is actually the major step in the semigroup proof of the HWI in-
equality of [32] under the curvature condition CD(0,1). Namely, the classical
heat flow interpolation scheme (cf. [5, 8]) indicates that, for every suitable smooth
probability density f : M ! R and every t � 0,Z

M
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by the Cauchy-Schwarz inequality along the Markov kernel Ps . Therefore,Z
M
f log f dµ 

Z
M
Pt f log Pt f dµ + t

Z
M

��
r f

��2
f

dµ.

Together thus with (1.11), optimization in t > 0 yields
Z
M
f log f dµ  W2(⌫, µ)
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f
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which is the announced HWI inequality, connecting Entropy, Wasserstein distance
and Fisher Information. Similar arguments may be developed under CD(K ,1)
for any K 2 R to yield the full formulation of Otto-Villani’s HWI inequality
(cf. [8, 12]). Note that together with (1.11), the argument also recovers the known
inequality (cf. e.g. [16])

Z
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f log f dµ  W2( f µ, gµ)

 Z
M
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+

Z
M
g log gdµ

for probability densities f and g with respect to µ.
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For the matter of comparison, it might be worthwhile mentioning that the re-
cent Kuwada lemma (see [22]) develops similar arguments towards the inequality

W 2
2 (Pt f µ, f µ)  t
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E
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�
(1.13)

for any probability density f with respect to µ and any t�0. Indeed, for ' : E!R
bounded and continuous,
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by the fact that the Hopf-Lax semigroup solves the standard Hamilton-Jacobi equa-
tion and by integration by parts. Next, by the Cauchy-Schwarz inequality,
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' f dµ 

t2

2

Z 1

0

Z
M

��
rPst f

��2
Pst f

dµ ds

which yields (1.13) by the Kantorovich duality and integration.
The inequality (1.13) is actually at the core of the gradient flow interpretation

of the heat flow in Wasserstein space (cf. [1, 25, 31, 36, 37]), and immediately fol-
lows for example from the Benamou-Brenier [11] dynamical characterization of the
Wasserstein distance in smooth spaces such as Riemannian manifolds. Kuwada’s
argument above extends its validity to a general, possibly nonlinear, setting.

From the point of view of functional inequalities, (1.13) somewhat works in
the other direction with respect to (1.11). Namely, while (1.11) leads to the HWI
inequality, (1.13) has been identified in [23] at the root of the Otto-Villani theorem
[32] (cf. [12, 36, 37]) connecting logarithmic Sobolev inequalities to transportation
cost inequalities.

On the basis of these two early observations, the purpose of this work is, as an-
nounced, to develop a synthetic and refined treatment of Harnack-type inequalities
for diffusion operators with curvature bounded from below and of their connections
with transportation cost inequalities. The various contributions of this work are
summarized as follows.

In Section 2, we provide a direct treatment of Wang’s Harnack inequalities
(1.5) and (1.7) relying on an improved, isoperimetric-type version, of the reverse
logarithmic Sobolev inequality (1.8) along the heat flow.

This reverse isoperimetric-type inequality in turn implies a new isoperimetric
version of Harnack inequalities emphasized in Section 3. For example, under non-
negative curvature CD(0,1), it yields that for any (Borel) measurable set A in M ,
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any t > 0 and any x, y 2 M ,

Pt (1A)(x)  Pt
�
1Ad(x,y)

�
(y)

where A" is the "-neighborhood of A in the metric d. This result seems to be new
even for the standard heat flow operator on a Riemannian manifold. It is optimal
for the standard heat kernel on Rn as is immediately checked on the explicit kernel
representation.

A direct consequence of (1) is the commutation

Pt (Qs)  Qs(Pt ), t, s > 0, (1.14)

between the heat and Hopf-Lax semigroups (under non-negative curvature) which
we emphasize in Section 4. This commutation was actually used earlier by K. Ku-
wada [26] in the study of the duality of gradient estimates at the root of the contrac-
tion property of the Wasserstein distance along the heat flow

W2(µt , ⌫t )  W2(µ0, ⌫0)

where dµt = Pt f dµ and d⌫t = Pt gdµ, t � 0, f, g probability densities with
respect to µ. Such contraction properties have been investigated in this context
in [15, 31, 33, 34] (see also [36, 37, 39]), and are also, following [1, 19], a main
consequence of the EVI approach discussed in Section 6.

The commutation property (1.14) may actually be reached in several ways,
and Section 5 presents a variety of methods depending on the underlying context,
including the original approach of [26]. This section further includes dimensional
versions of the commutation property together with the corresponding Wassertein
contractions.

In the last Section 6, we briefly discuss some connections between the material
presented here and recent developments, following [4], around the Evolutionary
Variational Inequality (EVI) expressing in the preceding notation that

W2
2(µt , ⌫0) + 2t

Z
M
Pt f log Pt f dµ  W2

2(µ0, ⌫0) + 2t
Z
M
g log gdµ.

This property actually connects the 02 Bakry-Émery CD(K ,1) curvature condi-
tion [5, 7, 8], expressed by the commutation (1.6), with the curvature bound in the
sense of Lott-Villani-Sturm in metric measure spaces as convexity of relative en-
tropy along the geodesics of optimal transportation [30, 35, 37]. The recent main
achievement by L. Ambrosio, N. Gigli and G. Savaré [2–4] actually provides a link
between the 02 and Lott-Villani-Sturm curvature lower bounds in the class of the
Riemannian energy measure spaces through the EVI. In Section 6, we sketch, fol-
lowing [4], the principle of proof of the EVI in a smooth setting, for comparison
with some of the tools developed here.

For simplicity in the exposition, the results of this work are presented in the
weighted Riemannian setting, for thus diffusion operators L = 1 � r · rV on
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a complete connected Riemannian manifold (M, g) with invariant and reversible
measure dµ = e�V dx (not necessarily a probability measure) where V : M ! R
is a smooth potential. Integration by parts with respect to L is expressed byR
M f (�Lg)dµ =

R
M r f · rgdµ for smooth functions f, g : M ! R. The asso-

ciated curvature condition CD(K ,1), K 2 R, is expressed equivalently by (1.4)
as the infinitesimal version of the Bochner-type inequality (1.3). It amounts to the
standard lower bound on the Ricci curvature for the Laplace operator 1 on (M, g).
The curvature condition CD(K ,1) is also equivalent to the gradient bound (1.6)
which is, in an essential manner, the only way the curvature condition will be used
throughout this work.

We refer to the general references [5,8] for a precise description of this frame-
work and the relevant properties. Most of the results below actually extend to the
more general setting of a Markov diffusion Triple (E, µ,0) emphasized in [5, 8],
consisting of a state space E equipped with a diffusion semigroup (Pt )t�0 with in-
finitesimal generator L and carré du champ operator 0 and invariant and reversible
� -finite measure µ. In the weighted Riemannian context, 0( f, f ) = |r f |2 for
smooth functions. In this setting, the abstract curvature condition CD(K ,1),
K 2 R, stems from the Bochner-type inequality (1.3) (with N = 1) and the
abstract 02 operator going back to [7] (see [5, 8]). The condition CD(K ,1) is
equivalent to the gradient bound (1.6)

p
0(Pt f )  e�Kt Pt

�p
0( f )

�

for every t � 0 and every f in a suitable algebra of functions. The state space E
may be endowed with an intrinsic distance d for which Lipschitz functions f are
such that 0( f ) is bounded (µ-almost everywhere). Note also that at the level of the
local inequalities along the semigroup, generators of the type L = 1+ Z for some
smooth vector field Z on a manifold M may be covered similarly as developed
in [38–40].

ACKNOWLEDGEMENTS. We are thankful to L. Ambrosio, N. Gigli and G. Savaré
for helpful discussions on the EVI and for pointing out relevant references, and to
A. Guillin for sharing with us his simple proof from the Wasserstein contraction
to the curvature condition at the end of Section 4. We are also most grateful to
the referee for numerous comments and corrections that helped in improving the
exposition.

2. Reverse isoperimetry and Wang’s Harnack inequalities

In this section, we address a direct proof of Wang’s Harnack inequalities (1.5) and
(1.7) along the Hino argument on the basis of a reinforced family of heat kernel
inequalities first emphasized in [9].
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Denote by I : [0, 1] ! R+ the Gaussian isoperimetric function defined by
I = ' �8�1 where

8(x) =

Z x

�1

e�u
2/2 du

p

2⇡
, x 2 R,

and ' = 80. The function I is concave continuous, symmetric with respect to the
vertical line going through 12 and such that I (0) = I (1) = 0, and satisfies the basic

differential equality I I 00 = �1. Moreover I (v) ⇠ v
q
2 log 1v as v ! 0.

The following statement, as a kind of reverse isoperimetric-type inequality,
was first put forward in [9]. We enclose a proof for completeness (see also [8]).

Proposition 2.1. Under the curvature condition CD(K ,1) for some K 2 R, for
every (measurable) function f on M with values in [0, 1] and every t > 0,

⇥
I (Pt f )

⇤2
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⇥
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�
I ( f )

�⇤2
� � (t)

��
rPt f

��2 (2.1)

where � (t) =
1
K (e2Kt � 1) (= 2t if K = 0).

Proof. Work with a function f such that "  f  1 � " for some " > 0. By the
heat flow interpolation, write

⇥
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d
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⇥
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Now, by the chain rule for the diffusion operator L,
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�
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�
= �2Ps
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�
I (Pt�s f )

�
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|rPt�s f |2

I (Pt�s f )

!

where we used that I I 00 = �1 in the last step. Since Ps is given by a kernel, it
satisfies a Cauchy-Schwarz inequality, and hence

Ps(Y )Ps

 
X2

Y

!
�

⇥
Ps(X)

⇤2
, X,Y � 0.

Hence, with X = |rPt�s f | and Y = I (Pt�s f ),

⇥
I (Pt f )
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�

⇥
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�
I ( f )

�⇤2
� 2

Z t

0

h
Ps
�
|rPt�s f |

�i2
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By the gradient bound (1.6) applied to g = Pt�s f , it follows that

⇥
I (Pt f )

⇤2
�

⇥
Pt
�
I ( f )

�⇤2
� 2

Z t

0
e2Ksds |rPt f |2

which is the result.

For the comparison with the Hino observation mentioned in the introduction,
note that (2.1) of Proposition 2.1 implies the reverse logarithmic Sobolev inequality
(1.8) by applying it to " f and letting " ! 0.

As announced, we next show how Proposition 2.1 actually covers Wang’s Har-
nack inequalities recalled in the introduction. The main consequence is put forward
in the following corollary that actually entails most of the inequalities emphasized
in this work.

Corollary 2.2. Under the curvature condition CD(K ,1) for some K 2 R, for
every (measurable) function f on M with values in [0, 1], every t > 0 and every
x, y 2 M ,

8�1
� Pt f (x)  8�1

� Pt f (y) +

d(x, y)
p

� (t)
(2.2)

where d(x, y) the Riemannian distance between x and y.

Namely, in terms of gradient bounds, Proposition 2.1 implies that for every f
with values in [0, 1],

|rPt f | 

1
p

� (t)
I (Pt f ).

Since (8�1)0 =
1
I , it follows that 8

�1
� Pt f is � (t)�1/2-Lipschitz, t > 0, which

amounts to the corollary.
Towards a first illustration of Corollary 2.2, set � = d(x, y)/

p

� (t), so that
(2.2) reads as

Pt f (x)  8
�
8�1

� Pt f (y) + �
�
.

Apply now this inequality to 1{ f�a}, a � 0, for a non-negative function f on
M . Denoting by � the distribution of f under Pt at the point y (that is �(B) =

Pt (1{ f 2B})(y) for every Borel set B in R),

Pt (1{ f�a})(x)  8
⇣
8�1��([a,1))

�
+ �

⌘
.

Integrating in a � 0 and using Fubini’s theorem, denoting by d� (u) = e�u2/2 du
p

2⇡
the standard Gaussian distribution on the line,

Pt f (x)
Z

1

0

Z 8�1(�([a,1)))+�

�1

d� (u)da=

Z
1

�1

✓Z
1

0
1
{u8�1(�([a,1)))+�}da

◆
d� (u).
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Change u into u + � to get

Pt f (x)  e��
2/2
Z

1

�1

e��u
✓Z

1

0
1{8(u)�([a,1))}da

◆
d� (u).

Changing u into�u and denoting by F the distribution function of �, it follows that

Pt f (x)  e��
2/2
Z

1

�1

e�u
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1

0
1{F(a)8(u)}da

◆
d� (u).

After the further change of variables v = 8(u),

Pt f (x)  e��
2/2
Z 1

0
e� 8

�1(v)

✓Z
1

0
1{F(a)v}da

◆
dv.

The next statement summarizes the conclusion reached so far.

Theorem 2.3. Under the curvature condition CD(K ,1) for some K 2 R, for
every non-negative (measurable) function f on M , every t > 0 and every x, y 2 M ,

Pt f (x)  e��
2/2
Z

1

0
e� 8

�1
�F(r) r dF(r)

where � = d(x, y)/
p

� (t) and F(r) = Pt (1{ fr})(y), r � 0, is the distribution
function of f under Pt at the point y.

Theorem 2.3 appears at the root of the various Harnack inequalities in this
context. It is however not expressed in a very tractable form. But it easily implies
known ones. For example, by Cauchy-Schwarz,
Z

1

0
e� 8

�1
�F(r) r dF(r) 

✓Z
1

0
e2� 8

�1
�F(r)dF(r)

◆1/2 ✓Z 1

0
r2 dF(r)

◆1/2

 e�
2�
Pt ( f 2)(y)

�1/2
since Z

1

0
e2�8

�1
�F(r)dF(r) =

Z 1

0
e2�8

�1(v)dv =

Z
1

�1

e2�ud� (u) = e2�
2
.

The preceding therefore yields Wang’s Harnack inequality (1.5) for ↵ = 2,

Pt f (x)2  Pt ( f 2)(y) ed(x,y)2/� (t).

By Hölder’s inequality rather than Cauchy-Schwarz, one obtains the whole family
of inequalities (1.5) with ↵ > 1. Using the entropic inequality yields similarly the
log-Harnack inequality (1.7). With respect to Wang’s original argument, the proof
here avoids interpolation along geodesics (although the length space property is
required to move from (2.1) to (2.2)).
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3. Isoperimetric-type Harnack inequalities

As announced, the basic Lipschitz inequality (2.2) of Corollary 2.2 may be seen at
the origin of a number of inequalities of interest, and this section develops further
consequences in combination with isoperimetric bounds for heat kernel measures.
To this task, recall first the isoperimetric comparison theorem for heat kernel mea-
sures under curvature bounds of [9]. Recall I the Gaussian isoperimetric function.

Theorem 3.1. Under the curvature condition CD(K ,1) for some K 2 R, for
every smooth function f on M with values in [0, 1] and every t � 0,

I (Pt f )  Pt
⇣q

I 2( f ) + K (t)|r f |2
⌘

where K (t) =
1
K (1� e�2Kt ) (= 2t if K = 0).

As developed in [9] (cf. also [8]), this result is an isoperimetric comparison
theorem expressing that the isoperimetric profile of the heat kernel measures is
bounded from below by the Gaussian isoperimetric function (up to a scaling de-
pending on t and K ). This comparison may classically (cf. [9, 13]) be translated
in terms of isoperimetric neighborhoods in the sense that for any Borel measurable
(or closed) set A ⇢ M and any " > 0,

Pt (1A")(y) � 8

✓
8�1�Pt (1A)(y)�+

"
p

K (t)

◆
(3.1)

where A" is the (closed) "-neighborhood of A in the distance d, for any y 2 M and
t > 0.

Applied to f = 1A, the Lipschitz property (2.2) ensures on the other hand that,
for any measurable set A ⇢ M , and again with � = d(x, y)/

p

� (t),

Pt (1A)(x)  8
⇣
8�1�Pt (1A)(y)�+ �

⌘
. (3.2)

The combination of (3.1) and (3.2) together with the fact that K (t)
� (t) = e�2Kt then

yields the following isoperimetric-type Harnack inequality.

Theorem 3.2. Under the curvature condition CD(K ,1) for some K 2 R, for
every measurable set A in M , every t � 0 and every x, y 2 M such that d(x, y)> 0,

Pt (1A)(x)  Pt
�
1Adt

�
(y)

where dt = e�Ktd(x, y). In particular, when K = 0,

Pt (1A)(x)  Pt
�
1Ad(x,y)

�
(y).
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4. The commutation property and contraction in Wasserstein distance

The isoperimetric-type Harnack inequality of Theorem 3.2 has several consequen-
ces of interest in terms of commutation properties between the heat and the Hopf-
Lax semigroups which in turn entails the contraction property of the heat flow with
respect to Wasserstein metrics.

Recall the Hopf-Lax infimum-convolution semigroup (cf. [19, 36, 37])

Qs f (x) = inf
y2M

"
f (y) +

d(x, y)2

2s

#
, x 2 M, s > 0.

The announced commutation property was actually used first by K. Kuwada [26]
in the analysis of gradient bounds and Wasserstein contractions (see Corollary 4.2
below). The proof in [26], developed in the context of length spaces and actually
for more general costs, relies on an interpolation along geodesics and the use of the
Hamilton-Jacobi equation (see the first alternate proof in Section 5 below).

Theorem 4.1. Under the curvature condition CD(K ,1) for some K 2 R, for any
t, s > 0 and any bounded continuous function f : M ! R,

Pt (Qs f )  Qe2Kt s(Pt f ). (4.1)

Proof. Let without loss of generality f be non-negative on M . It is enough by
homogeneity to consider s = 1. Let x, y be arbitrary (distinct) fixed points in M
and set dt = e�Ktd(x, y) > 0. Set A = {Q1 f � a} for a � 0. If z 2 Adt , there
exists ⇠ 2 A such that d(z, ⇠)  dt so that

f (z) +

d2t
2

� f (z) +

d(z, ⇠)2

2
� Q1 f (⇠) � a.

Hence Adt ⇢ { f + d2t /2 � a}. Therefore, by Theorem 3.2,

Pt
�
1{Q1 f�a}

�
(x)  Pt

⇣
1
{ f+d2t /2�a}

⌘
(y).

Integrating in a � 0 yields

Pt
�
Q1 f

�
(x)  Pt f (y) +

d2t
2

.

Taking then the infimum in y 2 M yields the result by definition of the infimum-
convolution Q1.

The infimum-convolution semigroup (Qs)s>0 being solution of the Hamilton-
Jacobi equation @su=�

1
2 |ru|2 with initial condition u(0, ·)= f , the commutation

property (4.1) implies by a Taylor expansion at s=0 that |rPt f |2e�2Kt Pt
�
|r f |2

�
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for every t � 0. This gradient bound, weaker than (1.6), is still equivalent to the
curvature bound CD(K ,1) (cf. [8]), providing therefore a converse to Theorem
4.1. In particular also, the isoperimetric Harnack inequality from Theorem 3.2 is
actually equivalent to the curvature condition CD(K ,1).

As announced, it immediately follows from the commutation property (4.1) of
Theorem 4.1 that the Wasserstein distance W2 is contractive along the semigroup
(Pt )t�0, an observation due to K. Kuwada [26]. The Wasserstein contraction prop-
erty in this context may be traced back in the investigation [31] of the heat flow as
a gradient flow in the Wasserstein space, further developed in [15]. Further contri-
butions include [34] with a stochastic proof, [33] with an Eulerian point of view,
or [1, 19] in connection with the EVI (Section 6). See also [36, 37]. The proof pre-
sented here on the basis of Theorem 4.1 extends to the abstract Markov semigroup
setting of [5, 8]. The measure µ is assumed here to be a probability measure.

Corollary 4.2. Under the curvature condition CD(K ,1) for some K 2 R, for
any t � 0,

W2(µt , ⌫t )  e�2Kt W2(µ0, ⌫0) (4.2)

where dµt = Pt f dµ and d⌫t = Pt gdµ for probability densities f, g with respect
to the probability measure µ.

Proof. For any bounded continuous ' : M ! R, by time reversibility and the
commutation property (4.1),
Z
M
Q1'Pt f dµ�

Z
M
'Pt gdµ=

Z
M
Pt (Q1') f dµ �

Z
M
Pt' gdµ



Z
M
Qe2Kt (Pt') f dµ �

Z
M
Pt'gdµ

e�2Kt
Z

M
Q1(e2Kt Pt') f dµ �

Z
M
e2Kt Pt'gdµ

�



e�2Kt

2
W 2
2 (µ0, ⌫0)

where the last step follows from the Kantorovich dual description (1.10) of the
Wasserstein distance W2. The proof is complete.

By adapting Theorem 4.1 to costs d(x, y)p, the same argument works for any
Wasserstein distanceWp, 1  p < 1, extending the contraction property of Corol-
lary 4.2 to this class. More general Wasserstein functionals associated to further
transportation costs may be considered similarly. In [26], K. Kuwada established
the equivalence of the Wasserstein contraction property for the cost d(x, y)p with
the bound (1.6) with power q on the gradient, where q > 1 and p < 1 are dual
exponents.

Note that one main conclusion of the work [34] by M.-K. von Renesse and
K.-T. Sturm is the equivalence of the Wasserstein contraction of Corollary 4.2 with
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the curvature bound. Actually, reading backwards the proof of Corollary 4.2, the
contraction property (4.2) indicates that for all ' : M ! R bounded and continu-
ous,Z
M
Pt (Q1') f dµ�

Z
M
Pt'gdµ

Z
M
Q1'Pt f dµ�

Z
M
'Pt gdµ

e�2Kt

2
W 2
2 (µ0,⌫0).

Now, if x, y2M and if f and g are densities with respect to µ such that dµ0= f dµ
and d⌫0 = gdµ approach Dirac masses at x and y respectively (for example by heat
kernel approximations), the preceding yields

Pt (Q1')(x) � Pt'(y) 

e�2Kt

2
d(x, y)2,

that is exactly the commutation property (4.1). As we have seen, the latter ensures
in turn the curvature condition CD(K ,1).

5. Alternate proofs of the commutation property

In this section, we briefly outline alternate proofs of the basic commutation property
(4.1) of Theorem 4.1. For simplicity in the notation and the exposition, we only
consider K = 0 below. Each proof involves at some point specific properties and
may thus be adapted to more general settings accordingly.
(i) First alternate proof. This proof is the original argument by K. Kuwada [26]. It
requires the use of geodesics and the Hopf-Lax formula as solution of the Hamilton-
Jacobi equation. Consider, for a smooth enough function f : M ! R,

�(s) = Pt (Qs f )(xs), s 2 [0, 1],

where (xs)s2[0,1] is a constant speed curve joining x0 = y to x1 = x in M . Set for
simplicity d = d(x, y). Then, by the gradient bound (1.6) under CD(0,1),

�0(s) = Pt
✓

�

1
2
��
rQs f

��2◆ (xs) + rPt (Qs f )(xs) · ẋs

 Pt
✓

�

1
2
��
rQs f

��2◆ (xs) + d
��
rPt (Qs f )(xs)

��
 Pt

✓
�

1
2

|rQs f |2
◆

+ d Pt
�
|rQs f |

�



d2

2
.

Hence

Pt (Q1 f )(x) � Pt f (y) = �(1) � �(0) =

Z 1

0
�0(s)ds 

d2

2
which is the result.
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(ii) Second alternate proof. This second alternate proof also uses the Hopf-Lax
infimum-convolution semigroup as solution of the Hamilton-Jacobi equation, and
relies on the hypercontractivity property along the heat flow recently put forward
in [6]. Namely, by the log-Harnack inequality (1.7), for f say bounded continuous
and v > 0,

Pt (Q1 f ) 

1
v
Q2t

⇣
log Pt

�
evQ1 f

�⌘
.

Under non-negative curvature, it is shown in [6] that for every (bounded continuous)
 : M ! R and t > 0,

log Pt
�
eQ2t 

�
 Pt .

With v = 1/2t and  = f/2t , the conclusion immediately follows by homogeneity
of the infimum-convolutions.
(iii) Third alternate proof. This proof may be obtained by linear approximations of
the Hamilton-Jacobi equation (vanishing viscosity method) along the lines of [12].
Following the notation therein, let for every " > 0, the approximated Hopf-Lax
semigroup

Q"t f = �2" log P"t
�
e� f/2"�

solution of the equation
@t u = " Lu �

1
2
��
ru
��2.

In a sense which can be made precise, lim"!0 Q"t f = Qt f . Dealing with

�(s) = Ps
�
Q"1(Pt�s f )

�
, s 2 [0, t],

shows that

�0(s) = 2"Ps

 
1
P"g

"��
rP"g

��2
P"g

� P"

 
|rg|2

g

!#!

where g = e�Pt�s f/2". Under the gradient bound (1.6), �0(s)  0 which yields that

Pt
�
Q"1 f

�
 Q"1(Pt f ).

In the limit as " ! 0, the announced commutation property follows.
One benefit of the third alternate proof is that it may be developed similarly on

the curvature-dimension condition CD(0, N ) with a finite-dimensional parameter
N , for example with N = n for the Laplace operator on an n-dimensional Rie-
mannian manifold with non-negative Ricci curvature (cf. [5, 8]). We sketch the
argument. The local logarithmic Sobolev inequalities of [10] (see also [8]) under
CD(0, N ) ensure after linearization that, for any t > 0, any non-negative smooth
function g : M ! R and any c > 0,

c
��
rPt g

��2
Pt g

� Pt

 ��
rg
��2

g

!
 (c � 1)Pt (Lg) +

N
2t
�p

c � 1
�2Pt g.
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Arguing as previously in the CD(0,1) case then yields that for any f and t, s > 0,

Pt (Q"1 f )  Q"1(Ps f ) + N
�p

t �

p

s
�2

and similarly in the limit as " ! 0.
Applied to the Wasserstein contraction, the latter shows that, under CD(0, N )

and in the notation of Corollary 4.2,

W 2
2 (µt , ⌫s)  W 2

2 (µ0, ⌫0) + 2N
�p

t �

p

s
�2

. (5.1)

This inequality covers (4.2), however only when s = t . Note that when s = 0
and µt = ⌫t , then W2(µt , µ0) 

p

2Nt which describes a classical behavior of
Brownian motion in Euclidean space. Further Wasserstein contraction properties
under curvature-dimension condition are emphasized in [14,20,27, 41].

It should be mentioned in addition that, following the argument at the end of
Section 4, the contraction inequality (5.1) implies back the commutation

Pt (Q1 f )  Q1(Ps f ) + N
�p

t �

p

s
�2 (5.2)

for all (bounded smooth) f : M ! R and t, s > 0. Now, given a 2 R to be
specified, set t = (1 + "a)s for " > 0 small enough. By homogeneity, the latter
yields

P(1+a")s(Q" f )  Q"(Ps f ) +

Na2"s�p
1+ a" + 1

�2 .

A Taylor expansion at " = 0 then shows that

asPs(L f ) �

1
2
Ps
�
|r f |2

�
 �

1
2
��
rPs f

��2
+

Na2s
4

.

For a =
2
N LPs f , it follows that

��
rPs f

��2
 Ps

�
|r f |2

�
�

2s
N
�
LPs f

�2
. (5.3)

This inequality, holding (pointwise) for every (smooth) f and every s > 0, is known
to be equivalent to the curvature-dimension conditionCD(0, N ) (cf. ((1.11) in [10],
or [41]). As such, the Wasserstein contraction (5.1), as well as the dimensional
commutation (5.2), are also equivalent to CD(0, N ).

6. Links with the Evolutionary Variational Inequality

To conclude this work, we briefly describe some of the connections between the pre-
ceding material and recent contributions around the so-called Evolutionary Varia-
tional Inequality (EVI). As mentioned in the introduction, the EVI has been recently
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developed by L. Ambrosio, N. Gigli and G. Savaré [2–4] towards the connection
between the curvature condition CD(K ,1) in the sense of the 02 operator of [7]
(see [5,8]), expressed here through the commutation (1.6), and the curvature bound
in the sense of Lott-Villani-Sturm in metric measure spaces as convexity of relative
entropy along the geodesics of optimal transportation [30, 35, 37]. The recent con-
tribution [20] addresses corresponding issues for the curvature-dimension condition
CD(K , N ) (in particular in connection with (5.3)).

The purpose of this short paragraph is to describe the idea at the root of the
EVI following the recent main development [4]. In this work, the authors actu-
ally establish the EVI in the extended class of Riemannian energy measure spaces,
providing a complete link between the Bakry-Émery 02 and Lott-Villani-Sturm cur-
vatures (the implication from Lott-Villani-Sturm to 02 was achieved in [2,3]). With
respect to [4], we only concentrate here on the main principle of proof in the sim-
plified framework of weighted Riemannian manifolds, the main achievement of [4]
being actually to perform the argument in a much larger class of non-smooth spaces
together with a rather involved analysis. The guideline of this investigation is the
Eulerian approach of [33] and [17] but the non-smooth structure causes a lot of tech-
nical problems. We nevertheless found it useful to outline the argument, avoiding
all the regularity issues, in the context of this paper to illustrate the general principle
and the links with the material of the previous sections. We of course refer to [4]
(and [2, 3]) for a complete rigorous investigation.

For simplicity thus, we deal with the weighted Riemannian framework of the
preceding sections with dµ = e�V dx a probability measure, and restrict ourselves
to the non-negative curvature assumption CD(0,1) expressed in the form of the
commutation property (1.6) with K = 0. The case of arbitrary K 2 R is easily
adapted along the same lines cf. [4].

Let f and g be probability densities with respect to the probability measure µ.
The Evolutionary Variational Inequality (EVI) indicates that under CD(0,1), for
any t > 0,

W2
2(µt , ⌫0) + 2t

Z
M
Pt f log Pt f dµ  W2

2(µ0, ⌫0) + 2t
Z
M
g log gdµ (6.1)

where dµt = Pt f dµ, d⌫t = Pt gdµ. In the limit as t ! 0, together with the
semigroup property,

1
2
d
dt
W2
2(µt , ⌫0) 

Z
M
g log gdµ �

Z
M
Pt f log Pt f dµ (6.2)

(the derivative being understood in an extended sense as the limsup of the right
difference quotient).

The material described in the preceding sections gets close to (6.1), however
not quite. Indeed, the conjunction of (1.11) and of the Wasserstein contraction (4.2)
(for K = 0) yields

W2
2(µt , ⌫t ) + 2t

Z
M
Pt f log Pt f dµ 

3
2
W2
2(µ0, ⌫0) + 2t

Z
M
g log gdµ
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which is not directly comparable to (6.1) but which, in any case, is useless in the
limit as t ! 0. To reach EVI, more on optimal transportation is actually required.

One key step in this regard is the existence of curves of probability densities
hs , s 2 [0, 1], with respect to µ interpolating between h0 = g and h1 = f , assumed
to be smooth both in space and s, such that for every smooth function  on M ,Z

M
ḣs  dµ 

1
2
W2
2(µ0, ⌫0) +

1
2

Z
M

|r |
2hsdµ. (6.3)

Such curves are naturally provided by optimal transportation, and arise for exam-
ple in the Benamou-Brenier dynamical description of the Wasserstein distance [11]
(cf. [1, 36, 37]). Actually, the existence of geodesics µs = hsµ in the Wasserstein
space satifying (6.3) just depends on the length property of the space and is a gen-
eral result of [28]. In general, it is however not even clear that such a curve µs is
absolutely continuous with respect to µ, so the basic issue here concerns regularity
of µs and hs . Even in a smooth context, there is an correction error in (6.3) which
may be shown to be negligible for the further purposes so that for simplicity we
ignore it here. The existence and regularity of such curves hs , s 2 [0, 1], satisfying
(6.3) in a non-smooth setting is a delicate issue carefully investigated in [4].

To illustrate at a mild level such curves, and in M = Rn for the simplicity of
the notation (the manifold case being similar at the expense of further Riemannian
technology, cf. [37]), consider the Brenier map T : Rn

! Rn pushing forward
dµ0 = f dµ to d⌫0 = gdµ and providing optimal transportation in the sense of the
Wasserstein distance W2 as

W2
2(µ0, ⌫0) =

Z
Rn

��x � T (x)
��2 f (x)dµ(x) (6.4)

(cf. [1, 36, 37]. . . ). Consider then the geodesics Ts = s Id + (1 � s)T , s 2 [0, 1],
of optimal transportation. If hs denotes the density with respect to µ of the push-
forward measure of dµ0 = f dµ by Ts (so that h0 = g and h1 = f ) assumed to be
smooth both in space and s, it is easily checked that for every smooth function  
on Rn , Z

Rn
ḣs  dµ =

Z
Rn

�
x � T (x)

�
· r 

�
Ts(x)

�
f (x)dµ(x)

yielding (6.3) by the quadratic inequality and (6.4).
On the basis of (6.3), the EVI (6.1) may be analyzed by a suitable coupling

between the heat kernel and optimal transportation parametrizations. Precisely, the
expressionsZ

M
Q1'Pt f dµ �

Z
M
'gdµ + t

✓Z
M
Pt f log Pt f dµ �

Z
M
g log gdµ

◆
(6.5)

for any smooth ' on M may be represented as
Z 1

0

✓
d
ds

Z
M
Qs'Psthsdµ + t

d
ds

Z
M
Psths log Psthsdµ

◆
ds.
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Now, again under suitable smoothness assumptions not detailed here, by the Ha-
milton-Jacobi equation and integration by parts,

d
ds

Z
M
Qs'Psthsdµ = �

1
2

Z
M

��
rQs'

��2Psthsdµ +

Z
M
ḣs Pst (Qs')dµ

+ t
Z
M
Qs' LPsthsdµ

= �

1
2

Z
M

��
rQs'

��2Psthsdµ +

Z
M
ḣs Pst (Qs')dµ

� t
Z
M

rQs' · rPsthsdµ.

On the other hand,

d
ds

Z
M
Psths log Psthsdµ=

Z
M

⇥
Pst ḣs + t LPsths

⇤
log Psthsdµ

=

Z
M
Pst ḣs log Psthsdµ � t

Z
M

rPsths · r(log Psths)dµ

where we used that d
ds Pst hs = Pst ḣs + t LPsths and

R
M Pst ḣsdµ =

R
M ḣsdµ = 0.

From these expressions, it is easily checked that the sum

d
ds

Z
M
Qs'Psthsdµ + t

d
ds

Z
M
Psths log Psthsdµ

may be rearranged as

�

1
2

Z
M

��
r(Qs' + t log Psths)

��2Psthsdµ �

t2

2

Z
M

��
rPsths

��2
Psths

dµ

+

Z
M
ḣs Pst

�
Qs' + t log Psths

�
dµ.

Forgetting the term t2
2
R
M

|rPst hs |2
Pst hs dµ (which is anyway of the order o(t) in the

limit (6.2)), this quantity is upper-bounded by

�

1
2

Z
M
Pst
���

r(Qs' + t log Psths)
��2�hsdµ +

Z
M
ḣs Pst

�
Qs' + t log Psths

�
dµ

where we used symmetry of the semigroup. Now, by the curvature condition in the
form of the commutation (1.6), the latter is further upper-bounded by

�

1
2

Z
M

��
rPst (Qs' + t log Psths)

��2hsdµ +

Z
M
ḣs Pst

�
Qs' + t log Psths

�
dµ.



ON HARNACK INEQUALITIES AND OPTIMAL TRANSPORTATION 725

With  = Pst (Qs' + t log Psths), (6.3) implies that this expression is precisely
bounded from above by W2

2(µ0, ⌫0). Integrating in s from 0 to 1 and taking the
supremum over all '’s then yields the announced EVI (6.1). It might be worth-
while mentioning that with respect to (1.6) only the weaker commutation property
|rPt g|2  e�Kt Pt (|rg|2) is used here.

As mentioned above, the preceding argument is inspired by the Eulerian cal-
culus developed by F. Otto and M. Westdickenberg [33] in their approach of the
contraction property (4.2). Namely, if the parametrization does not involve the heat
flow, consider for ' : M ! R smooth enough,

Z
M
Q1'Pt f dµ �

Z
M
'Pt gdµ =

Z 1

0

✓
d
ds

Z
M
Qs'Pthsdµ

◆
ds.

Since, as above,

d
ds

Z
M
Qs'Pthsdµ = �

1
2

Z
M

��
rQs'

��2Pthsdµ +

Z
M
ḣs Pt (Qs')dµ,

by time reversibility and the gradient bound (1.6),

d
ds

Z
M
Qs'Pthsdµ = �

1
2

Z
M
Pt
⇣��

rQs'
��2⌘hsdµ +

Z
M
ḣs Pt (Qs')dµ

 �

1
2

Z
M

��
rPt (Qs')

��2hsdµ +

Z
M
ḣs Pt (Qs')dµ.

Using (6.3) then yields
Z
M
Q1'Pt f dµ �

Z
M
'Pt gdµ 

1
2
W 2
2 (µ0, ⌫0),

that is, after taking the supremum in ', the contraction property (4.2) of Corol-
lary 4.2.
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