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Global smooth solution of the Cauchy problem
for a model of radiative flow

BERNARD DUCOMET AND ŠÁRKA NEČASOVÁ

Abstract. We consider a simplifiedmodel of compressible Navier-Stokes-Fourier
system coupled to radiation. We prove existence and uniqueness of the solution
for smooth data near a radiative equilibrium.
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1. Introduction

We revisit a model of radiative flow investigated in [12] where the (non-relativistic)
motion of the fluid is described by standard fluid mechanics giving the evolution
of the mass density % = %(t, x), the velocity field Eu = Eu(t, x), and the abso-
lute temperature # = #(t, x) as functions of the time t and the Eulerian spatial
coordinate x 2 R3. The effect of radiation appears through the radiative intensity
I = I (t, x, E!, ⌫), depending on the vector E! 2 S2, where S2 ⇢ R3 denotes the unit
sphere, and the frequency ⌫ � 0. The collective effect of radiation appears in the
model as an average with respect to the variables E! and ⌫ of a quantity depending
on I : the radiation energy ER given by

ER(t, x) =

1
c

Z
S2

Z
1

0
I (t, x, E!, ⌫) dE! d⌫ (1.1)

and the radiation momentum EFR , given by

EFR(t, x) =

Z
S2

Z
1

0
E! I (t, x, E!, ⌫) dE! d⌫. (1.2)

The time evolution of I itself is described by a transport equation with a source
term depending on the absolute temperature, while the effect of radiation on the
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macroscopic motion of the fluid is represented by an extra source term in the energy
equation evaluated in terms of I . More specifically, the system of equations to be
studied reads as follows:

@t% + divx (%Eu) = 0 in (0, T ) ⇥ R3, (1.3)

@t (%Eu) + divx (%Eu ⌦ Eu) + rx p = divxS � ESF in (0, T ) ⇥ R3, (1.4)

@t (%e) + divx (%eEu) + divx Eq = S : rx Eu � p divx Eu � SE in (0, T ) ⇥ R3, (1.5)

1
c
@t I + E! · rx I = S in (0, T ) ⇥ R3 ⇥ (0,1) ⇥ S2. (1.6)

In the right-hand sides of (1.4) and (1.5) there appear the (radiative) momentum
source

ESF (t, x) =

Z
S2

Z
1

0
E! · S(t, x, E!, ⌫) dE! d⌫,

and the (radiative) energy source

SE (t, x) =

Z
S2

Z
1

0
S(t, x, E!, ⌫) dE! d⌫;

then, integrating (1.6) on (0, T ) ⇥ R3 ⇥ (0,1) ⇥ S2, one observes that (1.5) and
(1.6) imply the total energy conservation

@t

✓
%

✓
1
2
|Eu|2 + e

◆
+ ER

◆
+ divx

✓
%

✓
1
2
|Eu|2 + e

◆
Eu + EFR

◆

+ divx
⇣
pEu + Eq � SEu

⌘
= �Eu · ESF in (0, T ) ⇥ R3.

(1.7)

The symbol p = p(%,#) denotes the thermodynamic pressure and e = e(%,#) is
the specific internal energy.

The viscous stress tensor S is determined by

S = 2µD + �divx Eu I, (1.8)

where D ⌘

�
rx Eu + r

t
x Eu

�
is the strain tensor and µ(%,#) > 0 and �(%,#) � 0 are

the viscosity coefficients. The right-hand side of (1.4) can be rewritten

divxS = µ1Eu + (� + µ)rx (divx Eu) + 2rxµ · D + rx� divx Eu. (1.9)

The heat flux Eq is given by the Fourier’s law

Eq = �rx#, (1.10)

with the heat conductivity coefficient (%,#) > 0.
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Finally,
S = Sa,e + Ss, (1.11)

where

Sa,e = �a
⇣
B(⌫,#) � I

⌘
, Ss = �s

✓
1
4⇡

Z
S2
I (·, E!) dE! � I

◆
, (1.12)

with B(⌫,#) = 2h⌫3c�2
⇣
e
h⌫
k# � 1

⌘
�1
the radiative equilibrium function where h

and k are the Planck and Boltzmann constants, �a = �a(⌫,#) � 0 is the absorption
coefficient and �s = �s(⌫,#) � 0 is the scattering coefficient. More restrictions
on these structural properties of constitutive quantities will be imposed in Section 2
below.

System (1.3 - 1.6) is supplemented with the initial conditions

(%, Eu,#)(0, x) = (%0, Eu0,#0)(x), x 2 R3, (1.13)

I (0, x, ⌫, E!) = I0(x, ⌫, E!) for x 2 R3, E! 2 S2, ⌫ 2 R+. (1.14)

System (1.3 - 1.14) can be viewed as a simplied model in radiation hydrodynamics,
the physical foundations of which were described by Pomraning [42] and Miha-
las and Weibel-Mihalas [40] in the full framework of special relativity. Similar
systems have been investigated more recently in astrophysics by Lowrie, Morel and
Hittinger [36], Buet and Després [6], with a special attention to asymptotic regimes,
see also Dubroca and Feugeas [10], Lin [33] and Lin, Coulombel and Goudon [34]
for related numerical issues. Recall that a simplified version of the system (non
conducting fluid at rest) has also been investigated by Golse and Perthame [22]
(see also [23, 24]), where global existence was proved by means of the theory of
nonlinear semi-groups under very general hypotheses on the transport coefficients.

Let us mention that a global existence result has been proved recently in the 3D
setting in [12] for large data under some cut-off hypotheses on transport coefficients,
a global existence result has also been proved in the stationary case in [31] for large
data under different cut-off hypotheses on transport coefficient and that the low
Mach number regime for a system close to (1.3 - 1.14) introduced by Seaı̈d, Teleaga
and col. in [11, 46, 47], has also been investigated in [17]. Moreover a number
of similar results concerning global existence and asymptotic behaviour for large
times have also been considered in the recent past in the one-dimensional geometry
[1,13–16]. Finally in the compressible but inviscid setting, the existence of a local-
in-time solution has been proved recently in [48] together with the existence of
global weak solutions to the Euler-Boltzmann equations in radiation hydrodynamics
in [30] and the Cauchy problem for an inviscid diffusion model was investigated
in [35].
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Our goal in the following is to prove the global existence of a strong solution
to (1.3 - 1.14). As far as a strong solution is concerned, we need to restrict ourselves
to well prepared data in a neighbourhood of an equilibrium. A number of authors
deal with global solutions of the perturbative compressible heat-conducting Navier-
Stokes system, starting with the pioneer article by J. Nash [41]. Among these, let
us quote the works of N. Itaya [28], A. Matsumura and T. Nishida [37, 38], Bui An
Ton [7], and recently D. Hoff [25–27] and S. Jiang [29].

In the following, we consider the global existence of a solution of the Cauchy
problem for the system (1.3)-(1.6) near a (radiative) equilibrium, using the methods
introduced by Hoff in [25–27], extending a previous work of S. Jiang [29] who
considered a perfect gas without radiation.

The paper is organized as follows. In Section 2, we list the principal hypotheses
imposed on constitutive relations and state the main result. In Section 3 we derive
necessary L p-estimates for the unknowns (density, velocity, temperature and radia-
tive energy). In Section 4 we give the proof of Proposition 2.3 and in Section 5 we
give the proof of Theorem 2.2. Finally in the Appendix is given, for completeness,
a short proof of local existence of a solution for our Cauchy problem.

ACKNOWLEDGEMENTS. Part of the paper was written during the second author’s
stay in CEA. She would like to thank to Prof. Ducomet for his hospitality during
her stay.

2. Hypotheses and main results

We suppose that the state functions (pressure p = p(%,#) and internal energy
e = e(%,#)) are smooth positive functions of their arguments submitted to the
thermodynamical constraint @e

@# > 0 and related through Maxwell’s equation

@e
@%

=

1
%2

✓
p(%,#) � #

@p
@#

◆
. (2.1)

In order to simplify the arguments, we suppose in the sequel that the transport co-
efficients µ, ⌘, and  are positive constants. Moreover we assume that �a , �s , B are
continuous functions of ⌫, # such that

0  �a(⌫,#), �s(⌫,#), |@#�a(⌫,#)|, |@#�a(⌫,#)|  c1, (2.2)

0  �a(⌫,#)B(⌫,#), |@# {�a(⌫,#)B(⌫,#)}|  c2, (2.3)
�a(⌫,#), �s(⌫,#), �a(⌫,#)B(⌫,#)  h(⌫), h 2 L1(0,1), (2.4)

for all ⌫ � 0, # � 0. Relations (2.2 - 2.4) represent “cut-off” hypotheses neglecting
the effect of radiation at large frequencies ⌫.

It will be convenient to replace (1.5) by the internal energy equation

@t (%e) + divx (%eEu) + divx Eq = S : rx Eu � pdivx Eu � SE . (2.5)
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Furthermore, dividing (2.5) by # and using Maxwell’s relation (2.1), we get the
entropy equation

@t (%s) + divx (%s Eu) + divx
✓

Eq
#

◆
= &, (2.6)

where

& =

1
#

✓
S : rx Eu �

Eq · rx#

#

◆
�

SE
#

+

Eu · ESF
#

, (2.7)

where the first term &m :=
1
#

⇣
S : rx Eu �

Eq·rx#
#

⌘
is the (positive) matter entropy

production. In order to identify the second term we recall [2] the formula for the
entropy of a photon gas

sR = �

2k
c3

Z
1

0

Z
S2

⌫2
⇥
n log n � (n + 1) log(n + 1)

⇤
d E!d⌫, (2.8)

where n = n(I ) =
c2 I
2h⌫3 is the occupation number. Defining the radiative entropy

flux
EqR = �

2k
c2

Z
1

0

Z
S2

⌫2
⇥
n log n � (n + 1) log(n + 1)

⇤
E! d E!d⌫, (2.9)

and using the radiative transfer equation, we get the equation

@t s R + divx EqR = �

k
h

Z
1

0

Z
S2
1
⌫
log

n
n + 1

S d E!d⌫ =: & R . (2.10)

Checking the identity log n(B)
n(B)+1 =

h⌫
k# with B = B(#, ⌫) the Planck function, and

using the definition of S, the right-hand side of (2.10) rewrites as

& R
=

SE
#

�

Eu · ESF
#

�

k
h

Z
1

0

Z
S2
1
⌫


log

n(I )
n(I ) + 1

� log
n(B)

n(B) + 1

�
�a(B � I ) d E!d⌫

�

k
h

Z
1

0

Z
S2
1
⌫

"
log

n(I )
n(I ) + 1

� log
n( Ĩ )

n( Ĩ ) + 1

#
�s( Ĩ � I ) d E!d⌫

(2.11)

where we used the hypothesis that the transport coefficients �a,s do not depend on
E!. So we finally obtain

@t
⇣
%s + sR

⌘
+ divx

⇣
%s Eu + EqR

⌘
+ divx

✓
Eq
#

◆
= &m + & R . (2.12)

Let us observe after [6] that only the first two terms in the right-hand side of (2.11)
have a definite sign, satisfying the positivity of entropy production rate and that
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the last integral involving ESF is only positive up to a relativistic Eu
c correction. This

fact exhibit a lack of consistency of a model coupling a non-relativistic fluid to a
relativistic photon flow.

Let us give now some definitions used throughout the paper. For any second
rank tensor (matrix) we write the complete contraction as M : M⌘

P3
i,k=1 MikMik .

We denote L p := L p(R3) (resp. Wm,p
:= Wm,p(R3)) the standard Lebesgue

(resp. Sobolev) spaces for p � 1, with norms k · kL p (resp. k · kWm,p ). For a
function depending on space, angular variable and frequency, we will also note L p
for L p(R3 ⇥ S2 ⇥ R+). We write k · k for k · kL2 , Hm for Wm,2 and

R
f dx forR

R3 f (x) dx .
We denote the vorticity tensor by ! =

1
2
�
rx Eu � r

t
x Eu

�
, with components

!i j :=

1
2
�
@i u j � @ j ui

�
. (2.13)

The Lagrangian derivative of a quantity f is given by

ḟ ⌘

d
dt

f := @t f + Eu · rx f. (2.14)

Moreover one has the commutation rule
d
dt

Z
% 8 dx =

Z
% 8̇ dx . (2.15)

Recall the following Euler-Lagrange result (see [25, Lemma 3.2]).

Lemma 2.1. Let t0 2 [0, T ] be fixed. We define the family of particle trajectories
x(y, t) by

dx
dt

(y, t) = Eu(x(y, t), t), x(y, t0) = y.

Let g 2 L1(0, T ), g � 0, and let t 2 [0, T ]. Then each of the integralsZ
g(x(y, t), t) dy and

Z
g(x, t) dx

is bounded by C times the other, where C is a positive constant.

The effective viscous pressure F is generally defined by (see [19], and also
[25,26] in the constant coefficients case)

F(t) :=

⇣
rx1

�1
rx

⌘
: S � (p � p) . (2.16)

It is well defined provided S 2 L2(0, T ; L2(R3; R9)) (see [19]) and the singular
operator rewrites as ⇣

rx1
�1

rx
⌘
i, j

⌘ �RiR j ,
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whereRi is the Riesz operator with symbolRi (⇠) =
i⇠i
|⇠ |
. Recall [19] that as � and

µ are constant
⇣
rx1

�1
rx

⌘
: S

= F�1
⇠!x


i
⇠i⇠ j

|⇠ |
2
�
µ
�
⇠ jFx!⇠ [ui ] + ⇠iFx!⇠ [u j ]

�
+ ��i, j⇠kFx!⇠ [uk]

��

⌘ (2µ + �)divx Eu,

and we get the simple formula

F(t) := (2µ + �)divx Eu � (p � p) . (2.17)

For an equilibrium state defined by
�
%, 0,#, I

�
, with % > 0, # > 0 and I > 0 with

the compatibility condition I = B(⌫,#), we put

e0 := k%0 � %k + k%0 � %kL1 + kEu0kH1 + k#0 � #kH1

+ kER
0 � ER

k + k EU0k + k!0k
2
L4,

(2.18)

and

E0 := e0 + krx%0k + krx%0kL↵ + krx I0k + krx I0kL↵ + krx EU0k, (2.19)

for 3 < ↵ < 6, with

EU0 := %�1
0 (µ1Eu0 + (� + µ)rxdivx Eu0 � rx p(%0,#0)) ,

!0 := !0|t=0 ,

and
ER

=

Z
1

0
B(⌫,#) d⌫.

Finally for a T > 0, we measure the size of the solution by the quantity

A(T ) := sup
t2[0,T ]

n
k% � %k

2
+ k# � #k

2
+ kEuk2 + krx Euk2 + krx#k

2

+kER
� ER

k
2
+ k

˙
Euk2 + k!k

4
L4 + �2k1#k

2
+ �k#̇k

2
o

(t)

+

Z T

0

n
krx Euk2 + krx#k

2
+ krx!k

2
+ k

˙
Euk2 + k#̇k

2
+ k

˙ER
k
2

+k1#k
2
+ krx Euk4L4 + krx ˙

Euk2 + �krx #̇k
2
+ krx Ik2

o
(t) dt,

(2.20)

where � ⌘ �(t) := min{t, 1}.
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The main result of the present paper can be stated as follows:

Theorem 2.2. Let
�
%0�%, Eu0,#0�#, ER

0 �ER
�

2 H3(R3) with inf#0 > 0. Then
there exists a positive constant "1  1 depending only on the physical constants
such that if E0  "1, the Cauchy problem (1.3 - 1.6), has a global unique solution
(%, Eu,#, I ) satisfying

⇣
% � %, Eu,# � #, ER

� ER
⌘

2 C([0,1), H3(R3)),

@t Eu, @t# 2 C([0,1), H1(R3)) \ L2([0,1), H2(R3)),

@t% 2 C([0,1), H2(R3)) \ L2([0,1), H2(R3)),

sup
t�0

k% � %kL1 

1
2

%, sup
t�0

kER
� ER

kL1 

1
2
ER, inf

R3
,R+

#(x, t) > 0.

Using the same strategies as in [25] and [29], the proof of Theorem 2.2 will be
achieved provided that we prove a local existence result for the Cauchy problem (1.3
- 1.6), on a small interval [0, T⇤], which will be obtained using a fixed point theorem
(see the Appendix), and provided we prove suitable global estimates allowing to
continuate the solution beyond T⇤.

These a-priori estimates are the matter of the following proposition:

Proposition 2.3. Let (%, Eu,#, I ) be a smooth solution of (1.3 - 1.6), defined for
t 2 [0, T ]. Then there exist positive constants "  1 and K depending only on the
physical constants such that if e0  " then

A(T )  Ke20, sup
t2[0,T ]

n
k% � %kL1 + �(t)k# � #kL1 + kER

� ER
kL1

o

 Ke0,

and for all q 2 (2,1)

n
k%(T ) � %kL1 + k#(T ) � #kLq + kEu(T )kLq + kER(T ) � ER

kL1

o
! 0

as T ! 1.

Our main goal in the following will be to prove Proposition 2.3. As our sys-
tem is a perturbation of the viscous compressible Navier-Stokes system studied by
S. Jiang in [29], we essentially follow his strategy (see also the closely related works
of D. Hoff [25, 26] and [27]) and insist only on the difficulties involved in the ra-
diative coupling. As previously evoked, once we have shown Proposition 2.3, the
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proof of Theorem 2.2 will follow the lines of the proof in [29, Theorem 1.2] so we
will only sketch its proof in the last section.

3. A priori estimates on radiative and hydrodynamic variables

Let e0  1 and assume that (%,#, I ) satisfy

|%(x, t) � %| < C, �(t)|# � # | < C, |ER
� ER

| < C, (3.1)

where C 
1
2 min{%,#, ER

}, for all x 2 R3, t 2 (0, T ).

3.1. L p-estimates for density

We will show in this section that supt�0 k% � %kL1 and
R T
0 k% � %k

4
L4 dt can be

bounded by suitable powers of e0 and A.

Lemma 3.1. Let 1 < p < 1. The following estimates hold for the velocity Eu and
the effective viscous flux F

krx EukL p C
�
kFkL p+k!kL p+k%�%kL p+k#�#kL p+kI� IkL p

�
, (3.2)

krx FkL p  C
⇣
k
˙
EukL p + k# � #kL p + kI � IkL p

⌘
, (3.3)

Z t

0
kFkL4 ds  CA2(T ), (3.4)

Z t

0
kFkL1 ds  CA1/2(T ), (3.5)

Z t

0
krx Eu : rx Euk2ds  C

✓
e20 + A2(T ) +

Z t

0
k! : !k

2ds
◆

. (3.6)

Proof.

1. Applying the divergence operator to (1.4) we get after (2.16)

1p = divxdivxS � divx% ˙
Eu � divx ESF . (3.7)

Then
1F = 1

⇣
rx1

�1
rx : S � (p � p)

⌘
= divx% ˙

Eu � divx ESF .
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As I and the radiative coefficients are independent of !, we have

ESF (#, I ) = ESF (#, I ) � ESF (#, I ) =

Z
S2

Z
1

0
E!
⇥
S(t, x, E!, ⌫) � S

⇤
dE! d⌫

=

Z
S2

Z
1

0
c E!

⇥
6(⌫,#)I (t, x, E!, ⌫) � 6(⌫,#)I

⇤
dE! d⌫

+

Z
S2

Z
1

0
c E!

h
�a(B � B̄) + �S( Ĩ � Ī )

i
dE! d⌫,

with 6(⌫,#) = �a(⌫,#) + �s(⌫,#). Taking Fourier transform implies, after
(2.17)

@ jFx!⇠ [F] =

⇠i⇠ j

|⇠ |
2 Fx!⇠

⇥
% ˙
Eu
⇤
�

⇠i⇠ j

|⇠ |
2 Fx!⇠

h
ESF � ESF

i
.

Using the Hörmander-Mikhlin theorem (see [21, 45]) with Fourier multiplier
m(⇠) :=

⇠i ⇠ j
|⇠ |
2 , we find (3.3).

2. Estimate (3.2) is proved in the same stroke by introducing the vorticity and the
definition of F in (1.4). In fact checking the identity

(� + 2µ)1Eu = rx F + (� + 2µ)divx! + rx (p � p) � ESF + ESF , (3.8)

observing that, using a Taylor expansion, p � p rewrites

p(%,#) � p(%, %) =

Z 1

0

⇥
(% � %)p%(% + s(% � %),#)

+(# � #)p# (%,# + s(# � #))
⇤
ds,

(3.9)

and taking Fourier transform in (3.8), we get

(� + 2µ)Fx!⇠ [@i u j ] =

⇠i⇠ j

|⇠ |
2 Fx!⇠ [F] + (� + 2µ)

⇠k⇠i
|⇠ |

2 Fx!⇠ [! jk]

+

⇠i⇠ j

|⇠ |
2 Fx!⇠ [p � p] �

⇠i⇠ j

|⇠ |
2 Fx!⇠

h
ESF � ESF

i
.

Applying once more the Hörmander-Mikhlin theorem with the same Fourier
multiplier m(⇠)

⇠i ⇠ j
|⇠ |
2 , we find (3.2).

3. Estimates (3.4) and (3.5) follow from the definition of A(T ).
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4. Estimate (3.6) is a consequence of (3.2) and (3.3).

Then we can estimate
R T
0 k% � %k

4
L4 dt .

Lemma 3.2.

1. sup
t�0

k% � %k
4
L4 +

Z T

0
k% � %k

4
L4 dt  C(e40 + A2(T )), (3.10)

2. sup
t�0

k% � %kL1  C(e0 + A1/2(T )). (3.11)

Proof.

1. Using the definition of F , we rewrite (1.3) as

(� + 2µ)
d
dt

(% � %) = �%F � %(p � p), (3.12)

and multiplying by (% � %)3,we get

1
4

(� + 2µ)
d
dt

(% � %)4 = �%(% � %)3F � %(p � p)(% � %)3.

Using the previous decomposition

p(%,#) � p(%,#) = (% � %)

Z 1

0
@% p(% + s(% � %),#) ds

+ (# � #)

Z 1

0
@# p(%,# + s(# � #)) ds,

and observing that, by (3.1) and thermodynamical stability
8<
:

@% p(% + s(% � %),#) � C1(%,#),

��@# p(%,# + s(# � #))
��
 C2(%,#),

(3.13)

for two positive constants C1,C2. We get after (3.1)

1
4
(�+2µ)

d
dt

(%�%)4+ C1
%

2
(%�%)4

"

4
(% � %)4

+ C"F4+
"

4
(%�%)4+ C"(#�#)4.
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Choosing " <
C1%
2 , integrating on a fixed particle trajectory x(y, t) and using

Lemma 2.1, we get

(% � %)4(x(y, t), t) +

2C1%
� + 2µ

Z t

0
(% � %)4(x(y, s), s) ds

 (%0(y) � %)4 +

4C"

� + 2µ

Z t

0
(F4 + (# � #)4)(x(y, s), s) ds.

(3.14)

Applying Lemma 3.1 and using the definitions of F and A(T ) and the inequality
kwkL4  Ckwk

1/4
krxwk

3/4, we have

Z t

0
(F4 + (# � #)4)(x(y, s), s) ds



Z t

0
(kFkkrx Fk

3
+ k# � #kkrx#k

3)(x(y, s), s) ds

 C
Z t

0

⇢ �
krx Euk + k% � %k + k# � #k

�

⇥

⇣
k
˙
Euk3 + k# � #k

3
L3 + kI � Ik3L3

⌘�
x(y, s), s) ds

+ C
Z t

0

n
k# � #kkrx#k

3
o

(x(y, s), s) ds

 CA(T )

Z t

0

⇣
k
˙
Euk2 + krx#k

2
+ k# � #k

2
+ kI � Ik2

⌘
ds

 CA2(T ), for t 2 [0, T ].

Plugging into (3.14), integrating on R3 and using Lemma 2.1, we get (3.10).
2. Suppose first that T  1 and integrate (3.12) on trajectories. We find

k% � %kL1  k%0 � %kL1

+

%

�+2µ

Z t

0

�
kFkL1 +C1k% � %kL1 +C2k#�#kL1

�
ds,

so

k% � %kL1  e0 + C
Z t

0
k% � %kL1 ds

+ C
Z t

0

�
kFkL1 + k# � #kL1

�
ds,

(3.15)
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for 0  t  T  1. The last term is bounded as follows:
Z t

0

�
kFkL1 + k# � #kL1

�
ds

 C
Z t

0

⇣
kFkL4 + k

˙
EukL4 + k# � #kH2

⌘
ds

 C
Z t

0

⇢⇣
krx Euk1/4 + k% � %k

1/4
+ k# � #k

1/4
⌘

⇥

⇣
k
˙
Euk3/4 + k# � #k

3/4
+ kI � Ik3/4

⌘�
ds

+

Z t

0
k
˙
Euk1/4krx ˙

Euk3/4ds+C
✓Z t

0

⇣
k#�#k

2
+ krx#k

2
+ k1#k

2
⌘
ds
◆1/2

 CA(T )1/8
✓Z t

0

⇣
k
˙
Euk2

⌘
ds

◆3/8

+ C
✓Z t

0

⇣
k
˙
Euk2

⌘
ds

◆1/8 ✓Z t

0
��3/4(s) ds

◆1/2 ✓Z t

0

⇣
�krx ˙

Euk2
⌘
ds

◆3/8

+ CA(T )1/2

 CA(T )1/2.

Plugging into (3.15) and using Gronwall’s inequality we get (3.11) when T  1.
For T � 1, multiplying (3.12) by % � %, we get

1
2

(� + 2µ)
d
dt

(% � %)2 = �%(% � %)2F � %(p � p)(% � %)2.

We get after (3.1)

d
dt

(% � %)2 +

%C1
� + 2µ

(% � %)2  C
⇣
kFk

2
L1 + C2k# � #k

2
L1

⌘
.

Reasoning as above by integrating on a fixed particle trajectory x(y, t) and using
Lemma 2.1, we get

k%�%k
2
L1  k%0�%k

2
L1+C

Z t

0
e��(t�s)

⇣
kFk

2
L4 + k

˙
Euk2L4 + k# � #k

2
L4

⌘
ds,
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with � =
%C1

�+2µ . Then

k% � %k
2
L1  k%0 � %k

2
L1 +C sup

t2[1,T ]

⇣
kFk

1/2
k
˙
Euk3/2+ k# � #k

2
H1

⌘
(t)

+ C
Z t

0

⇣
k
˙
Euk2 + krx ˙

Euk2
⌘
ds  C(e20 + A(T )),

(3.16)

for 1  t  T , and estimate (3.11) then also follows for T � 1.

3.2. Estimates for the radiative quantities

Making use of the “cut-off” hypothesis (2.2), we first deduce a uniform bound

0  I (t, x, ⌫, E!)

 c(T )

 
1+ sup

x2�, ⌫�0,E!2S2
I0

!

 c(T )(1+ I0) for any t 2 [0, T ].

(3.17)

Observe that hypothesis (2.4) together with (3.17) yield

kSEkL1((0,T )⇥�) + kESFkL1((0,T )⇥�;R3
)
 C, (3.18)

which, combined with hypothesis (3.1), implies
���� 1# SE

����
L1((0,T )⇥�)

+

���� 1# ESF
����
L1((0,T )⇥�;R3

)

 C. (3.19)

Finally using a result concerning the velocity averages over the sphere S2 estab-
lished by Golse et al. [23,24], see also Bournaveas and Perthame [5], and hypothe-
sis (2.4), we have the following result (see [23]):

Lemma 3.3. Let I 2 Lq([0, T ]⇥Rn+1⇥S2), @t I+! ·rx I 2 Lq([0, T ]⇥Rn+1⇥
S2) for a certain q > 1. In addition, let I0 ⌘ I (0, ·) 2 L1(Rn+1 ⇥ S2). Then

Ĩ ⌘

Z
S2
I (·, ⌫) dE!

belongs to the space Ws,q([0, T ] ⇥ Rn+1) for any s, 0 < s < inf{1/q, 1 � 1/q},
and

k ĨkWs,q  c(I0)(kIkLq + k@t I + ! · r IkLq ).

Remark 3.4. Note that improved average lemma techniques have been developped
in a recent work of Berthelin and Junca [4].
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Lemma 3.5.

1. sup
t�0

Z
R3

Z
1

0

Z
S2

��I � I
��4 d E! d⌫ dx

+

Z T

0

Z
R3

Z
1

0

Z
S2

��I � I
��4 d E! d⌫ dx dt  C(e40 + A2(T )),

(3.20)

2. sup
t�0

kER
� ER

kL1  C(e0 + A1/2(T )). (3.21)

Proof. The proof is very similar to that of Lemma 3.2, so we only give the main
lines.

1. From the transport equation (1.6), we have

1
4
@t (I � I )4 +

c
4
divx

⇣
E! · rx (I � I )4

⌘
+ (�a + �s)(I � I )4

= �a(B � B)(I � I )3 + �s( Ĩ � I )(I � I )3.

Integrating with respect to E!, ⌫ and x and using Young inequality we find

sup
t�0

Z
R3

Z
1

0

Z
S2

��I � I
��4 d E! d⌫ dx

+

Z T

0
(�a + �s)

Z
R3

Z
1

0

Z
S2

��I � I
��4 d E! d⌫ dx dt

 "

Z T

0
�a

Z
R3

Z
1

0

Z
S2

��I � I
��4 d E! d⌫ dx dt

+ C"

Z T

0

Z
R3

��# � #
��4 dx ds.

Observing that
Z T

0

��# � #
��4
L4 ds 

Z T

0

��# � #
��2

krx#k
3ds  CA(T )

Z T

0
krx#k

2 ds,

we get (3.20).
2. Suppose first that T  1. From the transport equation (1.6), we have

@t (I � I ) + divx (c E! · rx I ) = �a(B � B) � �a(I � I ) + �s( Ĩ � I ). (3.22)

Integrating with respect to E!, ⌫ and using the characteristics, we have

kẼ R
� ER

kL1  kẼ R
0 � ER

kL1 + C
Z t

0
k# � #kL1 ds. (3.23)
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Observing that
Z t

0
k# � #kL1 ds 

Z t

0
k# � #kH2 ds

 C
✓Z t

0

⇣
k# � #k

2
+ krx#k

2
+ k1#k

2
⌘
ds

◆1/2

 CA(T )1/2,

we get
kẼ R

� ER
kL1  CA(T )1/2.

Plugging in (3.23), we find (3.21). For 1  t  T � 1, using the method of
characteristics, multiplying (3.22) by e⇣ t (I � I ) and integrating with respect to
E!, ⌫ and t , we get

kER(t) � ER
k
2
L1  kER(1) � ER

k
2
L1 + C

Z t

1
e�⇣(t�s)

k# � #kL1 ds,

with ⇣ =
1
2 (�a + �s). Then

kER
�ER

k
2
L1  kER(1)�ER

k
2
L1 +C sup

s2[1,T ]

⇣
k# � #k

2
H1(t) + k1#k

2
⌘

(s),

so we conclude that

kER
� ER

k
2
L1  C(e20 + A(T )),

for 1  t  T , and estimate (3.21) then also follows for T � 1.

3.3. L p-estimates for vorticity, velocity and temperature

In the spirit of [29], we have vorticity-velocity estimates. We will adopt the slightly
incorrect notation !p for (!ik)p

Lemma 3.6. The following bounds hold:

1. sup
t2[0,T ]

k!k
4
L4 +

Z T

0

⇣
k!k

4
L4 + k!k

6
L6

⌘
dt  C

⇣
e20 + A4/3 + A3

⌘
, (3.24)

2.
Z T

0
krx Euk4L4 dt  C

⇣
e20 + A4/3 + A3

⌘
. (3.25)
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Proof.

1. Applying @k to equation (1.4), we get

⇢
d
dt

@kui = µ1@kui + (� + µ)@k@idivx Eu

� @k% u̇i � %@k((Eu · rx )ui ) � @k@i p � @k SF i .

Subtracting the same relation with k $ i we have

⇢
d
dt

!ik = µ1!ik � @k% u̇i + @i% u̇k

+ %
⇥
@i (Eu · rx )uk � @k(Eu · rx )ui

⇤
� @k SF i + @i SF k .

(3.26)

Multiplying by (! : !)!ik and integrating by parts on [0, t] ⇥ R3, we get

k!k
4
L4 +

Z t

0

Z
!2|rx!|

2 dx ds

 C(e20 + A2)

+ C
Z t

0

Z ⇣
|rx Eu|2|!|

3
+ |

˙
Eu||!|

2
|rx!| + |!|

3
|rx ˙

Eu|
⌘
dx ds

+ C
����
Z t

0

Z
!3 (@k SF i � @i SF k) dx ds

���� .

(3.27)

After the definition of F , using the Gagliardo-Nirenberg inequality, we find
Z t

0

Z
!4 dx ds 

Z t

0

Z ⇣
|!|

10/3
+ |!|

6
⌘
dx ds

 C
Z t

0

⇣
k!k

4/3
krx!k

2
+ k!k

6
⌘
ds

 CA5/3 + C
Z t

0
k!k

6 ds.

So, adding
R t
0
R �

|!|
4
+ |!|

6� dx ds to (3.27), we get
k!k

4
L4 +

Z t

0

Z
!2

⇣
|!|

2
+ |!|

3
+ |rx!|

2
⌘
dx ds

 C
⇣
e20 + A2 + A5/3

⌘
+ "

Z t

0
krx Euk4L4 ds +

C
"

Z t

0
k!k

6 ds

+ C
Z t

0

Z ⇣
|
˙
Eu|2|!|

2
+ |!|

3
|rx ˙

Eu|
⌘
dx ds

+

����
Z t

0

Z
(! : !)!ik (@k SF i � @i SF k) dx ds

���� =: �.

(3.28)
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Integrating by parts in J :=

R t
0
R

!2!ik(@k(SF � SF )i )�@i (SF � SF )k)| dx ds,
we see that

J = �2
Z t

0

Z
@k

�
!↵�!↵�!ik

�
(SF � SF )i dx ds.

Then

|J |  C

"
e20 +

X
j

Z t

0

Z ��@k �!↵�!↵�!ik
���2 (SF � SF )i dx ds

#

and using (3.21)

|J |  C

"
e20 + sup

[0,T ]

⇢Z
|!|

4 dx ·

Z t

0

Z
|rx!|

2 dx ds + kER
� ER

kL1

�#

 C
⇣
e20 + A2

⌘
.

Plugging into (3.28), we get

|�|  C
⇣
e20 + A2 + A5/3

⌘
+ "

Z t

0
k!k

4
L4 ds +

C
"

Z t

0
k!k

6 ds

+ C
✓Z t

0

Z
k
˙
Euk3L3 ds

◆2/3 ✓Z t

0
k!k

6 ds
◆1/3

+ CA1/2
✓Z t

0
k!k

6 ds
◆1/2

.

Applying now Gagliardo Nirenberg’s inequality, we getZ t

0

Z
k!k

6
L6 dx  CA3/4

Z t

0

Z
k!|rx!k

2 dx, (3.29)

and Z t

0

Z
k
˙
Euk3L3 dx  CA3/2, (3.30)

then plugging (3.29) and (3.30) into (3.28), we obtain

k!k
4
L4 +

Z t

0

⇣
k!k

4
L4 + k!k

6
L6

⌘
ds 

C
"4

⇣
e20 + A3 + A4/3

⌘
+ "

Z t

0
k!k

4
L4 ds

and taking " small enough, we get (3.24).
2. After Lemma 3.1

krx EukL4  C
�
kFkL4 + k!kL4 + k% � %kL4 + k% � %kL4

�
,

and Z t

0
krx EukL4 ds  C

⇣
e20 + A2

⌘
+ C

Z t

0
k!k

4
L4 ds.

Using (3.24) gives (3.25).
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Lemma 3.7. The following bound holds:

sup
t2[0,T ]

⇣
k% � %k

2
+ kEuk2 + k# � #k

2
+ kER

� ER
k
2
⌘

+

Z T

0

⇣
krx Euk2 + krx#k

2
⌘
dt

 C
⇣
e20 + A4/3 + A3

⌘
.

(3.31)

Proof.

1. Let us consider first the case T  1. Multiplying (1.4) and (1.5) respectively by
Eu and # � # and integrating by parts on [0, T ] ⇥ R3, we get

kEuk2 + k# � #k
2
+

Z t

0

⇣
krx Euk2 + krx#k

2
⌘
ds

 Ce20 +

Z t

0

⇣
k% � %k

2
+ k# � #k

2
⌘
ds

+ C
Z t

0

Z ⇣
|rx Eu|4 + k# � #k

4
⌘
dx ds

+

����
Z t

0

Z
(# � #)SE dx ds

���� +

����
Z t

0

Z
Eu · ESF dx ds

���� ,

(3.32)

where the last two terms are respectively bounded by C
⇣R t
0 k# � #k

2 ds + e20
⌘

and C
⇣R t
0 kEuk2 ds + e20

⌘
. Multiplying the equation %̇ = �% divx Eu by %(% � %)

and integrating on [0, T ] ⇥ R3, we get

k% � %k
2

 C
Z t

0
k% � %k

2 ds +

1
2

Z t

0
krx Euk2 ds.

Adding to (3.32) and applying Gronwall’s inequality, we find

k% � %k
2
+ kEuk2 + k# � #k

2
+

Z t

0

⇣
krx Euk2 + krx#k

2
⌘
ds

 C
⇣
e20 + A4/3 + A3

⌘
,

for any 0  t  T  1.

2. When T � 1, we consider [21] the Helmholtz function

H# (%,#) = %
⇥
e(%,#) � #s(%,#)

⇤
,
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and from (1.7) we have the energy identity

d
dt

Z 
1
2

Eu2 + ER
+ H# (%,#) � (% � %)@%H# (%,#) � H# (%,#) � #%s

�
dx

= �

Z
Eu · ESF dx .

From the equation of entropy we get

d
dt

Z
#⇢s dx =

Z (
#

#

h
µ(divx Eu)2 + 2µD : D

i
+ #

|rx# |
2

#2

)
dx

+

Z
#

#

⇣
Eu · ESF � SE

⌘
dx .

(3.33)

Recalling the definition of the radiative entropy production rate

# & R
= #

SE
#

� #
Eu · ESF

#

�

k#
h

Z
1

0

Z
S2
1
⌫


log

n(I )
n(I ) + 1

� log
n(B)

n(B) + 1

�
�a(B � I ) d E!d⌫

�

k#
h

Z
1

0

Z
S2
1
⌫

"
log

n(I )
n(I ) + 1

� log
n( Ĩ )

n( Ĩ ) + 1

#
�s( Ĩ � I ) d E!d⌫,

plugging into (3.33) and integrating on [1, t] ⇥ R3, we find
Z 

1
2

Eu2 + H# (%,#) � (% � %)@% � H# (%,#) + ER
� #sR � ER

�
dx

+ #

Z t

1

Z (
#

#
µ(divx Eu)2 + 2µD : D + #

|rx# |
2

#2

)
dx ds

+

k#
h

Z t

1

Z Z
1

0

Z
S2
1
⌫


log

n(I )
n(I )+1

� log
n(B)

n(B)+1

�
�a(B� I )d E! d⌫ dx ds

+

k#
h

Z t

1

Z Z
1

0

Z
S2
1
⌫

"
log

n(I )
n(I )+1

� log
n( Ĩ )

n( Ĩ )+1

#
�s( Ĩ� I )d E! d⌫ dx ds

=

Z 
1
2

Eu2 + H# (%,#) � (% � %)@% � H# (%,#) + ER
� #sR

�
t=1

dx

�

Z
Eu · ESF dx .

Using the convexity of the functions H# (%,#) � (% � %)@% � H# (%,#) and
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ER
� #sR � ER and hypothesis (3.1), we conclude that

sup
t2[0,T ]

⇣
k% � %k

2
+ kEuk2 + k# � #k

2
+ kER

� ER
k
2
⌘

+

Z T

0

⇣
krx Euk2 + krx#k

2
⌘
dt  C

⇣
e20 + A4/3 + A3

⌘
,

for T � 1.

3.4. Estimates for derivatives

Lemma 3.8. The following bounds hold:

1. sup
t2[0,T ]

⇣
krx Euk2 + krx#k

2
⌘

+

Z T

0

⇣
k
˙
Euk2 + k#̇k

2
⌘
dt

 C
⇣
e20 + A4/3 + A3

⌘
,

(3.34)

2.
Z T

0
k1#k

2 dt  C
⇣
e20 + A4/3 + A3

⌘
, (3.35)

3.
Z T

0
krx!k

2 dt  C
⇣
e20 + A4/3 + A3

⌘
. (3.36)

Proof.

1. Using the formula

Z t

0

Z
f ġ dx ds =

Z
f g dx

����
t

0
�

Z t

0

Z
ḟ g dx ds �

Z t

0

Z
f g divx Eu dx ds,

multiplying (1.4) by ˙
Eu and (1.5) by #̇ , adding and integrating by parts, we get

Z
%
⇣

˙
Eu2 + e# #̇2

⌘
dx

 �

d
dt

Z n
µ|rx Eu|2 + (� + µ)(divx Eu)2 + |rx# |

2
o
dx

�

Z ⇣
rx p ·

˙
Eu + #̇SE +

˙
Eu · ESF

⌘
dx

+ C
Z n

#2|rx Eu|2 + |rx Eu|4 + |rx Eu||rx# |
2
+ |rx Eu|3

o
dx .
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Integrating in t and using Young’s inequality we have

%

2

Z t

0

⇣
k
˙
Euk2 + e# #̇2

⌘
dx  Ce20 �

1
2

⇣
µkrx Euk2 + krx#k

2
⌘

+

Z t

0

Z n
(p � p)divx ˙

Eu � SE #̇
o
dx

+ C
Z t

0

Z ⇣
|# � # |

4
+ |rx Eu|2 + |rx Eu|4 + |rx# |

8/3
⌘
dx ds.

Now observe thatZ t

0

Z
(p � p ) divx ˙

Eu dx



Z t

0

Z
(p � p )

d
dt
divx Eu dx ds +

Z t

0

Z �
1+ |# � # |

�
|rx Eu|2 dx ds



Z
(p � p )

d
dt
divx Eu dx

����
t

0
�

Z t

0

Z
ṗdivx Eu dx ds

�

Z t

0

Z
p(divx Eu)2 dx ds



Z
(p � p )

d
dt
divx Eu dx

����
t

0
+

Z t

0

Z
p%% (divx Eu)2 dx ds

�

Z t

0

Z
p# #̇divx Eu dx ds �

Z t

0

Z
p (divx Eu)2 dx ds

 C
⇣
e20 + k% � %k

2
+ k# � #k

2
⌘

+

1
4
µkrx Euk2

+

1
4
%e#

Z t

0
k#̇k

2 ds

+ C
Z t

0

Z ⇣
|# � # |

4
+ |rx Eu|2 + |rx Eu|4

⌘
dx ds.

(3.37)
Let us estimate the right-hand side. We first find����

Z t

0

Z
(p � p ) divx ˙

Eu dx
����  C

⇣
e20 + A4/3 + A3

⌘
+

1
4
µkrx Euk2

+

1
4
% e#

Z t

0
k#̇k

2 ds.
(3.38)
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We also have
Z t

0

Z
|rx# |

8/3 dx ds  C
⇣
e20 + A4/3 + A3

⌘

+ C
Z t

0
krx#k

4/3
k1#k

2 ds

 C
⇣
e20 + A4/3 + A3 + A5/3

⌘

 C
⇣
e20 + A4/3 + A3

⌘
,

(3.39)

����
Z t

0
#̇SE dx ds

����  Ce20 +

1
4
% e#

Z t

0
k#̇k

2 ds, (3.40)

and ����
Z t

0
˙
Eu ESF dx ds

����  Ce20 +

1
2
%

Z t

0
k
˙
Euk2 ds. (3.41)

Plugging (3.38), (3.39), (3.40) and (3.41) into (3.37), we get (3.34).

2. Multiplying (3.26) by !i j , integrating by parts and using (3.34) gives estimate
(3.35).

3. Finally (3.36) follows from (1.5) and (3.34).

Lemma 3.9. The following bounds hold:

1. sup
t2[0,T ]

k
˙
Euk2 +

Z T

0
krx ˙

Euk2 dt  C
⇣
e20 + A4/3 + A3

⌘
, (3.42)

2. sup
t2[0,T ]

�(t)k#̇k
2
+

Z T

0
�(s)krx #̇k

2 dt  C
⇣
e20 + A4/3 + A3

⌘
, (3.43)

3. sup
t2[0,T ]

�2(t)k1#k
2

 C
⇣
e20 + A4/3 + A3

⌘
. (3.44)

Proof.

1. Applying d
dt to the momentum equation (1.4), we get

%ü j = µ{1@t u j + divx (Eu1u j } + (� + µ){@ j (divx@t Eu) + divx (Eu@ jdivx Eu)}

�@ j@t p + divx (Eu@ j p) � ṠF j .
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Multiplying by ˙
Eu and integrating by parts, we get

%

2
ku̇ jk2 +

Z t

0

Z ⇣
µ |rx u̇ j |2+ (� + µ)(divx ˙

Eu)2
⌘
dx ds

=

Z t

0

Z
(�+µ)

n
@ku j@ j ukdivx ˙

Eu � (divx Eu)2(divx Eu)2 + @k u̇ j@ j ukdivx Eu
o
dx ds

�

Z t

0

Z n
ṗdivx ˙

Eu + p(divx Eudivx ˙
Eu � @k u̇ j@ j uk � u̇ j ṠF j

o
dx ds.

So we get

ku̇ jk2 +

Z t

0

Z
krx u̇ jk2 ds

Ce20 + C
Z t

0

Z n
|rx Eu|4+ |

˙
Eu|2+ |#̇ |

2
+ #2|rx Eu|2+ |rx Eu|2+ |

˙ER
|
2
o
dx ds.

Using (3.1) and Lemma 3.8, we get (3.42).

2. In the same stroke, applying d
dt to the energy equation (1.5), we get

%e# #̈ = %e# #̇divx Eu � %e%# %̇#̇ � %e## #̇2 �

⇥
#p%# %̇ + (p# + #p## #̇)

⇤
divx Eu

� #p#
˙divx Eu + 2µ

d
dt

(D : D) + �
d
dt

(divx Eu)2 + 
d
dt

(1#) � ṠE ,

or

%e# #̈ = %e# #̇divx Eu + %2e%# #̇divx Eu � %e## #̇2

+ %#p%# (divx Eu)2 � (p# + #p## )#̇divx Eu � #p#
˙divx Eu

+ 2µDi j
⇥
@i u̇ j + @ j u̇i � @i uk@ku j � @ j uk@kui

⇤
+ 2�divx Eu

h
divx ˙

Eu � @ku j@ j uk
i

+ 
�
1#̇ � 1# divx Eu

�
� ṠE .

Observing that

%e# #̈�#̇ =

1
2

%
d
dt

{�e# #̇2} +

1
2

%�0e# #̇2�

1
2

%2�e%# #̇2divx Eu+

1
2

%�0e## #̇3,

and that

ṠE =

Z
1

0

Z
S2
c
��

@#�adivx Eu � %@#�a#̇
�
(B � I ) + �a

�
@# B#̇ � İ

� 
d E! d⌫,
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multiplying by �(t)#̇ , integrating by parts on [0, t] ⇥ R3, using (3.1) together
with Lemma 3.8 and (3.42) we obtain

1
2

Z
%�e# #̇2 dx +

Z t

0

Z
�|rx #̇ |

2 dx ds

 C
Z t

0

Z h
|#̇ |

2
+ | İ |2

i
dx ds

+ C
Z t

0

Z
�
n
|#̇ |

⇣
|# ||rx Eu|2 + |rx Eu|3 + |#̇ |

2
+ |rx Eu||#̇ |

+|# ||rx ˙
Eu| + |rx Eu||rx ˙

Eu|
⌘

+ |rx Eu|2|rx# |
2
o
dx ds

 C
Z t

0

h
k#̇k

2
+ k İk2 + krx Euk4L4 + �krx ˙

Euk2
i
ds

+ C
Z t

0

Z
�
h⇣

|rx Eu|2+ |#� # |
2
+|ER

� ER
|
2
⌘

|#̇ |
2
+|rx# |

2
i
dx ds.

(3.45)

Now observing that
Z t

0

Z
|!|

5 dx ds 

Z t

0

⇣
k!k

4
L4 + k!k

6
L6

⌘
dx ds  C

⇣
e20 + A4/3 + A3

⌘
,

and using Lemma 3.1, we get
Z t

0

Z ⇣
|rx Eu|5 + |# � # |

5
⌘
dx ds



Z t

0

⇣
krx Fk

5
L5+ |# � # |

5
L5+ |ER

� ER
|
5
L5+ k!k

5
L5+ |% � %|

4
L4

⌘
dx ds

 C
⇣
e20 + A4/3 + A3

⌘
+ CA1/4

Z t

0

⇣
k
˙
Euk2 + |rx# |

2
⌘9/4

dx ds

 C
⇣
e20 + A4/3 + A3

⌘
,

so we can bound the second term in (3.45) as follows:
Z t

0

Z
�
h⇣

|rx Eu|2 + |# � # |
2
+ |ER

� ER
|
2
⌘

|#̇ |
2
+ |rx# |

2
i
dx ds

 C
⇣
e20 + A4/3 + A3

⌘
+ C

Z t

0
�5/3k#̇k

4/3
|rx #̇ |

2 ds + CA
Z t

0
|1# |

2 ds

 C
⇣
e20 + A4/3 + A3

⌘
.

Inserting into (3.45) we get (3.43).
3. Using the energy equation (1.5), (3.1) and (3.43), we get (3.44).
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Lemma 3.10. There is a positive constant C such that the following inequality
holds

A(T )  C
⇣
e20 + A4/3(T ) + A3(T )

⌘
. (3.46)

Proof. The proof follows by combining the definition (2.20) of A(T ) and the esti-
mates in Lemmas 3.2, 3.6, 3.7, 3.8 and 3.9.

4. Proof of Proposition 2.3

As one checks that A(0)  2Ce20, and due to the continuity of T ! A(T ), it follows
from Lemma 3.10 that the inequality

A(T )  2Ce20 (4.1)

also holds for any T > 0, provided e0 is small enough, say e0 < ⌘(C).
Using Lemma 3.2 and (4.1) we get

sup
t�0

n
k% � %kL1 + �(t)k# � #kL1 + kER

� EkL1

o

 C(e0 + A1/2(T )) + C sup
t�0

�
�(t)k# � #kL1 + krx#kL1 + k1#kL1

 

 C(e0 + A1/2(T ))  ⌘̃e0 

1
3
min{|Eu|,#}

(4.2)

provided that

e0  min

(
⌘(C),

|Eu|
3⌘̃

,
#

3⌘̃

)
:= ".

So for data such that e0  " and provided that (3.1) holds, estimate (4.2) is valid.
Since (4.2) is true for t = 0 and holds also for any T � 0 after continuity of % and
# , one sees that (4.1) is also valid for any T � 0. Then provided that e0  " , one
concludes that (4.1) and (4.2) are valid for any T � 0.

Now using the Sobolev imbedding theorem, we deduce that

�2(t)
⇣
krx Euk4L4 + kEuk4L1

⌘
 C e20 for any t 2 [0, T ], (4.3)

and for T > 1

kFk
10/3
L1 + k# � #}k

10/3
L1  C

⇣
k
˙
Euk2 + krx ˙

Euk2 + krx#k
2
+ k1#k

2
⌘

.



CAUCHY PROBLEM FOR RADIATIVE FLOW 27

So, multiplying (3.12) by sgn(% �%)|% �%|
7/3 and integrating by parts on [1, T ]⇥

R3, we find

|%(T ) � %|
10/3
L1  e� (1�T )

|%(1) � %|
10/3
L1

+ C
Z T

1
e�� (T�t)

⇣
kFk

10/3
L1 + k# � #}k

10/3
L1

⌘
dt

 Ce�� T
2 + C

Z T

T
2

⇣
k
˙
Euk2 + krx ˙

Euk2 + krx#k
2
+ k1#k

2
⌘
dt,

with � =

%p%(%,#)

2(�+2µ) , which shows that k%(T ) � %kL1 ! 0 when T ! 1. As
one checks that t ! krx Euk2 + krx#k

2 and t !
d
dt

�
krx Euk2 + krx#k

2� are
in L1(1,1), we also see that krx Eu(T )k2 ! 0 when T ! 1 and also that
krx#(T )k2 ! 0 when T ! 1. As t ! (kEuk, k% � %k, kEukL1, k% � %kL1)
are uniformly bounded for t � 1, we conclude that kEukLq ! 0 when T ! 1 and
k% � %kLq ! 0 when T ! 1.

Finally, multiplying (1.6) by I � I and integrating by parts on [1, T ] ⇥ R3 ⇥

S2 ⇥ R+, we find

kI � Ik2  e�(1�T )
kI (1) � Ik2

+C
Z T

1
e��(T�t)

k�akL1(R+, d⌫)⇥L1(R3
, dx)k@# BkL1(R+, d⌫)⇥L1(R3

, dx)k#�#k
2dt,

with � = c(�a + �s), which shows that kI (T ) � Ik ! 0 when T ! 1, and
consequently by integrating on R3 kER(T ) � Ek ! 0 when T ! 1, which ends
the proof of Proposition 2.3.

5. Proof of Theorem 2.2

In this section, we suppose that the initial energy is close to equilibrium: we assume
that e0  " where the " is the same as in the previous section. Following [25], we
define

B(T ) = sup
t2[0,T ]

⇣
krx%k

2
+ krx%k

↵
L↵

⌘
(t)

+

Z �(T )

0

⇣
k# � #k

2
L1 + kER

� ER
k
2
L1

⌘
ds

+

"Z �(T )

0

�
krx%k + krx%k

↵
L↵ + krx EukL1

�
ds

#2

+

Z max{1,T }

1

⇣
krx%k

2
+ krx%k

2
L↵

⌘
ds.
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First note that, applying @ j to equation (3.12), we get

(� + 2µ)
d
dt

@ j% + %@% p(%,#) @ j%

= �%@ j F � F@ j% �

⇥
@% p(%,#) � @% p(%,#)

⇤
@ j% � %@# p @ j# � (p � p)@ j%

� (� + 2µ)@ j uk@k%.

Multiplying, for p�2 and m2N, this identity by sgn(@ j%)%|@ j%|
p�1

k%1/p@ j%k
m
L p ,

integrating on R3 and using Hôlder’s inequality, and the definition of F we find

(� + 2µ)
d
dt

k%1/p@ j%k
m
L p + @% p(%,#) k%1/p@ j%k

m
L p

 C
�
k% � %kL1 + krx EukL1 + k# � #kL1 + kFkL1

 
k@ j%k

m
L p

+ C
⇣
k
˙
EukmL p + k@ j#k

m
L p + k# � #k

m
L p + kI � IkmL p

⌘
.

(5.1)

Consider the case T  1. Taking m = 1 and successively p = 2 and p = ↵,
summing, integrating over [0, t] for t  T  1 and using the definition of B(T ),
we have

sup
t2[0,T ]

(krx%k + krx%kL↵ ) +

Z T

0
(krx%k + krx%kL↵ ) ds

 C (E0 + B) + C
Z T

0
(krx#k + k1#k) ds  C (E0 + B) .

(5.2)

When T � 1, using equation (1.5), estimates (4.1) and (4.2), and the elliptic regu-
larity of µ1 + (µ + �)rxdivx , we get

krx EukL1  C
⇣
krx Euk + kr

2
x Euk + kr

2
x EukL↵

⌘

 CE0 + C
⇣
k
˙
Euk + k# � #k + kI � Ik + krx pk + kESFk

⌘

+ C
⇣
k
˙
EukL↵ + k# � #kL↵ + kI � IkL↵ + krx pkL↵ + kESFkL↵

⌘

 C
⇣
E0 + B1/2 + krx ˙

Euk
⌘

.

(5.3)

Taking m = 1 and successively p = 2 and p = ↵ in (5.1), summing, integrating
over [1, t] for t  T  1 and using the definition of B(T ) together with bounds
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(5.2) and (5.3), we now have

sup
t2[1,T ]

(krx%k + krx%kL↵ ) +

Z T

1
(krx%k + krx%kL↵ ) ds

 C (krx%k + krx%kL↵ ) (1)

+C
Z T

1

n⇣
E0+ B1/2+ krx ˙

Euk+ krx#k+ krx Ik
⌘ ⇣

krx%k
2
+ krx%k

2
L↵

⌘

+krx ˙
Euk2 + krx#k

2
+ k

˙
Euk2L↵ + krx#k

2
L↵

o
ds

 C
⇣
E20 + B3/2(T ) + B2(T )

⌘
.

(5.4)

Taking (5.2) into account, we finally get

sup
02[1,T ]

(krx%k + krx%kL↵ ) +

(Z min{1,T }

1
(krx%k + krx%kL↵ ) ds

)2

+

Z max{1,T }

1
(krx%k + krx%kL↵ ) ds  C

⇣
E20 + B3/2(T ) + B2(T )

⌘
,

for any T � 0.
From the Sobolev imbedding theorem, we have

Z min{1,T }

1
k# � #k

2
L1ds  CE20, (5.5)

and by the same arguments leading to (5.2), one finds
Z min{1,T }

1
krx Euk2L1ds  C

⇣
E0 + B3/4(T ) + B(T )

⌘
. (5.6)

Combining (5.4), (5.5) and (5.6) to (4.2), we get

B(T )  C
⇣
E20 + B3/2(T ) + B2(T )

⌘
.

As B(0)  2CE20 , we finally obtain:

Lemma 5.1. The following bound holds

B(T ) < 2CE20 (5.7)

provided that E0  min
n

1
8C2 , "

o
:= "0, where " is the small number in (4.2).

Now after Proposition 2.3 and Lemmas 5.2 and 5.1, using (4.1), (4.2) and (4.3)
and following straightfully the estimates of Jiang for higher order derivatives, we
obtain the final following a-priori estimates:
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Proposition 5.2. Let T⇤ be a fixed number such that 0 < T⇤ < min{1, T }.
Under the hypotheses of Theorem 2.2, the following estimates hold:

1. ⇢  %(x, t)  ⇢, ✓  #(x, t)  ✓ for all (x, t) 2 R3 ⇥ [T⇤, T ], (5.8)

2. sup
[T⇤,T ]

⇣
k% � %kH3 + kEukH3 + k# � #kH3 + kER

� ER
kH3

+k@t%kH2 + k@t E R
kH2 + k@t EukH1 + k@t#kH1

⌘
 K ,

(5.9)

where K depends on physical constants and of ⇢, ⇢, ✓ and ✓ ,

3.
Z T

T⇤

n
krx%k

2
H2 + krx Euk2H2 + krx#k

2
H2 + krx E R

k
2
H2

+k@t%kH2 + k@t E R
kH2 + k@t EukH1 + k@t#kH1

o
ds  K ,

(5.10)

provided that E0  "0, where "0 is the small number in Lemma 5.1.

Now we have the following local existence theorem (proved in the Appendix):

Theorem 5.3. Suppose that k%�%kH3+kEukH3+k#�#kH3+kER
�ER

kH3 < 1

and that infR3 %0(x) > 0. Then there exists a positive constant T0 such that the
Cauchy problem (1.3-2.1) has a unique solution (%, Eu,#) on [0, T0] ⇥ R3 and I on
[0, T0] ⇥ R3 ⇥ S2 ⇥ R+, satisfying:

1. (%, Eu,#, ER) 2 C0(0, T0; H3),
(@t%, @t E R) 2 C0(0, T0; H2),
(@ Eu, @#) 2 C0(0, T0; H1),
@t% 2 C0(0, T0; H2),
(Eu,# � #) 2 L2(0, T0; H4).

2. For some M > 0 independent of T⇤

%(x, t) �

1
2
inf
R3

%0(x), on [0, T0] ⇥ R3,

sup
[T⇤,T ]

n
k% � %kH3 + kEukH3 + k# � #kH3 + kER

� ER
kH3

o

+

Z T

T⇤

n
krx Euk2H3 + krx#k

2
H3 + krx E R

k
2
H3

o
ds

 M
⇣
k%0 � %kH3 + kEu0kH3 + k#0 � #kH3 + kER

0 � ER
kH3

⌘
.

Moreover if infR3 #0(x) > 0, then #(x, t) � 0 on [0, T0] ⇥ R3.
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Using this local result, we can end the proof of Theorem 2.2. Under the condi-
tions of Theorem 2.2, the Cauchy problem (1.3-2.1) has a unique solution (%, Eu,#)
on [0, T0] ⇥ R3 and I on [0, T0] ⇥ R3 ⇥ S2 ⇥ R+ after Theorem 5.3. Using the a
priori estimates of Proposition 5.2, this solution can be continued globally in time
and the estimates of Proposition 5.2 are valid for any T � 0.

The asymptotic behaviour follows by observing that after (2.14)
Z

1

1

���� ddt
n
k1%k

2
+ k1Euk2 + k1#k

2
+ k1ER

k
2
o���� ds



Z
1

1

n
k1@t%k

2
+ k1@t Euk2 + k1@t#k

2
+ k1@t E R

k
2

+k1%k
2
+ k1Euk2 + k1#k

2
+ k1ER

k
2
o
ds < 1.

Combining this to (5.10), we see that k1%k
2
+k1Euk2+k1#k

2
+k1ER

k
2

! 0 as
t ! 1. Using now (5.8) and Gagliardo-Nirenberg’s inequality, we conclude that

k% � %kL1 + kEukL1 + k# � #kL1 + kER
� ER

kL1

 C
⇣
k% � %k + kEuk + k# � #k + kER

� ER
k

⌘1/4

⇥

⇣
k1%k + k1Euk + k1#k + k1ER

k

⌘3/4
! 0,

as t ! 1, which ends the proof of Theorem 2.2.

A. Appendix: Proof of Theorem 5.3

In fact a proof can be derived in various ways from the works of Nash [41], Matsu-
mura-Nishida [37], or Solonnikov-Kazhikov [44] (among others) and we only
sketch the extension to the radiative case. Let us mention that the existence lo-
cal in time for the inviscid case was proved in [33, 48]. It will be convenient to
switch to Lagrangian variables. Conserving the same notation for the variables and
the unknowns, the problem rewrites as
8>>>>><
>>>>>:

@t% + % divEu = 0,
% @t Eu + r p � r (� divEu) � 2r · (µD) = �ESF ,

%e# @t# + #p# divEu + div (r#) � 2µD : D � � (divEu)2 = �SE ,

@t I + (c E! � Eu) · r I = cS,
(%(0,x),Eu(0,x),#(0,x),I (0,x, E!,⌫))=(%0(x),Eu0(x),#0(x),I0(x,E!,⌫)) ,

(A.1)

for (t, x, E!, ⌫) 2 (0, T ) ⇥ R3 ⇥ S2 ⇥ R+, where r and div are the new operators.
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We consider the auxiliary linear Cauchy problem
8>>>>><
>>>>>:

@t% + %0 divEu = 0,
%0 @t Eu + p0

%r% + p0

#r# � r (� divEu) � 2r · (µD) = �ES0

F ,

%0e0#@t# + # 0 p0

#divEu + div (r#) � 2µD0
: D � �divEu0divEu = �S0

E ,

@t I +

�
c E! � Eu0

�
· r I = cS0,

(%(0,x),Eu(0,x),#(0,x),I (0,x,E!,⌫))=(%0(x),Eu0(x),#0(x),I0(x,E!,⌫)) ,

(A.2)

where

p0

% = p%(%
0,# 0), p0

# = p# (%0,# 0), e0# = e# (%0,# 0),

S0

= �a(#
0, ⌫)

�
B(# 0, ⌫) � I

�
+ �s(#

0, ⌫)

✓
1
4⇡

Z
S2
I (·, E!) dE! � I

◆
,

and
ESF =

Z
S2

E!S0 d E! d⌫, S0

E =

Z
S2
S0 d E! d⌫.

Clearly, the first and last equations in (A.2) are hyperbolic equations which can be
solved explicitly through the method of characteristics, and system (A.2) can be
considered as a linear parabolic problem for the pair U := (Eu,#) and rewrites as

⇢
L(U 0)U = h(U 0),
U |t=0 = U0 ⌘ (Eu0,#0).

(A.3)

The initial problem corresponds clearly to U 0
= U

⇢
L(U)U = h(U),
U |t=0 = U0 ⌘ (Eu0,#0),

(A.4)

and we can reduce this nonlinear problem to a fixed point problem in the Banach
space

⇣
C2+↵,1+ ↵

2 (6⌧ ), k · k
(2+↵)
6⌧

⌘
where6⌧ is the domain6⌧ = {(t, x) 2 [0, ⌧ ]⇥

R3}, where ⌧ > 0 is small enough. So we define the vector U1 as the solution of
the Cauchy problem in 6⌧

⇢
L(U0)U1 = h(U0),
U1|t=0 = U0 ⌘ (Eu0,#0).

(A.5)

Introducing the difference V = U1 �U0 and subtracting (A.4) to (A.5), we get
8<
:
L(U1)V =

⇥
L(U1) � L(U1 + V )

⇤
(U1 + V ) + h(U1 + V ) � h(U1)

+

⇥
L(U0) � L(U1)

⇤
U1 + h(U1) � h(U0) ⌘ B⌧V,

V |t=0 = 0.
(A.6)
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This problem is equivalent to the nonlinear equation

V = R⌧

�⇥
L(U1) � L(U1 + V )

⇤
(U1 + V ) + h(U1 + V ) � h(U1)

 
+R⌧

�⇥
L(U0) � L(U1)

⇤
U1 + h(U1) � h(U0) ⌘ B⌧V

 
⌘ B⌧V,

(A.7)

where R⌧ is a linear operator defined on the Banach space
⇣
C↵, ↵

2 (6⌧ ), k · k
(↵)
6⌧

⌘
by considering W = R⌧ f as the solution of the Cauchy problem⇢

L(U1)W = f,
W |t=0 = 0. (A.8)

Choosing ⌧ sufficiently small, such that⇣
⌧ 1/2�↵/2

⌘
kUk

(2+↵)
6⌧

 � (A.9)

holds for a small �, the vector h(U) and the coefficients of the operator L(U) are
smooth functions of their arguments. Then, ifU1,U1+V andU1+W satisfy (A.9)
and V |t=0 = W |t=0 = 0, then

kB⌧Vk
(2+↵)
6⌧

 ⌧�
kR⌧k

⇣
C1kVk

(2+↵)
6⌧

+ C2kU0 �U1k(2+↵)
6⌧

⌘
, (A.10)

and
kB⌧V � B⌧Wk

(2+↵)
6⌧

 C3⌧�
kR⌧kkV � Wk

(2+↵)
6⌧

, (A.11)
for a � > 0 and constants C j independent of ⌧, V or W .

Choosing now the positive numbers T⇤ and ⌘ > 0 such that
⇣
T⇤ + T 1/2�↵/2

⇤

⌘
kU0k(2+↵)

6T⇤
 �,

⇣
T⇤ + T 1/2�↵/2

⇤

⌘
kU1k(2+↵)

6T⇤


�

2
, (A.12)

C3T
�
⇤

kRT⇤
k < 1, C1T

�
⇤

kRT⇤
k <

1
2
, (A.13)

and
2C2T �

⇤
kRT⇤

kkU0 �U1k(2+↵)
6⌧

 ⌘ 

�

2
⇣
T⇤ + T 1/2�↵/2

⇤

⌘ , (A.14)

and denoting by K⌘ the set

K⌘ = {V 2 C2+↵,1+ ↵
2 (6⌧ ), V (x, 0) = 0, kVk

(2+↵)
6⌧

 ⌘},

we observe after (A.10)-(A.14) thatU0 andU1+V together with any element ofK⌘

satisfy (A.9) and that the norm kRT⇤
k is bounded. Moreover BT⇤

is a contraction
from K⌘ into itself then equation (A.7) has a unique solution in the Hölder frame-
work. Passing to the Sobolev setting is routine and we omit this step. This ends the
proof of Theorem 5.3.
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[11] B. DUBROCA, M. SEAÏD and J.-L. FEUGEAS, A consistent approach for the coupling of
radiation and hydrodynamics at low Mach number, J. Comput. Phys. 225 (2007), 1039–
1065.
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[14] B. DUCOMET and Š. NEČASOVÁ, Global weak solutions to the 1D compressible Navier-
Stokes equations with radiation, Commun. Math. Anal. 8 (2010), 23–65.
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