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Convergence of flux-limited porous media diffusion equations
to their classical counterpart

VICENT CASELLES

Abstract. We prove the convergence of a porous medium type flux-limited dif-
fusion equation to the classical porous medium equation as the parameter c rep-
resenting the maximum speed of propagation tends to1.
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1. Introduction

We are interested in the convergence of entropy solutions of the quasi-linear parabolic
equation

8>>><
>>>:

@u
@t

= div

 
3(u)r8(u)p
1+ c�2|r8(u)|2

!
in QT = (0, T ) ⇥ RN

u(0, x) = u0(x) in x 2 RN ,

(1.1)

where 0  u0 2 L1(RN ) \ L1(RN ), as c ! 1, to solutions of
8><
>:

@u
@t

= div (3(u)r8(u)) in QT = (0, T ) ⇥ RN

u(0, x) = u0(x) in x 2 RN .
(1.2)

We assume that 3,8 : [0,1) ! [0,1) are continuous and strictly increasing
functions such that 8(0) = 0, with some additional regularity that will be made
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precise later on. All these assumptions are satisfied by

ut = ⌫ div

0
@ urumq

1+
⌫2

c2 |ru
m
|
2

1
A , (1.3)

where ⌫, c > 0, m � 1. In this case, as we shall prove in this paper, solutions of
(1.3) converge as c ! 1 to solutions of the classical porous medium equation

ut = ⌫ div
�
urum

�
. (1.4)

Equation (1.1) is an example of flux-limited or tempered diffusion equation

@u
@t

= div a(u, D8(u)) (1.5)

characterized by a bounded flux a(z, ⇠) = r⇠ f (z, ⇠), where f : R ⇥ RN
! R+

is a continuous function, convex in ⇠ , with linear growth as k⇠k ! 1 such that
a(z, ⇠) 2 C(R ⇥ RN ) and 8 : [0,1) ! [0,1) is as above. One of the first such
models was proposed by J. R. Wilson in the theory of radiation hydrodynamics [34]
and corresponds to the flux a(u, Du) = ⌫ uDu

u+ ⌫
c |Du| . In this way, one can enforce the

physical restriction that the flux cannot exceed the energy density times the speed of
light c, that is, the flux cannot violate causality. Another example contained in the
general class of models (1.5) is given by the so-called relativistic heat equation [37]
(see also [18])

ut = ⌫ div

0
@ uruq

u2 +
⌫2

c2 |ru|
2

1
A , (1.6)

where ⌫ > 0 is a constant representing the kinematic viscosity and c > 0 is the
maximum speed of propagation. In this case, 8(u) = u and the Lagrangian is
f (z, ⇠) =

c2
⌫ |z|

q
z2 +

⌫2

c2 |⇠ |
2.

Rosenau [37] derived (1.6) starting from the observation that the speed of
sound is the highest admissible free velocity in a medium. This property is lost
in the classical transport theory that predicts the nonphysical divergence of the
flux with the gradient, as it happens also with the classical theory of heat conduc-
tion (based on Fourier’s law) and with the linear diffusion theory (based on Fick’s
law). To overcome this problem, Rosenau [37] proposed to change the classical flux
F = �⌫ru, ⌫ > 0 associated with the heat equation (or the Fokker-Plank equa-
tion) ut = ⌫1u by a flux that saturates as the gradient becomes unbounded. The
flux can be derived from F = uv, by replacing the classical relation v = �⌫ ru

u by
vr

1� |v|2
c2

= �⌫ ru
u (when c is the acoustic speed, this forces v to stay in the subsonic
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regime, the sonic limit being approached only if |ruu | " 1), obtaining

F = uv =

�urur
1+

⇣
⌫|ru|
cu

⌘2 . (1.7)

Using this new flux (1.7) in the conservation energy equation, we obtain (1.6).
Besides Rosenau’s derivation [37], (1.6) was also formally derived by Brenier by
means of Monge-Kantorovich’s mass transport theory in [18], where he named it as
the relativistic heat equation.

The same argument can be applied if we use Darcy’s law

v = �⌫rum m > 0. (1.8)

In that case we derive the flux-limited porous medium equation (1.3), see [37]. As
we shall see in Section 2, equation (1.3) can be also derived following the transport
approach argument proposed by Brenier in [18].

Many other models of nonlinear degenerate parabolic equations with flux satu-
ration as the gradient becomes unbounded have been proposed by Rosenau and his
coworkers [26,36,37], Bertsch and Dal Passo [13,29], and Blanc [15,16].

Existence and uniqueness of entropy solutions for problem (1.5) have been
proved in [4, 5] and an extension to the general class of equations (1.1) has been
given in [24]. Our main purpose here is to prove the convergence as c ! 1 of en-
tropy solutions of (1.1) to solutions of (1.2). The convergence of entropy solutions
of (1.6) to solutions of the heat equation was proved in [21]. While the proof in [21]
was based on a uniform estimate of the gradient, the proof given here for (1.2) is
based on a different approach and applies also to (1.6). Indeed, we prove the con-
vergence of the resolvents associated to the problem (1.1) to the resolvent equation
for (1.2). And to do that we use weaker estimates and the representation of the en-
ergies associated to both problems in terms of linear functionals. As a technical tool
in our approach we use some lower semi-continuity results for energy functionals
whose density is a function g(x, u, Du) convex in Du with a linear growth rate as
|Du| ! 1, which were proved in [28] and [30]. We refer to Section 3 for details.

Let us explain the plan of the paper. In Section 2 we review the derivation
of the model (1.3) following the transport approach argument proposed by Brenier
in [18]. In Section 3 we prove the convergence of solutions of (1.1) to solutions of
(1.2) as c ! 1. Since the Lagrangian function f (z, ⇠) associated to a flux-limited
diffusion equation has a linear growth as |⇠ | ! 1, the notion of (entropy) solu-
tion and the corresponding existence and uniqueness results are formulated using
functions of bounded variation. To avoid a long set of technical preliminaries and
at the same time facilitate reading the paper, we include in Appendix A some ba-
sic material to describe the notion of entropy solutions for (1.1) and recall its basic
existence and uniqueness results for any initial datum u0 2 (L1(RN )\ L1(RN ))+.



484 VICENT CASELLES

2. A transport derivation of flux-limited porous media type diffusion
equations

Let us follow the transport approach to generate the flux-limited porous medium
type diffusion equation (1.3). Let k : RN

! [0,1] be a convex cost function and
let us define the associated Wasserstein distance between two probability distribu-
tions ⇢0 and ⇢1 by

Wh
k (⇢0, ⇢1) := inf

⇢Z
RN

⇥RN
k
✓
x � y
h

◆
d� (x, y) : � 2 0(⇢0, ⇢1)

�
,

where h > 0 and 0(⇢0, ⇢1) is the set of probability measures in RN
⇥ RN whose

marginals are ⇢0 and ⇢1.
Let F : [0,1) ! [0,1) be a convex function and let P(RN ) be the set

of probability density functions ⇢ : RN
! [0,1). Let h > 0. Starting from

⇢h0 = ⇢0 2 P(RN ), we solve iteratively

inf
⇢2P(RN )

hWh
k (⇢hn�1, ⇢) +

Z
RN

F(⇢(x)) dx .

This is a gradient descent with respect to the Wasserstein distance. Formally, if we
define ⇢h(t) := ⇢hn for t 2 [nh, (n + 1)h), then as h ! 0+ the solution converges
to the solution of the diffusion equation

ut = div
�
urk⇤

�
rF 0(u)

��
. (2.1)

This has been the object of intensive research. For more information we refer to
the monographs [3, 39] or to the PhD thesis of M. Agueh [1]. For a transport based
approach to the so-called relativistic heat equation given by (1.6) we refer to [33].

Let us consider F(r) = ⌫ r
m+1

m+1 , m > 0. The case m = 0 is identified with
F(r) = ⌫(r log r � r). If we take k defined by

k(z) :=

8<
:
c2

✓
1�

q
1�

|z|2
c2

◆
if |z|  c

+1 if |z| > c,
(2.2)

then

k⇤(⇠) = c2
0
@
s
1+

|⇠ |
2

c2
� 1

1
A

and rk⇤(⇠) =
⇠r

1+|⇠ |
2

c2

, ⇠ 2 RN . If m > 0, we have

rk⇤(rF 0(u)) = ⌫
rumq

1+
⌫2

c2 |ru
m
|
2
.
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If m = 0, we have
rk⇤(rF 0(u)) = ⌫

ruq
u2 +

⌫2

c2 |ru|
2
.

The corresponding diffusion equations are (1.3) and (1.6), respectively. Existence,
uniqueness, and qualitative properties of model (1.6) have been studied in [5,6,22].
The study of (1.3) (and, more generally, of (1.1)) was the object of [24]. We call
(1.3) the flux-limited porous medium equation.

3. Convergence of entropy solutions of generalized flux-limited porous
medium equations to their classical counterpart

Let us consider the generalized flux-limited porous medium model

ut = div

 
3(u)r8(u)p
1+ c�2|r8(u)|2

!
, (3.1)

where c > 0 and we assume

(H)8,3

8 : [0,1) ! [0,1) is a continuous strictly increasing function such
that 8(0) = 0 and 8,8�1

2 W 1,1([a, b]) for any 0 < a < b. Let
3 : [0,1) ! [0,1) be a continuous function such that 3(0) = 0 and
3(z) > 0 for all z > 0. We assume that 3(z) =

e3(zm̄), where e3(z) �

c0z for some c0 > 0 and all z � 0, e3 2 W 1,1
loc ([0,1)), and m̄ � 1.

Let fc(z, ⇠) = c23(z)
p
1+ c�2|⇠ |

2
�c23(z) be the Lagrangian associated to (3.1).

Since fc satisfies the assumptions of Appendix A, by Theorem A.4 there is a unique
entropy solution u(t) of (3.1) for any initial condition u0 2 (L1(RN )\ L1(RN ))+.

Theorem 3.1. Assume that 3,8 satisfy (H)8,3, 8 2 C1(0,1) satisfies (3.3) be-
low, and 3 is increasing. Let uc be the entropy solution of (3.1) with u(0, x) =

u0(x) 2 (L1(RN ) \ L1(RN ))+. As c ! 1, uc converges in C([0, T ], L1(RN ))
to the solution of u the generalized porous medium equation

ut = div (3(u)r8(u)) (3.2)

with u(0, x) = u0(x).

When 3(u) = u and 8(u) = ⌫um , ⌫,m > 0, and c ! 1 we obtain the con-
vergence of solutions of (1.3) to solutions of the classical porous medium equation
(1.4). The corresponding result for (1.6) was proved in [21] using a Lipschitz esti-
mate on solutions. Let us mention that partial convergence results have been given
in [19] using a similar proof based on a Lipschitz estimate.
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Lemma 3.2. Assume that 8,3 satisfy the assumptions (H)8,3, 3 is increasing,
and 8 satisfies: for any ↵,  > 0 there exist �, ̄ > 0 such that

8
⇣
e�

↵
2 |x |2

⌘
� ̄e�

�
2 |x |2 . (3.3)

Let us consider the equation

u � �div

0
@ 3(u)r8(u)q

1+
1
c2 |r8(u)|2

1
A = v. (3.4)

Let u� ,� = 8�1
⇣
� e��|x |2

⌘
, � > 0. If v 2 (L1(RN ) \ L1(RN ))+ and v(x) �

e�↵|x |2 for some ↵,  > 0, then for some � ,� > 0 u� ,� is a subsolution of (3.4)
for all c > 0.

Proof. Let w = 8(u), B(w) = 3(8�1(w)). If w is smooth, it satisfies the PDE

8�1(w) � �B(w)div

0
@ rwq

1+
1
c2 |rw|

2

1
A � �B0(w)

|rw|
2q

1+
1
c2 |rw|

2
= v. (3.5)

Let � ,� > 0, w̄ = � e��|x |2 . Let D = 1 + 4c�2�2� 2|x |2e��|x |2 . An elementary
computation shows that w̄ is a subsolution of (3.5) if and only if

8�1(w̄)��B(w̄)

 
�2�� N+4�2� |x |2

D1/2
e��|x |2

+

8�3� 3

c2D3/2
|x |2e�2�|x |2

⇣
1��|x |2

⌘!

� �B0(w̄)
4�2� 2

D1/2
|x |2e�2�|x |2

 v.

(3.6)

Since
�B(w̄)

8�3� 3

c2D3/2
|x |2e�2�|x |2�|x |2  �B(w̄)

2�2�
D1/2

|x |2e��|x |2,

then (3.6) is implied by

8�1(w̄) + �B(w̄)
2�� N
D1/2

e��|x |2
� �B(w̄)

2�2�
D1/2

|x |2e��|x |2

��B(w̄) 8�
3� 3

c2D3/2 |x |
2e�2�|x |2

� �B0(w̄)4�
2� 2

D1/2 |x |2e�2�|x |2
 e�↵|x |2 .

(3.7)

Since the last two terms in the left-hand side are negative, then it suffices to prove
that

8�1(w̄) + �B(w̄)
2��

D1/2
⇣
N � �|x |2

⌘
e��|x |2

 e�↵|x |2 . (3.8)
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Since w̄  � , by taking � � N , it suffices to prove that

8�1(w̄) + �B(� )
2�� N
D1/2

�|x |1e��|x |2
 e�↵|x |2 . (3.9)

By our assumption (3.3) we may find �0, �0 such that for any � � �0 and �  �0,

8�1(w̄) 



2
e�↵|x |2 . (3.10)

Thus, (3.9) holds if we choose �, � so that

�B(� )
2�� N
D1/2

�|x |1e��|x |2




2
e�↵|x |2 .

Since D � 1 it suffices to choose �, � so that

�B(� )2�� N�|x |1e��|x |2




2
e�↵|x |2 .

This clearly holds by choosing either � small enough or � large enough.
Notice that w̄ 2 L1(RN ). Thus we have that w̄ is a subsolution of

8�1(w) � �div

0
@ B(w)rwq

1+
1
c2 |rw|

2

1
A = v. (3.11)

Since w̄(x) > 0 for al x 2 RN , then ū = 8�1(w̄) is locally Lipschitz, and u is
entropy sub-solution of (3.4) for all c > 0.

The following result is due to G. Bouchitté and A. Chambolle [17] (see also
[35, Theorem 3.2], or [25, Theorem 4.1]):

Theorem 3.3. Let f (x, z, ⇠) be a continuous function of (x, z) 2 RN
⇥ [0,1) and

convex in ⇠ 2 RN . Let F : L1(RN ) ! [0,1] be given by

F(u) :=

Z
RN

f (x, u(x),ru(x)) dx .

For any function in W 1,1(RN ) we have

F(u) = sup
�2K

Z
�⇥R

� · D1u,

where the convex set K is given by

K = {� = (�x ,�z) 2 C1c (RN
⇥ [0,1); RN

⇥ R) : �z(x, z)
� f ⇤(x, z,�x (x, z))8(x, z) 2 RN

⇥ [0,1)}.
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Moreover, for any u 2 BV (�) we have

R f (u) = sup
�2K

Z
�⇥R

� · D1u ,

where R f (u) has been defined in (A.7) in Appendix A.3 and coincides with the
lower semi-continuous relaxation of F .

Example 3.4. Let h(x), x 2 RN , be a positive and continuous function, and 9 be
a strictly increasing function which is Lipschitz in [a, b] for all 0 < a < b.
a) Let f9(x, z, ⇠) =

1
2↵9(max(z, h(x)))|⇠ |

2, ↵ > 0.
Then f ⇤

9(x, z, p) = ↵ |p|2
29(max(z,h(x))) .

b) Let f9,"(x, z, ⇠) =
1
"9(max(z, h(x)))

p
1+ "|⇠ |

2
�

1
"9(max(z, h(x))), " > 0.

Then f ⇤

9,"(x, z, p) = �
1
"

p
9(max(z, h(x)))2 � "|p|2 +

9(max(z,h(x)))
" if "|p|2 

9(max(z, h(x)))2, +1 otherwise.

Proof of Theorem 3.1. For notation and basic facts on entropy solutions, we refer
to Appendix A.

Step 1. Reduction to the convergence of resolvents. Entropy solutions of (3.1)
coincide with the semigroup solutions (see Theorem A.4 in Appendix A.5). Let
Tc(t) be the semigroup generated by the flux-limited generalized porous medium
equation (3.1) in (L1(RN ) \ L1(RN ))+. Let us write the associated accretive
operator by Bc, reflecting also its dependence on c. We have that

Tc(t)u0 = lim
n!1

✓
I +

t
n
Bc

◆
�n
u0

for any u0 2 (L1(RN ) \ L1(RN ))+, where for any v 2 (L1(RN ) \ L1(RN ))+,
� > 0, (I + �Bc)�1 v denotes the entropy solution of

u � �div

0
@ 3(u)r8(u)q

1+
1
c2 |r8(u)|2

1
A = v. (3.12)

Similarly, it is well known [38] that if S(t) denotes the semigroup generated
by the generalized porous medium equation (3.2) in L1(RN )+, then S(t)u0 =

limn!1

�
I +

t
nA

�
�n u0 for any u0 2 L1(RN )+, where for any v 2 L1(RN )+,

� > 0, (I + �A)�1 v denotes the weak solution [10] of u��div (3(u)r8(u))=v.
Since the convergence of resolvents implies the convergence of semigroups

generated by accretive operators [12], to prove the theorem it suffices to prove that

(I + �Bc)�1 v ! (I + �A)�1 v as c ! 1 (3.13)
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for any v 2 (L1(RN ) \ L1(RN ))+. By the contractivity estimate it suffices to
prove that this convergence holds for a dense set in (L1(RN ) \ L1(RN ))+.

Step 2. Basic estimates and convergence of solutions of (3.12). Let v 2 (L1(RN ) \

L1(RN ))+ \ BV (RN ), � > 0. Let uc be the entropy solution of (3.12). Let us
collect the basic estimates for the solution which are independent of c. By (A.13)
and (A.14) (see Remark A.5) we have

kuckp  kvkp for any p 2 [1,1], (3.14)

kuckBV  kvkBV . (3.15)

Let us write
a(uc,r8(uc)) =

p
3(uc)ea(uc,r8(uc)), (3.16)

where
ea(uc,r8(uc)) =

p

3(uc)r8(uc)q
1+

1
c2 |r8(uc)|2

,

and prove thatea(uc,r8(uc)) is bounded in L2(RN )N with a bound independent of
c > 0. Let us first proceed formally and then sketch the correct proof. Multiplying
(3.12) by 8(uc) and integrating by parts, we have

Z
RN

uc8(uc) + �

Z
RN

3(uc)
��
r8(uc)

��2q
1+ c�2

��
r8(uc)

��2 =

Z
RN

v8(uc). (3.17)

Then we have

�

Z
RN

��ea (uc,r8(uc))
��2 dx  �

Z
RN

3(uc)
��
r8(uc)

��2q
1+ c�2

��
r8(uc)

��2

 8
���uc��

1

� Z
RN

v dx

 8
���v��

1

� Z
RN

v dx,

(3.18)

where the last inequality follows from (3.14). Since we are working with BV func-
tions these computations require an explanation. Thus, to prove the boundedness ofea(uc,r8(uc)) in L2(RN )N we use the approximation (A.15) and we get solutions
ucn . Now it is easy to prove that the estimate (3.18) holds for ucn . By passing to
the limit we get that (3.18) holds forea(uc,r8(uc)).

Since {uc}c is bounded in L1(RN ), we also have that a(uc,r8(uc)) is
bounded in L2(RN )N .
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Thus, by extracting a subsequence if necessary, we may pass to the limit as
c ! 1 and get a function u 2 (L1(RN )\ L1(RN ))+ \ BV (RN ) and vector fields
z, z0 2 L2(RN )N such that

uc ! u as c ! 1 a.e. and in L p(RN ) for all p 2 [1,1),

weakly⇤ in L1(RN ),

ea(uc,r8(uc)) * z0 and a (uc,r8(uc)) * z (3.19)

weakly in L2(RN ),
z =

p
3(u)z0, (3.20)

and u��div z = v inD0(RN ). Only the equality (3.20) requires some explanation.
Indeed, (3.20) holds since

p

3(uc) is uniformly bounded in L2(RN ) \ L1(RN ),
p

3(u)2L2(RN )\L1(RN ), uc ! u a.e. and this implies that
p

3(uc) !

p

3(u)
in L2(RN ) as c ! 1.

Step 3. Identification of z(x). Let us prove that

z(x) = A (u(x),r8(u(x))) a.e. in RN , (3.21)

where A(u,r8(u)) = 3(u)r8(u). For that we proceed as in [4, 24] and we use
Minty-Browder’s technique. Although the proof is similar, there are some differ-
ences, and we include it for the sake of completeness.

Let 0 < a < b, let 0  � 2 C1c (RN ) and g 2 C2(RN ) \ W 1,1(RN ). For
simplicity, let us write wc = 8(uc), w = 8(u). By the monotonicity of the flux
a(z, ⇠) in ⇠ , we have

Z
RN

�[a(uc,rwc) � a(uc,rg)) · r(wc � g)]T 0

a,b(wc) dx � 0.

We use the notation T 0

a,b to refer to �(a,b) and T
0

a,b to refer to �[a,b]. Now, since

Z
RN

�a(uc,rwc) · r(wc � g)T 0

a,b(wc) dx

=

Z
RN

�a(uc,rwc) · r(Ta,b(wc)�g)dx +

Z
RN

�a(uc,rwc) · rg(1�T 0

a,b(wc))dx

=

Z
RN

�a(uc,rwc) · D(Ta,b(wc)�g) +

Z
RN

�a(uc,rwc) · rg (1�T 0

a,b(wc)) dx

�

Z
RN

�(a(uc,rwc) · DTa,b(wc))
s
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(and, the last term being  0)

 �

Z
RN
div(a(uc,rwc))�(Ta,b(wc) � g) dx

�

Z
RN

(Ta,b(wc) � g)a(uc,rwc) · r� dx,

+

Z
RN

�a(uc,rwc) · rg (1� T 0

a,b(wc)) dx .

If we denote the last term by Xc :=

R
RN �a(uc,r8(uc))·rg (1�T 0

a,b(8(uc))) dx,
we have

|Xc| 

Z
RN

�
��a(uc,r8(uc))

�� ��
rg

�� �1� T 0

a,b(8(uc))
�
dx .

Notice that a(uc,r8(uc)) is bounded in L2(RN ). By passing to a subsequence
if necessary, we may assume that |a(uc,r8(uc))| * A weakly in L2(RN ) as
c ! 1 for some function A 2 L2(RN )+. Thus passing to the limit as c ! 1 we
have

lim
c!1

Z
RN

�a(uc,rwc) · r(wc � g) T 0

a,b(wc) dx

 �

Z
RN
div(z)�(Ta,b(w) � g) dx

�

Z
RN

(Ta,b(w) � g)z · r� dx +

Z
RN

� A(x)|rg|(1� T 0

a,b(8(u))) dx

=

Z
RN

�(z · D(Ta,b(w) � g)) +

Z
RN

� A(x)|rg|(1� T 0

a,b(8(u))) dx .

On the other hand, let us denote by ai the coordinates of a, a8i (z̄, ⇠)=ai (8�1(z̄),⇠),
and

Ja8i (x, r) :=
Z r

0
a8i (s,rg(x)) ds, and J @a8i

@x j

(x, r) :=
Z r

0

@

@x j
a8i (s,rg(x)) ds,

i, j 2 {1, . . . , N }, and observe that

@

@x j
Ja8i (x,Ta,b(wc(x)))=a8i (wc(x),rg(x))

@Ta,b(wc)

@x j
(x)+J @a8i

@x j

(x,Ta,b(wc(x))).

Now, since the right-hand side of the above equality is bounded in L1(RN ) and

@

@x j
Ja8i (x, Ta,b(wc)) *

@

@x j
Ja8i (x, Ta,b(w))



492 VICENT CASELLES

weakly as measures, and J @a8i
@x j

�
x, Ta,b(wc(x))

�
! J @a8i

@x j

(x, Ta,b(w(x))) a.e., we

have

lim
c!1

Z
RN

� a(uc,rg) · r(wc � g) T 0

a,b(wc) dx

= lim
c!1

Z
RN

�
NX
i=1

"
@

@xi
Ja8i (x, Ta,b(wc(x))) � J @a8i

@xi

(x, Ta,b(wc(x)))

#

� lim
c!1

Z
RN

� a(uc,rg) · rg T 0

a,b(wc) dx

�

Z
RN

�
NX
i=1

"
@

@xi
Ja8i (x, Ta,b(w)) � J @a8i

@xi

(x, Ta,b(w(x)))

#

�

Z
RN

� a(u,rg) · rg T 0

a,b(w) dx .

Hence, we obtainZ
RN

�(z, D(Ta,b(8(u)) � g)) +

Z
RN

� A(x)|rg|(1� T 0

a,b(8(u))) dx

+

Z
RN

�A(u,rg) · rg T 0

a,b(8(u))

�

Z
RN

�

 
NX
i=1

"
@

@xi
JA8

i
(x, Ta,b(8(u(x))))� J @A8

i
@xi

(x, Ta,b(8(u(x))))

#!

� 0,

(3.22)

for some A 2 L2loc(RN )+, for all 0  � 2 C1c (RN ), and all Ta,b, 0 < a < b. Thus
the measure

(z · D(Ta,b(w)�g))�
NX
i=1

"
@

@xi
Ja8i (x, Ta,b(w(x))) � J @a8i

@xi

(x, Ta,b(w(x)))

#

+a(u,rg) · rg T 0

a,b(w)LN
+ A(x)|rg|(1� T 0

a,b(8(u)))LN
� 0.

(3.23)

Using chain’s rule for BV functions ([2, Theorem 3.96]) applied to Jai (u1, u2)with
u1(x) = x , u2(x) = Ta,b(w(x)), x 2 RN , we deduce that the absolutely continuous
part of

NX
i=1

"
@

@xi
Ja8i (x, Ta,b(w(x))) � J @a8i

@xi

(x, Ta,b(w(x)))

#
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is a(u,rg) · rTa,b(w)LN . Taking absolutely continuous parts in (3.23) we obtain

z · r(Ta,b(w)) � g) � A(u,rg) · rTa,b(w) + A(u,rg) · rgT 0

a,b(w)

+� A(x)|rg|(1� T 0

a,b(w)) � 0.
In particular, for x 2 {a < w < b} we have

(z� A(u,rg)) · r(w � g) � 0 a.e..

Since we may take a countable set of functions g 2 C2(RN ) \ W 1,1(RN ) dense
in C1(RN ) \ W 1,1(RN ) we have that the above inequality holds for all x 2

� \ {a < 8(u) < b}, where � ⇢ RN is such that LN (RN
\ �) = 0, and all

g 2 C1(RN ) \ W 1,1(RN ). Now, fixed x 2 � \ {a < 8(u) < b} and given
⇠ 2 RN , there is g 2 C1(RN ) such that rg(x) = ⇠ . Then

(z(x) � A(u(x), ⇠)) · (r8(u(x)) � ⇠) � 0 8 ⇠ 2 RN .

By an application of Minty-Browder’s method in RN , these inequalities imply that

z(x) = A(u(x),r8(u(x))) a.e. on {a < 8(u) < b}.

Since this holds for any 0 < a < b, we obtain (3.21) a.e. on the points x of RN

such that {8(u(x)) 6= 0} = {u(x) 6= 0}. Now, by our assumptions on A and (3.20)
we deduce that z(x) = A(u(x),r8(u(x))) = 0 a.e. on {u = 0}. We have proved
(3.21).

Note that we only know that u 2 BV (RN ) and we do not know yet if Du =

ru. To show this is our next purpose.
Step 4. We need the following result. Since fc(z, 0) = 0, we have

f 8
c (8(uc), DTa,b(8(uc)))  (a(uc,r8(uc)) · DTa,b(8(uc)). (3.24)

For a proof see [4, Lemma 4.4], or [22, Lemma 3.11].
Step 5. Let us prove that

�

2

Z
RN

3(u)|D8(u)|2 dx 

Z
RN

(v � u)8(u) dx . (3.25)

This implies that Du = ru.
Let 0 < a < b. Let us observe that since fc(z, 0) = 0, using (A.10) and (3.24),

we haveZ
RN

f 8
c (Ta,b(8(uc)), DTa,b(8(uc))) =

Z
RN

f 8
c (8(uc), DTa,b(8(uc)))

=

Z
RN

fc(uc, DTa,b(8(uc)))



Z
RN

(a(uc, D8(uc)) · DTa,b(8(uc))
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for any 0 < a < b. Integrating by parts on the right-hand side we have
Z

RN
f 8
c (Ta,b(8(uc)), DTa,b(8(uc))) 

Z
RN

(v � uc)Ta,b(8(uc)). (3.26)

Let ↵ > 1, 9 = 38
= 3 � 8�1, and h(x) = � e��|x |2 with � ,� > 0 such that

8�1(h(x)) is an exponential subsolution of all uc as given in Lemma 3.2. Let us
consider the functions f9(x, z, p) with the previous value of ↵ and f9,"(x, z, p)
with " = c�1, as given in the Examples 3.4. To shorten the notation, let us denote
X = C1c (RN

⇥ [0,1); RN
⇥ R). Let

K( f9)=
n
�=(�x ,�z)2X : �z(x, z)� f ⇤

9(x, z,�x (x,z))8(x,z)2RN
⇥ [0,1)

o
,

K( f9,")=
n
�=(�x ,�z)2X : �z(x,z)� f ⇤

9,"(x,z,�
x (x,z))8(x,z)2RN

⇥ [0,1)
o
,

where

f ⇤

9(x, z,�x (x, z)) = ↵
|�x (x, z)|2

29(max(z, h(x)))
, (3.27)

f ⇤

9,"(x,z,�
x (x,z)) = �

1
"

q
9(max(z,h(x)))2�"|�x |2 +

9(max(z,h(x)))
"

. (3.28)

Let � 2 K( f9), w = Ta,b(8(u)), wc = Ta,b(8(uc)). Then
Z

RN
� · D1w = �

Z
RN
div� 1w dx = � lim

c

Z
RN
div� 1wc dx .

Let us prove that for " small enough we have that � 2 K( f9,"). For that we have to
check that

�

1
"

q
9(max(z, h(x)))2 � "

���x ��2 +

9(max(z, h(x)))
"

 �z . (3.29)

Indeed, since �x has compact support and max(z, h(x)) is bounded away from 0 in
the support of �x , for " > 0 small enough we have

1
"

q
9(max(z, h(x)))2 � "

���x ��2 �

9(max(z, h(x)))
"

=

9(max(z, h(x)))
"

r
1�

"

9(max(z, h(x)))2
���x ��2 �

9(max(z, h(x)))
"

�

9(max(z, h(x)))
"

✓
1�

↵"

9(max(z, h(x)))2
���x ��2

◆
�

9(max(z, h(x)))
"

� �↵
|�x |2

29(max(z, h(x)))
� ��z,
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the last inequality being true since � 2 K( f9). Thus, for " > 0 small enough,
� 2 K( f9,"). Then we may writeZ

RN
� · D1w  lim

c
sup

�2K( f9,")

Z
RN

� · D1wc dx

= lim inf
c

Z
RN

f9,"(x, wc, Dwc)

= lim inf
c

Z
RN

f 8
c (Ta,b(8(uc)), DTa,b(8(uc)))



1
�
lim inf

c

Z
RN

(v � uc)Ta,b(8(uc)) =

1
�

Z
RN

(v � u)Ta,b(8(u)),

where (3.26) was used in the last of the inequalities. Taking sup values on � 2

K( f9) we obtain

1
2↵

Z
RN

38(Ta,b(8(u)))|DTa,b(8(u))|2 = sup
�2K2

Z
RN

� · D1u



1
�

Z
RN

(v � u)Ta,b(8(u)).

Letting ↵ ! 1 and a ! 0+, b > k8(u)k1, we obtain (3.25).
Let J (r) be the primitive of

p

3(r)80(r). The finiteness of the integralZ
RN

f9(x, u, Du) dx =

Z
RN

3(u)|D8(u)|2 dx < 1 (3.30)

implies that J (u) 2 W 1,2(RN ), hence also u 2 W 1,2
loc (RN ). Indeed, since u 2

BV (RN ), by the definition of f9 we deduce that the singular part of Du is zero,
i.e. (Du)s = 0. Thus u 2 W 1,1(RN ). Hence u is approximately differentiable a.e.
and the approximate differential coincides with ru = Du. Since u 2 L1(RN ),
u(x) � 8�1(h(x)), and J is differentiable in (0,1), then J (u) 2 W 1,1

loc (RN ),
J (u(x)) is approximately differentiable at all points x 2 RN where u is ( [2],
Proposition 3.71), and

r J (u) =

p
3(u)r8(u) =

p
3(u)80(u)ru.

Then (3.30) implies that J (u) 2 W 1,2(RN ).
Similarly, we prove that J̃ (u) 2 W 1,2 (RN ), where J̃ is the primitive of

3(r)80(r).
Step 6. Conclusion. Since u 2 L1(RN ) \ L1(RN ), J̃ (u) 2 W 1,2(RN ), and

u � �1 J̃ (u) = v in D0(RN ), (3.31)

then u is the weak solution of (3.31) [10]. This concludes the proof of (3.13), hence
of the theorem.
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Remark 3.5. The assumption that 8 2 C1(0,1) has only been used in the last
paragraph of the proof to ensure that J (u) 2 W 1,1

loc (RN ) and J (u(x)) is approxi-
mately differentiable at all points x 2 RN where u is.
Remark 3.6. In a similar way, for r � 1, if uc is the entropy solution of

ut = div

0
@ urruq

u2 +
1
c2 |ru|

2

1
A (3.32)

with u(0,x) = u0(x) 2 (L1(RN ) \ L1(RN ))+, then uc converges in C([0, T ],
L1(RN )) as c ! 1 to the solution of u the porous medium equation

ut = div
⇣
ur�1ru

⌘
(3.33)

with u(0, x) = u0(x). In this case, we need the following lemma, whose proof is
elementary by a direct computation as in Lemma 3.2.

Lemma 3.7. Let � > 0. If v 2 (L1(RN ) \ L1(RN ))+ and v(x) � e�↵|x |2 for
some ↵,  > 0, then for � > 0 small enough and � > 0 large enough, u� ,� =

� e��|x |2 is a subsolution of

u � �div

0
@ urruq

u2 +
1
c2 |ru|

2

1
A = v

for all c > 0.

As in the proof of Step 2 of Theorem 3.1, we first prove that
Z

RN

urc|ruc|2q
u2c +

1
c2 |ruc|

2
dx  C,

where C does not depend on c. Then

Z
RN

������
urcrucq

u2c +
1
c2 |ruc|

2

������
2

dx  kur�1c k1

Z
RN

urc|ruc|2q
u2c +

1
c2 |ruc|

2
dx

 kvr�1k1C.

(3.34)

This estimate is first obtained for the corresponding approximations (A.15) and
then for urcrucq

u2c+
1
c2

|ruc|2
by passing to the limit as n ! 1. With this estimate we may

repeat the proof of Step 3 in Theorem 3.1 and prove that

z(x) = A(u(x),r8(u(x))) a.e. in RN , (3.35)
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where A(u,r8(u)) = urru. This time we may use that uc 2 BV (RN ) and we do
not need to use truncatures of uc. We obtain that for almost any x 2 RN we have

(z(x) � A(u(x), ⇠)) · (r8(u(x)) � ⇠) � 0 8 ⇠ 2 RN .

Again, by an application of Minty-Browder’s method in RN , these inequalities im-
ply (3.35).
Let h(x) be an exponential subsolution of (3.32) independent of c>0 (Lemma 3.7).

Let ↵>1. This time we define fr,"(x,z,⇠)= 1
" max(z,h(x))

r
p
max(z,h(x))2+"|⇠ |

2
�

1
" max(z,h(x))

r+1, ">0. Then f ⇤

r,"(x,z,p)=�
max(z,h(x))

"

p
max(z,h(x))2r�"|p|2+

max(z,h(x))r+1
" if "|p|2  max(z, h(x))2r , +1 otherwise.
We also define fr (x, z, ⇠) =

1
2↵ max(z, h(x))

r
|⇠ |

2, ↵ > 0. Then f ⇤

r (x, z, p)=
↵ |p|2
2max(z,h(x))r .
Consider the functionals associated to fr (x, z, p) with the previous value of ↵

and fr,"(x, z, p), with " = c�1. Let

K( fr )={�=(�x ,�z)2X : �z(x, z)� f ⇤

r (x, z,�x (x, z)) 8(x, z)2RN
⇥ [0,1)},

K( fr,")={�=(�x ,�z)2X : �z(x, z)� f ⇤

r,"(x,z,�
x (x, z)) 8(x, z)2RN

⇥ [0,1)}.

We proceed as in Step 5 observing that if � 2 K( fr ), then for " > 0 small enough
we also have � 2 K( fr,").
Remark 3.8. Notice that in the last remark we used that uc 2 BV (RN ) and we
did not need to prove an identity like (3.20) implying that that z(x) = 0 a.e. on
{u = 0}. Thanks to this, we have been able to prove that entropy solutions of (3.32)
converge to solutions of (3.33) for any r � 1. The same approach can be applied
when 8 2 W 1,1

loc ([0,1)).
Remark 3.9. The case r = 1 which shows the convergence of the relativistic heat
equation to the heat equation as c ! 1 was treated in [21]. The methods used
were based on some a priori Lipschitz estimates.

A. Appendix: A primer on entropy solutions

We collect in this appendix some definitions that are needed to work with entropy
solutions of flux-limited diffusion equations.

Note that the equation (3.1) can be written as

ut = div a(u, D8(u)), in QT = (0, T ) ⇥ RN (A.1)

where a(z, ⇠) = r⇠ fc(z, ⇠) and

fc(z, ⇠) = c23(z)
q
1+ c�2|⇠ |

2
� c23(z). (A.2)
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As usual, we define

hc(z, ⇠) = a(z, ⇠) · ⇠ =

3(z)|⇠ |
2p

1+ c�2|⇠ |
2
. (A.3)

Note that fc is convex in ⇠ and both fc, hc have linear growth as |⇠ | ! 1. For
the sake of simplicity, in this Appendix we write f, h instead of fc, hc. We assume
that 8 : [0,1) ! [0,1) is a continuous strictly increasing function such that
8(0) = 0 and 8,8�1

2 W 1,1([a, b]) for any 0 < a < b.

A.1. Functions of bounded variation and some generalizations

Denote by LN and HN�1 the N -dimensional Lebesgue measure and the (N � 1)-
dimensional Hausdorff measure in RN , respectively. Given an open set � in RN

we denote by D(�) the space of infinitely differentiable functions with compact
support in �. The space of continuous functions with compact support in RN will
be denoted by Cc(RN ).

Recall that if � is an open subset of RN , a function u 2 L1(�) whose gradi-
ent Du in the sense of distributions is a vector valued Radon measure with finite
total variation in � is called a function of bounded variation. The class of such
functions will be denoted by BV (�). For u 2 BV (�), the vector measure Du
decomposes into its absolutely continuous and singular parts Du = Dacu + Dsu.
Then Dacu = ru LN , where ru is the Radon–Nikodym derivative of the measure
Du with respect to the Lebesgue measure LN . We also split Dsu in two parts: the
jump part D ju and the Cantor part Dcu. It is well known (see for instance [2]) that

D ju = (u+

� u�)⌫uHN�1 Ju,

where u+(x), u�(x) denote the upper and lower approximate limits of u at x , Ju
denotes the set of approximate jump points of u (i.e. points x 2 � for which
u+(x) > u�(x)), and ⌫u(x) =

Du
|Du| (x), being

Du
|Du| the Radon–Nikodym derivative

of Du with respect to its total variation |Du|. For further information concerning
functions of bounded variation we refer to [2].

We need to consider the following truncation functions. For a<b, let Ta,b(r):=
max(min(b, r), a), T la,b = Ta,b � l. We denote

Tr :=

�
Ta,b : 0 < a < b

 
,

T +

:=

n
T la,b : 0 < a < b, l 2 R, T la,b � 0

o
.

Given any function w and a, b 2 R we shall use the notation {w � a} = {x 2 RN
:

w(x) � a}, {a  w  b} = {x 2 RN
: a  w(x)  b}, and similarly for the sets

{w > a}, {w  a}, {w < a}, etc. We need to consider the following function space

T BV+

r (RN ) :=

n
w 2 L1(RN )+ : Ta,b(w) � a 2 BV (RN ), 8 Ta,b 2 Tr

o
.
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Notice that T BV+

r (RN ) is closely related to the space GBV (RN ) of generalized
functions of bounded variation introduced by E. De Giorgi and L. Ambrosio in [2].
Using the chain rule for BV-functions (see for instance [2]), one can give a sense to
ru for a function u 2 T BV+(RN ) as the unique function v which satisfies

rTa,b(u) = v�
{a<u<b} LN

� a.e., 8 Ta,b 2 Tr .

We refer to [2] for details.

A.2. A generalized Green’s formula

Let us denote

X1,1(RN ) =

n
z 2 L1

⇣
RN , RN

⌘
: div(z) 2 L1

⇣
RN

⌘o
. (A.4)

If z 2 X1,1(RN ) andw 2 L1loc(RN )\L1

loc(RN ), we define the functional (z·Dw) :

C1

c (RN ) ! R by the formula

⌦
(z·Dw),'

↵
:= �

Z
RN

w ' div(z) dx�

Z
RN

w z·r' dx, ' 2 C1

c

⇣
RN

⌘
. (A.5)

If z 2 X1,1(RN ) and w 2 BV (RN ) \ L1(RN ), then (z · Dw) is a Radon measure
in RN [9], and

Z
RN

(z · Dw) =

Z
RN
z · rw dx, 8 w 2 W 1,1(RN ) \ L1

⇣
RN

⌘
. (A.6)

Moreover, (z · Dw) is absolutely continuous with respect to |Dw| [9].
In the case where the distribution (z · Dw) is a Radon measure we denote by

(z · Dw)ac, (z · Dw)s its absolutely continuous and singular parts with respect to
LN . One has that (z · Dw)s is absolutely continuous with respect to Dsw and
(z · Dw)ac = z · rw.

A.3. Functionals defined on BV

In order to define the notion of entropy solutions of (A.1) and give a characterization
of them, we need a functional calculus defined on functions whose truncations are
in BV . Let � be an open subset of RN . Let g : � ⇥ R ⇥ RN

! [0,1) be a Borel
function such that

C(x) |⇠ | � D(x)  g(x, z, ⇠)  M 0(x) + M |⇠ |

for any (x, z, ⇠) 2 � ⇥ R ⇥ RN , |z|  R, and any R > 0, where M is a positive
constant and C, D,M 0

� 0 are bounded Borel functions which may depend on R.
Assume that C, D,M 0

2 L1(�).
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Following Dal Maso [28] we consider the functional

Rg(u) :=

Z
�
g(x, u(x),ru(x)) dx +

Z
�
g0

✓
x, ũ(x),

Du
|Du|

(x)
◆
d
��Dcu

��

+

Z
Ju

 Z u+(x)

u�(x)
g0(x, s, ⌫u(x)) ds

!
dHN�1(x),

(A.7)

for u 2 BV (�)\ L1(�), being ũ is the approximated limit of u [2]. The recession
function g0 of g is defined by

g0(x, z, ⇠) = lim
t!0+

tg
✓
x, z,

⇠

t

◆
.

It is convex and homogeneous of degree 1 in ⇠ .
In case that � is a bounded set, and under standard continuity and coercivity

assumptions, Dal Maso proved in [28] thatRg(u) is L1-lower semi-continuous for
u 2 BV (�). More recently, De Cicco, Fusco, and Verde [30] have obtained a very
general result about the L1-lower semi-continuity ofRg in BV (RN ).

Assume that g : R ⇥ RN
! [0,1) is a Borel function such that

C|⇠ | � D  g(z, ⇠)  M(1+ |⇠ |) 8(z, ⇠) 2 RN , |z|  R, (A.8)

for any R > 0 and for some constants C, D,M � 0 which may depend on R.
Observe that both functions f, h defined in (A.2), (A.3) satisfy (A.8).

Assume that

�
{ua}

�
g(u(x), 0) � g(a, 0)

�
,� {u�b}

�
g(u(x), 0) � g(b, 0)

�
2 L1

⇣
RN

⌘
, (A.9)

for any u 2 L1(RN )+. Let u 2 T BV+

r (RN ) \ L1(RN ) and T = Ta,b � l 2 T +.
For each � 2 Cc(RN ), � � 0, we define the Radon measure g(u, DT (u)) by

⌦
g(u, DT (u)),�

↵
:= R�g

�
Ta,b(u)

�
+

Z
{ua}

�(x)
�
g(u(x), 0) � g(a, 0)

�
dx

+

Z
{u�b}

�(x)
�
g(u(x), 0) � g(b, 0)

�
dx .

(A.10)

If � 2 Cc(RN ), we write � = �+
� �� with �+

= max(�, 0), ��
= �min(�, 0),

and we define hg(u, DT (u)),�i := hg(u, DT (u)),�+
i � hg(u, DT (u)),��

i.
Recall that, if g(z, ⇠) is continuous in (z, ⇠), convex in ⇠ for any z 2 R,

and � 2 C1(RN )+ has compact support, then hg(u, DT (u)),�i is lower semi-
continuous in T BV+(RN ) with respect to L1(RN )-convergence [30]. This prop-
erty is used to prove existence of solutions of (A.1).

We can now define the required functional calculus (see [4, 5, 23]). Let us
denote by P the set of Lipschitz continuous functions p : [0,+1) ! R satisfying



CONVERGENCE OF FLUX-LIMITED POROUS MEDIA EQUATIONS 501

p0(s) = 0 for s large enough. Let S, T 2 P . Assume that, if p represents either S
or T , then we may write p(z̄) = p̃(Ta,b(z̄)) for some 0 < a < b, for some p̃ which
is differentiable in a neighborhood of [a, b]. We assume that u 2 T BV+

r (RN ) \

L1(RN ), so that w = 8(u) 2 T BV+

r (RN ) \ L1(RN ). We denote

f 8
S:T (z̄, ⇠) = S(z̄)T 0(z̄) f

�
8�1(z̄), ⇠

�
, h8

S:T (z̄, ⇠) = S(z̄)T 0(z̄)h
�
8�1(z̄), ⇠

�
.

We denote by

f 8
S:T

�
8(u), DTa,b(8(u))

�
, h8

S:T
�
8(u), DTa,b(8(u))

�
,

the Radon measures defined by (A.10) with g(z̄, ⇠) = f 8
S:T (z̄, ⇠), and g(z̄, ⇠) =

h8
S:T (z̄, ⇠) applied tow=8(u), respectively. Note that (A.9) holds since fc(z, 0) =

hc(z, 0) = 0.

A.4. Entropy solutions of the elliptic problem

We define the notion of entropy solution for the elliptic problem

u � div a(u,r8(u)) = v in D0
�
RN �. (A.11)

We define T SUB as the class of functions S, T 2 P such that
S � 0, S0

� 0 and T � 0, T 0
� 0,

where p(z̄) = p̃(Ta,b(z̄)) for some 0 < a < b, and some p̃ which is differentiable
in a neighborhood of [a, b], and p represents either S or T . For any function q,
Jq(r) denotes the primitive of q, i.e., Jq(r) =

R r
0 q(s) ds.

Definition A.1. Given v 2 L1(RN ) \ L1(RN ), v � 0, we say that u � 0 is an
entropy solution of (A.11) if u 2 T BV+

r (RN ) \ L1(RN ) and a(u,r8(u)) is a
vector field in X1,1(RN ) satisfying (A.11) in D0(RN ), and

h8
S:T

�
8(u), DTa,b(8(u))

�


�
a(u,r8(u)) · DJT 0S(8(u))

�
as measures 8 (S, T ) 2 T SUB.

(A.12)

Inequality (A.12) holds in the sense of distributions. Since h8
S:T (8 (u),

DTa,b(8(u))) is a Radon measure, then (a(u,r8(u)) · DJT 0S(8(u))) is also a
Radon measure and (A.12) holds in the sense of measures.

Theorem A.2. For any 0  v 2 L1(RN ) \ L1(RN ) there exists a unique entropy
solution u 2 L1(RN ) \ L1(RN ) of the problem (A.11). We have

kukp  kvkp for any p 2 [1,1]. (A.13)

If u1, u2 are entropy solutions of the problem (A.11) corresponding to right-hand
sides v1, v2 2 (L1(RN ) \ L1(RN ))+, thenZ

RN
(u1 � u2)+ 

Z
RN

(v1 � v2)
+. (A.14)



502 VICENT CASELLES

Recall that existence is proved by approximating (A.11) by the sequence of prob-
lems

un � div a(un,r8(un)) �

1
n
1un = v in D0(RN ). (A.15)

We define the operator (u, w) 2 B if and only if 0  u 2 L1(RN ) \ L1(RN ), u 2

T BV+

r (RN ), 0  w 2 L1(RN ) \ L1(RN ) and u is an entropy solution of (A.11)
with v = u+w. The operator B is accretive in L1(RN ),

�
L1(RN ) \ L1(RN )

�
+

⇢

Range(I + B) and D(B) is dense in L1(RN )+ [4, 24]. If we denote by B the
closure in L1(RN ) of the operator B, it follows that B is accretive in L1(RN ), it
satisfies the comparison principle, and verifies the range condition D(B)

L1(RN )
=

L1(RN )+ ⇢ Range(I + �B) for all � > 0. Therefore, according to the Crandall-
Liggett Theorem [12, 27], for any 0  u0 2 L1(RN ) there exists a unique mild
solution u 2 C([0, T ]; L1(RN )) of the abstract Cauchy problem

u0(t) + Bu(t) 3 0, u(0) = u0. (A.16)

Moreover, u(t) = T (t)u0 for all t � 0, where (T (t))t�0 is the semigroup in
L1(RN )+ generated by the Crandall-Liggett’s exponential formula, i.e.,

T (t)u0 = lim
n!1

✓
I +

t
n
B
◆

�n
u0.

Finally, the comparison principle also holds for T (t), i.e., if u0, u0 2 L1(RN )+, we
have the estimate

��(T (t)u0 � T (t)u0)+
��
1 

��(u0 � u0)+
��
1. (A.17)

A.5. Entropy solutions of the evolution problem

Let L1w(0,T,BV (RN )) be the space of weakly⇤ measurable functionsw : [0, T ] !

BV (RN ) (i.e., t 2 [0,T ] ! hw(t),�i is measurable for every � in the predual
of BV (RN )) such that

R T
0 kw(t)kBV dt < 1. Observe that, since BV (RN ) has a

separable predual (see [2]), it follows easily that the map t 2 [0, T ] ! kw(t)kBV is
measurable. By L1loc,w(0, T, BV (RN ))we denote the space of weakly⇤ measurable
functions w : [0, T ] ! BV (RN ) such that the map t 2 [0, T ] ! kw(t)kBV is in
L1loc(]0, T [).

Definition A.3. Let u0 2 (L1(RN ) \ L1(RN ))+. A measurable function u :

(0, T ) ⇥ RN
! R is an entropy solution of (1.1) in QT = (0, T ) ⇥ RN if

u 2 C([0, T ], L1(RN )+), Ta,b(8(u(·))) � a 2 L1loc,w(0, T ; BV (RN )) for all
0 < a < b  1, and

(i) a(u(t),r8(u(t))) 2 L1(RN ) \ L1(RN ) for a.e. t 2 (0, T ),
(ii) ut = div a(u(t),r8(u(t))) in D0(QT ),
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(iii) u(0) = u0, and
(iv) the following inequality is satisfied

Z T

0

Z
RN

�h8
S:T

�
8(u), DTa,b(8(u))

�
dt

+

Z T

0

Z
RN

�h8
T :S

�
8(u), DSc,d(8(u))

�
dt



Z T

0

Z
RN

JT�8S�8(u(t))�0(t) dxdt

�

Z T

0

Z
RN
a
�
u(t),r8(u(t))

�
· r� T

�
8(u(t))

�
S
�
8(u(t))

�
dxdt

(A.18)

for truncatures (S, T ) 2 T SUB with T = T̃ � Ta,b, S = S̃ � Sc,d and any
smooth function � of compact support, in particular of the form �(t, x) =

�1(t)⇢(x), �1 2 D((0, T )), ⇢ 2 D(RN ).

We observe that the functions that appear in (A.18) are measurable. For a proof
we refer to Proposition 6.1 in [7]. We have the following existence and uniqueness
result:

Theorem A.4. Assume we are under assumptions (H). Then, for any initial datum
0  u0 2 L1(RN ) \ L1(RN ) there exists a unique entropy solution u of (1.1) in
QT = (0, T )⇥RN for every T > 0 such that u(0) = u0. Moreover, if u(t), u(t) are
the entropy solutions corresponding to initial data u0, u0 2 L1(RN )+, respectively,
then ��(u(t) � u(t))+

��
1 

��(u0 � u0)+
��
1 for all t � 0. (A.19)

Moreover, entropy and semigroup solutions with initial condition 0u02L1(RN) \

L1(RN ) coincide.

The proof of this theorem has been given in [24] and follows the Steps of
Theorem 4.5 in [5,22]. Existence of entropy solutions is proved by using Crandall-
Liggett’s scheme [27] and uniqueness is proved using Kruzhkov’s doubling vari-
ables technique [20,32].
Remark A.5. We observe that u(t) 2 BV (RN ) for any t > 0 if u0 2 BV (RN ).
Indeed, let ⌧hu0(x) = u0(x + h), h 2 RN . Let uh(t) be the entropy solution
corresponding to the initial datum ⌧hu0. Then by the uniqueness result of Theorem
A.4 we have that uh(t) = ⌧hu(t) for any t � 0. By applying estimate (A.19) we
have ��u(t) � ⌧hu(t)

��
1 

��u0 � ⌧hu0
��
1 8t > 0.

Since u0 2 BV (RN ) we deduce that u(t) 2 BV (RN ) for all t > 0 and ku(t)kBV 

ku0kBV . Clearly u 2 L1w(0, T ; BV (RN )).



504 VICENT CASELLES

References

[1] M. AGUEH, “Existence of Solutions to Degenerate Parabolic Equations via the Monge-
Kantorovich Theory”, PhD Thesis, Georgia Tech, Atlanta, 2001.

[2] L. AMBROSIO, N. FUSCO and D. PALLARA, “Functions of Bounded Variation and Free
Discontinuity Problems”, Oxford Mathematical Monographs, 2000.
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