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Homological finiteness of Abelian covers

ALEXANDER I. SUCIU, YAPING YANG AND GUFANG ZHAO

Abstract. We present a method for deciding when a regular Abelian cover of a
finite CW-complex has finite Betti numbers. To start with, we describe a natural
parameter space for all regular covers of a finite CW-complex X , with group of
deck transformations a fixed Abelian group A, which in the case of free Abelian
covers of rank r coincides with the Grassmanian of r-planes in H1(X, Q). Inside
this parameter space, there is a subset �i

A(X) consisting of all the covers with
finite Betti numbers up to degree i .

Building up on work of Dwyer and Fried, we show how to compute these
sets in terms of the jump loci for homology with coefficients in rank-1 local sys-
tems on X . For certain spaces, such as smooth, quasi-projective varieties, the gen-
eralized Dwyer–Fried invariants that we introduce here can be computed in terms
of intersections of algebraic subtori in the character group. For many spaces of
interest, the homological finiteness of Abelian covers can be tested through the
corresponding free Abelian covers. Yet in general, Abelian covers exhibit differ-
ent homological finiteness properties than their free Abelian counterparts.

Mathematics Subject Classification (2010): 14F35 (primary); 55N25, 20J05,
57M07 (secondary).

1. Introduction

By classical covering space theory, the connected, regular covers of a CW-complex
are classified by the quotients of its fundamental group. In this paper, we investi-
gate the set of covers with fixed deck-transformation group (usually taken to be an
Abelian group) for which the Betti numbers up to a fixed degree are finite.

1.1. A parameter set for regular covers

Let X be a connected CW-complex with finite 1-skeleton. Let G = ⇡1(X, x0) be
the fundamental group, and let A be a quotient of G. The regular covers of X with
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group of deck transformations isomorphic to A can be parametrized by the set

0(G, A) = Epi(G, A)/Aut(A), (1.1)

where Epi(G, A) is the set of all epimorphisms fromG to A and Aut(A) is the group
of automorphisms of A, acting on Epi(G, A) by composition. For an epimorphism
⌫ : G ⇣ A, we write its class in 0(G, A) by [⌫], and the corresponding cover by
X⌫
! X .
In the case when A is Abelian, the parameter set for A-covers may be identified

with 0(H, A), where H = H1(X, Z). Our first result identifies this set with a (set-
theoretical) twisted product over a rational Grassmannian. More precisely, let H
be the maximal, torsion-free Abelian quotient of H , and identify H = Zn and
A = Zr . By linear algebra (see, e.g., [2, Section 12, Theorem 4.3]), any rational
subspace of Zn

⌦Q has a primitive sublattice, so this allows us to identify Grr (Zn)
with Grr (Qn). Let P be a parabolic subgroup of GLn(Z), such that GLn(Z)/P is
the Grassmannian Grn�r (Zn).

Theorem A (Theorem 3.2). There is a bijection

0(H, A) ! GLn(Z)⇥P 0,

where 0 is the finite set 0(H/A, A/A), and GLn(Z)⇥P 0 is the twisted product of
GLn(Z) and 0 under the natural action of P on the two sets.

1.2. Dwyer–Fried sets and their generalizations

In a foundational paper on the subject, [6], Dwyer and Fried considered the regular
covers of a finite, connected CW-complex X , with group of deck transformations
A = Zr . Inside the parameter space 0(H, Zr ) = Grr (Qn), where n = rank H , they
isolated the sets �i

r (X), consisting of those covers for which the Betti numbers up
to degree i are finite.

The Dwyer–Fried sets �i
r (X) have since been studied in depth in [13, 14],

using the characteristic varieties of X . These varieties, V i (X), are Zariski closed
subsets of the character group bH = Hom(H, C⇤); they consist of those rank-1 local
systems on X for which the corresponding cohomology groups do not vanish, for
some degree less or equal to i .

We further develop this theory here, by first defining the generalized Dwyer–
Fried invariants of X to be the subsets �i

A(X) of 0(G, A) consisting of those reg-
ular A-covers having finite Betti numbers up to degree i . In the case when A is a
finitely generated (not necessarily torsion-free) Abelian group, we establish a sim-
ilar formula, computing the invariants �i

A(X), viewed now as subsets of 0(H, A),
in terms of the characteristic varieties of X .

Theorem B (Theorem 10.5). Let X be a connected, finite CW-complex, and let
H = H1(X, Z). Suppose ⌫ : H ⇣ A is an epimorphism to an Abelian group A.
Then

�i
A(X) =

n
[⌫] 2 0(H, A) | im(⌫̂) \ V i (X) is finite

o
,
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where V i (X) ⇢ bH is the i-th characteristic variety of X , and ⌫̂ :
bA ! bH is the

induced morphism between the character groups.

1.3. An upper bound for the �-sets

In order to estimate the size of the Dwyer–Fried sets, it is convenient to look at
various analogues of the incidence subvarieties of the Grassmannian, known as the
special Schubert varieties.

Given a subgroup ⇠  H and an Abelian group A, let �A(⇠) be the set of all
[⌫] 2 0(H, A) for which rank(ker(⌫) + ⇠) < rank H , and let UA(⇠) be the subset
of those [⌫] for which, additionally, ker(⌫) \ ⇠ ✓ ⇠ , where ⇠̄ denotes the primitive
closure of ⇠ .

Each subgroup ⇠  H gives rise to an algebraic subgroup, V (⇠) =
dH/⇠ , of the

character group bH , with identity component V (⇠). Given a subvarietyW ⇢ bH , and
a positive integer d, let 4d(W ) be the collection of all subgroups ⇠  H for which
the determinant group ⇠/⇠ is cyclic of order dividing d, and there is a generator
⌘ of d⇠/⇠ such that ⌘V (⇠) is a maximal, positive-dimensional translated subtorus
in W . (The set 41(W ) is essentially the same as the “exponential tangent cone”
from [4,14].)

Theorem C (Theorem 10.7). Let H = H1(X, Z), and let A be a quotient of H .
Then:

�i
A(X) ✓ 0(H, A) \

[
d�1

[
⇠24d (V i (X))

UA(⇠).

In the case when A has rank one, we show in Theorem 12.1 that this upper bound is
reached; furthermore, we only need to use in this case the set 4c(A)(V i (X)), where
c(A) is the largest order of any element in A. In other words, if rank A = 1, then

�i
A(X) = 0(H, A) \

[
⇠24c(A)(V i (X))

UA(⇠). (1.2)

1.4. Translated subgroups in the characteristic varieties

For a large class of spaces — for instance, smooth, complex quasi-projective
varieties — the characteristic varieties are union of translated algebraic subgroups
of bH . Using techniques from [15], we obtain several explicit formulas in this sit-
uation, expressing the Dwyer–Fried sets purely in terms of the corresponding sub-
groups of H , and the associated translation factors.

Theorem D (Theorem 13.1). Suppose V i (X) =

Ss
j=1 ⌘ j V (⇠ j ), where ⇠1, . . . , ⇠s

are subgroups of H = H1(X, Z), and ⌘1, . . . , ⌘s are torsion elements in bH . Then
�i
A(X) = 0(H, A) \

[
⇠24c(V i (X))

UA(⇠),

where c is the least common multiple of ord(⌘1) · c(⇠1/⇠1), . . . , ord(⌘s) · c(⇠ s/⇠s).
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A formula of a different flavor is given in Theorem 13.2. A particular case of
this formula is worth singling out: if V i (X) = V (⇠1) [ · · · [ V (⇠s) is a union of
algebraic subgroups of bH , then

�i
A(X) = 0(H, A) \

s[
j=1

q�1
�
�A(⇠ j )

�
, (1.3)

where q is the canonical projection 0(H, A) onto the rational Grassmannian
0(H, A), and the sets �A(⇠ j ) are usual special Schubert varieties.

1.5. Abelian versus free Abelian covers

This last formula brings up a rather general question: If a cover X ⌫̄ has finite Betti
numbers, does X⌫ also have finite Betti numbers? This question can be answered by
comparing the generalized Dwyer–Fried invariants of X with their classical coun-
terparts.

As before, let A be a quotient of H = H1(X, Z), and set r = rank A and
n = rank H . The canonical projection q : 0(H, A) ! 0(H, A) restricts to a map
�i
A(X)! �i

A(X) between the respective Dwyer–Fried sets, thus yielding the com-
muting diagram

�i
A(X)

� � //

q|
�iA(X)

✏✏

0(H, A) ⇠= GLn(Z)⇥P 0

q
✏✏

�i
A(X) � � // 0(H, A) ⇠= Grn�r (Zn).

(1.4)

If q�1
�
�i
A(X)

�
= �i

A(X), then the finiteness of the Betti numbers of an A-cover
can be tested through the corresponding A-cover. In general, though, diagram (1.4)
is not a pullback diagram; in that case, the generalized Dwyer–Fried invariants,
when viewed as homotopy type invariants, contain more information than the clas-
sical ones. This dichotomy is illustrated by the following result:
Theorem E (Propositions 13.6 and 13.9). Suppose the characteristic variety
V i (X) is of the form

S
j ⇢ j Tj , where each Tj ⇢ bH is an algebraic subgroup,

and each ⇢̄ j 2 bH/Tj has finite order.

(i) If ord(⇢̄ j ) is coprime to the order of Tors(A), for each j , then q�1
�
�i
A(X)

�
=

�i
A(X).

(ii) If the identity component of T1 is not contained in
Q

j 6=1 Tj , the order of ⇢1 di-
vides c(A), and rank A < rank H�dim

Q
j 6=1 Tj , then q�1

�
�i
A(X)

�
% �i

A(X).

In other words, suppose X ⌫̄ is a regular A-cover of X , with finite Betti numbers up
to degree i . Then, if (i) holds, all A-covers X⌫ have the same finiteness property,
whereas if (ii) holds, one of those A-covers will have an infinite Betti number in
some degree less or equal to i .
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1.6. Toric complexes

A nice class of spaces to which our theory applies is that of toric complexes. Every
simplicial complex L on n vertices determines a subcomplex TL of the n-torus, with
fundamental group the right-angled Artin group associated to the 1-skeleton of L .
Identify the group H = H1(TL , Z) with Zn . Work of Papadima and Suciu [12]
shows that the characteristic varieties V i (TL) are unions of coordinate subspaces
in bH = (C⇤)n; equations for these subspaces can be read off directly from the
simplicial complex L .

Formula (1.3) computes all the generalized Dwyer–Fried sets of a toric com-
plex. More precisely, if A is a quotient of H , then, as noted in Corollary 13.4, the
complement of �i

A(TL) in 0(H, A) fibers over the special Schubert varieties asso-
ciated to the coordinate subspaces comprising V i (TL), with each fiber isomorphic
to 0(H/A, A/A). Thus, if T ⌫̄

L is a free Abelian cover of TL , with finite Betti num-
bers up to some degree i , then all finite Abelian covers T ⌫

L ! T ⌫̄
L have the same

homological finiteness property.

1.7. Quasi-projective varieties

Another important class of spaces to which our methods apply quite well is that of
smooth, quasi-projective varieties. For such a space X , work of Arapura [1] and
others shows that

V 1(X) = Z [
[
⇠23

V (⇠) [
[
⇠230

�
V (⇠) \ V (⇠)

�
, (1.5)

where Z is a finite set, and 3 and 30 are certain (finite) collections of subgroups of
H = H1(X, Z).

Theorem F (Theorem 14.3). With notation as above, let A be a quotient of H .
Then

�1
A(X) = 0(H, A) \

✓ [
⇠23

q�1
�
�A(⇠)

�
[

[
⇠230

⇣
q�1

�
�A(⇠)

�
\ ✓A(⇠)

⌘◆
,

where �A(⇠) ✓ Grn�r (Zn) ⇠= 0(H , A) is a special Schubert variety, and ✓A(⇠)

consists of those [⌫] 2 0(H, A) for which there is a subgroup ⇠  ⇠ 0 � ⇠ such that
⇠/⇠ 0 is cyclic and ⌫(x) 6= 0 for all x 2 ⇠ \ ⇠ 0.

Theorem E, part (i) now shows the following: if the order of ⇠/⇠ is coprime to
c(A), for each ⇠ 2 30, then �1

A(X) = q�1
�
�1
A(X)

�
.

In general, though, such an equality does not hold. Examples of this sort
can be constructed using quasi-homogeneous surfaces (with the singularity at the
origin removed), which are homotopy equivalent to Brieskorn manifolds M =

6(a1, . . . , an). For instance, if M = 6(2, 4, 8), then the universal free Abelian
cover of M has finite b1, whereas the universal Abelian cover of M has infinite b1.
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1.8. Organization of the paper

This paper is organized as follows: In Section 2 and Section 3, we describe the
structure of the parameter set 0(H, A) for regular A-covers of a finite, connected
CW-complex X with H1(X, Z) = H , while in Section 4 we define the generalized
Dwyer–Fried invariants �i

A(X), and study their basic properties.
In Section 5, we review the Pontryagin correspondence between subgroups

of H and algebraic subgroups of the character group bH , while in Section 6 we
associate to each subvariety W ⇢ bH a family of subgroups of H generalizing the
exponential tangent cone construction. In Section 7 and Section 8, we introduce
and study several subsets of the parameter set 0(H, A), which may be viewed as
analogues of the special Schubert varieties and the incidence varieties from classical
algebraic geometry.

In Section 9 we revisit the Dwyer–Fried theory in the more general context of
(not necessarily torsion-free) Abelian covers, while in Section 10 we show how to
determine the sets �i

A(X) in terms of the jump loci for homology in rank-1 local
systems on X . In Section 11, we compare the Dwyer–Fried invariants �i

A(X) with
their classical counterparts, �i

A(X), while in Section 12 we discuss in more detail
these invariants in the case when rank A = 1.

Finally, in Section 13 we study the situation when all irreducible components
of the characteristic varieties of X are (possibly translated) algebraic subgroups of
the character group, while in Section 14 we consider the particular case when X is
a smooth, quasi-projective variety.

2. A parameter set for regular Abelian covers

We start by setting up a parameter set for regular covers of a CW-complex, with
special emphasis on the case when the deck-transformation group is Abelian.

2.1. Regular covers

Let X be a connected CW-complex with finite 1-skeleton. Without loss of general-
ity, we may assume X has a single 0-cell, which we will take as our basepoint, call
it x0. Let G = ⇡1(X, x0) be the fundamental group. Since the space X has only
finitely many 1-cells, the group G is finitely generated.

Consider an epimorphism ⌫ : G ⇣ A from G to a (necessarily finitely gener-
ated) group A. Such an epimorphism gives rise to a regular cover of X , which we
denote by X⌫ . Note that X⌫ is also a connected CW-complex, the projection map
p : X⌫

! X is cellular, and the group A is the group of deck transformations of
X⌫ .

Conversely, every (connected) regular cover p : (Y, y0)! (X, x0) with group
of deck transformations A defines a normal subgroup p](⇡1(Y, y0)) G ⇡1(X, x0),
with quotient group A. Moreover, if ⌫ : G ⇣ A is the projection map onto the
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quotient, then the cover Y is equivalent to X⌫ , that is, there is an A-equivariant
homeomorphism Y ⇠= X⌫ .

Let Epi(G, A) be the set of all epimorphisms from G to A, and let Aut(A) be
the automorphism group of A. The following lemma is standard:

Lemma 2.1. Let G = ⇡1(X, x0), and let A be a group. The set of equivalence
classes of connected, regular A-covers of X is in one-to-one correspondence with

0(G, A) := Epi(G, A)/Aut(A),

the set of equivalence classes [⌫] of epimorphisms ⌫ : G ⇣ A, modulo the right-
action of Aut(A).

When the group A is finite, the parameter set 0(G, A) is of course also finite.
Efficient counting methods for determining the size of this set were pioneered by
P. Hall in the 1930s. New techniques (involving, among other things, characteristic
varieties over finite fields) were introduced in [10]. In the particular case when A
is a finite Abelian group, a closed formula for the cardinality of 0(G, A) was given
in [10], see Theorem 2.3 below.

2.2. Functoriality properties

The above construction enjoys some (partial) functoriality properties in both argu-
ments. First, suppose that ' : G1 ⇣ G2 is an epimorphism between two groups.
Composition with ' gives a map Epi(G2, A)! Epi(G1, A), which in turn induces
a well-defined map,

0(G2, A)
'⇤ // 0(G1, A) , [⌫] 7! [⌫ � ']. (2.1)

Under the correspondence from Lemma 2.1, this map can be interpreted as follows.
Let f : (X1, x1) ! (X2, x2) be a basepoint-preserving map between connected
CW-complexes, and suppose f induces an epimorphism ' = f] : G1 ⇣ G2 on
fundamental groups. Then the map '⇤ sends the equivalence class of the cover
p⌫ : X⌫

2 ! X2 to that of the pull-back cover, p⌫�' = f ⇤(p⌫) : X⌫�'
1 ! X1.

Next, recall that a subgroup K < A is characteristic if ↵(K ) = K , for all
↵ 2 Aut(A).

Lemma 2.2. Suppose we have an exact sequence of groups, 1 ! K ! A ⇡
�!

B ! 1, with K a characteristic subgroup of A. There is then a well-defined map
between the parameter sets for regular A-covers and B-covers of X ,

0(G, A)
⇡̃ // 0(G, B) , (2.2)

which sends [⌫] to [⇡ � ⌫].
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Proof. Suppose ⌫1, ⌫2 : G ⇣ A are two epimorphisms so that ↵�⌫1 = ⌫2, for some
↵ 2 Aut(A). Since the subgroup K = ker(⇡) is characteristic, the automorphism ↵
induces and automorphism ↵̄ 2 Aut(B) such that ↵̄�⇡ = ⇡�↵. Hence, ↵̄�(⇡�⌫1) =

⇡ � ⌫2, showing that q is well-defined.

The correspondence of Lemmas 2.1 and 2.2 is summarized in the following
diagram:

G

⇡�⌫
��@

@
@

@
@

@
@

⌫ // A
⇡

✏✏
B

 !

X⌫
p⇡ //

p⌫
##FFFFFFFF
X⇡�⌫

p⇡�⌫

✏✏
X .

(2.3)

Under this correspondence, the map ⇡̃ sends the equivalence class of the cover p⌫

to that of the cover p⇡�⌫ .

2.3. Regular Abelian covers

Let H = Gab be the Abelianization of our group G. Recall we are assuming G is
finitely generated; thus, H is a finitely generated Abelian group.

Now suppose A is any other (finitely generated) Abelian group. In this case,
every homomorphism G ! A factors through the Abelianization map, ab : G ⇣
H . Composition with this map gives a bijection between Epi(H, A) and Epi(G, A),
which induces a bijection

0(H, A)
⇠
= // 0(G, A) , [⌫] 7! [⌫ � ab]. (2.4)

In view of Lemma 2.1, we obtain a bijection between the set of equivalence classes
of connected, regular A-covers of a CW-complex X and the set 0(H, A), where
H = H1(X, Z) is the Abelianization of G = ⇡1(X, x0). Note that this parameter
set is empty, unless A is a quotient of H .

Let Tors(A) be the torsion subgroup, consisting of finite-order elements in A;
clearly, this is a characteristic subgroup of A. Let A = A/Tors(A) be the quotient
group, and let ⇡ : A! A be the canonical projection.

Under the correspondence from (2.4), an epimorphism ⌫ : H ⇣ A determines
a regular cover, p⌫�ab : X⌫�ab

! X , which, for economy of notation, we will write
as p⌫ : X⌫

! X . There is also a free Abelian cover, p⌫̄ : X ⌫̄
! X , corresponding

to the epimorphism ⌫̄ = ⇡ � ⌫ : H ! A.
The projection ⇡ : A ⇣ A defines a map Epi(H, A) ! Epi(H, A), ⌫ 7! ⌫̄,

which in turn induces maps between the parameter spaces for A and A covers,

0(H, A)
qH // 0(H, A) , (2.5)

sending the cover p⌫ to the cover p⌫̄ . Notice that this map is compatible with the
morphism ⇡̃ from (2.2), induced by an epimorphism ⇡ : A⇣ B with characteristic
kernel.
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2.4. Splitting the torsion-free part

For a topological group G, let G ! EG ! BG be the universal principal G-
bundle; the total space EG a contractible CW-complex endowed with a free G-
action, while the base space BG the quotient space under this action. We will only
consider here the situation when G is discrete, in which case BG = K (G, 1) and
EG = K̂ (G, 1).

As before, let H be a finitely generated Abelian group. Let Tors(H) be its
torsion subgroup, and let H = H/Tors(H). Fix a splitting H ! H ; then H ⇠=
H � Tors(H).

Now consider an epimorphism ⌫ : H ⇣ A. After fixing a splitting A ,! A, we
obtain a decomposition A ⇠= A � Tors(A). We may view A as a subgroup of H by
choosing a splitting A ,! H of the projection H ⇣ A. With these identifications,
⌫ induces an epimorphism ⌫̃ : H/A⇣ A/A. This observation leads us to consider
the set

0 = 0(H/A, A/A). (2.6)

Clearly, the set 0 is finite. Theorem 3.1 from [10] yields an explicit formula for the
size of this set. Given a finite Abelian group K , and a prime p, write the p-torsion
part of K as Kp = Zp�1 � · · · � Zp�s , for some positive integers �1 � · · · � �s ,
where s = 0 if p - |K |. Thus, Kp determines a partition ⇡(Kp) = (�1, . . . , �s).
For each such partition �, write l(�) = s, |�| =

Ps
i=1 �i , and h�i =

Ps
i=1(i�1)�i .

Theorem 2.3 ([10]). Set n = rank H and r = rank A. For each prime p dividing
the order of A/A, let � = ⇡((A/A)p) and ⌧ = ⇡((Tors(H/A))p) be the corre-
sponding partitions. Then,

��0(H/A,A/A)
��
=

Y
p|
��A/A

��

p(|�|�l(�))(n�r)+✓(��,⌧ )
l(�)Y
i=1

⇣
pn�r+✓i (�,⌧ )�✓i (��,⌧ )

� pi�1
⌘

p|�|+2h�i
Y
k�1

'mk(�)(p�1)
,

where mk(�) = #{i | �i = k}, 'm(t) =

Qm
i=1(1 � t i ), �� is the partition with

��i = �i � 1, ✓i (�, ⌧ ) =

Pl(⌧ )
j=1 min(�i , ⌧ j ), and ✓(�, ⌧ ) =

Pl(�)
i=1 ✓i (�, ⌧ ).

For instance,
��0(Zn, Zps )

��
=

psn�p(s�1)n

ps�ps�1 , whereas
���0(Zn, Zs

p)
���=Qs�1

i=0
pn�pi
ps�pi .

Each homomorphism H/A ! A/A defines an action of H/A on A/A. This
action yields a fiber bundle,

A/A! E(H/A)⇥H/A A/A! B(H/A) (2.7)

associated to the principal bundle H/A ! E(H/A) ! B(H/A). The set 0 =

0(H/A, A/A) parameterizes all such associated bundles.
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2.5. A pullback diagram

We return now to diagram (2.5), which relates the parameter sets for regular A and
A covers of a connected CW-complex X . This diagram can be further analyzed by
using pullbacks from the universal principal bundles over the classifying spaces for
the discrete groups A and A.

Let A ! E A ! BA and A ! E A ! BA be the respective classifying
bundles, and let X ! BA and X ! BA be classifying maps for the covers X⌫

!

X and X ⌫̄
! X , respectively. Upon identifying Tors(A) with A/A, we obtain the

following diagram:

Tors(A)

����
�
�
�
�
�

A

����
�
�
�
�
�

✏✏

A

����
�
�
�
�
�

✏✏

Tors(A)

����
�
�
�
�
�

⇠
= // A/A

����
�
�
�

A

✏✏

A

✏✏

E A

����
�
�
�
�
�

✏✏

X⌫oo

p⇡

����
�
�
�
�
�

p⌫ ✏✏

//__ E(H/A)⇥H/A A/A
�

����
�
�
�

_
� (2.8)

E A

✏✏

X ⌫̄oo

p⌫̄

✏✏

↵ // B(H/A)

BA

����
�
�
�
�
�

Xoo

�
�
�
�
�
�
�

�
�
�
�
�
�
�

BA Xoo // BH .

OO

Here, the map X ! BH realizes the Abelianization morphism, ab : ⇡1(X, x0)!
H , while ↵ denotes the composite X ⌫̄

! X ! BH ! B(H/A).

Proposition 2.4. The marked square in diagram (2.8) is a pullback square. That
is, the cover p⇡ : X⌫

! X ⌫̄ is the pullback along the map ↵ : X ⌫̄
! B(H/A) of

the cover � : E(H/A) ⇥H/A A/A ! B(H/A) corresponding to the epimorphism
⌫̃ : H/A⇣ A/A.

Proof. Clearly, (↵�p⇡ )](⇡1(X⌫))= im(ker ⌫ ,!ker ⌫̄), while �](⇡1(E(H/A)⇥H/A
A/A)) = ker(⌫̃ : H/A⇣ A/A). After picking a splitting A ,! H , and identifying
the group H with ker ⌫̄ � A, we see that

(↵ � p⇡ )](⇡1(X⌫)) ✓ �](⇡1(E(H/A)⇥H/A A/A)).

The existence of the dashed arrow in the diagram follows then from the lifting
criterion for covers. It is readily seen that this arrow is equivariant with respect to
the actions on source and target by Tors(A) and A/A; thus, a morphism of covers.
This completes the proof.
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Using this proposition, and the discussion from Section 2.4, we obtain the
following corollary.

Corollary 2.5. With notation as above,

0(H/A, A/A) // 0(H, A)
qH // 0(H, A)

is a set fibration; that is, all fibers of qH are in bijection with the set 0(H/A, A/A).

Let us identify topologically the fiber of qH . A regular, A-cover of our space
X corresponds to an epimorphism ⌫̄ : H ⇣ A. A regular, Tors(A)-cover of X ⌫̄

corresponds to an epimorphism ker ⌫̄ ⇣ Tors(A). Given these data, and the chosen
splitting A ,! A, we can find an epimorphism ⌫ : H ⇣ A, such that the following
diagram commutes:

ker ⌫̄ � � //

✏✏✏✏

H ⌫̄ // //

⌫

✏✏�
�

� A

Tors(A)
� � // A ⇡ // // A .

(2.9)

Thus, any regular, Tors(A)-cover X⌫
! X ⌫̄ defines a regular A-cover X⌫

! X ,
whose corresponding free Abelian cover is X ⌫̄ . Consequently, the fiber of [⌫̄] under
the map qH : 0(H, A)! 0(H, A) coincides with the set�

[⌫] 2 0(H, A) | X⌫ is a regular Tors(A)-cover of X ⌫̄
 
. (2.10)

3. Reinterpreting the parameter set for A-covers

In this section, we give a geometric description of the parameter set for regular
Abelian covers of a space.

3.1. Splittings

As before, let H and A be finitely generated Abelian groups, and assume there is
an epimorphism H ⇣ A.

Lemma 3.1. The action Aut(A) on the set of all splittings A/Tors(A) ,! A in-
duced by the natural action of Aut(A) on A is transitive.

Proof. Set A = A/Tors(A), and fix a splitting s : A ,! A. Using this splitting, we
may decompose the group A as A � Tors(A), and view s : A ,! A � Tors(A) as
the map a 7! (a, 0).

An arbitrary splitting � : A ,! A � Tors(A) is given by a 7! (a, �2(a)),
for some homomorphism �2 : A ! Tors(A). Consider the automorphism of ↵ 2
Aut(A � Tors(A)) given by the matrix

� id 0
�2 id

�
. Clearly, ↵ � s = � , and we are

done.
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Denote by n the rank of H , and by r the rank of A. Fixing splittings H ,! H
and A ,! A, we have H = H � Tors(H), with H = Zn , and A = A � Tors(A),
with A = Zr .

Now identify the automorphism group Aut(H) with the general linear group
GLn(Z). Let P be the parabolic subgroup of GLn(Z), consisting all matrices of the
form

�
⇤1 ⇤2
0 ⇤3

�
, where ⇤1 is of size (n� r)⇥ (n� r). Then GLn(Z)/P is isomorphic

to the Grassmannian Grn�r (Zn). It is readily checked that the left action of P on
Zn�r , given by multiplication of {⇤1} ⇠= GLn�r (Z) on Zn�r , induces an action of
P on the set 0 = 0(H/A, A/A). Also note that, if A is torsion-free, then the set 0
is a singleton.

3.2. A fibered product

We are now ready to state and prove the main result of this section.

Theorem 3.2. There is a bijection

0(H, A) ! GLn(Z)⇥P 0

between the parameter set 0(H, A) = Epi(H, A)/Aut(A) and the twisted product
of GLn(Z) with the set 0 = 0(H/A, A/A) over the parabolic subgroup P. Under
this bijection, the map q : 0(H, A)! 0(H, A) induced by the projection ⇡ : A!
A corresponds to the canonical projection

GLn(Z)⇥P 0! GLn(Z)/P = Grn�r (Zn).

Proof. Define a map ✓ : GLn(Z) ⇥ 0 ! 0(H, A) as follows. Given an element
(M, [� ]) of GLn(Z)⇥ 0, let (�1, �2) be a representative of [� ], with �1 : Zn�r ⇣
Tors(A) and �2 : Tors(H)⇣ Tors(A). Let ↵1, . . . ,↵n be the column vectors of the
matrix M , which forms a basis of H ⇠= Zn , we can write H = Zn�r

�Zr
�Tors(H),

where Zn�r is the subspace of H generated by the first n� r column vectors of M .
Now define ✓(M, [� ]) = [⌫], where ⌫ : Zn�r

� Zr
� Tors(H) ! Zr

� Tors(A)

is the homomorphism given by the matrix N =

⇣
0 id 0
�1 0 �2

⌘
. It is straightforward

to check that the map ✓ is well-defined, i.e., ✓ is independent of the splitting and
representative we chose.

Now let’s check that the map ✓ factors through GLn(Z)⇥P0. Suppose we have
two elements (M, [�1, �2]) and (M 0, [� 01, �

0

2]) of GLn(Z)⇥0 which are equivalent,
that is, there is a matrix Q =

⇣
Q1 Q2
0 Q3

⌘
2 P such that M = M 0Q and (�1Q�11 , �2) =

(� 01, �
0

2). By definition, the map ✓ takes the pair (M, [�1, �2]) to the homomorphism
⌫ given by the matrix N above. Changing the basis of H to the basis given by the
column vectors of M 0, the map ⌫ is given by the matrix

NQ�1 =

✓
0 Q�13 0

�1Q�11 �1Q4 �2

◆
=

✓
Q�13 0
�1Q4 id

◆✓
0 id 0
� 01 0 � 02

◆
.
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Clearly, the matrix
⇣
Q�13 0
�1Q4 id

⌘
defines an automorphism of A. Thus, the map ✓ fac-

tors through a well-defined map, ✓ : GLn(Z) ⇥P 0 ! 0(H, A), which is read-
ily seen to be a bijection. It is now a straightforward matter to verify the last
assertion.

3.3. Further discussion

A particular case of the above theorem is worth singling out. Recall H = Zn and
A = Zr .

Corollary 3.3. Suppose Tors(H) = Zs
p and Tors(A) = Zt

p, for some prime p.
Then, the parameter set 0(H, A) is in bijective correspondence with the set
GLn(Z)⇥P Grt (Zn�r+s

p ).

Proof. In this case, the set 0 = 0(H/A, A/A) is in bijection with the set
Epi(Zn�r

p � Zs
p, Zt

p)/Aut(Zt
p). This bijection is established using the diagram

Zn�r
� Zs

p

✏✏✏✏

// // Zt
p

Zn�r
p � Zs

p

:: ::vvvvvvvvvv

(3.1)

Therefore, 0 = Grt (Zn�r+s
p ), and we are done.

Remark 3.4. Consider the projection map q : GLn(Z)⇥P 0 ! GLn(Z)/P =

Grn�r (Zn) from Theorem 3.2. It is readily seen that, for each subspace Q 2
Grn�r (Zn), the cardinality of the fiber q�1(Q) is the same as the the cardinality
of the set 0. In particular, q�1(Q) is finite, for all Q 2 Grn�r (Zn).

4. Dwyer–Fried sets and their generalizations

In this section, we define a sequence of subsets �i
A(X) of the parameter set for

regular A-covers of X . These sets, which generalize the Dwyer–Fried sets �i
r (X),

keep track of the homological finiteness properties of those covers.

4.1. Generalized Dwyer–Fried sets

Throughout this section, X will be a connected CW-complex with finite 1-skeleton,
and G = ⇡1(X, x0) will denote its fundamental group.
Definition 4.1. For each group A and integer i � 0, the corresponding Dwyer–
Fried set of X is defined as

�i
A(X) =

�
[⌫] 2 0(G, A) | b j (X⌫) <1, for all 0  j  i

 
.
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In other words, the sets �i
A(X) parameterize those regular A-covers of X having

finite Betti numbers up to degree i . In the particular case when A is a free Abelian
group of rank r , we recover the standard Dwyer–Fried sets, �i

r (X) = �i
Zr (X),

viewed as subsets of the Grassmannian Grr (Qn), where n = b1(X). By our as-
sumption on the 1-skeleton on X , the group G = ⇡1(X, x0) is finitely generated.
Thus, we may assume A is also finitely generated, for otherwise Epi(G, A) = ;,
and so �i

A(X) = ;, too. The �-sets are invariant under homotopy equivalence.
More precisely, we have the following lemma, which generalizes the analogous
lemma for free Abelian covers, proved in [14].

Lemma 4.2. Let f : X ! Y be a (cellular) homotopy equivalence. For any
group A, the homomorphism f] : ⇡1(X, x0) ! ⇡1(Y, y0) induces a bijection
f ⇤] : 0(⇡1(Y, y0), A) ! 0(⇡1(X, x0), A), sending each subset �i

A(Y ) bijectively
onto �i

A(X).

Proof. Since f is a homotopy equivalence, the induced homomorphism on funda-
mental groups, f], is a bijection. Thus, the corresponding map between parameter
sets, f ⇤] , is a bijection. To finish the proof, it remains to verify that f

⇤

] (�i
A(Y )) =

�i
A(X).
Let ⌫ : ⇡1(Y, y0) ⇣ A be an epimorphism. Composing with f], we get an

epimorphism ⌫ � f] : ⇡1(X, x0) ⇣ A. By the lifting criterion, f lifts to a map f̄
between the respective A-covers. This map fits into the following pullback diagram:

X⌫� f]
f̄ //

✏✏

Y ⌫

✏✏
X

f // Y.

(4.1)

Clearly, f̄ : X⌫� f]
! Y ⌫ is also a homotopy equivalence. Thus, b j (Y ⌫) < 1 if

and only if b j (X⌫� f]) <1, which means that f ⇤] (�i
A(Y )) = �i

A(X).

Based on this lemma, we may define the �-sets of a (discrete, finitely gener-
ated) group G as�i

A(G) := �i
A(BG), where BG = K (G, 1) is a classifying space

for G.

4.2. Naturality properties

The Dwyer–Fried sets (or their complements) enjoy certain naturality properties in
both variables, which we now describe.

Proposition 4.3. Let ' : G ⇣ Q be an epimorphism of groups. Then, for each
group A, there is an inclusion �1

A(Q)c ,! �1
A(G)c.

Proof. Let ⌫ : Q ⇣ A be an epimorphism. Composing with ', we get an epimor-
phism ⌫ �' : G ⇣ A. So there is an epimorphism ' : ker(⌫ �')⇣ ker(⌫). Taking
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Abelianizations, we get an epimorphism 'ab : ker(⌫ � ')ab ⇣ ker(⌫)ab. Thus, if
ker(⌫)ab has infinite rank, then ker(⌫ � ')ab also has infinite rank. The desired
conclusion follows.

Before proceeding, let us recall a well-known result regarding the homology
of finite covers, which can be proved via a standard transfer argument (see, for
instance, [8]).

Lemma 4.4. Let p : Y ! X be a regular cover defined by a properly discontinuous
action of a finite group A on Y , and let k be a coefficient field of characteristic
0, or a prime not dividing the order of A. Then, the induced homomorphism in
cohomology, p⇤ : H⇤(X; k) ! H⇤(Y ; k), is injective, with image the subgroup
H⇤(Y ; k)A consisting of those classes ↵ for which � ⇤(↵) = ↵, for all � 2 A.

Corollary 4.5. Let p : Y ! X be a finite, regular cover. Then bi (X)  bi (Y ), for
all i � 0.

Now fix a CW-complex X as above, with fundamental group G = ⇡1(X, x0).
Suppose 1 ! K ! A ⇡

�! B ! 1 is a short exact sequence of groups, with
K a characteristic subgroup of A. As noted in Lemma 2.2, the homomorphism ⇡
induces a map ⇡̃ : 0(G, A)! 0(G, B), [⌫] 7! [⇡ �⌫], between the parameter sets
for regular A-covers and B-covers of X .

Proposition 4.6. Suppose K = ker(⇡ : A⇣ B) is a finite, characteristic subgroup
of A. Then the map ⇡̃ : 0(G, A) ! 0(G, B) restricts to a map ⇡̃ : �i

A(X) !

�i
B(X) between the respective Dwyer–Fried sets.

Proof. Let ⌫ : G ⇣ A be an epimorphism, and suppose [⌫] 2 �i
A(X), that is,

b j (X⌫)<1, for all j i . Then X⌫
! X⇡�⌫ is a regular K -cover. By Corollary 4.5,

we have that b j (X⇡�⌫) <1, for all j  i ; in other words, [⇡ � ⌫] 2 �i
B(X).

Proposition 4.6 may be summarized in the following commuting diagram:

�i
A(X)

� � //

⇡̃ |
�iA(X)

✏✏

0(G, A)

⇡̃

✏✏
�i
B(X)

� � // 0(G, B) .

(4.2)

This diagram is a pullback diagram precisely when

⇡̃�1(�i
B(X)) = �i

A(X). (4.3)

As we shall see later on, this condition is not always satisfied. For now, let us just
single out a simple situation when (4.2) is tautologically a pullback diagram.

Corollary 4.7. With notation as above, if �i
B(X) = ;, then �i

A(X) = ;.
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4.3. Abelian versus free Abelian covers

Let us now consider in more detail the case when A is an Abelian group. As usual,
we are only interested in the case when A is a quotient of the (finitely generated)
group H = Gab, and thus we may assume A is also finitely generated.

Consider the exact sequence 0! Tors(A)! A! A! 0. Clearly, Tors(A)
is a finite, characteristic subgroup of A. Thus, Proposition 4.6 applies, giving a map

q : �i
A(X)! �i

A(X). (4.4)

In particular, if �i
A(X) = ;, then �i

A(X) = ;.

Example 4.8. Let 6g be a Riemann surface of genus g � 2. It is readily seen that
�i
r (6g) = ;, for all r � 1 and i � 1, cf. [14]. Thus, if A is any finitely generated

Abelian group with rank A � 1, then �i
A(6g) = ;, for all i � 1.

Suppose now we have a short exact sequence 1! K ! A ⇡
�! B ! 1, with

K characteristic. Let ⇡̄ : A ⇣ B be the induced epimorphism between maximal
torsion-free quotients. Since K = ker(⇡) is finite, ⇡̄ is an isomorphism. Using
Proposition 4.6 again, and the identification from (2.4), we obtain the following
commutative diagram:

�i
B(X) //

✏✏

0(H, B)

qB

✏✏

�i
A(X) //

77pppppp

✏✏

0(H, A)

⇡̃
88qqqqqqq

qA

✏✏

�i
B(X) // 0(H, B)

�i
A(X) //

qqqqqq

qqqqqq

0(H, A) .

˜̄⇡ rrrrrrr

rrrrrrr

(4.5)

Proposition 4.9. Assume the function ⇡̃ : 0(H, A)! 0(H, B) is surjective. Then,
if the front square in diagram (4.5) is a pullback square, so is the back square; that
is,

q�1A
⇣
�i
A

⌘
= �i

A =) q�1B
⇣
�i
B

⌘
= �i

B .

Proof. Suppose the back square is not a pullback square. Then there exist elements
[⌫̄] 2 �i

B and [⌫] 2 0(H, B) \ �i
B such that qB([⌫]) = ⌫̄. By assumption, the map

⇡̃ is surjective; thus, ⇡̃�1([⌫]) is nonempty. Pick an element [� ] 2 ⇡̃�1([⌫]). Then
[� ] 2 0(H, A) \ �i

A, for otherwise [⌫] = ⇡̃([� ]) 2 �i
B . On the other hand,

qA([� ]) = qB(⇡̃([� ])) = qB([⌫]) = [⌫̄] 2 �i
B = �i

A .

Thus, the front square is not a pullback diagram, either.
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4.4. The comparison diagram

Now fix a splitting A ,! A, which gives rise to an isomorphism A ⇠= A�Tors(A).
Similarly, after fixing a splitting H ,! H , the Abelianization H = Gab also de-
composes as H ⇠= H � Tors(H). Theorem 3.2 yields an identification

0(H, A) ⇠= GLn(Z)⇥P 0, (4.6)

where n = rank H , the group P is a parabolic subgroup of GLn(Z) so that
GLn(Z)/P = Grn�r (Zn), and 0 = 0(H/A, A/A).

Putting things together, we obtain a commutative diagram, which we shall refer
to as the comparison diagram,

�i
A(X)

� � //

q|
�iA(X)

✏✏

0(H, A) ⇠= GLn(Z)⇥P 0

q
✏✏

�i
A(X) � � // 0(H, A) ⇠= Grn�r (Zn).

(4.7)

The next result reinterprets the condition that this diagram is a pull-back in terms of
Betti numbers of Abelian covers.

Proposition 4.10. The following conditions are equivalent:

(i) Diagram (4.7) is a pull-back diagram.
(ii) q�1

�
�i

A(X)
�

= �i
A(X).

(iii) If X ⌫̄ is a regular A-cover with finite Betti numbers up to degree i , then any
regular Tors(A)-cover of X ⌫̄ has the same finiteness property.

Proof. The equivalence (i), (ii) is immediate. To prove (ii), (iii), consider an
epimorphism ⌫ : G ⇣ A, and let ⌫̄ = ⇡ � ⌫ : G ⇣ A. We know from (2.10) that
q�1([⌫̄]) coincides with the set of equivalence classes of regular Tors(A)-covers
X⌫
! X ⌫̄ . The desired conclusion follows.

In other words, (4.7) is a pull-back diagram if and only if the homological
finiteness of an arbitrary Abelian cover of X can be tested through the correspond-
ing free Abelian cover.

5. Pontryagin duality

Following the approach from [9, 15], we now discuss a functorial correspondence
between finitely generated Abelian groups and Abelian, complex algebraic reduc-
tive groups.
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5.1. A functorial correspondence

Let C⇤ be the multiplicative group of units in the field of complex numbers. Given
a group G, let bG = Hom(G, C⇤) be the group of complex-valued characters of G,
with pointwise multiplication inherited from C⇤, and identity the character taking
constant value 1 2 C⇤ for all g 2 G. If the group G is finitely generated, then bG is
an Abelian, complex reductive algebraic group. Given a homomorphism ' : G1!
G2, let '̂ :

bG2 ! bG1, ⇢ 7! ⇢ � ' be the induced morphism between character
groups. Since the group C⇤ is divisible, the functor G  bG = Hom(H, C⇤) is
exact.

Now let H = Gab be the maximal Abelian quotient of G. The Abelianization
map, ab : G ! H , induces an isomorphism bab :

bH ' // bG. If H is torsion-free, thenbH can be identified with the complex algebraic torus (C⇤)n , where n = rank(H).
If H is a finite Abelian group, then bH is, in fact, isomorphic to H .

More generally, let H be the maximal torsion-free quotient of H . Fixing a
splitting H ! H yields a decomposition H ⇠= H � Tors(H), and thus an isomor-
phism bH ⇠= bH ⇥ Tors(H). For simplicity, write T =

bH , and T0 for the identity
component of this Abelian, reductive, complex algebraic group; clearly, T0 =

bH is
an algebraic torus.

Conversely, we can associate to T its weight group, Ť = Homalg(T, C⇤),
where the hom set is taken in the category of algebraic groups. The (discrete) group
Ť is a finitely generated Abelian group. Let C[Ť ] be its group algebra. We then
have natural identifications,

maxSpec (C[Ť ]) = Homalg(C[Ť ], C) = Homgroup(Ť , C⇤) = T . (5.1)

The correspondence H! T extends to a duality

Subgroups of H
V ++

Algebraic subgroups of T
✏

kk
(5.2)

where V sends a subgroup ⇠  H to Hom(H/⇠, C⇤) ✓ T , while ✏ sends an
algebraic subgroup C ✓ T to ker(Ť ⇣ Č)  H .

Both sides of (5.2) are partially ordered sets, with naturally defined meets and
joins. As showed in [15], the above correspondence is an order-reversing equiva-
lence of lattices.

5.2. Primitive lattices and connected subgroups

Given a subgroup ⇠  H , set

⇠ :=

�
x 2 H | mx 2 ⇠ for some m 2 N

 
. (5.3)
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Clearly, ⇠ is again a subgroup of H , and H/⇠ is torsion-free. By definition, ⇠ is a
finite-index subgroup of ⇠ ; in particular, rank(⇠) = rank(⇠). The quotient group,
⇠/⇠ , called the determinant group of ⇠ , fits into the exact sequence

0 // H/⇠ // H/⇠ // ⇠/⇠ // 0 . (5.4)

The inclusion ⇠ ,! H induces a splitting ⇠/⇠ ,! H/⇠ , showing that ⇠/⇠ ⇠=
Tors(H/⇠). Since the (Abelian) group ⇠/⇠ is finite, it is isomorphic to its character
group, d⇠/⇠ , which in turn can be viewed as a (finite) subgroup of bH = T .

The subgroup ⇠ is called primitive if ⇠ = ⇠ . Under the correspondence H!
T , primitive subgroups of H correspond to connected algebraic subgroups of T .
For an arbitrary subgroup ⇠  H , we have an isomorphism of algebraic groups,

V (⇠) ⇠=
d⇠/⇠ · V (⇠). (5.5)

In particular, the irreducible components of V (⇠) are indexed by the determinant
group, ⇠/⇠ , while the identity component is V (⇠).

5.3. Pulling back algebraic subgroups

Now let ⌫ : H ⇣ A be an epimorphism, and let ⌫̄ : H ⇣ A be the induced epimor-
phism between maximal torsion-free quotients. Applying the Hom(�, C⇤) functor
to the left square of (5.6) yields the commuting right square in the display below:

H ⌫ // //

✏✏

A

✏✏
H

⌫̄ // // A

 
bH bA? _⌫̂oo

bH

OO

bA .
? _

ˆ̄⌫oo

OO

(5.6)

The morphism ⌫̂ :
bA! bH sends the identity component bA0 to the identity compo-

nent bH0, thereby defining a morphism ⌫̂0 : bA0 ! bH0. Fixing a splitting A ! A
yields an isomorphism bA ⇠= bA ⇥ Tors(A). The following lemma is now clear:

Lemma 5.1. Let ⌫ : H ⇣ A be an epimorphism. Upon identifying bA =
bA0 andbH =

bH0, we have:
(i) ˆ̄⌫ = ⌫̂0,
(ii) im(⌫̂) = V (ker(⌫)).

Consequently, im( ˆ̄⌫) = V (ker(⌫))0.
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5.4. Intersections of translated subgroups

Before proceeding, we need to recall some results from [15], which build on work
of Hironaka [9]. In what follows, T will be an Abelian, reductive complex algebraic
group.

Proposition 5.2 ( [15]). Let ⇠1 and ⇠2 be two subgroups of H , and let ⌘1 and ⌘2
be two elements in T =

bH . Then ⌘1V (⇠1) \ ⌘2V (⇠2) 6= ; if and only if ⌘1⌘�12 2
V (⇠1 \ ⇠2), in which case

dim ⌘1V (⇠1) \ ⌘2V (⇠2) = rank H � rank(⇠1 + ⇠2).

Proposition 5.3 ( [15]). Let C and V be two algebraic subgroups of T .

(i) Suppose ↵1, ↵2, and ⌘ are torsion elements in T such that ↵iC \⌘V 6= ;, for
i = 1, 2. Then

dim (↵1C \ ⌘V ) = dim (↵2C \ ⌘V ).

(ii) Suppose ↵ and ⌘ are torsion elements in T , of coprime order. Then

C \ ⌘V = ; =) ↵C \ ⌘V = ;.

Here is a corollary, which will be useful later on:

Corollary 5.4. Let C and V be two algebraic subgroups of T . Suppose ↵ and ⇢
are torsion elements in T , such that ⇢ /2 CV , ↵�1⇢ 2 CV , and dim(C \ V ) > 0.
Then C \ ⇢V = ; and dim(↵C \ ⇢V ) > 0.

Proof. By Proposition 5.2,

⇢ /2 C · V , C \ ⇢V = ; and ↵�1⇢ 2 C · V , ↵C \ ⇢V 6= ;.

By Proposition 5.3, dim(↵C\⇢V ) = dim(C\V ) > 0. The conclusion follows.

6. An algebraic analogue of the exponential tangent cone

We now associate to each subvariety W ⇢ T and integer d � 1 a finite collection,
4d(W ), of subgroups of the weight group H = Ť , which allows us to generalize
the exponential tangent cone construction from [4].

6.1. A collection of subgroups

Let T be an Abelian, reductive, complex algebraic group, and consider a Zariski
closed subset W ⇢ T . The translated subtori contained in W define an interesting
collection of subgroups of the discrete group H = Ť .
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Definition 6.1. Given a subvariety W ⇢ T , and a positive integer d, let 4d(W ) be
the collection of all subgroups ⇠  H for which the following two conditions are
satisfied:

(i) The determinant group ⇠/⇠ is cyclic of order dividing d;
(ii) There is a generator ⌘ 2 d⇠/⇠ such that ⌘ · V (⇠) is a maximal, positive-

dimensional, torsion-translated subtorus in W .

Clearly, if d | m, then 4d(W ) ✓ 4m(W ). Although this is not a priori clear from
the definition, we shall see in Proposition 6.8 that 4d(W ) is finite, for each d � 1.

To gain more insight into this concept, let us work out what the sets 4d(W )
look like in the case when W is a coset of an algebraic subgroup of T .

Lemma 6.2. Suppose W = ⌘V (�), where � is a subgroup of H and ⌘ 2 bH is a
torsion element. Write V (�) =

S
⇢2d�/� ⇢V (�). Then

4d(W )=
n
⇠ H

��
9 ⇢ 2 d�/� such that ord(⌘⇢) | d and dH/⇠ =

[
m�1

(⌘⇢)mV (�)
o
.

Corollary 6.3. If � is a primitive subgroup of H and ⌘ is an element of order d inbH , then 4d(⌘V (�)) consists of the single subgroup ⇠  � for which ⇠ = � andd�/⇠ = h⌘i.

Now note that 4d commutes with unions: if W1 and W2 are two subvarieties
of T , then

4d(W1 [W2) = 4d(W1) [4d(W2). (6.1)
Lemma 6.2, then, provides an algorithm for computing the sets 4d(W ), whenever
W is a (finite) union of torsion-translated algebraic subgroups of T .
Example 6.4. Let H = Z2, and consider the subvariety W = {(t, 1) | t 2 C⇤} [
{(�1, t) | t 2 C⇤} inside T = (C⇤)2. Note that W = V (⇠1) [ ⌘V (⇠2), where
⇠1 = 0� Z, ⇠2 = Z� 0, and ⌘ = (�1, 1). Hence, 4d(W ) = {⇠1} if d is odd, and
4d(W ) = {⇠1, 2⇠2} if d is even.

6.2. The exponential map

Consider now the lattice

H = H_ := Hom(H, Z). (6.2)

Evidently, H ⇠= H/Tors(H). Moreover, each subgroup ⇠  H gives rise to a
sublattice (H/⇠)_  H_.

Let Lie(T ) be the Lie algebra of the complex algebraic group T . The exponen-
tial map exp : Lie(T )! T is an analytic map, whose image is T0. Let us identify
T0 = Hom(H_, C⇤) and Lie(T ) = Hom(H_, C). Under these identifications, the
corestriction to the image of the exponential map can be written as

exp = Hom(�, e2⇡ i z) : Hom(H_, C)! Hom(H_, C⇤), (6.3)
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where z 7! ez is the usual exponential map fromC toC⇤. Finally, upon identifying
Hom(H_, C) withH⌦C, we see that T0 = exp(H⌦C).

The correspondence T  H = (Ť )_ sends an algebraic subgroup W inside
T to the sublattice � = (W̌ )_ inside H. Clearly, � = Lie(W ) \H is a primitive
lattice; furthermore, exp(� ⌦C) = W0. As shown in [15], we have

V ((H/�)_) = exp(� ⌦C), (6.4)

where both sides are connected algebraic subgroups inside T0 = exp(H⌦C).

6.3. Exponential interpretation

The construction from Section 6.1 allows us to associate to each subvariety W ⇢ T
and each integer d � 1 a subset ⌧d(W ) ✓ H_, given by

⌧d(W ) =

[
⇠24d (W )

(H/⇠)_. (6.5)

The next lemma reinterprets the set ⌧1(W ) in terms of the “exponential tangent
cone” construction introduced in [4] and studied in detail in [14].

Lemma 6.5. For every subvariety W ⇢ T ,

⌧1(W ) = {x 2 H_ | exp(�x) 2 W, for all � 2 C}. (6.6)

Proof. Denote by ⌧ the right-hand side of (6.6). Given a non-zero homomorphism
x : H ! Z such that x 2 ⌧ , the subgroup ker(x)  H is primitive and V (ker(x)) =

exp(Cx) ✓ W . Hence, we can find a subgroup ⇠  H such that ⇠ is primitive,
V (ker(x)) j V (⇠), and V (⇠) ✓ W is a maximal subtorus. By (6.4), we have that
V (⇠) = exp((H/⇠)_ ⌦C), which implies x 2 ⌧1(W ).

Conversely, for any non-zero element x 2 ⌧1(W ), there is a subgroup ⇠ 
H such that ⇠ 2 41(W ) and x 2 (H/⇠)_. Thus, Cx ✓ (H/⇠)_ ⌦ C, and so
exp(Cx) ✓ exp((H/⇠)_ ⌦ C) = V (⇠) ✓ W . Since x 6= 0, the map x : H ! Z
is surjective; thus, V (ker(x)) = V ((H/�)_), where � is the rank-1 sublattice ofH
generated by x . Hence, V (ker(x)) = exp(� ⌦C) ✓ W , and so x 2 ⌧ .

Using now the characterization of exponential tangent cones given in [4, 14],
we obtain the following immediate:

Corollary 6.6. ⌧1(W ) is a finite union of subgroups of H_.

Thus, the set ⌧Q
1 (W ) =

S
⇠241(W )(H/⇠)_ ⌦Q is a finite union of linear sub-

spaces in the vector space Qn , where n = rank H .
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Example 6.7. Let T = (C⇤)n , and suppose W = Z( f ), for some Laurent poly-
nomial f in n variables. Write f (t1, . . . , tn) =

P
a2S cat

a1
1 · · · tann , where S is a

finite subset of Zn , and ca 2 C⇤ for each a = (a1, . . . , an) 2 S. We say a parti-
tion p = (p1 | · · · | pq) of the support S is admissible if

P
a2p j ca = 0, for each

1  j  q. To such a partition, we associate the subgroup

L(p) = {x 2 Zn
| (a � b) · x = 0, 8a, b 2 p j , 8 1  j  q}. (6.7)

Then ⌧1(W ) is the union of all subgroups L(p), where p runs through the set of
admissible partitions of S. In particular, if f (1) 6= 0, then ⌧1(W ) = ;.

Proposition 6.8. For each d � 1, the set 4d(W ) is finite.

Proof. Fix an integer d � 1. For any torsion point ⌘ 2 T whose order divides d,
consider the set 4d(W, ⌘) of subgroups ⇠  H for which d⇠/⇠ = h⌘i and ⌘ · V (⇠)
is a maximal, positive-dimensional, torsion-translated subtorus in W . Then

4d(W ) =

[
⌘

4d(W, ⌘), (6.8)

where the union runs over the (finite) set of torsion points ⌘ 2 T whose order
divides d.

For each such point ⌘, we have a map 4d(W, ⌘) ! 41(⌘�1W ), ⇠ 7! ⇠ .
Clearly, this map is an injection. Now, Corollary 6.6 insures that the set 41(W ) is
finite. Thus, the set 41(⌘�1W ) is also finite, and we are done.

7. The incidence correspondence for subgroups of H

We now single out certain subsets �A(⇠) and UA(⇠) of the parameter set 0(H, A),
which may be viewed as analogues of the special Schubert varieties in Grassmann
geometry.

7.1. The sets �A(⇠)

We start by recalling a classical geometric construction. Let V be a variety in
Qn defined by homogeneous polynomials. Set m = dim V , and assume m > 0.
Consider the locus of r-planes in Qn intersecting V non-trivially,

�r (V ) =

�
P 2 Grr (Qn)

�� dim(P \ V ) > 0
 
. (7.1)

This set is a Zariski closed subset of Grr (Qn), called the variety of incident r-
planes to V . For all 0 < r < n � m, this is an irreducible subvariety, of dimension
(r � 1)(n � r) + m � 1.

Particularly simple is the case when V is a linear subspace L ⇢ Qn . The
corresponding incidence variety, �r (L), is known as the special Schubert variety
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defined by L . Clearly, �1(L) = P(L), viewed as a projective subspace inQPn�1 :=

P(Qn).
Now let H be a finitely generated Abelian group, let A be a factor group of H ,

and let 0(H, A) = Epi(H, A)/Aut(A).

Definition 7.1. Given a subgroup ⇠  H , let �A(⇠) be the set of all [⌫] 2 0(H, A)
for which rank(ker(⌫) + ⇠) < rank H .

When A is torsion-free, we recover the classical definition of special Schubert
varieties. More precisely, set n = rank H and r = rank A. We then have the
following lemma.

Lemma 7.2. Under the natural isomorphism 0(H, A) ⇠= Grr (Qn), the set �A(⇠)
corresponds to the special Schubert variety �r ((H/⇠)_ ⌦Q).

Proof. Let Grr (H_ ⌦ Q) be the Grassmannian of r-dimensional subspaces in the
vector space H_ ⌦ Q ⇠= Qn . Given an epimorphism ⌫ : H ⇣ A and a subgroup
⇠  H , we have

rank(ker(⌫) + ⇠) < rank H () dim((H/ ker(⌫))_ ⌦Q \ (H/⇠)_ ⌦Q) > 0.

Thus, the isomorphism

0(H, A)
' // Grr (H_ ⌦Q), [⌫] 7! (H/ ker(⌫))_ ⌦Q

establishes a one-to-one correspondence between �A(⇠) and �r ((H/⇠)_ ⌦Q).

For instance, if A is infinite cyclic, then the parameter set 0(H, Z) may be
identified with the projective space P(H_), while the set �Z(⇠) coincides with the
projective subspace P((H/⇠)_).

Example 7.3. Let ⇠  Z2 be the sublattice spanned by the vector (a, b) 2 Z2.
Then �Z(⇠) ⇢ 0(Z2, Z) corresponds to the point (�b, a) 2 QP1.

The sets �A(⇠) can be reconstructed from the classical Schubert varieties �A(⇠)

associated to the lattice A = A/Tors(A) by means of the set fibration described in
Theorem 3.2. More precisely, we have the following:

Proposition 7.4. Let q : 0(H, A)! 0(H, A) be the natural projection map. Then

(i) q(�A(⇠)) = �A(⇠),
(ii) q�1(�A(⇠)) = �A(⇠).

Therefore, �A(⇠) fibers over the Schubert variety �A(⇠), with each fiber isomorphic
to the set 0(H/A, A/A).



HOMOLOGICAL FINITENESS OF ABELIAN COVERS 125

7.2. The sets UA(⇠)

Although simple to describe, the sets �A(⇠) do not behave too well with respect to
the correspondence between subgroups of H and algebraic subgroups of T =

bH .
This is mainly due to the fact that the �A-sets do not distinguish between a subgroup
⇠  H and its primitive closure, ⇠ . To remedy this situation, we identify certain
subsets UA(⇠) ✓ �A(⇠) which turn out to be better suited for our purposes.
Definition 7.5. Given a subgroup ⇠  H , let UA(⇠) be the set of all [⌫] 2 �A(⇠)
for which ker(⌫) \ ⇠ ✓ ⇠ .

In particular, if ⇠ = ⇠ , then UA(⇠) = �A(⇠). In general, though, UA(⇠) $
�A(⇠). In order to reinterpret this definition in more geometric terms, we need a
lemma.
Lemma 7.6. Let ⇠  H be a subgroup such that ⇠/⇠ is cyclic, and let �  H be
another a subgroup. Then the following conditions are equivalent:
(i) � \ ⇠ ✓ ⇠ ,
(ii) V (�) \ ⌘V (⇠̄) 6= ;, for some generator ⌘ of d⇠/⇠ ,
(iii) V (�) \ ⌘V (⇠̄) 6= ;, for any generator ⌘ of d⇠/⇠ ,
(iv) ⌘ 2 V (ker(⌫) \ ⇠), for some generator ⌘ of d⇠/⇠ ,
(v) ⌘ 2 V (ker(⌫) \ ⇠), for any generator ⌘ of d⇠/⇠ .

Proof. Let ⌘ be a generator of the finite cyclic group d⇠/⇠ . We then have

✏(h⌘i) \ ⇠ = ⇠. (7.2)

By Proposition 5.2, the intersection V (�) \ ⌘V (⇠̄) is non-empty if and only if
⌘ 2 V (� \ ⇠̄), that is, h⌘i ✓ V (� \ ⇠̄), which in turn is equivalent to

✏(h⌘i) ◆ � \ ⇠̄ . (7.3)

In view of equality (7.2), inclusion (7.3) is equivalent to � \ ⇠ ✓ ⇠ . This shows (i)
, (ii).

The other equivalences are proved similarly.

Corollary 7.7. Let ⇠  H be a subgroup, and assume ⇠/⇠ is cyclic. Let ⌫ : H ⇣ A
be an epimorphism. Then

[⌫] 2 UA(⇠) () dim (V (ker(⌫)) \ ⌘V (⇠)) > 0

for any (or, equivalently, for some) generator ⌘ 2d⇠/⇠ .
Despite their geometric appeal, the sets UA(⇠) do not enjoy a naturality prop-

erty analogous to the one from Proposition 7.4. In particular, the projection map
q : 0(H, A) ! 0(H, A) may not restrict to a map UA(⇠) ! UA(⇠). Here is a
simple example:
Example 7.8. Let ⌫ : H ⇣ A be the canonical projection from H = Z2 to A =

Z� Z2, and let ⇠ = ker(⌫). Then [⌫] 2 UA(⇠), but [⌫̄] /2 UA(⇠).
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8. The incidence correspondence for subvarieties of bH
In this section, we introduce and study certain subsets 7A(W ) ✓ 0(H, A), which
can be viewed as the toric analogues of the classical incidence varieties �r (V ) ✓
Grr (Qn).

8.1. The sets UA(W )

Let us start by recalling some constructions we discussed previously. In Section
6.1, we associated to each subvariety W of the algebraic group T =

bH and each
integer d � 1 a certain collection4d(W ) of subgroups of H . In Section 7.2, we as-
sociated to each subgroup ⇠  H and each Abelian group A a certain subsetUA(⇠)
of the parameter set 0(H, A) = Epi(H, A)/Aut(A). Putting together these two
constructions, we associate now to W a family of subsets of 0(H, A), as follows.
Definition 8.1. Given a subvariety W ⇢ T , an Abelian group A, let

UA(W ) =

[
d�1

UA,d(W ), (8.1)

where
UA,d(W ) =

[
⇠24d (W )

UA(⇠). (8.2)

By Proposition 6.8, the union in (8.2) is a finite one.
Lemma 8.2. The set UA,d(W ) consists of all [⌫] 2 0(H, A) for which there is
a subgroup ⇠  H and an element ⌘ 2 bH of order dividing d such that ⌘V (⇠)
is a maximal, positive-dimensional translated subtorus in W , and dim (V (ker ⌫) \
⌘V (⇠)) > 0.
Proof. Let ⌫ : H ⇣ A be an epimorphism such that [⌫] 2 UA(⇠), for some ⇠ 2
4d(W ). According to Definition 6.1, this means that the group ⇠/⇠ is cyclic of
order dividing d, and there is a generator ⌘ 2 d⇠/⇠ such that ⌘V (⇠) is a maximal,
positive-dimensional translated subtorus in W . In view of Corollary 7.7, the fact
that [⌫] 2 UA(⇠) insures that V (ker(⌫)) \ ⌘V (⇠) has positive dimension.

The case d = 1 is worth singling out:
Corollary 8.3. LetW ⇢ T be a subvariety. Set n = rank H and r = rank A. Then:
(i) UA,1(W ) =

S
⇠241(W ) �A(⇠);

(ii) Under the isomorphism 0(H, A) ⇠= Grr (Qn), the set UA,1(W ) corresponds
to the incidence variety �r (⌧

Q
1 (W )).

In general, the set UA(W ) is larger than UA,1(W ). Here is a simple example; a
more general situation will be studied in Section 12.3.
Example 8.4. Let H = Z2 and let W ⇢ (C⇤)2 be the subvariety from Example
6.4. Pick A = Z� Z2, and identify 0(H, A) with QP1. Then UA,d(W ) = {(1, 0)}
or {(1, 0), (0, 1)}, according to whether d is odd or even.
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8.2. The sets 7A(W )

As before, let H be a finitely-generated Abelian group, and let T =
bH be its Pon-

tryagin dual. The next definition will prove to be key to the geometric interpretation
of the (generalized) Dwyer–Fried invariants.
Definition 8.5. Given a subvarietyW ⇢ T , and an Abelian group A, define a subset
7A(W ) of the parameter set 0(H, A) by setting

7A(W ) =

�
[⌫] 2 0(H, A) | dim(V (ker ⌫) \W ) > 0

 
. (8.3)

Roughy speaking, the set 7A(W ) ⇢ 0(H, A) associated to a variety W ⇢ T is the
toric analogue of the incidence variety �r (V ) ⇢ Grr (Qn) associated to a homoge-
neous variety V ⇢ Qn .

It is readily seen that 7A commutes with unions: if W1 and W2 are two subva-
rieties of T , then

7A(W1 [W2) = 7A(W1) [7A(W2). (8.4)
Moreover, 7A(W ) depends only on the positive-dimensional components of W .
Indeed, if Z is a finite algebraic set, then 7A(W [ Z) = 7A(W ).

The next result gives a convenient lower bound for the 7-sets.

Proposition 8.6. Let A be a quotient of H . Then

UA(W ) j 7A(W ). (8.5)

Proof. Let ⌫ : H ⇣ A be an epimorphism such that [⌫] 2 UA,d(W ), for some d �
1. By Lemma 8.2, we have that dim(V (ker ⌫) \W ) > 0. Thus, [⌫] 2 7A(W ).

As we shall see in Example 10.8, inclusion (8.5) may well be strict.

8.3. Translated subgroups

If the variety W is a torsion-translated algebraic subgroup of T , we can be more
precise.

Theorem 8.7. Let W = ⌘V (⇠), where ⇠  H is a subgroup, and ⌘ 2 bH has finite
order. Then 7A(W ) = UA,c(W ), where c = ord(⌘) · c(⇠/⇠).

Proof. Inclusion ◆ follows from Proposition 8.6, so we only need to prove the
opposite inclusion. Write

V (⇠) =

[
⇢2d⇠/⇠

⇢V (⇠).

Let ⌫ : H ⇣ A be an epimorphism such that [⌫] 2 7A(⌘V (⇠)). Hence, there is a
character ⇢ : ⇠/⇠ ! C⇤ such that dim (V (ker(⌫)) \ ⌘⇢V (⇠)) > 0. Consider the
subgroup

� = ✏

✓[
m

(⌘⇢)mV (⇠)

◆
.
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Lemma 6.2 implies that � 2 4d(⌘V (⇠)), where d = ord(⌘⇢). Using Corollary 7.7,
we conclude that [⌫] 2 UA(�).

Finally, set c = ord(⌘) · c(⇠/⇠). Then clearly [⌫] 2 UA,c(W ), and we are
done.

Here is an alternate description of the set 7A(W ), in the case when W is an
algebraic subgroup of T , translated by an element ⌘ 2 T , not necessarily of finite
order.

Theorem 8.8. Let ⇠  H be a subgroup, and let ⌘ 2 bH . Then
7A(⌘V (⇠)) = �A(⇠) \

�
[⌫] 2 0(H, A) | ⌘ 2 V (ker(⌫) \ ⇠)

 
.

In particular, 7A(V (⇠)) = �A(⇠).

Proof. By Proposition 5.2, we have

{[⌫] | dim(V (ker(⌫)) \ ⌘V (⇠)) > 0}
= {[⌫] | V (ker(⌫)) \ ⌘V (⇠) 6= ;} \ {[⌫] | rank(ker(⌫) + ⇠) < rank H}.

Moreover, V (ker(⌫)) \ ⌘V (⇠) 6= ; () ⌘ 2 V (ker(⌫) \ ⇠), and we are done.

Remark 8.9. In the case when A is a free Abelian group of rank r and ⇠ is a
primitive subgroup of H = Zn , the set 7A(⌘V (⇠)) coincides with the set �r (⇠, ⌘)
defined in [14].

When the translation factor ⌘ from Theorem 8.8 has finite order, a bit more can
be said:

Corollary 8.10. Let W = ⌘V (⇠) be a torsion-translated subgroup of T . Then

7A(W ) = �A(⇠) \
�
[⌫] 2 0(H, A) | ✏(h⌘i) ◆ ker(⌫) \ ⇠

 
.

8.4. Deleted subgroups

We now analyze in more detail the case when the variety W is obtained from an
algebraic subgroup of T by deleting its identity component. First, we need to intro-
duce one more bit of notation.
Definition 8.11. Given a subgroup ⇠  H , and a quotient A of H , consider the
subset ✓A(⇠) ✓ 0(H, A) given by

✓A(⇠) =

[
⇠⇠ 0�⇠ : ⇠/⇠ 0 is cyclic

�
[⌫] 2 0(H, A) | ⌫(x) 6= 0 for all x 2 ⇠ \ ⇠ 0

 
. (8.6)

Note that the indexing set for this union is a finite set, which is empty if ⇠ is primi-
tive. On the other hand, the condition that ⌫(x) 6= 0 depends on the actual element
x in the (typically) infinite set ⇠ \ ⇠ 0, not just on the class of x in the finite group
⇠/⇠ 0. Thus, even when A = Zr , the set ✓A(⇠) need not be open in the Grass-
mannian 0(H, A) = Grr (Qn), where n = rank(H), although each of the sets
{[⌫] | ⌫(x) 6= 0} is open.



HOMOLOGICAL FINITENESS OF ABELIAN COVERS 129

Proposition 8.12. Suppose W = V (⇠) \ V (⇠), for some non-primitive subgroup
⇠  H . Then

7A(W ) = �A(⇠) \ ✓A(⇠). (8.7)

Proof. Write W =

S
⌘2d⇠/⇠\{1} ⌘V (⇠). By Theorem 8.8 and Lemma 7.6, we have

7A(W ) = 7A

✓ [
⌘2d⇠/⇠\{1}

⌘V (⇠)

◆

=

[
⌘2d⇠/⇠\{1}

⇣
�A(⇠) \

�
[⌫] 2 0(H, A) | ⌘ 2 V (ker(⌫) \ ⇠)

 ⌘

= �A(⇠) \
[

⌘2d⇠/⇠\{1}

�
[⌫] 2 0(H, A) | V (ker(⌫)) \ ⌘V (⇠) 6= ;

 

= �A(⇠) \
[

⇠⇠ 0�⇠ : ⇠/⇠ 0 is cyclic

�
[⌫] 2 0(H, A) | ker(⌫) \ ⇠  ⇠ 0

 
.

The desired conclusion follows at once.

8.5. Comparing the sets 7A(W ) and 7A(W )

Fix a decomposition A= A�Tors(A). Clearly, the projection map q=qA:0(H,A)!
0(H, A) sends 7A(W )c to 7A(W )c. On the other hand, as we shall see in Example
10.8, the map q does not always send 7A(W ) to 7A(W ). Nevertheless, in some
special cases it does. Here is one such situation:

Proposition 8.13. Suppose W = ⇢T , where T ⇢ bH is an algebraic subgroup, and
⇢̄ 2 bH/T has finite order, coprime to the order of Tors(A). Then

q(7A(W )) = 7A(W ) and q�1(7A(W )) = 7A(W ).

Therefore,7A(W ) fibers over7A(W ), with each fiber isomorphic to0(H/A, A/A).

Here, ⇢̄ is the image of ⇢ under the quotient map bH ! bH/T .

Proof. Let ⌫ : H ⇣ A be an epimorphism such that [⌫̄] = q([⌫]) does not belong
to 7A(W ), that is, the subtorus im( ˆ̄⌫) = im(⌫̂)1 intersects W in only finitely many
points. We want to show that im(⌫̂)↵ \W is also finite, for all ↵ 2 Tors(A).

First assume im(⌫̂)1
T
W is non-empty. If im(⌫̂)↵

T
W = ;, we are done.

Otherwise, using Proposition 5.3(i) with C = im(⌫̂)1, ↵1 = 1, ↵2 = ↵ and
⌘V = ⇢T , we infer that dim (im(⌫̂)↵ \ ⇢T ) = dim (im(⌫̂)1 \ ⇢T ), and the de-
sired conclusion follows.

Now assume im(⌫̂)1
T
W is empty. Using Proposition 5.3(ii) withC = im(⌫̂)1

and ⌘V = ⇢T , our assumption that im(⌫̂)1
T

⇢T = ; implies that
im(⌫̂)↵

T
⇢T = ;. Thus, the desired conclusion follows in this case, too, and

we are done.
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Corollary 8.14. For every subgroup ⇠  H , the set q(7A(V (⇠))) is contained in
7A(V (⇠)).

In general, though, the projection map q : 0(H, A) ! 0(H, A) does not re-
strict to a map 7A(W ) ! 7A(W ). Proposition 8.16 below describes a situation
when this happens. First, we need a lemma, whose proof is similar to the proof of
Proposition 4.9.

Lemma 8.15. Let ⇡ : A⇣ B be an epimorphism, and let ⇡̃ : 0(H, A)⇣ 0(H, B)
be the induced homomorphism. Then

qA(7A(W )) ✓ 7A(W ) =) qB(7B(W )) ✓ 7B(W ).

Proposition 8.16. Let H be a finitely generated, free Abelian group, and let A be
a quotient of H such that rank A < rank H . Let W be a subvariety of bH of the
form ⇢T [ Z , where Z is a finite set, T is an algebraic subgroup, and ⇢ is a torsion
element whose order divides c(A). Then q

�
7A(W )

�
6j 7A(W ).

Proof. We need to construct an epimorphism ⌫ : H ⇣ A such that [⌫] 2 7A(W ),
yet [⌫̄] /2 7A(W ).
Step 1. First, we assume Tors(A) is a cyclic group. In this case, we claim there
exists a subtorus C of bH , and a torsion element ↵ 2 bH , such that ord↵ = ord ⇢ and
dim(C \ ⇢T )  0, yet dim(↵C \ ⇢T ) > 0.

To prove the claim, set ✏(h⇢i) = L and ⇠ = ✏(T ). Since ⇢ /2 T , we have that
⇠ * L . Thus, there exist a sublattice � of rank-1, such that � ✓ ⇠ and � * L .
Set T 0 = V (�). Then T 0 is a codimension 1 subgroup with T ✓ T 0 ⇢ bH , and
⇢ /2 T 0. Thus, T0 ✓ T 00 ⇢ bH . Let C be any dimension r subtorus of T 00 intersecting
T with positive dimension. Then ⇢ /2 CT ✓ T 0 and dim(C \ T ) > 0. Choose
an element ↵ 2 bH such that ↵�1⇢ = 1 2 CT . Clearly, ord(↵) = ord(⇢) | c(A).
Using Corollary 5.4, we conclude that C \ ⇢T = ; and dim(↵C \ ⇢T ) > 0, thus
finishing the proof of the claim.

Now, the algebraic subgroup
S

k ↵kC corresponds to an epimorphism H ⇣
A � Zd , where d = ord(↵). Since H is torsion-free, Tors(A) is cyclic, and d
divides c(A), this epimorphism can be lifted to an epimorphism ⌫ : H ⇣ A.
Step 2. For the general case, let B be the cyclic subgroup of Tors(A) for which
|B| = c(A) and ord(⇢) | |B|. Notice that B is a direct summand of Tors(A). We
then have the following commuting diagram:

0(H/A, B) // 0(H, A� B)
qA�B // 0(H, A)

0(H/A,Tors(A))

⇡1

OO

// 0(H, A)

⇡2

OO

qA // 0(H, A).

Since H/A is torsion-free, the group Aut(H/A) acts transitively on 0(H/A, B).
Using the assumption that 0(H/A,Tors(A)) 6= ;, we deduce that the map ⇡1 is
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surjective. Thus, the map ⇡2 is surjective. From Step 1, we know that q
�
7A�B(W )

�
is not contained in 7A(W ). Using Lemma 8.15, we conclude that q

�
7A(W )

�
is not

contained in 7A(W ), either.

9. Support varieties for homology modules

We now switch gears, and revisit the Dwyer–Fried theory in a slightly more general
context. In particular, we show that the support varieties of the homology modules
of two related chain complexes coincide.

9.1. Support varieties

Let H be a finitely generated Abelian group, and let F be a finitely generated C-
algebra. Then the group ring R = F[H ] is a Noetherian ring. Let maxSpec(R) be
the set of maximal ideals in R, endowed with the Zariski topology.

Given a module M over F[H ], denote by suppM its support, consisting of
those maximal ideals m 2 maxSpec(F[H ]) for which the localization Mm is non-
zero.

Now let A be another finitely generated Abelian group, and let ⌫ : H ⇣ A
be an epimorphism. Denote by S = F[A] the group ring of A. The extension
of ⌫ to group rings, ⌫ : R ⇣ S, is a ring epimorphism. Let ⌫⇤ : maxSpec(S) ,!
maxSpec(R) be the induced morphism between the corresponding affine varieties.

In the case when F = C, the group ring R = C[H ] is the coordinate ring of
the algebraic group bH = Hom(G, C⇤), and maxSpec(R) =

bH . Furthermore, if M
is an R-module, then

supp(M) = Z(annM), (9.1)

where annM ⇢ R is the annihilator of M , and Z(annM) ⇢ bH is its zero-locus.

Lemma 9.1. If ⌫ : H ⇣ A is an epimorphism, then

(⌫⇤)�1(supp(M)) ⇠= im(⌫̂) \ Z(annM). (9.2)

Proof. From the definitions, we see that the diagram

maxSpec(S) � � ⌫⇤ //

⇠
=

✏✏

maxSpec(R)

⇠
=

✏✏bA � � ⌫̂ // bH
(9.3)

commutes. The conclusion readily follows.
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9.2. Homology modules

We are now ready to state and prove the main result of this section. An abbreviated
proof was given by Dwyer and Fried in [6], in the special case when A is free
Abelian. For the convenience of the reader, we give here a complete proof, modeled
on that from [6].

Theorem 9.2. Let F be a finitely generated C�algebra, let C• be a chain complex
of finitely generated free modules over F[H ], and let ⌫ : H ⇣ A be an epimor-
phism. Viewing F[A] as a module over F[H ] by extension of scalars via ⌫, we
have

supp H⇤(C• ⌦F[H ] F[A]) = (⌫⇤)�1
�
supp H⇤(C•)

�
. (9.4)

Proof. Set n = rank H and r = rank A. There are three cases to consider.
Case 1: H is torsion-free. We use induction on n�r to reduce to the case r = n�1,
in which case Tors(A) = Zq , for some q � 1 (if A is torsion-free, q = 1). We then
have a short exact sequence of chain complexes,

0 // C•

�=xq�1// C•

// C• ⌦F[H ] F[A] // 0 ,

which yields a long exact sequence of homology groups. Consider the map �⇤:M!
M , where M = H⇤(C•), viewed as a module over F[H ]. Localizing at a maximal
idealm, we obtain an endomorphism �m of the finitely-generated module Mm over
the Noetherian ring F[H ]m.

As a standard fact, if �m is surjective, then �m is injective. Using the exact
sequence

0! ker�m! Mm! Mm! coker�m! 0,
we see that coker�m = 0) ker�m = 0. Therefore, supp ker�⇤ ✓ supp coker�⇤,
and so

supp H⇤(C• ⌦F[H ] F[A]) = supp coker�⇤ [ supp ker�⇤
= supp coker�⇤
= suppM/(xq � 1)M
= (suppM) \ Z(xq � 1)
= (suppM) \ im(⌫̂).

When n � r > 1, one can change the basis of H and A so that, the epimorphism
⌫ : H ! A is the composite

H 0 � Z
⌫1 // // H 0 � Zq

⌫2 // // A0 � Zq ,

where ⌫1 is of the form
⇣
id 0
0 ⌫|Z

⌘
, and ⌫2 is of the form

⇣
⌫|H 0 0
0 id

⌘
. By the induction

hypothesis, equality (9.4) holds for ⌫1 and ⌫2. Thus, the theorem holds for the map
⌫ = ⌫2 � ⌫1.



HOMOLOGICAL FINITENESS OF ABELIAN COVERS 133

Case 2: H is finite. In this situation, ⌫ : H ⇣ A is an epimorphism between two
finite Abelian groups. As above, ⌫ induces a ring epimorphism ⌫ : F[H ]⇣ F[A].
The corresponding map, i = ⌫⇤ : maxSpec F[A] ,! maxSpec F[H ], is a closed
immersion. Consider the commuting diagram

maxSpec F[A]
� � i //

✏✏

maxSpec F[H ]

✏✏
maxSpecC[A]

� � j // maxSpecC[H ],

(9.5)

where the morphism j is induced by ⌫ : H ⇣ A. Clearly, j is an open immer-
sion. By commutativity of (9.5), we have that maxSpec F[A] is an open subset of
maxSpec F[H ].

It suffices to show that

supp(Hk(i⇤C̃•)) = i�1(supp Hk(C̃•)) (9.6)

for any k 2 Z, where C̃• is the sheaf of modules over maxSpec(F[H ]) corre-
sponding to the module C• over F[H ], and i⇤C̃• is the sheaf of modules over
maxSpec(F[A]) obtained by pulling back the sheaf C̃•.

For any m 2 maxSpec(F[A]), we have (Hk(C̃•))m = Hk((C̃•)m), since local-
ization is an exact functor, and also (C̃•)m = (i⇤C̃•)m, since i is an open immersion.
Thus,

supp Hk(i⇤C̃•) = {m 2 maxSpec(F[A]) | (Hk(i⇤C̃•))m 6= 0}
= {m 2 maxSpec(F[A]) | (i⇤C̃•)m is not exact at k}
= {m 2 maxSpec(F[A]) | (Hk(C̃•))m 6= 0}
= supp Hk(C̃•) \maxSpec(F[A])

= i�1(supp Hk(C̃•)).

Case 3: H is arbitrary. As in the proof of Theorem 3.2, we can choose splittings
H = H � Tors(H) and A = A � Tors(A) such that H = A � H 0, and the
epimorphism ⌫ : H ⇣ A is the composite

A� H 0 � Tors(H)
⌫1 // // A� ⌫(H 0)� Tors(H)

⌫2 // // A� Tors(A) ,

where ⌫(H 0) is finite, ⌫1 is of the form
✓
id 0 0
0 ⌫|H 0 0
0 0 id

◆
, and ⌫2 is of the form

⇣
id 0 0
0 i ⌫|Tors(H)

⌘
,

with i : ⌫(H 0) ,! Tors(A) the inclusion map.
Set F = C[A � Tors(H)]; by Case 1, equality (9.4) holds for ⌫1. Now set

F = C[A]; by Case 2, equality (9.4) holds for ⌫2. Thus, the theorem holds for the
map ⌫ = ⌫2 � ⌫1.
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9.3. Finite supports

We conclude this section with a result which is presumably folklore. For complete-
ness, we include a proof.

Proposition 9.3. Let A be a finitely generated Abelian group, and let M be a
finitely generated module over the group ring S = C[A]. Then M as a C-vector
space is finite-dimensional if and only if supp(M) is finite.

Proof. Since M is a finitely generated S-module, we can argue by induction on
the number of generators of M . Using the short exact sequence 0 ! hmi !
M ! M/hmi ! 0, where m is a generator of M , and the fact that supp(M) =

supp(hmi) [ supp(M/hmi), we see that it suffices to consider the case when M is
a cyclic module. In this case, M = S/ ann(M) and supp(M) = Z(ann(M)) =

maxSpec(S/ ann(M)). From the assumption that suppM is finite, and using the
Noether Normalization lemma, we infer that S/ ann(M) is an integral extension of
C. Thus, dimC(S/ ann(M)) <1.

Conversely, suppose supp(M) is infinite. Then maxSpec(S/ ann(M)) is infi-
nite, which implies maxSpec(S/ ann(M)) has positive dimension. Choose a prime
ideal p containing ann(M), such that the Krull dimension of S/p is positive. From
the condition that dimC S/ ann(M) < 1, we deduce that dimC S/p < 1. By the
Noether Normalization lemma, S/p is an integral extension of C[x1, . . . , xn], with
n > 0. Thus, dimC S/p =1. This is a contradiction, so we are done.

10. Characteristic varieties and generalized Dwyer–Fried sets

In this section we finally tie together several strands, and show how to determine the
sets �i

A(X) in terms of the jump loci for homology in rank-1 local systems on X .

10.1. The equivariant chain complex

Let X be a connected CW-complex. As usual, we will assume that X has finite
k-skeleton, for some k � 1. Without loss of generality, we may assume that X
has a single 0-cell e0, which we will take as our basepoint x0. Moreover, we may
assume that all attaching maps (Si , ⇤) ! (Xi , x0) are basepoint-preserving. Let
G = ⇡1(X, x0) be the fundamental group of X , and denote by (Ci (X, C), @i )i�0
the cellular chain complex of X , with coefficients in C.

Let p : Xab ! X be the universal Abelian cover. The cell structure on X lifts
in a natural fashion to a cell structure on Xab. Fixing a lift x̃0 2 p�1(x0) identifies
the group H = Gab with the group of deck transformations of Xab, which permute
the cells. Therefore, we may view the cellular chain complex C• = C•(Xab, C)
as a chain complex of left-modules over the group algebra R = C[H ]. This chain
complex has the form

· · ·
// Ci

@̃i // Ci�1 //
· · ·

// C2
@̃2 // C1

@̃1 // C0 . (10.1)
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The first two boundary maps can be written down explicitly. Let e11, . . . , e
1
m be

the 1-cells of X . Since we have a single 0-cell, each e1i is a loop, representing an
element xi 2 G. Let ẽ0 = x̃0, and let ẽ1i be the lift of e

1
i at x̃0; then @̃1(ẽ1i ) =

(xi � 1)ẽ0. Next, let e2 be a 2-cell, and let ẽ2 be its lift at x̃0; then

@̃2(ẽ2) =

mX
i=1

�
�
@r/@xi

�
· ẽ1i , (10.2)

where r is the word in the free group Fm = hx1, . . . , xmi determined by the at-
taching map of the 2-cell, @r/@xi 2 C[Fm] are the Fox derivatives of r , and
� : C[Fm] ! C[H ] is the extension to group rings of the projection map Fm !
G ab
�! H , see [7].

10.2. Characteristic varieties

Since X has finite 1-skeleton, the group H = H1(X, Z) is finitely generated, and
its dual, bH = Hom(H, C⇤), is a complex algebraic group. As is well-known,
the character group bH parametrizes rank-1 local systems on X : given a character
⇢ : H ! C⇤, denote by C⇢ the 1-dimensional C-vector space, viewed as a right
R-module via a · g = ⇢(g)a, for g 2 H and a 2 C. The homology groups of X
with coefficients in C⇢ are then defined as

Hi (X, C⇢) := Hi
�
C•(Xab, C)⌦R C⇢

�
. (10.3)

Definition 10.1. The characteristic varieties of X (over C) are the sets
V i (X) =

�
⇢ 2 Hom(H, C⇤) | dimC Hj (X, C⇢) 6= 0 for some 1  j  i

 
,

The identity component of the character group T =
bH is a complex algebraic

torus, which we will denote by T0. Let H = H/Tors(H) be the maximal torsion-
free quotient of H . The projection map ⇡ : H ⇣ H induces an identification
⇡̂ :

bH ' // bH0. Denote by Wi (X) the intersection of V i (X) with T0 =
bH0. If H is

torsion-free, then Wi (X) = V i (X); in general, though, the two varieties differ.
For each 1  i  k, the set V i (X) is a Zariski closed subset of the complex

algebraic group T , and Wi (X) is a Zariski closed subset of the complex algebraic
torus T0. Up to isomorphism, these varieties depend only on the homotopy type of
X . Consequently, we may define the characteristic varieties of a group G admitting
a classifying space K (G, 1) with finite k-skeleton as V i (G) = V i (K (G, 1)), for
i  k. It is readily seen that V 1(X) = V 1(⇡1(X)). For more details on all this, we
refer to [14].

The characteristic varieties of a space can be reinterpreted as the support vari-
eties of its Alexander invariants, as follows:
Theorem 10.2 ( [13]). For each 1  i  k, the characteristic variety V i (X) coin-
cides with the support of the C[H ]-module

Li
j=1 Hj (Xab, C), while Wi (X) coin-

cides with the support of the C[H ]-module
Li

j=1 Hj (X fab, C).
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10.3. The first characteristic variety of a group

Let G be a finitely presented group. The chain complex (10.1) corresponding to
a presentation G = hx1, . . . , xq | r1, . . . , rmi has second boundary map, @̃2, an m
by q matrix, with rows given by (10.2). Making use of Theorem 10.2, we see that
V 1(G) is defined by the vanishing of the codimension 1 minors of the Alexander
matrix @̃2, at least away from the trivial character 1. This interpretation allows us to
construct groups with fairly complicated characteristic varieties:

Lemma 10.3. Let f = f (t1, . . . , tn) be a Laurent polynomial with integral coef-
ficients. There is then a finitely presented group G with Gab = Zn and V 1(G) =

{z 2 (C⇤)n | f (z) = 0} [ {1}.

Proof. Let Fn = hx1, . . . , xni be the free group of rank n, with Abelianization map
ab : Fn ! Zn , xk 7! tk . Recall the following result of R. Lyndon (as recorded
in [7]): if v1, . . . , vn are elements in the ring Z[Zn

] = Z[t±11 , . . . , t±1n ], satisfying
the equation

Pn
k=1(tk � 1)vk = 0, then there exists an element r 2 F 0n such that

vk = ab(@r/@xk), for 1  k  n.
Making use of this result, we may find elements ri, j 2 F 0n , 1  i < j  n

such that

ab(@ri, j/@xk) =

8><
>:
f · (ti � 1), if k = i
f · (1� t j ), if k = j
0, otherwise.

It is now readily checked that the group G with generators x1, . . . , xn and relations
ri j has the prescribed first characteristic variety.

In certain situations, one may realize a Laurent polynomial as the defining
equation for the characteristic variety by a more geometric construction:
Example 10.4. Let L be an n-component link in S3, with complement X . Choos-
ing orientations on the link components yields a meridian basis for H1(X, Z) = Zn .
Then

V 1(X) = {z 2 (C⇤)n | 1L(z) = 0} [ {1}, (10.4)

where 1L = 1L(t1, . . . , tn) is the (multi-variable) Alexander polynomial of the
link.

10.4. A formula for the generalized Dwyer–Fried sets

Recall that, in Definition 8.5 we associated to each subvariety W ⇢ bH , and each
Abelian group A a subset

7A(W ) =

�
[⌫] 2 0(H, A) | dim(im(⌫̂) \W ) > 0

 
. (10.5)

The next theorem expresses the Dwyer–Fried sets �i
A(X) in terms of the 7-sets

associated to the i-th characteristic variety of X .
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Theorem 10.5. Let X be a connected CW-complex, with finite k-skeleton. Set G =

⇡1(X, x0) and H = Gab. For any Abelian group A, and for any i  k,

�i
A(X) = 0(H, A) \ 7A(V i (X)).

Proof. Fix an epimorphism ⌫ : H ⇣ A, and let X⌫
! X be the corresponding

cover. Recall the cellular chain complex C• = C•(Xab, C) is a chain complex of
left modules over the ring R = C[H ]. If we set S = C[A], the cellular chain
complex C•(X⌫, C) can be written as C• ⌦R S, where S is viewed as a right R-
module via extension of scalars by ⌫.

Consider the S-module

M =

iM
j=1

Hj (X⌫, C) =

iM
j=1

Hj (C• ⌦R S).

By definition, [⌫] belongs to �i
A(X) if and only if the Betti numbers b1(X⌫), . . .

. . . , bi (X⌫) are all finite, i.e., dimC M < 1. By Proposition 9.3, this condition is
equivalent to suppM being finite.

Now let ⌫⇤ : maxSpec(S) ,! maxSpec(R) be the induced morphism between
the corresponding affine schemes. We then have

suppM = (⌫⇤)�1 supp
⇣ iM
j=1

Hj (C•)
⌘

by Theorem 9.2

⇠
= im(⌫̂) \ Z

⇣
ann

⇣ iM
j=1

Hj (Xab, C)
⌘⌘

by Lemma 9.1

= im(⌫̂) \ V i (X) by Theorem 10.2.

This ends the proof.

Remark 10.6. If H is torsion-free, then Wi (X) = V i (X); thus, the set �i
A(X)

depends only the variety Wi (X) and the Abelian group A. On the other hand, if
Tors(H) 6= 0, the variety Wi (X) may be strictly included in V i (X), in which case
the set �i

A(X) may depend on information not carried by Wi (X). We shall see
examples of this phenomenon in Subsection 11.3.

10.5. An upper bound for the �-sets

We now give a computable “upper bound” for the generalized Dwyer-Fried sets
�i
A(X), in terms of the sets introduced in Subsection 8.1.

Theorem 10.7. Let X be a connected CW-complex with finite k-skeleton. Set H =

H1(X, Z), and fix a degree i  k. Let A be a quotient of H . Then

�i
A(X) ✓ 0(H, A) \UA(V i (X)). (10.6)

Proof. Follows at once from Proposition 8.6 and Theorem 10.5.
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In general, inclusion (10.6) is not an equality. Indeed, the fact that V (ker ⌫) \
V i (X) is infinite cannot guarantee there is an algebraic subgroup in the intersection.
Here is a concrete instance of this phenomenon:
Example 10.8. Using Lemma 10.3, we may find a 3-generator, 3-relator group G
with Abelianization H = Z3 and characteristic variety

V 1(G) =

�
(t1, t2, t3) 2 (C⇤)3 | (t2 � 1) = (t1 + 1)(t3 � 1)

 
.

This variety has a single irreducible component, which is a complex torus passing
through the origin; nevertheless, this component does not embed as an algebraic
subgroup in (C⇤)3.

There are 4 maximal, positive-dimensional torsion-translated subtori contained
in V 1(G), namely ⌘1V (⇠1), . . . , ⌘4V (⇠4), where ⇠1, . . . , ⇠4 are the subgroups of Z3
given by

⇠1 = im
⇣ 2 0
0 1
0 0

⌘
, ⇠2 = im

⇣ 0 0
1 0
0 1

⌘
, ⇠3 = im

⇣ 2 �1
�1 0
0 1

⌘
, ⇠4 = im

⇣ 2 �2
�1 0
0 2

⌘
,

and ⌘1 = (�1, 1, 1), ⌘2 = ⌘3 = (1, 1, 1), ⌘4 = (�1, 1,�1).
We claim that, for A = Z2 �Z2, inclusion (10.6) from Theorem 10.7 is strict,

i.e.,
�1
A(G) $ 0(H, A) \UA(V 1(G)).

To prove this claim, consider the epimorphism ⌫ : Z3 ⇣ Z2 � Z2 given by the
matrix

⇣ 1 0 0
0 0 1
0 1 0

⌘
. Note that ker(⌫) = im

⇣ 0
2
0

⌘
, and so im(⌫̂) = {t 2 (C⇤)3 | t2 = ±1}.

The intersection of im(⌫̂) with V 1(G) consists of all points of the form (t1,±1, t3)
with (t1 + 1)(t3 � 1) equal to 0 or �2. Clearly, this is an infinite set; therefore,
[⌫] /2 �1

A(G).
On the other hand, im(⌫̂)\⌘1V (⇠1) = im(⌫̂)\⌘2V (⇠2) = ;, and rank(ker(⌫)+

⇠3) = rank(ker(⌫) + ⇠4) = rank(H). Hence, im(⌫̂)\ ⌘ j V (⇠ j ) is finite, for all j . In
view of Lemma 8.2, we conclude that [⌫] /2 UA(V 1(G)).

11. Comparison with the classical Dwyer–Fried invariants

11.1. The Dwyer–Fried invariants �i
r (X)

In the case of free Abelian covers and the usual �-sets, Theorem 10.5 allows us to
recover the following result from [6,13,14].

Corollary 11.1. Set n = b1(X). Then, for all r � 1,

�i
r (X) =

�
[⌫] 2 Grr (Zn) | im(⌫̂) \Wi (X) is finite

 
.

Using now the identification from Example 7.3, and taking into account Lemma
6.5, Theorem 10.7 yields the following corollary.



HOMOLOGICAL FINITENESS OF ABELIAN COVERS 139

Corollary 11.2 ([13,14]). Let X be a connected CW-complex with finite k-skeleton,
and set n = b1(X). Then �i

r (X) ✓ QPn�1 \ P(⌧1(Wi (X))), for all i  k and all
r  n.

Remark 11.3. As noted in [14], if the varietyWi (X) is a union of algebraic subtori,
then the Dwyer–Fried sets �i

r (X) are open subsets of Grr (Zn), for all r � 1. In
general, though, examples from [6, 14] show that the sets �i

r (X) with r > 1 need
not be open. On the other hand, as noted in [6, 13, 14], the sets �i

1(X) are always
open subsets of Gr1(Zn) = QPn�1. We will come back to this phenomenon in
Section 12, in a more general context.

11.2. The comparison diagram, revisited

As may be expected, the generalized Dwyer–Fried invariants carry more informa-
tion about the homotopy type of a space and the homological finiteness properties of
its regular Abelian covers than the classical ones. To make this more precise, let A
be a quotient of the group H = H1(X, Z). Fix a decomposition A = A� Tors(A),
and identify �i

r (X) = �i
A(X), where r = rank(A). As we saw in Section 4.4, for

each i  k we have a comparison diagram

�i
A(X)

� � //

q|
�iA(X)

✏✏

0(H, A)

q
✏✏

�i
r (X)

� � // 0(H, A)

(11.1)

between the respective Dwyer–Fried invariants, viewed as subsets of the parameter
sets for regular A-covers and A-covers, respectively.

We are interested in describing conditions under which the set �i
A(X) con-

tains more information than �i
r (X). This typically happens when the comparison

diagram (11.1) is not a pull-back diagram, i.e., there is a point [⌫̄] 2 �i
r (X) for

which the fiber q�1([⌫̄]) is not included in �i
A(X). In fact, the number of points in

the fiber which lie in �i
A(X) may vary as we move about �i

r (X).
In view of Theorem 10.5, we have the following criterion:

Proposition 11.4. Diagram (11.1) fails to be a pull-back diagram if and only if
q(7A(V i (X)) is not included in 7r (V i (X), i.e., there is an epimorphism ⌫ : H ⇣
A such that

dim(im ⌫̂ \ V i (X)) > 0, yet dim(im ˆ̄⌫ \ V i (X)) = 0.

From Proposition 4.10, we know diagram (11.1) is a pull-back diagram precisely
when the homological finiteness of an arbitrary A-cover of X can be tested through
the corresponding A-cover. In order to quantify the discrepancy between these two
types of homological finiteness properties, let us define the “singular set”

6i
A(X) =

�
[⌫̄] 2 �i

A(X) | #(q�1([⌫̄]) \�i
A(X)) < #(q�1([⌫̄]))

 
. (11.2)
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We then have:
6i
A(X) = q

⇣
�i
A(X)c

⌘
\�i

A(X). (11.3)

11.3. Maximal Abelian versus free Abelian covers

We now investigate the relationship between the finiteness of the Betti numbers
of the maximal Abelian cover Xab and the finiteness of the Betti numbers of the
corresponding free Abelian cover X fab of our space X .

As before, write H = H1(X, Z) and identify the character group bH with
(C⇤)n ⇥ Tors(H), where n = b1(X).

Proposition 11.5. Suppose Tors(H) 6= 0. Furthermore, assume that Wi (X) is
finite, whereas V i (X) = Wi (X) [ (bH \

bH0). Then
(i) �i

r (X) = Grr (Zn), for all r � 1,
(ii) If rank(A) = rank(H) and Tors(A) 6= 0, then �i

A(X) = ;.

Proof. By Theorem 10.5, an element [⌫] 2 Grr (Zn) belongs to �i
r (X) if and only

if im(⌫̂) \ Wi (X) is finite. By assumption, Wi (X) is finite; thus, the intersection
im(⌫̂) \Wi (X) is also finite. This proves (i).

Again by Theorem 10.5, an element [⌫] 2 0(H, A) belongs to �i
A(X) if and

only if im(⌫̂) \ V i (X) is finite. By assumption, V i (X) = Wi (X) [ (bH \
bH0);

moreover, rank(A) = rank(H) and Tors(A) 6= 0. Thus, the intersection im(⌫̂) \
V i (X) contains at least one component of bH \

bH0, which is infinite. This proves
(ii).

A similar argument yields the following result:

Proposition 11.6. Suppose H1(X, Z) has non-trivial torsion, W 1(X) is finite, and
V 1(X) is infinite. Then b1(X fab) <1, yet b1(Xab) =1.

Proposition 11.7. Suppose X = X1 _ X2, where H1(X1, Z) is free Abelian and
non-trivial, and H1(X2, Z) is finite and non-trivial. If V 1(X1) is finite, then
b1(X fab) <1, yet b1(Xab) =1.

Proof. Let H = H1(X, Z); then H = H1(X1, Z) 6= 0 and Tors(H)= H1(X2, Z) 6=
0. Thus, the character group bH decomposes as bH0 ⇥ Tors(H), with both factors
non-trivial.

Now, W 1(X) = V 1(X1) ⇥ {1} is finite, and thus �1
H (X) is a singleton. On

the other hand, V 1(X) = W 1(X) [ bH0 ⇥ (Tors(H) \ {1}) is infinite, and thus
�1
H (X) = ;.

Example 11.8. Consider the CW-complexes X = S1 _ RP2 and Y = S1 ⇥ RP2.
Then H1(X, Z) ⇠= H1(Y, Z) ⇠= Z ⇥ Z2. Clearly, the free Abelian covers X fab and
Y fab are rationally acyclic; thus both�i

1(X) and�i
1(Y ) consist of a single point, for

all i � 0. On the other hand, the free Abelian cover Xab has the homotopy type of a
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countable wedge of S1’s andRP2’s, whereas Y ab ' S2. Therefore,�1
Z�Z2(X) = ;,

while �1
Z�Z2(Y ) = {point}.

This example shows that the generalized Dwyer–Fried invariants �i
A(X) may

contain more information than the classical ones.

12. The rank-1 case

In this section, we discuss in more detail the invariants �i
A(X) in the case when A

has rank-1, and push the analysis even further in some particularly simple situations.

12.1. A simplified formula for �i
A(X)

Recall that, for a finitely generated Abelian group A, the integer c(A) denotes the
largest order of an element in A. Recall also that, for every subvariety W ⇢ bH and
each index d � 1, we have a subset UA,d(W ) ⇢ 0(H, A), described geometrically
in Lemma 8.2.

Theorem 12.1. Let X be a connected CW-complex with finite k-skeleton. Set H =

H1(X, Z), and fix a degree i  k. If rank(A) = 1, then

�i
A(X) = 0(H, A) \UA,c(A)(V i (X)). (12.1)

Proof. The inclusion ✓ follows from Theorem 10.7, so we only need to prove the
opposite inclusion.

Let ⌫ : H ⇣ A be an epimorphism such that [⌫] /2 �i
A(X). By Theorem 10.5,

the variety im ⌫̂ \ V i (X) has positive dimension. Since rank(A) = 1, there exists a
component of the 1-dimensional algebraic subgroup im ⌫̂ contained in V i (X); that
is, there exists a character ⇢ 2 \Tors(A) such that

⌫̂(⇢) · im ˆ̄⌫ ✓ V i (X).

Now, we may find a primitive subgroup �  H and a torsion character ⌘ 2 bH such
that ⌘V (�) = ⌫̂(⇢)V (�) is a maximal translated subtorus in V i (X) which contains
⌫̂(⇢) · im ˆ̄⌫. Set

⇠ = ✏

✓ [
m�1

⌘mV (�)

◆
.

Clearly, the subgroup ⇠  H belongs to 4d(V i (X)), where d := ord(⇢) divides
c(A). Since ⌫̂(⇢)V (�) ◆ ⌫̂(⇢) · V (ker(⌫̄)), we must also have V (�) ◆ V (ker(⌫̄)),
and so [⌫] 2 UA(⇠). Therefore, [⌫] 2 UA,c(A)(V i (X)), and we are done.

Corollary 12.2 ([13,14]). Let X be a connected CW-complex with finite k-skeleton,
and set n = b1(X). Then �i

1(X) = QPn�1 \ P(⌧1(Wi (X))), for all i  k.

In particular, �i
1(X) is an open subset of the projective space QPn�1.
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12.2. The singular set

Recall from Section 11.2 that we measure the discrepancy between the generalized
Dwyer–Fried invariant �i

A(X) and its classical counterpart, �i
A(X), by means of

the “singular set,” 6i
A(X) = q

�
�i
A(X)c

�
\�i

A(X). When the group A has rank-1,
this set can be expressed more concretely, as follows.

Proposition 12.3. Suppose H is torsion-free, and rank(A) = 1. Then 6i
A(X) con-

sists of all [� ] 2 0(H, A) satisfying the following two conditions:

(i) ker(� ) ◆ ⇠ , for some ⇠ 2 4c(A)(V i (X)), and
(ii) V (ker(� )) * V i (X).

Proof. Without loss of generality, we may assume that 0(H, A) 6= ;. From The-
orem 12.1, we know that �i

A(X) = 0(H, A) \ U , where U = UA,c(A)(V i (X)). It
follows that 6i

A(X) = q(U) \�i
1(X).

Now let S be the set of all [� ] 2 0(H, A) satisfying conditions (i) and (ii). It
suffices to show that q(U) \�i

1(X) = S.
The inclusion S ◆ q(U) \ �i

1(X) is straightforward. To establish the reverse
inclusion, let � : H ⇣ Z represent an element in S. Condition (ii) implies that
[� ] 2 �i

1(X). Recall that ⇡ : A ! A is the natural projection. To prove that
[� ] 2 q(U), it is enough to find an epimorphism ⌫ : H ⇣ A such that ⇡ � ⌫ = �

and V (ker(⌫)) \ ⌘V (⇠) 6= ;, where ⌘ is a generator of d⇠/⇠ .
Set d := ord(⌘). Writing A = Zd1 � · · ·� Zdk , with d1 |d2 | · · · |dk , we have

that d | dk . Denote by ◆ the embedding of the cyclic group h⌘i into bH . Under the
correspondence from (5.2), there is a map ◆̌ : H ⇣ Zd ; clearly, this map factors as
the composite

H
f1 // Zn�1

� Z
id�1// // Zn�1

� Zdk
(0 2) // // Zd ,

for some isomorphism f1 : H ! Zn , where 1 and 2 are the canonical projections.
Recall we are assuming 0(H, A) 6= ;; thus, there is an epimorphism � : H ⇣

A. We then have a commuting diagram

H
� // //

f2
✏✏

A

✏✏✏✏
Zn�1

� Z
(0 1) // // Zdk

for some isomorphism f2 : H ! Zn . The composite ⌫ = � � f �12 � f1 : H ⇣ A,
then, is the required epimorphism.

As we shall see in Examples 12.5 and 12.6, the singular set 6i
A(X) may be

non-empty; in fact, as we shall see in Example 12.7, this set may even be infinite.
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12.3. A particular case

Perhaps the simplest situation when such a phenomenon may occur is the one when
H = Z2 and A = Z� Z2. In this case, the set

0(H/A, A/A) = Epi(Z, Z2)/Aut(Z2)

is a singleton, and so the map qH : 0(H, A) ! 0(H, A) is a bijection. In other
words, if H1(X, Z) = Z2, there is a one-to-one correspondence between regular
Z�Z2-covers of X and regular Z-covers of X , both parametrized by the projective
line QP1 = Gr1(Z2). The comparison diagram, then, takes the form

�i
Z�Z2(X) � � //

� _

q|
�iZ�Z2

(X)

✏✏

QP1

=

✏✏
�i
1(X)

� � // QP1.

(12.2)

Let V i (X) ⇢ (C⇤)2 be the i-th characteristic variety of X . For each pair (a, b) 2
Z2, consider the (translated) subtori T±

a,b = {(t1, t2) 2 (C⇤)2 | ta1 t
b
2 = ±1}.

Proposition 12.4. Suppose H = Z2 and A = Z� Z2. Then

�i
A(X) = {(a, b) 2 QP1 | T+

�b,a ⇢ V i (X) or T�
�b,a ⇢ V i (X)}c,

�i
1(X) = {(a, b) 2 QP1 | T+

�b,a ⇢ V i (X)}c.

Proof. Let (a, b) 2 H and let ⇠  H be the subgroup generated by (�b, a). Then
⇠ 2 41(V i (X)) if and only if ⇠ = ⇠ and V i (X) contains a component of the form
t�b1 ta2 = 1, whereas ⇠ 2 42(V i (X)) if and only if ⇠ has index at most 2 in ⇠ and
V i (X) contains a component of the form t�b1 ta2 = ±1. The conclusions follow from
Theorem 12.1.

In particular, 6i
Z�Z2(X) = �i

1(X) \ �i
Z�Z2(X), and diagram (12.2) is not a

pull-back diagram if and only if V i (X) has a component of the form ta1 t
b
2 + 1 = 0.

A nice class of examples is provided by 2-components links. Let L = (L1, L2)
be such a link, with complement XL . As we saw in Example 10.4, the characteristic
variety V 1(XL) consists of the zero-locus in (C⇤)2 of the Alexander polynomial
1L(t1, t2), together with the identity.

Example 12.5. Let L be the 2-component link denoted 421 in Rolfsen’s tables, and
let XL be its complement. Then 1L = t1 + t2, and so V 1(XL) = {1} [ {(t1, t2) 2
(C⇤)2 | t1t�12 = �1}. Hence, �1

1(XL) = QP1, but �1
Z�Z2(XL) = QP1\{(1, 1)}.
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12.4. Another particular case

The next simplest situation is the one when H = Z3 and A = Z�Z2. In this case,
the set

0(H/A, A/A) = Epi(Z2, Z2)/Aut(Z2) = (Z2 � Z2)⇤

consists of 3 elements. In other words, if H1(X, Z) = Z3, there is a three-to-one
correspondence between the regular Z� Z2-covers of X and the regular Z-covers
of X .
Example 12.6. LetG be the group from Example 10.8. With notation as before, we
have that 41(V 1(G)) = {⇠2, ⇠3} and 42(V 1(G)) = {⇠1, ⇠2, ⇠3, ⇠4}. Consequently,
P(⌧1(V 1(G))) = {(1, 0, 0), (1, 2, 1)}, and so �1

1(G) = QP1\{(1, 0, 0), (1, 2, 1)}.
Let A = Z� Z2. Given an element [⌫] 2 0(H, A) such that ker(⌫) ◆ ⇠1, we

have that [⌫̄] = (0, 0, 1) 2 �1
1(G). Furthermore, q�1([⌫̄]) consists of 3 representa-

tive classes: ⌫1 =

� 0 0 1
1 0 0

�
, ⌫2 =

� 0 0 1
1 1 0

�
, and ⌫3 =

� 0 0 1
0 1 0

�
. By calculation ⌫1 2 U ,

but ⌫2, ⌫3 /2 U . Thus,

�1
A(G) = 0(H, A) \ {q�1(1, 0, 0), q�1(1, 2, 1), ⌫1}.

Example 12.7. Consider the group from [14, Example 8.7], with presentation

G = hx1, x2, x3 | [x21 , x2], [x1, x3], x1[x2, x3]x�11 [x2, x3]i.

The characteristic variety V 1(G) ⇢ (C⇤)3 consists of the origin, together with the
translated torus {(t1, t2, t3) 2 (C⇤)3 | t1 = �1}; hence, �1

1(G) = QP2.
Let A = Z � Z2. The singular set 6 = 61

A(G) consists of those points
[(0, b, c)] 2 QP2 with b and c coprime; thus, 6 ⇠= QP1 is infinite. Moreover, the
restriction q : �1

A(G) \ q�1(6)! �1
1(G) \ 6 is three-to-one. On the other hand,

if [⌫] 2 q�1(6), then either ⌫ is of the form
� 0 b c
1 ✏2 ✏3

�
, in which case [⌫] /2 �1

A(G),
or ⌫ is of the form

� 0 b c
0 ✏2 ✏3

�
, in which case [⌫] 2 �1

A(G). Thus, the restriction
q : �1

A(G) \ q�1(6)! 6 is one-to-one.

13. Translated tori in the characteristic varieties

Throughout this section, we assume all irreducible components of the characteristic
varieties under consideration are (possibly translated) algebraic subgroups of the
character group, a condition satisfied by large families of spaces.

13.1. A refined formula for the �-sets

In Theorem 10.5 we gave a general description of the Dwyer–Freed invariants
�i
A(X) in terms of the characteristic variety W = V i (X), while in Theorem 10.7

we gave a upper bound for those invariants, in terms of certain sets 4d(W ) and
UA(⇠), introduced in Definitions 6.1 and 7.1, respectively.
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We now refine those results in the special case when all components of the
characteristic variety are torsion-translated subgroups of the character group. The
next theorem shows that inclusion (10.6) from Theorem 10.7 holds as equality in
this case, with the union of all sets UA,d(W ) with d � 1 replaced by a single
constituent UA,c(W ), for some integer c depending only on W (and not on A).

Theorem 13.1. Let X be a connected CW-complex with finite k-skeleton. Set H =

H1(X, Z), and fix a degree i  k. Suppose V i (X) is a union of torsion-translated
subgroups of bH . There is then an integer c > 0 such that, for every Abelian
group A,

�i
A(X) = 0(H, A) \UA,c(V i (X)). (13.1)

Proof. By assumption, V i (X) =

Ss
j=1 ⌘ j V (⇠ j ), for some subgroups ⇠ j  H and

torsion elements ⌘ j 2 bH . In the special case when s = 1, the required equality is
proved in Theorem 8.7, with c = ord(⌘1) · c(⇠1/⇠1).

The general case follows from a similar argument, with c replaced by the low-
est common multiple of ord(⌘1) · c(⇠1/⇠1), . . . , ord(⌘s) · c(⇠ s/⇠s).

13.2. Another formula for the �-sets

We now present an alternate formula for computing the sets �i
A(X) in the case

when the i-th characteristic variety of X is a union of torsion-translated subgroups
of the character group. Although somewhat similar in spirit to Theorem 13.1, the
next theorem uses different ingredients to express the answer.

Theorem 13.2. Let X be a connected CW-complex with finite k-skeleton. Suppose
there is a degree i  k such that V i (X) =

Ss
j=1 ⌘ j V (⇠ j ), where ⇠1, . . . , ⇠s are

subgroups of H = H1(X, Z), and ⌘1, . . . , ⌘s are torsion elements in bH . Then, for
each Abelian group A,

�i
A(X) =

s\
j=1

✓
�A(⇠ j )

c
[

�
[⌫] 2 0(H, A) | ✏(h⌘ j i) + ker(⌫) \ ⇠ j

 ◆
. (13.2)

Proof. The result follows from Theorems 10.5 and 8.8, as well as formula (8.4).

The simplest situation in which the above theorem applies is that in which there
are no translation factors in the subgroups comprising the characteristic variety.

Corollary 13.3. Suppose V i (X) = V (⇠1) [ · · · [ V (⇠s) is a union of algebraic
subgroups of bH . Then

�i
A(X) = 0(H, A) \

s[
j=1

q�1(�A(⇠ j )). (13.3)

In particular if X⌫ is a free Abelian cover with finite Betti numbers up to degree i ,
then any finite regular Abelian cover of X⌫ has the same finiteness property.
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Proof. By Theorem 13.2,

�i
A(X) = 0(H, A) \

s[
j=1

�A(⇠ j ). (13.4)

Indeed, for each j we have ⌘ j = 1, and thus {[⌫] | ✏(h⌘ j i) + ker(⌫) \ ⇠ j } is the
empty set. Applying now Proposition 7.4 ends the proof.

13.3. Toric complexes

We illustrate the above corollary with a class of spaces arising in toric topology. Let
L be a simplicial complex with n vertices, and let T n = S1⇥· · ·⇥S1 be the n-torus,
with the standard product cell decomposition. The toric complex associated to L ,
denoted TL , is the union of all subcomplexes of the form

T �
= {(x1, . . . , xn) 2 T n | xi = ⇤ if i /2 � }, (13.5)

where � runs through the simplices of L , and ⇤ is the (unique) 0-cell of S1. Clearly,
TL is a connected CW-complex, with unique 0-cell corresponding to the empty
simplex ;. The fundamental group of TL is the right-angled Artin group

GL = hv 2 V | vw = wv if {v,w} 2 Ei, (13.6)

where V and E denote the 0-cells and 1-cells of L . Furthermore, a classifying space
for ⇡1(TL) is the toric complex T1(L), where 1(L) is the flag complex associated
to L .

Evidently, H1(TL , Z) = Zn; thus, we may identify the character group of
⇡1(TL) with the algebraic torus (C⇤)V := (C⇤)n . For any subset W ✓ V, let
(C⇤)W ✓ (C⇤)V be the corresponding subtorus; in particular, (C⇤); = {1}. Note
that (C⇤)W = V (⇠W), where ⇠W is the sublattice of Zn spanned by the basis vectors
{ei | i /2 W}. From [12], we have the following description of the characteristic
varieties of our toric complex:

V i (TL) =

[
W

V (⇠W), (13.7)

where the union is taken over all subsets W ✓ V for which there is a simplex
� 2 LV\W and an index j  i such that H̃ j�1�|� |(lkLW(� ), C) 6= 0. Here, LW
denotes the subcomplex induced by L on W, and lkK (� ) denotes the link of a
simplex � 2 L in a subcomplex K ✓ L .

From the above, we see that the assumptions from Corollary 13.3 are true
for the classifying space of a right-angled Artin group, and, in fact, for any toric
complex. Hence, we obtain the following corollaries.
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Corollary 13.4. Let TL be a toric complex. Then,

�i
A(TL) = 0(H, A) \

[
W
q�1(�A(⇠W))

where each �A(⇠W)✓Grn�r (Qn) is the special Schubert variety corresponding to
the coordinate plane ⇠W⌦Q, and the union is taken over all subsetsW✓V for which
there is a simplex � 2LV\W and an index j i such that H̃ j�1�|� |(lkLW(� ), C) 6= 0.

Corollary 13.5. Let TL be a toric complex. If T ⌫̄
L is a free Abelian cover with finite

Betti numbers up to some degree i , then all regular, finite Abelian covers of T ⌫̄
L also

have finite Betti numbers up to degree i .

13.4. When the translation order is coprime to |Tors(A)|

We now return to the general situation, where the characteristic variety is a union of
torsion-translated subgroups. In the next proposition, we identify a condition on the
order of translation of these subgroups, insuring that diagram (4.7) is a pull-back
diagram.

As usual, let A be a quotient of H = H1(X, Z), and let A = A/Tors(A) be its
maximal torsion-free quotient. Recall that the canonical projection, q : 0(H, A)!
0(H, A), restricts to a map q|�i

A(X) : �i
A(X) ! �i

A(X), and that resulting com-
muting square is a pull-back diagram if and only if �i

A(X) is the full pre-image
of q.

Using Proposition 8.13 and Theorem 10.5, we obtain the following conse-
quence:

Proposition 13.6. Suppose the characteristic variety V i(X) is of the form
S

j ⇢ j Tj ,
where each Tj ⇢ bH is an algebraic subgroup, and each ⇢̄ j 2 bH/Tj has finite order,
coprime to the order of Tors(A). Then �i

A(X) = q�1
⇣
�i
A(X)

⌘
.

Here is an application. As usual, let X be a connected CW-complex with finite
k-skeleton. Assume H = H1(X, Z) has no torsion, and identify the character torusbH with (C⇤)n , where n = b1(X).

Corollary 13.7. Suppose that, for some i  k, there is an (n � 1)-dimensional
subspace L ✓ H1(X; Q) such that V i (X) = (

S
↵ ⇢↵T ) [ Z , where Z is a finite

set, T = exp(L ⌦C) and ⇢↵ is a torsion element in (C⇤)n of order coprime to that
of Tors(A), for each ↵. Let r = rank A. Then,

�i
A(X) =

8><
>:

0(H, A), if r = 1;
q�1(Grr (L)), if 1 < r < n;
;, if r � n.
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Proof. From [14, Proposition 8.6], we have

�i
r (X) =

8><
>:

QPn�1 if r = 1
Grr (L) if 1 < r < n
; if r � n.

On the other hand, Proposition 13.6 shows that �i
A(X) = q�1

�
�i
r (X)

�
, and so the

desired conclusion follows.

13.5. When the translation order divides |Tors(A)|

To conclude this section, we give some sufficient conditions on the groups H and
A, and on the order of translation of the subgroups comprising V i (X), insuring that
diagram (4.7) is not a pull-back diagram.

Proposition 8.16 and Theorem 10.5 yield the following immediate application:

Corollary 13.8. Let X be a connected CW-complex with finite k-skeleton. Assume
that:

(i) The group H = H1(X, Z) is torsion-free, and A is a quotient of H ;
(ii) There is a degree i  k such that the positive-dimensional components of

V i (X) form a torsion-translated subgroup ⇢T inside bH ;
(iii) The rank of A is less than the rank of H , and ord(⇢) divides c(A).

Then �i
A(X) $ q�1

⇣
�i
A(X)

⌘
.

Note that the hypotheses of Corollary 13.8 are satisfied in Examples 12.5 and
12.7, thus explaining why, in both cases, diagram (4.7) is not a pull-back diagram.
Here is one more situation when that happens:

Corollary 13.9. Suppose V i (X) = ⇢1T1 [ · · · [ ⇢sTs , with each Tj an algebraic
subgroup of bH and each ⇢ j a torsion element in bH \ Tj . Furthermore, suppose
that:

(i) The identity component of T1 is not contained in T 0 = T2 · · · Ts (internal
product in bH );

(ii) The order of ⇢1 divides c(A);
(iii) rank A < rank H � dim T 0.

Then �i
A(X) $ q�1

⇣
�i
A(X)

⌘
.

Proof. Split H as a direct sum, H 0 � H 00, so that bH 0 = T 0 and bH 00 = bH/T 0. Let
p : H ⇣ H 00 be the canonical projection, and let p̂ :

bH 00 ! bH be the induced mor-
phism. By assumption (i), we have that p̂�1(T1) is a positive-dimensional algebraic
subgroup of bH 00. Thus, the positive-dimensional components of W = V i (X) \ bH 00



HOMOLOGICAL FINITENESS OF ABELIAN COVERS 149

form a torsion-translated subgroup of bH 00, namely, p̂�1(⇢1T1). Moreover, assump-
tions (ii) and (iii) imply that rank A < rank H 00 and ord( p̂�1(⇢1)) divides c(A).

Applying now Proposition 8.16 to the algebraic group bH 00 and to the subvariety
W yields an epimorphism µ : H 00 ⇣ A such that im( ˆ̄µ) \ p̂�1(⇢1T1) is finite, and
im(µ̂)\ p̂�1(⇢1T1) is infinite. Setting ⌫ = µ� p, we see that im(⌫̂) = im(µ̂). Thus,
im( ˆ̄⌫) \ V i (X) is finite, while im(⌫̂) \ V i (X) is infinite.

14. Quasi-projective varieties

We conclude with a discussion of the generalized Dwyer–Fried sets of smooth,
quasi-projective varieties.

14.1. Characteristic varieties

A space X is said to be a (smooth) quasi-projective variety if there is a smooth,
complex projective variety X and a normal-crossings divisor D such that X =

X \ D. For instance, X could be the complement of an algebraic hypersurface in
CPd .

The structure of the characteristic varieties of such spaces was determined
through the work of Beauville, Green and Lazarsfeld, Simpson, Campana, and Ara-
pura in the 1990s, and further refined in recent years. We summarize these results,
essentially in the form proved by Arapura.

Theorem 14.1 ([1]). Let X = X \ D, where X is a smooth, projective variety and
D is a normal-crossings divisor:

(i) If either D = ; or b1(X) = 0, then each characteristic variety V i (X) is a
finite union of unitary translates of algebraic subtori of T = H1(X, C⇤);

(ii) In degree i = 1, the condition that b1(X) = 0 if D 6= ; may be lifted.
Furthermore, each positive-dimensional component of V 1(X) is of the form
⇢ · S, where S is an algebraic subtorus of T , and ⇢ is a torsion character.

For instance, if C is a connected, smooth complex curve of negative Euler charac-
teristic, then V 1(C) is the full character group H1(C, C⇤). For an arbitrary smooth,
quasi-projective variety X , each positive-dimensional component of V 1(X) arises
by pullback along a suitable orbifold fibration (or, pencil). More precisely, if ⇢ · S
is such a component, then S = f ⇤(H1(C, C⇤)), for some curve C , and some holo-
morphic, surjective map f : X ! C with connected generic fiber.

Using this interpretation, together with recent work of Dimca, Artal-Bartolo,
Cogolludo, and Matei (as recounted in [14]), we can describe the variety V 1(X), as
follows.

Theorem 14.2. Let X be a smooth, quasi-projective variety. Then

V 1(X) =

[
⇠23

V (⇠) [
[
⇠230

�
V (⇠) \ V (⇠)

�
[ Z ,
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where Z is a finite subset of T = H1(X, C⇤), and 3 and 30 are certain (finite)
collections of subgroups of H = H1(X, Z).

14.2. Dwyer–Fried sets

Using now Theorem 14.2 (and keeping the notation therein), Proposition 8.12 yields
the following structural result for the degree 1 Dwyer–Fried sets of a smooth, quasi-
projective variety.

Theorem 14.3. Let A be a quotient of H . Then

�1
A(X) = 0(H, A) \

✓ [
⇠23

q�1
�
�A(⇠)

�
[

[
⇠230

⇣
q�1

�
�A(⇠)

�
\ ✓A(⇠)

⌘◆
.

In certain situations, more can be said. For instance, Proposition 13.6 yields the
following corollary.

Corollary 14.4. Suppose the order of ⇠/⇠ is coprime to c(A), for each ⇠ 2 30.
Then �1

A(X) = q�1
�
�1
A(X)

�
.

Similarly, Corollary 13.9 has the following consequence:

Corollary 14.5. Suppose H is torsion-free, and there is a subgroup � 2 30 such
that:

(i) V (�) is not contained in T 0 := V (
T

⇠23[30\{�}
⇠);

(ii) There is a non-zero element in �/� whose order divides c(A);
(iii) rank A < codim T 0.

Then �1
A(X) $ q�1

⇣
�1
A(X)

⌘
.

For the remainder of this section, we shall give some concrete examples of
quasi-projective manifolds X for which the computation of the sets �1

A(X) can be
carried out explicitly.

14.3. Brieskorn manifolds

Let (a1, . . . , an) be an n-tuple of integers, with a j � 2. Consider the variety X in
Cn defined by the equations c j1xa11 +· · ·+c jnxann = 0, for 1  j  n�2. Assuming
all maximal minors of the matrix

�
c jk

�
are non-zero, X is a quasi-homogeneous

surface, with an isolated singularity at 0.
The space X admits a good C⇤-action. Set X⇤= X \ 0, and let p : X⇤⇣ C be

the corresponding projection onto a smooth projective curve. Then p⇤: H1(C,C)!
H1(X⇤, C) is an isomorphism, the torsion subgroup of H = H1(X⇤, Z) coincides
with the kernel of p⇤ : H1(X⇤, Z)! H1(C, Z).
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By definition, the Brieskorn manifold M = 6(a1, . . . , an) is the link of the
quasi-homogenous singularity (X, 0). As such, M is a closed, smooth, oriented
3-manifold homotopy equivalent to X⇤. Put

l = lcm(a1, . . . , an), l j = lcm(a1, . . . , ba j , . . . , an), a = a1 · · · an.

The S1-equivalent homeomorphism type of M is determined by the following Seifert
invariants associated to the projection p|M : M ! C :

• The exceptional orbit data, (s1(↵1,�1), · · · , sn(↵n,�n)), with ↵ j = l/ l j , � j l ⌘
a j mod ↵ j and s j = a/(a j l j ), where s j = (↵ j� j ) means (↵ j� j ) repeated s j
times, unless ↵ j = 1, in which case s j = (↵ j� j ) is to be removed from the list;

• The genus of the base curve, given by g =
1
2

⇣
2+ (n � 2)a/ l �

Pn
j=1 s j

⌘
;

• The (rational) Euler number of the Seifert fibration, given by e = �a/ l2.

The group H = H1(M, Z) has rank 2g, and torsion part of order ↵
s1
1 · · ·↵

sn
n · |e|.

Identify the character group bH with a disjoint union of copies of bH0 = (C⇤)2g,
indexed by Tors(H), and set ↵ = ↵

s1
1 · · ·↵

sn
n / lcm(↵1, . . . ,↵n).

Proposition 14.6 ([5]). The positive-dimensional components of V 1(M) are as fol-
lows:

(i) ↵ � 1 translated copies of bH0, if g = 1;
(ii) bH0, together with ↵ � 1 translated copies of bH0, if g > 1.

Denote the elements in Tors(H) corresponding to the ↵� 1 translated copies of bH0
by h1, . . . , h↵�1. We then have the following corollaries.

Corollary 14.7. Let M = 6(a1, . . . , an) be a Brieskorn manifold, and let A be a
quotient of H = H1(M, Z), with r = rank A.

(i) If g > 1, then �1
A(M) = �1

A = ;.
(ii) If g = 1, then �1

A(M) = Grr (Q2g), while

�1
A(M) =

�
[⌫] 2 0(H, A) | ⌫(hi ) = 0 for i = 1, . . . ,↵ � 1

 
.

Corollary 14.8. Suppose g = 1 and ↵ > 1. Then �1
H (M) = {pt}, yet �1

H (M) =

;; that is, b1(M fab) <1, yet b1(Mab) =1.

Example 14.9. Consider the Brieskorn manifold M = 6(2, 4, 8). Using the al-
gorithm described by Milnor in [11], we see that the fundamental group of M has
presentation

G = hx1, x2, x3 | x1x23 = x23x1, x2x
2
3 = x23x2, x

2
3(x3x1x2x

�1
1 x�12 )2 = 1i,
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while its Abelianization is H = Z2 � Z4. Identifying bH = (C⇤)2 ⇥ {±1,±i},
we find that V 1(M) = {1} [ (C⇤)2 ⇥ {�1}. (The positive-dimensional component
in V 1(M) arises from an elliptic orbifold fibration X ! 61 with two multiple
fibers, each of multiplicity 2.) By Proposition 11.6, then, b1(M fab) < 1, while
b1(Mab) =1.

Now take A = Z� Z4. Applying Corollary 14.7 (with g = 1 and ↵ = 2), we
conclude that �1

A(M) = QP1, while �1
A(M) consists of two copies of 0(Z2, A),

naturally embedded in 0(H, A).

14.4. The Catanese–Ciliberto–Mendes Lopes surface

We now give an example of a smooth, complex projective variety M for which
the generalized Dwyer–Fried sets exhibit the kind of subtle behavior predicted by
Corollary 14.5.

Let C1 be a (smooth, complex) curve of genus 2 with an elliptic involution
�1 and C2 a curve of genus 3 with a free involution �2. Then 61 = C1/�1 is
a curve of genus 1, and 62 = C2/�2 is a curve of genus 2. The group Z2 acts
freely on the product C1 ⇥ C2 via the involution �1 ⇥ �2; let M be the quotient
surface. This variety, whose construction goes back to Catanese, Ciliberto, and
Mendes Lopes [3], is a minimal surface of general type with pg(M) = q(M) = 3
and K 2M = 8.

The projection C1 ⇥C2! C1 descends to an orbifold fibration f1 : M ! 61
with two multiple fibers, each of multiplicity 2, while the projection C1⇥C2! C2
descends to a holomorphic fibration f2 : M ! 62. It is readily seen that H =

H1(M, Z) is isomorphic to Z6; fix a basis e1, . . . , e6 for this group. A computa-
tion detailed in [14] shows that the characteristic variety V 1(M) ⇢ (C⇤)6 has two
components, corresponding to the above two pencils; more precisely,

V 1(M) = V (⇠1) [
�
V (⇠2) \ V (⇠2)

�
, (14.1)

where ⇠1 = span{e1, e2} and ⇠2 = span{2e3, e4, e5, e6}.
Now suppose A is a quotient of H = Z6, and let q : 0(H, A)! 0(H, A) be

the canonical projection. By Theorem 14.3,

�1
A(M) = 0(H, A) \

⇣
q�1(�A(⇠1)) [

�
q�1(�A(⇠2)) \ ✓A(⇠2)

�⌘
. (14.2)

Let us describe explicitly this set in a concrete situation:
Example 14.10. Let A = Z � Z2, and identify A = Z and 0(H, Z) = QP5.
The fiber of q is the set 0 = (Z52)⇤. Given an epimorphism ⌫ : H ! Z � Z2, let
⌫̄ : H ! Z and ⌫0 : H ! Z2 be the composites of ⌫ with the projections on the
respective factors. The terms on the right-side of (14.2) are as follows:

• �Z(⇠1) is the projective subspaceQP3=P((H/⇠1)_⌦Q) spanned by e3, . . . , e6;
• �Z(⇠2) is the projective line QP1 = P((H/⇠2)_ ⌦Q) spanned by e1 and e2;
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• q�1(QP1) \ ✓A(⇠2) consists of those [⌫] satisfying ⌫(e3) = · · · = ⌫(e6) = 0,
and ⌫0(e3) = 1, ⌫0(e4) = ⌫0(e5) = ⌫0(e6) = 0.

This completes the description of the set �1
Z�Z2(M). Clearly, �1

1(M) = QP5 \

QP3. Furthermore, note that the restriction map q�1(QP1) \ ✓A(⇠2) ! QP1 is
a 2-to-1 surjection. Thus, the restriction map �1

Z�Z2(M) ! �1
1(M) is not a set

fibration: the fiber over �1
1(M) \ QP1 has cardinality 31, while the fiber over QP1

has cardinality 29.
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