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Bilipschitz embedding of Grushin plane in R3

JANG-MEI WU

Abstract. The Grushin plane is bilipschitz homeomorphic to a quasiplane in R3.

Mathematics Subject Classification (2010): 53C17 (primary); 30L05 (sec-
ondary).

1. Grushin plane

The Grushin plane G is the space R2 endowed with the vector fields

X1 = @x1 and X2 = x1 @x2 .

Outside the singular line x1 = 0, the Grushin metric is the Riemannian metric

ds2 = dx12 + x1�2 dx22,

which makes X1, X2 an orthonormal basis for the tangent space at each point not
on the singular line. The vector field [X1, X2] = @x2 is added to the singular line;
and the Grushin metric extended across x1 = 0 is the Carnot-Carathéodory metric

dG(p, q) = inf
�

Z 1

0

s
x 0

1(t)
2
+

x 0

2(t)
2

x1(t)2
dt 8 p, q 2 R2,

where the infimum is taken over all paths � : [0, 1] ! G connecting � (0) = p to
� (1) = q, that are absolutely continuous with respect to the Euclidean metric. On
the singular line, dG((0, x2), (0, y2)) '

p

|x2 � y2|.
The Grushin plane is in some sense one of the simplest singular sub-Riemannian

manifolds. For geodesics in G and properties of G, see Bellac̈he [2].
The Grushin balls BG(x, r) can be described in terms of Euclidean rectangles

R(x, r) =

⇥
x1 � r, x1 + r

⇤
⇥

⇥
x2 � r(|x1| + r), x2 + r(|x1| + r)

⇤
.
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Precisely, there is a constant C > 1 such that R(x,C�1r) ⇢ BG(x, r) ⇢ R(x,Cr)
for all x = (x1, x2) 2 R2 and r > 0; see Franchi and Lanconelli [5], also [4].
Therefore outside the line x1 = 0, the Grushin plane has a Whitney-type decompo-
sition

G \ {x1 = 0} =

[
k2Z

[
m2Z

⇣ h
7k�1, 7k

i
⇥

h
m49k, (m + 1)49k

i
[

h
�7k,�7k�1

i

⇥

h
m49k, (m + 1)49k

i ⌘
.

Meyerson [6] has shown that the Grushin plane is quasisymmetrically equivalent
to the Euclidean plane by the map (x1, x2) 7! (x1|x1|, x2). Seo [9] has proved a
general theorem on bilipschitz embeddable metric spaces, from which it follows
that the Grushin plane can be bilipschitzly embedded into some Euclidean space.

Since the number of Grushin balls of radius " > 0 needed to cover the unit
ball BG((0, 0), 1) has magnitude ⇣ "�2 log 1" for small " [2], the Grushin plane
can not be bilipschitzly embedded into R2. On the other hand it is relatively simple
to embed G bilipschitzly into R4.

We prove a sharp embedding theorem for the Grushin plane.
Theorem 1.1. The Grushin plane G is bilipschitz homeomorphic to a quasiplane
in R3.

The embedded singular line inR3 is necessarily a very regular snowflake curve
0 of Hausdorff dimension 2. The goal is to place, in a bounded Euclidean neigh-
borhood of a subarc of the embedded 0, 49k wrinkled Whitney 2-cells of diameter
comparable to 7�k for all k � 0.

In contrast, Semmes [8] has observed that the first Heisenberg group H, when
equipped with its Carnot metric, can not be bilipschitzly embedded into any Eu-
clidean space Rn . Semmes’ observation is based on a deep theorem of Pansu [7].

A quasiplane in R3 is the image of the hyperplane R2 in R3 under a global
quasiconformal homeomorphism of R3.

A sense-preserving homeomorphism f : D! D0 between domains inRn, n �

2, is said to be quasiconformal if

lim sup
r!0

max{| f (y) � f (x)| : |y � x | = r}
min{| f (y) � f (x)| : |y � x | = r}

 H < 1

for all x 2 D and some H independent of x . This is the so-called metric definition
of quasiconformal maps. For the connection between this and the geometrical or
the analytic definition of quasiconformal maps, see the book by Väisälä [10].

A mapping f : (X, dX ) ! (Y, dY ) between metric spaces is said to be L-
bilipschitz if

dX (x, y)/L  dY ( f (x), f (y))  L dX (x, y)
for all x, y 2 X and some constant L � 1; and a mapping is a (�, L)-quasisimilarity
if

�

L
dX (x, y)  dY ( f (x), f (y))  � L dX (x, y)
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for all x, y2 X and some constants L�1 and �>0. Clearly (1, L)-quasisimilarities
are the L-bilipschitz mappings, (�, 1)-quasisimilarities are similarities with scaling
factor �, and 1-similarities are isometries.

2. Building components

The construction in this section is largely based on an example of Assouad in [1]
and an example of Bonk and Heinonen in [3]. The book-keeping below is needed
in the eventual bilipschitz estimates.

2.1. Blocks

Let C be the cube [�
7
2 ,

7
2 ]⇥ [�

7
2 ,

7
2 ]⇥ [0, 7], I be the (directed) line segment from

(0, 0, 0) to (0, 0, 7), and

QI = [�3, 3] ⇥ [�3, 3] ⇥ [0, 7],

a rectangular cube in C that meets @C in two squares. We call QI an I -block, squares
QI \ {x3 = 0} and QI \ {x3 = 7} the entrance and the exit of QI respectively, and
@QI minus the union of the interiors of the entrance and the exit the side sQI of
QI .

Let L be the (directed) line segment from (0, 0, 0) to (0, 0, 72 ) followed by the
(directed) line segment from (0, 0, 72 ) and (0, 72 ,

7
2 ), and

QL =

⇣
[�3, 3] ⇥ [�3, 3] ⇥

h
0, 132

i⌘
[

⇣
[�3, 3] ⇥

⇥
�3, 72

⇤
⇥

h
1
2 ,

13
2

i⌘

be a union of two rectangular cubes in C that meets C in two squares. We call QL
an L-block, squares QL \ {x3 = 0} and QL \ {x2 =

7
2 } the entrance and the exit

of QL respectively, and the boundary @QL minus the union of the interiors of the
entrance and the exit the side sQL of QL .

We write Q for QI or QL when the type of the block is inessential. Images
of I, L , QI , or QL under similarities are again called I -segments, L-segments, I -
blocks, or L-blocks; they have a naturally inherited direction. When h is a similarity
map and ` is either the I -segment h(I ) or the L-segment h(L), we write Q` for
h(QI ) or h(QL), and call Q` the block associated with the segment `.

2.2. Cores

There exists a simple polygonal path JI in QI going from (0, 0, 0) to (0, 0, 7),
which is symmetric with respect to the plane x3 =

7
2 and has the following proper-

ties:

(1) JI is unknotted in QI , in the sense that there is a homeomorphism of QI onto
itself which is the identity map on @QI and maps JI onto the line segment
from (0, 0, 0) to (0, 0, 7).
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(2) JI consists of a total of 49 I -segments and L-segments, `1, . . . , `49, of unit
length, with mutually disjoint interiors, and labeled according to their order in
JI . Moreover, segments `1, `49 and at least one other are I -segments.

(3) All blocks Q`m are contained in the interior of QI with the exception that
Q`1 \ @QI is the entrance of Q`1 and Q`49 \ @QI is the exit of Q`49 . Only
blocks associated to the consecutive segments meet, and they meet in such a
way that Q`m \ Q`m+1 is the exit of Q`m and the entrance of Q`m+1 . Finally,
the union

S49
1 Q`m of the blocks is homeomorphic to a cube.

We call QI :=

S49
1 Q`m the core of QI . The entrance, the exit and the side of the

core are canonically defined. For simplicity, we will write Qm for Q`m .
Similarly, there is a simple polygonal path JL in QL going from (0, 0, 0) to

(0, 72 ,
7
2 ), which is symmetric with respect to the plane x3 =

7
2 � x2 and satisfies the

analogues of (1), (2) and (3) adapted for QL . Here, only segments `1 and `49 are
required to be I -segments. The core QJ of QJ , and the entrance, the exit and the
side of the core are defined analogously. (Examples of paths JI and JL are given in
the appendix.)

Symmetry of the paths is imposed to simplify the argument below; it is not
essential. There is nothing special about the numbers 7 and 49 either, except that
log 49
log 7 is the Hausdorff dimension of the singular line in G.

2.3. Edges

Block QI has four edges on its side, namely, {(3, 3, t) : 0 t  7}, {(�3, 3, t) : 0 

t  7}, {(�3,�3, t) : 0  t  7}, and {(3,�3, t) : 0  t  7}; only one will be
labeled

e0 = {(3, 3, t) : 0  t  7}.

Block QL has four edges on its side; they are labeled as

e1 =

n
(3, 3, t) : 0  t 

1
2

o
[

n⇣
3, t, 12

⌘
: 3  t 

7
2

o
,

e2 =

n
(�3, 3, t) : 0  t 

1
2

o
[

n⇣
�3, t, 12

⌘
: 3  t 

7
2

o
,

e3 =

n
(�3,�3, t) : 0  t 

13
2

o
[

n⇣
�3, t, 132

⌘
: � 3  t 

7
2

o
,

e4 =

n
(3,�3, t) : 0  t 

13
2

o
[

n⇣
3, t, 132

⌘
: � 3  t 

7
2

o
.

We define edge paths along core QL as follows. An edge path initiates at a vertex
p of QL on the plane x3 = 0, it moves along the edge of the first block in QL
that starts at p. When the path reaches the end point q of that edge, it continues
along the edge of the second block in QL that starts at q, and so on. The path stops
when it reaches the plane x2 =

7
2 . Along the way, the path is marked by the edges

it passes through.
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Corresponding to each starting point p, there is a unique edge path. Four
choices of the starting point result in four mutually disjoint edge paths w1, w2, w3,
and w4, each of which is symmetric with respect to the plane x3 =

7
2 � x2.

Edge paths are labeled so that w1, w2, w3, and w4 start at (37 ,
3
7 , 0), (�3

7 ,
3
7 , 0),

(�3
7 ,�

3
7 , 0), and (37 ,�

3
7 , 0) respectively, and end at (

3
7 ,

7
2 ,�

3
7+

7
2 ), (�

3
7 ,

7
2 ,�

3
7+

7
2 ), (�

3
7 ,

7
2 ,

3
7 +

7
2 ), and (37 ,

7
2 ,

3
7 +

7
2 ) respectively. Note in particular that for every

i = 1, 2, 3, or 4, the origin (0, 0, 0), the starting point of wi , and the starting point
of edge ei are collinear, and that the same can be said about the point (0, 72 ,

7
2 ) and

the terminal points of wi and ei . We call wi \ Qm the marked edge of Qm derived
from data (QL , ei ), for m = 1, . . . , 49.

There are four edge paths along the core QI as well. We label the edge path
going from (37 ,

3
7 , 0) to (37 ,

3
7 , 7) by w0, and call w0 \ Qm the marked edge of Qm

derived from data (QI , e0) for m = 1, . . . , 49.

2.4. Tubes

Consider tubes

⌧QI = QI \ QI and ⌧QL = QL \ QL

obtained by removing the cores from the blocks. The entrance and the exit of ⌧QI
are canonically defined; they are congruent to the rectangular annulus

A = ([�3, 3] ⇥ [�3, 3]) \

⇣⇣
�
3
7 ,

3
7

⌘
⇥

⇣
�
3
7 ,

3
7

⌘⌘
⇢ R2 ⇥ {0}.

The remaining part of @⌧QI is composed of the side sQI of block QI and the side
sQI of core QI . The boundary of ⌧QL can be similarly partitioned.

2.5. Bilipschitz maps between tubes

Let Q = {x 2 R2 : |x |  1} ⇥ [0, 1] be a round block in R3 having a core k =

{x 2 R2 : |x | 
1
49 } ⇥ [0, 1], that is composed of 49 congruent blocks Qm =

{x 2 R2 : |x | 
1
49 } ⇥ [

m�1
49 , m

49 ], m = 1, . . . , 49. Denote by t = Q \ k the round
tube {x 2 R2 : 1

49  |x |  1} ⇥ [0, 1], and by tm = {x 2 R2 : 1
492  |x | 

1
49 } ⇥ [

m�1
49 , m

49 ], m = 1, . . . , 49, 49 congruent tubes.
Denote by e = {(1, 0, t) : 0  t 1} an edge ofQ, and byw = {( 149 , 0, t) : 0

t  1} an edge path along k; let A = {x 2 R2 : 1
49  |x |  1} be the annulus in

R2 ⇥ {0} that is congruent to the entrance and the exit of the tube t.
Define an isometric involution in each of QI , QL , andQ, by the reflection with

respect to the planes x3 =
7
2 , x3 =

7
2 � x2, or x3 =

1
2 respectively.

Let ⇣m be the similarity map in R3 with

⇣m : (Q,e) !

�
Qm,w \Qm

�
,
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and %↵ be the rotation of R2 about the origin by an angle ↵.
Let � : A ! A be the sense-preserving homeomorphism from the annulus A

onto the rectangular annulus A, that maps each radial segment in A linearly onto a
radial segment in A having the same argument. Let ' = � �%⇡/4. Note that ' maps
the points (1, 0), (0, 1), (�1, 0), (0,�1) to the points (3, 3), (�3, 3), (�3,�3),
(3,�3), respectively.

Let ✓0 : (sQ,e) ! (sQI , e0) be the homeomorphism

✓0(x1, x2, x3) =

�
'(x1, x2), x3

�
;

fix, for each i 2 {1, 2, 3, 4}, a bilipschitz homeomorphism ✓i : (sQ,e) ! (sQL , ei )
that satisfies

✓i (x1, x2, 0) =

�
' � %(i�1)⇡/2(x1, x2), 0

�
and intertwines the involutions in Q and QL .

Given an integer i 2 {0, 1, 2, 3, 4}, set Q = QI when i = 0, and Q =

QL when i 6= 0. We will define, as in [3], a collection of five basic bilipschitz
homeomorphisms 2i : (t,e,w) ! (⌧Q, ei , wi ), i = 0, . . . , 4.

We first define a bilipschitz homeomorphism #i : (@t,e,w) ! (@⌧Q, ei , wi )
on the boundary following these steps:

(i) on the outer side of t, mapping #i |sQ = ✓i : (sQ,e) ! (sQ, ei );
(ii) the restriction of #i to the entrance (or the exit) of t is ' modulo an isometry;
(iii) associated to each block Qm in the core Q , there is a marked edge "(Qm) =

wi\Qm derived from (Q, ei ), hence there exist a unique Q(Qm) 2 {QI , QL},
a unique ◆(Qm)2{0, 1, 2, 3, 4}, and a similarity map �m : (Q(Qm), e◆(Qm)) !

(Qm, "(Qm)). (To ease the notations, the dependency of i is not recorded.)
The inner side of t is sk; the mapping #i |sk : (sk,w) ! (sQ, wi ) is defined
by gluing together the maps #i |sQm = �m � ✓◆(Qm) � ⇣�1

m , 1  m  49. The
gluing is well-defined because the union of marked edges of Qm’s is the edge
path wi .

During this process, each block Qm inherits from (Q(Qm), e◆(Qm)) a core and a
marked edge on each of the 49 blocks in this core, via the similarity map �m .

Since JI (or JL ) is unknotted in Q and Q is a regular neighborhood of JI (or
JL ) in Q, there is a (bilipschitz) homeomorphism 8 : (Q, Q, ei ) ! (Q, k,e) that
agrees with #�1

i on @Q \ Q and respects the given involutions. Since wi (⇢ @Q)
is fixed by the involution in Q,8(wi ) (⇢ Q) is symmetric with respect to the plane
x3 =

1
2 . Therefore8(wi ) can be straightened so that8(wi ) = w. The composition

8 �#i : (@t,e,w) ! (@t,e,w), which is identity on @t \ k, clearly has a bilipschitz
extension 9 : t ! t. Therefore #i |@t has a bilipschitz extension

2i = 8�1
� 9 : (t,e,w) !

�
⌧Q, ei , wi

�
between tubes.
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We now have five basic bilipschitz homeomorphisms2i : (t,e,w) ! (⌧Q, ei , wi ),
i = 0, . . . , 4, at our disposal. Uniqueness has been emphasized throughout their
construction to ensure the forward and backward iteration processes below are self-
similar.

2.6. Quasiconformal maps between blocks

We define a quasiconformal map f from blockQ onto block QI with data (QI , e0).
Set

K�k =

n
x 2 R2 : |x |  49�k

o
⇥ [0, 1] and T�k = K�k \ K�k�1,

for all k � 0. Then

Q =

�
(0, 0, t) : 0  t  1

 
[

[
k�0

T�k .

Set also Q = QI , K0 = Q, K�1 = Q , and T0 = K0 \ K�1 = ⌧Q ; note that
T0 = t, and let

f
��T0 = 20 : T0 ! T0.

For every m 2 [1, 49], let "(Qm) be the marked edge on Qm derived from (QI , e0),
and �m : (Q(Qm), e◆(Qm)) ! (Qm, "(Qm)) be the similarity used in constructing
20. The similarity �m induces naturally a core m(= Qm ), consequently a tube
⌧m = Qm \ m to each block Qm in K�1.

Set K�2 = [mm and T�1 = K�1 \ K�2 = [m⌧Qm . Since T�1 = [m tm , the
mapping f |T�1 : T�1 ! T�1 will be defined by gluing together homeomorphisms

f
��tm = �m � 2◆(Qm) � ⇣�1

m : tm ! ⌧Qm .

Because the union W�1 of marked edges "(Qm) is an edge path along Q going
from (37 ,

3
7 , 0) to (37 ,

3
7 , 7), and the restrictions of f |tm to the entrance and to the

exit of tm are essentially identical (modulo isometries) for all m, we conclude that
the gluing, therefore the homeomorphism f |T�1, is well-defined. We now have the
extension

f : T0 [ T�1 ! T0 [ T�1.

Before starting the next step, we write "m, ◆m, Q(m) in place of "(Qm), ◆(Qm),
Q(Qm) to simplify the notation, and replace the index m in the previous step by
m1. For each m1 2 [1, 49], the process of defining f |tm1 has uniquely defined a
core m1,m2 , a tube ⌧m1,m2 , a marked edge "m1,m2 , a block Q(m1,m2)2{QI , QL}, a
number ◆m1,m2 2{0,1,2,3,4}, and a similarity map �m1,m2 : (Q(m1,m2), e◆m1,m2 )!
(Qm1,m2, "m1,m2), associated to each of the 49 (1  m2  49) blocks Qm1,m2 in
the core m1 .

The union W�2 of these 492 marked edges is an edge path along K�2 from
( 372 ,

3
72 , 0) to ( 372 ,

3
72 , 7), and the union K�3 of the cores of these 492 new blocks is
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a topological cube. Set T�2 = K�2 \ K�3. We now extend f : T0 ! T�1[T�2 !

T0 [ T�1 [ T�2 by gluing together homeomorphisms

f |tm1,m2 = �m1,m2 � 2◆m1,m2
� ⇣�1

m2 � ⇣�1
m1 : tm1,m2 ! ⌧m1,m2 .

We observe, after a moment’s reflection, the self-similar property on I -blocks:
whenever Qm1 is an I -block,

f |tm1,m2 = �m1 � f |tm2 � ⇣�1
m1 |tm1,m2 .

Continue this process inductively in a self-similar manner, we arrive at a homeo-
morphism f from Q \ {(0, 0, t) : 0  t  1} onto QI \ � , where � is the snowflake
arc

� =

1\
k=1

K�k .

In view of the scaling in the domain and in the target, f is a (7�k,C)-quasisimilarity
on each of the 49k tubes in T�k , for some constant C > 1, therefore the mapping
f : Q \ {(0, 0, t) : 0  t  1} ! QI \ � is quasiconformal.

By a theorem of Väisälä on removable sets [10], f can be extended to be
quasiconformal from Q onto QI .

3. Quasiconformal homeomorphism of R3

3.1. Quasiconformal extension to R3

Mapping f : Q ! QI will be extended to a quasiconformal homeomorphism of
R3 by backward iteration.

We begin with QI and a fixed I -block Qm0 in its core with m0
6= 1, 49.

Let ⇣ = ⇣m0 be the similarity in R3 that maps (Q,e) to (Qm0,w \ Qm0), and
� = �m0 be the similarity in R3 that maps (QI , e0) to (Qm0, w0 \ Qm0) used in
constructing 20. Note that ⇣ has a scaling factor 1/49 and � has a scaling factor
1/7.

Because m0
6= 1, 49, the space R3 is the union of an increasing sequence of

I -blocks
R3 =

[
k�0

��k QI ,

and also can be expressed as the union of an increasing sequence of round blocks

R3 =

[
k�0

⇣�kQ.

Observe that these unions are proper subsets of R3 when m0
= 1 or 49.
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Define homeomorphisms Fk : ⇣�kQ ! ��k QI , k � 0, by

Fk = ��k
� f � ⇣ k .

In view of the self-similar property on I -blocks, we have f � ⇣ |Q = � � f . There-
fore, Fk |Q = ��k

� f � ⇣ k |Q = f for all k � 0, and

Fk0 |⇣�kQ = Fk for all k0

� k � 0.

The limiting map F = limk!1 Fk : R3 ! R3 is well-defined, homeomorphic and
quasiconformal.

3.2. A snowflake curve and a quasiplane

The snowflake arc � =

T
1

k=1 K�k is in fact F({(0, 0, t) : 0  t  1}). Through
backward iterations we get an infinite snowflake curve

0 = lim
k!1

��k� = F({(0, 0)} ⇥ R).

The plane P = R ⇥ {0} ⇥ R in R3 has a decomposition

P = ({(0, 0)} ⇥ R) [

[
k2Z

[
m2Z

⇣⇥
49k�1, 49k

⇤
⇥ {0} ⇥

⇥
m49k, (m + 1)49k

⇤

[

⇥
� 49k,�49k�1

⇤
⇥ {0} ⇥

⇥
m49k, (m + 1)49k

⇤⌘
= ({(0, 0)} ⇥ R) [

[
k2Z

[
m2Z

Ek,m [ E0

k,m .

Therefore the quasiplane P = F(P) can be expressed as

P = 0 [

[
k2Z

[
m2Z

F
�
Ek,m

�
[ F

�
E0

k,m
�
.

Denote by ˇEk,m (respectively ˇE0

k,m ) the union of those rectangles in the above de-
composition of P which meet Ek,m (respectively E0

k,m ). Then F |
ˇEk,m and F |

ˇE0

k,m
are (7�k,C)-quasisimilarities for some constant C > 1 independent of k and m.

4. Proof of Theorem 1.1

From now on we use (x1, x3) for coordinates in G, and recall that the Grushin
metric has the dilation property

dG
⇣�

�x1, �2x3
�
,
�
�y1, �2y3

�⌘
= � dG

⇣�
x1, x3

�
,
�
y1, y3

�⌘
for � > 0.
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Furthermore for any x = (x1, x3), y = (y1, y3) 2 G,

dG(x, y) ' |x1 � y1| +min
⇢p

|x3 � y3|,
|x3 � y3|

max{|x1|, |y1|}

�
.

This estimate is known; it can be deduced from a theorem of Franchi and Lanconelli
in [5] (see also Theorem 3 in [4]). In fact, max{|x1|, |y1|} may be replaced by
min{|x1|, |y1|} in the above estimate. Here the expression a ' b means that a, b �

0 and C�1
 a/b  C for a constant C � 1.

Let H : G ! P be the homeomorphism

H : (x1, x3) 7! (x1|x1|, 0, x3);

then the composition F � H is a homeomorphism from the Grushin plane G to the
quasiplane P.

To check F � H is bilipschitz, we let x = (x1, x3), y = (y1, y3) 2 R2 and
assume, as we may, that |x1| � |y1|. We consider four cases based on the relative
locations of these points.

Case I. |x1| > 0, |x1 � y1|  |x1|/7 and
p

|x3 � y3|  |x1|/7. In this case, |x1| '

|y1|, the Grushin distance dG(x, y) ' |x1� y1|+ |x3�y3|
|x1| and the Euclidean distance

|H(x)�H(y)| ' |x1||x1�y1|+|x3�y3|. Suppose H(x) is in a rectangleEk,m , then
7k�1  |x1|  7k and H(y) is in ˇEk,m . Since F |

ˇEk,m is a (7�k,C)-quasisimilarity
for someC > 1, |F�H(x)�F�H(y)| ' 7�k(|x1||x1�y1|+|x3�y3|) ' dG(x, y).
The proof is the same if H(x) is in E0

k,m .

Case II. |x1| > 0, |x1 � y1| � |x1|/7 and
p

|x3 � y3|  |x1|/7. In this case,
dG(x, y) ' |x1� y1| ' |x1| and |H(x)� H(y)| ' |x1|2. Suppose H(x) is in Ek,m ,
as before diamEk,m ' 49k ' |x1|2. Since F is quasisymmetric and F |Ek,m is a
(7�k,C)-quasisimilarity, |F�H(x)�F�H(y)| ' diam F(Ek,m) ' 7k ' dG(x, y).
The proof is the same if H(x) is in E0

k,m .

Case III. |x1| > 0 and
p

|x3 � y3| � |x1|/7. In this case, dG(x, y) '

p

|x3 � y3|
and |H(x) � H(y)| ' |x3 � y3|. Assume again H(x) is in Ek,m . After applying
in G a translation (z1, z3) 7! (z1, z3 � m49k) followed by a dilation (z1, z3) !

(7�k z1, 49�k z3), we assume as we may that H(x) 2 P \ Q. Choose j to be the
smallest nonnegative integer j such that H(y) 2 ⇣� jQ, then |H(x)�H(y)| ' 49 j
and dG(x, y) ' 7 j . From the definition of F it follows that |F�H(x)�F�H(y)| =

|Fj � H(x) � Fj � H(y)| ' 7 j , hence |F � H(x) � F � H(y)| ' dG(x, y). The
case H(x) 2 E0

k,m is the same.

Case IV. x1 = 0. |F � H(x) � F � H(y)| ' dG(x, y) can be obtained by taking
limits in Case III.

This shows that F � H : G ! P is bilipschitz and completes the proof of
Theorem 1.1.



BILIPSCHITZ EMBEDDING OF GRUSHIN PLANE IN R3 643

5. Appendix

We construct paths JI and JL in Section 2.2 following Assouad in [1]. To start,
we subdivide the cube C = [�

7
2 ,

7
2 ] ⇥ [�

7
2 ,

7
2 ] ⇥ [0, 7] into 73 unit cubes. The

centers of these subcubes are (z1, z2, z3), with z1, z2 2 {�3,�2,�1, 0, 1, 2, 3}
and z3 2 {

1
2 ,

3
2 ,

5
2 ,

7
2 ,

9
2 ,

11
2 , 132 }. Each of the 49 unit segments in JI (respectively

JL ) will pass through the center of and is contained in one of these unit cubes.
We define a polygonal path J 0 by listing its starting point, its terminal point

and all points along the path where it makes a turn, which will be ’half’ of the final
paths, as follows

J 0

: (0, 0, 0) !

⇣
0, 0, 32

⌘
!

⇣
0, 1, 32

⌘
!

⇣
�2, 1, 32

⌘
!

⇣
�2,�2, 32

⌘

!

⇣
2,�2, 32

⌘
!

⇣
2, 0, 32

⌘
!

⇣
2, 0, 52

⌘
!

⇣
2,�2, 52

⌘

!

⇣
�2,�2, 52

⌘
!

⇣
�2, 0, 52

⌘
!

⇣
�1, 0, 52

⌘
!

⇣
� 1, 0, 72

⌘
.

Clearly J 0 is a simple path; except for its end points, J 0 is contained in the intersec-
tion of the half spaces x3 < 7

2 and x3 < 7
2 � x2. Denote by J 00 the reflection of J 0

with respect to the plane x3 =
7
2 , and by J

000 the reflection of J 0 with respect to the
plane x3 =

7
2 � x2. Both paths JI = J 0

[ J 00 and JL = J 0
[ J 000 are simple.

Since the x3-coordinate is monotone along path J 0, JI is unknotted in QI and
JL is unknotted in QL . Because |x1| + |x2|  2 on J 0, the blocks associated to
the 49 unit segments in JI (respectively JL ) are contained in QI (respectively QL ).
Other properties required for pathsJI and JL are obvious.
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liptiques dégénérés, In: “Conference on Linear Partial and Pseudodifferential Operators”
(Torino, 1982), Rend. Sem. Mat. Univ. Politec. Torino, Special Issue (1983), 105–114.

[6] W. MEYERSON, The Grushin plane and quasiconformal Jacobians, preprint, 2011.
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