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Some old and new results about rigidity of critical metrics

GILLES CARRON

Abstract. We present a new proof of a recent ✏-regularity of G. Tian and
J.Viaclovsky. Our idea also provides a new proof of a classical result of M. An-
derson about volume rigidity of Einstein manifolds. Eventually, we also obtain
new rigidity results for critical metrics.

Mathematics Subject Classification (2010): 53C20 (primary); 58E11 (sec-
ondary).

1. Introduction

In this paper, we obtain some new ✏-regularity and rigidity results for critical met-
rics and our arguments will also give new proofs of classical ✏-regularity results.

The class of critical metrics has been introduced and studied by G. Tian and J.
Viaclovsky ([35]): A Riemannian metric g is said to be critical if its Ricci curvature
tensor satisfies a Bochner type formula:

r
⇤

r Riccig +R(Riccig) = 0

where r is the Levi-Civita connection and r
⇤ is its differential adjoint and R is a

linear action of the Riemann curvature tensor on the space of symmetric 2 tensors,
in particular there is a constant 7 (that only depends on this action) such that:

8h 2 �
2T ⇤

x M, |R(h)|  7 |Rm | |h|. (1.1)

Examples of critical metrics are Einstein metrics, Kähler metrics with constant
scalar curvature, locally conformally flat metrics with constant scalar curvature and
in dimension 4, Bach flat metrics with constant scalar curvature. Our main new
result is the following ✏-rigidity result:
Theorem A. There is a constant ✏ > 0 that only depends on the dimension n and
on the constant7 appearing in the estimate (1.1) such that, if (Mn, g) is a complete
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Riemannian manifold whose metric is critical and such that its Riemann curvature
tensor satisfies for some fixed point o 2 M:

|Rm(y)| 

✏2

d(o, y)2
,

then the metric g is flat: Rm = 0.
Our result generalizes a recent result of V. Minerbe ([24]) who proved a similar

result for Ricci flat metrics with controlled volume growth:

Theorem 1.1. Assume that (Mn, g) is complete Ricci flat Riemannian manifold

Riccig = 0

such that for some fixed point o 2 M , some ⌫ > 1 and some positive constant
C > 0:

8R > r > 0,
vol B(o, R)

vol B(o, r)
� C

✓
R
r

◆⌫

then there is a constant ✏ > 0 that only depends on n, ⌫,C such that if

|Rm(y)| 

✏2

d(o, y)2
,

then the metric g is flat: Rm = 0.

The first step in the proof of Theorem 1.1 was to establish an L1 Hardy in-
equality:

8 f 2 C1

0 (M), µ(n, ⌫,C)

Z
M

| f (x)|
d(x, o)

d volg(x) 

Z
M

|d f (x)|d volg(x).

And the final step was to use the Bochner type equation

r
⇤

r Rm+R(Rm) = 0

satisfied by the Riemann curvature tensor of a Ricci flat metric.
There are many other ✏-rigidity results that rely on a priori functional inequal-

ities (such as a Sobolev inequality or as the above Hardy inequality) and integral
bounds on the curvature (cf. for instance [5,13,20,21,25,27,29,30,32,33], [35, The-
orem 7.1], [38]). Such results have been shown recently for critical metrics by
G. Tian and J. Viaclovsky in dimension 4 and by X-X. Chen and B. Weber in higher
dimension ([12,35]):

Theorem 1.2. There are positive constants ✏ > 0 and C > 0 that depend only on
the dimension n and on the constant 7 appearing in the estimate (1.1) such that
when (Mn, g) is a complete Riemannian manifold whose metric is critical and such



SOME OLD AND NEW RESULTS ABOUT RIGIDITY OF CRITICAL METRICS 1093

that for some x 2 M and for some r > 0, the geodesic ball B(x, r) satisfies the
Sobolev inequality:

8 f 2C1

0 (B(x, r)),
✓Z

B(x,r)
| f (y)|

2n
n�2 d vol(y)

◆1� 2
n
 A

Z
B(x,r)

|d f (y)|2d vol(y)

and the following integral bound on the curvature tensor:

A
n
2

Z
B(x,r)

|Rm(y)|
n
2 d volg(y) < ✏

then

sup
B(x, 12 r)

|Rm |  A
C
r2

✓Z
B(x,r)

|Rm |

n
2 (y)d volg(y)

◆ 2
n
.

When the radius r tends to1, this result implies the following ✏-rigidity result:

Corollary 1.3. Let (Mn, g) be a complete Riemannian manifold whose metric is
critical. Assume that (Mn, g) satisfies the Sobolev inequality:

8 f 2 C1

0 (M) ,

✓Z
M

| f (y)|
2n
n�2 d vol(y)

◆1� 2
n

 A
Z
M

|d f (y)|2d vol(y).

If the curvature tensor satisfies

A
n
2

Z
M

|Rm(y)|
n
2 d volg(y) < ✏

then (Mn, g) is isometric to the Euclidean space Rn .

In another paper [37], G. Tian and J. Viaclovsky were able to replace the
hypothesis on the Sobolev inequality with a uniform lower bound on the volume
growth of geodesic balls:

8y 2 B(x, r), 8s 2 (0, r) : vol B(y, s) � vsn

It is known that the Sobolev inequality implies such a uniform lower bound ( [1]
or [8]). The proof of this improvement used as a preliminary result the above ✏-
regularity result (Theorem 1.2) and hence it relied on the intricate De Giorgi-Nash-
Moser iteration scheme developed in [35] or [12]. Our idea leads to a direct proof
of this improvement that does not use this iteration scheme (cf. Theorem 3.2):

Theorem 1.4. There is a constant ✏ > 0 that only depends on n and on the constant
7 appearing in the estimate (1.1) such that, if (M, g) is a complete Riemannian
manifold whose metric is critical and such that for some x 2 M and r > 0, we have

i) 8y 2 B(x, 34r), 8s 2 (0, r/4), vol B(y, s) � vsn

ii)
R
B(x,r) |Rm |

n
2 (y)dy  " v
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then

sup
B(x, 12 r)

|Rm | 

16
r2

✓
1

v ✏

Z
B(x,r)

|Rm |

n
2 (y)dy

◆ 2
n
.

Moreover we are able to give some L p ✏-regularity/rigidity result, for instance we
shall obtain the following:
Theorem B. There is a constant ✏ > 0 that only depends on n, p and on the con-
stant 7 appearing in the estimate (1.1) such that, when (Mn, g) be a complete Rie-
mannian manifold whose metric is critical and such that any geodesic ball B ⇢ M
(with radius r(B)) satisfies:

r(B)2p

vol B

Z
B

|Rm(y)|pd volg(y) < ✏

then the metric g is flat: Rm = 0.
Our argument also leads to a new and direct proof of the following result of

M. Anderson:

Theorem 1.5. There is a positive constant ✏n > 0 such that if (Mn, g) is a complete
Ricci flat manifold satisfying1:

lim
r!1

vol B(x, r)
rn

� !n(1� ✏n)

then (Mn, g) is isometric to the Euclidean space Rn .

This result was used by Anderson to prove a ✏-regularity result based on vol-
ume growth for metrics with bounded Ricci curvature; for Einstein metrics, this
result implies some uniform bound on the Riemann curvature tensor. In fact we
obtain a new proof and a new formulation of this estimate:
Theorem C. There are constants ✏(n) > 0 and C(n) such that if (Mn, g) is a
complete Ricci flat manifold and x 2 M and r > 0 are such that

vol B(x, r) � !n(1� ✏n)rn

then

sup
B(x,r/2)

|Rm | 

C(n)
r2

sup
y2B(x, 34 r)

✓
!nrn � vol B(y, r)

rn

◆ 1
4
.

Our idea is quite versatile and can be used to obtain other rigidity and regularity
results. In a future work, we intend to consider applications of these ideas to the
question of convergence of Einstein/critical metric in dimension n > 4 in the spirit

1 !n is the volume of the unit Euclidean ball.



SOME OLD AND NEW RESULTS ABOUT RIGIDITY OF CRITICAL METRICS 1095

of results of J. Cheeger, T. Colding, G. Tian [10] or of G. Tian and J. Viaclovsky
[36]. What nowadays is missing is an answer to a question of M. Anderson (cf. [2,
Rem 2, p. 475] and G. Tian [34] about the geometry of Einstein/critical Riemannian
manifolds with maximal volume growth and whose curvature satisfies some bound
on:

sup
r

✓
r4�n

Z
B(x,r)

|Rm |
2
◆

.

ACKNOWLEDGEMENTS. I would like to thank E. Aubry, P. Castillon, R. Mazzeo,
V. Minerbe for helpful discussions. Moreover, I thank the anonymous referee for
very useful comments.

2. Some Definitions and useful tools

2.1. Regular metrics

Definition 2.1. We say that a Riemannian manifold (Mn, g) is (3, k)-regular or
that the Riemannian metric g satisfies (3, k)-regularity estimates if for any x 2 M
and any r > 0 and " 2 (0, 1) such that

sup
B(x,"r)

|Rm | 

1
r2

,

then for all j = 1, . . . , k

sup
B
⇣
x, 12 "r

⌘ |r
j Rm | 

3

("r) j r2
. (2.1)

Remarks 2.2.

a) The choice of half the radius in the estimate (2.1) is arbitrary, indeed it is easy
to show that the (3, k)-regularity estimate implies the following: if for some
x 2 M , r > 0 and " 2 (0, 1) we have

sup
B(x,"r)

|Rm | 

1
r2

then for all � 2 (0, 1) and all j = 1, . . . , k, we have

sup
B(x,� "r)

|r
j Rm | 

3

" j ((1� �)r)2+ j .
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b) This condition of regularity is clearly invariant by scaling: if a metric g sat-
isfies (3, k)-regularity estimates then for any positive constant h, the metric
h2g satisfies (3, k)-regularity estimates.

c) Hence, a metric g satisfies (3, k)-regularity estimates if and only if for every
positive constant h the metric gh = h2g satisfies the following estimates: for
any x 2 M and any " 2 (0, 1) such that

sup
Bgh (x,1)

|Rmgh |  "2,

then for all j = 1, . . . , k

sup
Bgh

⇣
x, 12

⌘ |r
j Rmgh |  3"2.

Sometimes, we will use a weaker assumption on the metric:
Definition 2.3. We say that a Riemannian manifold (Mn, g) is weakly (3, k)-reg-
ular if if for any x 2 M and any r > 0 such that

sup
B(x,r)

|Rm | 

1
r2

then for all j = 1, . . . , k

sup
B(x, r2 )

|r
j Rm | 

3

r j+2
.

2.2. Examples of regular metrics

2.2.1. Einstein metrics and metrics with harmonic curvature

When (Mn, g) is Einstein
Riccig = (n � 1)⌧g

then the curvature satisfies an elliptic equation

r
⇤

r Rm+R(Rm) = 0 (2.2)

where R is a certain action of the curvature operator on the space of curvature
tensors. Indeed the Bianchi identities imply that

dr Rm = 0

and the fact that the Ricci curvature is parallel implies that the curvature tensor
(viewed as a 2-forms valued in symmetric tensors) is coclosed:

(dr)⇤ Rm = 0 ,
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hence the above equation (2.2) is a consequence of a Bochner formula (cf. [4, Propo-
sition 4.2])

(dr)⇤dr

+ dr(dr)⇤ = r
⇤

r +R.

So that any harmonic Riemann tensor:

(dr)⇤ Rm = 0

satisfies the Bochner formula (2.2). This implies the following:

Proposition 2.4. If (Mn, g) is a Riemannian manifold with harmonic curvature:
⇣
dr

⌘
⇤

Rm = 0

then (Mn, g) is (3, k)-regular for a constant 3 that only depends on n and k.

Proof. This regularity result can be proved with some rather classical elliptic regu-
larity estimates, along the line of the proof of regularity of critical metrics (see the
proof of Proposition 2.6). But we can also use less elaborate tools using only the
maximum principle (following for instance the argumentation of W. Shi, [31, Sec-
tion 7]).

Indeed assume that g is a complete Riemannian metric with harmonic curva-
ture. If we assume that on a geodesic ball B(x, 1) ⇢ M , and for some " 2 (0, 1),
we have the following uniform bound on the curvature:

sup
B(x,1)

|Rm |  "2

Then the exponential map is a local diffeomorphism from the unit Euclidean ball
B(0, 1) ⇢ (TxM, gx ) to B(x, 1):

expx : B(0, 1) ! B(x, 1)

Then metric g = exp⇤

x g has also a harmonic curvature tensor and its curvature
tensor is bounded by "2. We will prove the regularity estimate in the ball B(0, 1)
endowed with the metric g = exp⇤

x g. Hence we work now on the Riemannian
manifold (B(0, 1), g). The Bochner’s formulae imply that 2:

1|Rm |
2

 C(n)✏2|Rm |
2
� 2|r Rm |

2

and 1|r Rm |
2

 C(n)✏2|r Rm |
2
� 2|r2 Rm |

2.

We define v = (33✏4 + |Rm |
2)|r Rm |

2 and consider the function ' = 2u � u2

2 C(n) will be a constant that only depends on n and that can vary from one estimate to another.
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where

u(y) =

8><
>:
1 if |y|2  1/2�
3� 4|y|2

�2 if 1/2  |y|2  3/4
0 if 3/4  |y|2.

Then we have
|1'|  C(n) and |d'|

2
 ' .

Hence at a point where the function 'v is maximal we have

vd' + 'dv = 0 and 0  1('v).

Hence at such a point:

0  v1' � 2 hd', dvi +'1v

 v1' + 2
|d'|

2

'
v + '1v

 C(n)v + '1v .

A quick computation shows that

1v  (C(n)✏2|Rm |
2
� 2|r Rm |

2)|r Rm |
2

+ (33✏4 + |Rm |
2)(C(n)✏2|r Rm |

2
� 2|r2 Rm |

2)

� 2 hd|Rm |
2, d|r Rm |

2
i

 C(n)✏2v � 2|r Rm |
4
� 2(33✏4 + |Rm |

2)|r2 Rm |
2

+ 8|Rm ||r Rm |
2
|r
2 Rm |

 C(n)✏2v � |r Rm |
4
� 2(33✏4 + |Rm |

2)|r2 Rm |
2
+ 16|Rm |

2
|r
2 Rm |

2

 C(n)✏2v � |r Rm |
4
� 2(33✏4 + |Rm |

2)|r2 Rm |
2
+ 16"4|r2 Rm |

2

 C(n)✏2v � |r Rm |
4.

Hence at a point where the function 'v is maximal, we have

0  C(n)v + C(n)✏2'v � ' |r Rm |
4 ,

so that we have at such a point:

'2
v2

(34"4)2
 '2 |r Rm |

4
 C(n)'v .

This estimate implies the following

sup
B(0,1)

'v  C(n)"8,
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and with the definition of v = (33✏4 + |Rm |
2)|r Rm |

2, we get:

sup
B(0, 12 )

|r Rm |
2

 C(n)"4.

The estimate on the higher order covariant derivative of the Riemann tensor |r j Rm|

can be obtained with the same argument using commutation rules between the co-
variant derivative r and the rough Laplacian r

⇤
r.

We have already seen that Einstein metric have harmonic Riemann tensor; an-
other example of metric with harmonic tensor are locally conformally flat metric
with constant scalar curvature.

2.2.2. Critical metrics

As noticed by G. Tian and J. Viaclovsky [35], another large class of Riemannian
metrics satisfies these regularity estimates:
Definition 2.5. We say that a Riemannian metric is critical if its Ricci tensor satis-
fies an Bochner’s type equality:

r
⇤

r Riccig +R(Riccig) = 0 . (2.3)

whereR is a linear action of the Riemann curvature tensor on the space of symmet-
ric 2 tensors.

Proposition 2.6. A manifold (Mn, g) endowed with a complete critical metric is is
(3, k)-regular for a constant 3 that only depends on n and k and on the Bochner
formula (2.3).

Proof. The idea of the proof has already been sketched by X-X. Chen and B. Weber
(cf. [12, page 1320]). First, using twice the Bianchi identities, we have (see: [4,
formula 3.7]):

r
⇤

r Rm+R(Rm) = dr(dr)⇤ Rm = �dr ^dr Riccig

where ^dr Riccig (X,Y, Z) = dr Riccig(Y, Z , X). Now we can use the coupled
elliptic system:

(
r

⇤
r Rm+R(Rm) = �dr ^dr Riccig ,

r
⇤
r Riccig +R(Riccig) = 0 .

(2.4)

By scaling, we assume that on some geodesic ball B(x, 1) and for some " 2 (0, 1),
we have the following uniform bound on the curvature:

sup
B(x,1)

|Rm |  "2
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Then the exponential map is a local diffeomorphism form the unit Euclidean ball
B(0, 1) ⇢ (TxM, gx ) to B(x, 1)

expx : B(0, 1) ! B(x, 1) .

Then metric g = exp⇤

x g is also critical and has its curvature tensor bounded by "2.
We will prove the regularity estimate in the ball B(0, 1) endowed with the metric
g = exp⇤

x g. Hence we work now on the Riemannian manifold (B(0, 1), g):
Moreover according to J. Jost and H. Karcher [14], M. Anderson [3, Remark

2.3i) ] there is a constant �n such that around each point p 2 B(0, 1/2) there is a
harmonic chart on the ball of radius �n

x : B(p, �n) ! Rn

such that the metric x⇤g has uniform C1,↵ and W 2,2n estimate.
Looking at the elliptic equation (2.3) in these coordinates implies that we have

a uniform W 2,2n bound

kRicci kW 2,2n(B(p,�n/2))  C(n)kRm kL2n(B(p,�n))  C(n)"2.

So that we get an estimate

kr
2 Ricci kL2n(B(p,�n/2))  C(n)"2.

If we look now at the elliptic equation

r
⇤

r Rm+R(Rm) = �dr ^dr Riccig

then we get similarly

kRm kW 2,2n(B(p,�n/4))  C(n)
h
kRm kL2n(B(p,�n/2)) + kr

2 Ricci kL2n(B(p,�n/2))

i
 C(n)"2.

In particular we have a uniform estimate on r Rm on these balls B(p, �n/4),

sup
B(0, 2+�n

4 )

|r Rm |  C(n)"2.

These argument can be bootstrapped because a uniform bound on r
j Rm, j =

0, . . . k implies uniform Ck+1,↵ and Wk+2,2n estimates on the metric x⇤g and these
estimates on the metric imply a Wk,2n estimate on the curvature tensor.
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Some example of critical metrics:

i) A Kähler metric with constant scalar curvature is critical. Indeed if (M,!) is
a Kähler manifold with Ricci form ⇢. The Ricci form is closed of type (1, 1)
and we have

d⇤⇢ = �dc Scalg .

When the scalar curvature is constant, the Bochner formula on (1, 1) forms
implies that

0 = (dd⇤

+ d⇤d)⇢ = r
⇤

r⇢ +R(⇢).

ii) Another important example is the case of Bach flat metric in dimension 4.

2.3. The point selection lemma

The following proposition can be found in [22, Appendix H] and is also known as
the 1/4-almost maximum lemma (see the �-maximum lemma in [17, p. 256]). A
version of this point selection lemma has also been used and proved by R. Schoen
(see [28, proof of Theorem 2.2]).

Proposition 2.7. Assume that ' : X ! R+ is a continuous function on a complete
locally compact metric space (X, d). If for some x0 2 X and r > 0 we have

'(x0) �

1
r2

then for any A > 0 there is a point x 2 B(x0, 2Ar) such that

'(x) �

1
r2

and
8z 2 B

⇣
x, A '(x)�1/2

⌘
, '(z)  4'(x).

Proof. Starting from x0 we build inductively a sequence x0, x1...
If xl is such that on B

�
x0, d(x0, xl) + A '(xl)�1/2

�
'  4'(xl)

then we define
xl+1 = xl .

If it is not the case then we can find xl+1 such that

d(x0, xl+1)  d(x0, xl) +

A
p

'(xl)

and
'(xl+1) � 4'(xl).
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If the points x0, x1, ..., xN are distincts then we get for l 2 {0, ..., N }:

'(xl) � 4l'(x0)

and

d(x0, xl) 

l�1X
k=0

A
p

'(xk)
 2Ar.

As ' is continuous and B(x0, 2Ar) compact, the sequence must stabilize.

Remark 2.8. We only need the fact that ' is bounded on the ball B(x, 2Ar).

3. Some ✏-rigidity and regularity results

3.1. ✏-quadratic decay

Theorem 3.1. Let (M, g) be a complete non-compact Riemannian manifold whose
metric is weakly (3, 1)-regular ( where3 � 1). Let ✏ =

1
63 . If for some fixed point

o 2 M we have:

8y 2 M , |Rm(y)| 

✏2

d(o, y)2

then the metric g is flat: Rm = 0.

Proof. If the curvature does not vanish identically, then our hypothesis implies that
we can find a point x 2 M where the curvature reached its maximum, in particular:

|Rm(x)| =

1
r2
and sup

B(x,r)
|Rm | 

1
r2

.

By (3, 1)-regularity, we know that

sup
B(x,r/2)

|r Rm |  3
1
r3

.

In particular, for � = 1/(23), we have for y 2 B(x, �r):

|Rm(y)| � |Rm(x)| � �r3
1
r3

�

1
2
|Rm(x)| =

1
2r2

.

We have supposed

|Rm(x)| 

✏2

d(o, x)2
,

hence
d(o, x)  ✏r ,
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and when y 2 @B(x, �r), we have d(o, y) � d(y, x) � d(o, x) � �r � ✏r and

1
2r2

 |Rm |(y) 

✏2

d(o, y)2


✏2

(� � ✏)2r2
.

Our choice of � = 3✏ implies that

✏2

(� � ✏)2
=

1
4
,

hence the result.

The curvature of an Einstein metric with zero scalar curvature is harmonic, hence by
Proposition (2.4) an Einstein metric with zero scalar curvature is (3(n), 1)-regular
for some constant 3(n) that only depends on the dimension n. So that Theorem A
follows from the above Theorem 3.1.

3.2. L n
2 ✏-regularity

Theorem 3.2. Let (M, g) be a complete Riemannian manifold whose metric is
(3, 1)-regular for some 3 � 1. There is a constant ✏(3, n) > 0 such that if
for some x 2 M and r > 0 we have

i) 8y 2 B(x, 34r), 8s 2 (0, r/4), vol B(y, s) � vsn

ii)
R
B(x,r) |Rm |

n
2 (y)dy  "(3, n)v,

then

sup
B(x, 12 r)

|Rm | 

16
r2

✓
1

v ✏(3, n)

Z
B(x,r)

|Rm |

n
2 (y)dy

◆ 2
n
.

Proof. Assume that there is a point z 2 B(x, 12r) such that

|Rm |(z) �

µ2

r2

where µ 2 (0, 4]. By the point selection lemma (with A = µ/8), we find a point
y 2 B(z, 14r) ⇢ B(x, 34r) such that

|Rm(y)| =

1
⇢2

�

µ2

r2

and
sup

B(y,2A( ⇢
2 ))

|Rm | 

4
⇢2

.
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By (3, 1)-regularity, we get

sup
B(y,A⇢/2)

|r Rm |  3
8

2A⇢3
=

43

A⇢3
.

As in the proof of Theorem 3.1, if we let

� =

A
83

=

µ

643

then on the ball B(y, �⇢) :

|Rm | �

1
2⇢2

.

Hence we get
Z
B(x,r)

|Rm |

n
2 (� )d� �

Z
B(y,�⇢)

|Rm |

n
2 (� )d�

�

vol B(y, �⇢)

2
n
2 ⇢n

� v

✓
�

p

2

◆n
.

For
✏(3, n) =

✓
1

163
p

2

◆n
,

we get that when
R
B(x,r) |Rm |

n
2 (y)dy  "(3, n)v, we can not find a point z 2

B(x, 12r) such that

|Rm |(z) �

16
r2

.

Moreover when z 2 B(x, 12r) then for µ
2

= r2|Rm |(z) we get:

v✏(3, n)
⇣µ

4

⌘n
= v

✓
µ

64
p

23

◆n


Z
B(x,r)

|Rm |

n
2 (� )d�.

Remarks 3.3.

i) For Einstein manifolds, this result is due to M. Anderson ([2]): assume that

Riccig = (n � 1)⌧g

and denote by V⌧ (r) the volume of a geodesic ball of radius r in the simply
connected complete Riemannian n-manifold with constant sectional curvature
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⌧ , then the Bishop-Gromov inequality implies that for y 2 B(x, 34r) and s 2

(0, r/4) we have:

vol B(y, s) �

V⌧ (s)
V⌧ (2r)

vol B(y, 2r) �

V⌧ (s)
V⌧ (2r)

vol B(x, r).

Hence when |⌧ |r2  1, our proof of Theorem 3.2 shows that the above hy-
pothesis i) and ii) can be gathered in a single one:

V⌧ (r)
vol B(x, r)

Z
B(x,r)

|Rm |

n
2 (� )d�  ✏(n).

ii) For critical metrics and in dimension 4, this result has been also proven G.Tian
and J.Viaclovsky ([37, Theorem 1.2]). In fact, this result was a refinement of
an earlier result in ( [35, Theorem 3.1]) where the hypothesis i) was replaced
by a Sobolev inequality:

8' 2 C1

0 (B(x, r)), k'k

L
2n
n�2

 Akd'kL2 .

And according to ([1] or [8]), such a Sobolev inequality implies a lower bound
on the volume on geodesic ball: if B ⇢ B(x, r) is a geodesic ball of radius
r(B) then

vol B � C(n)
✓
r(B)

A

◆n
.

It should also be noticed that the main argument in the proof of the result of
G.Tian and J.Viaclovsky was also a point selection lemma that relies a priori
to the ✏-regularity result on [35], that is the proof relies on an intricate De
Giorgi-Moser-Nash iteration scheme argument. The results of G. Tian and
J. Viaclovsky has been extended by X-X. Chen and B. Weber ( [12]) in two
directions: for extremal Kähler metrics and in dimension n > 4. Now from
the proof of ([37, Proposition 3.1]), it is clear that the ✏-regularity result of X-
X. Chen and B. Weber (see [12, Theorem 4.6]) implies the above ✏-regularity
result. But our proof is shorter and does not rely on De Giorgi-Moser-Nash
iteration scheme argument but on quite classical elliptic estimates.

iii) Eventually, it should be noticed that if we assume that the metric is (3, k)-
regular, then we get estimates on the covariant derivative of the Riemann ten-
sor r j Rm, j = 1, . . . , k.

Letting the radius r going to1, this result also implies a ✏-L
n
2 rigidity result:

Corollary 3.4. Let (M, g) is a complete Riemannian manifold whose metric is
(3, 1)-regular for some 3 � 1. Assume that:

i) 8x 2 M and 8r > 0 , vol B(x, r) � vrn
ii)
R
M |Rm |

n
2 (y)dy  "(3, n)v.

Then
Rm = 0.
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3.3. ✏-L p-regularity

The above argument can be extended to other L p estimates on the curvature:

Theorem 3.5. Let (M, g) be a complete Riemannian manifold whose metric is
(3, 1)-regular for some 3 � 1. Let p > 0. For any x 2 M and r > 0 we let
B be the collection of geodesic balls B of radius r(B) included in B(x, r).

M(x, r) := sup
B2B

 
r(B)2p

vol B

Z
B

|Rm |
p

! 1
p

.

There is a constant ✏(3, p) > 0 such that if for some x 2 M and r > 0 we have

M(x)  ✏(3, p)

then
sup

B(x, 12 r)
|Rm | 

16
✏(3, p)r2

M(x, r).

And we also get the following ✏-L p rigidity result:

Corollary 3.6. Let (M, g) is a complete Riemannian manifold whose metric is
(3, 1)-regular for some 3 � 1. Assume that: 8x 2 M and 8r > 0:

r2p

vol B(x, r)

Z
B(x,r)

|Rm |
p(y)dy  "(3, p)p.

Then
Rm = 0.

It is also clear that these results together with [35, Theorem 4.1] give some condi-
tions that imply finiteness of the number of ends and that each end is ALE of order
0, but we prefer to refrain from stating it.

4. Almost maximal volume growth

With the point selection lemma, we are going to give an alternative proof of the
following (slightly improved) result of Anderson [3]:

Theorem 4.1. There are constant ✏(n) > 0 and C(n) such that if (Mn, g) is a
complete Ricci flat manifold and x 2 M and r > 0 are such that 3

vol B(x, r) � !n(1� ✏n)rn

3 !n is the volume of the unit Euclidean ball.
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then

sup
B(x,r/2)

|Rm| 

C(n)
r2

sup
y2B(x, 34 r)

✓
!nrn � vol B(y, r)

rn

◆ 1
4
.

This theorem has the following corollary

Corollary 4.2. If (Mn, g) is a complete Ricci flat manifold such that

lim
r!1

vol B(x, r)
rn

� !n(1� ✏n)

then (Mn, g) is isometric to the Euclidean space Rn .

Anderson has shown first Corollary 4.2 with an argument by contradiction and
then he deduced (still by contradiction) an estimate for the C1,↵-harmonic radius
when the volume of the geodesic ball is almost maximal under a uniform bound
on the Ricci curvature. When the manifold is Einstein, the elliptic regularity of
the Einstein equation implies a bound on the curvature. For Einstein metrics, our
curvature estimate is more precise. Here we are going to show Theorem 4.1, the
Corollary 4.2 is then straightforward.

Proof. Again assume that there is a point z 2 B(x, r/2) such that

|Rm |(z) �

µ2

r2

where µ 2 (0, 4]. By the point selection lemma (with A = µ/8) we find a point
y 2 B(z, 14r) ⇢ B(x, 34r) such that

|Rm(y)| =

1
⇢2

�

µ2

r2

and
sup

B(y,2A( ⇢
2 ))

|Rm | 

4
⇢2

.

By (3, 7)-regularity, we get for j = 1, . . . , 7:

sup
B(y,µ⇢/16)

|r
j Rm | 

C(n)
(µ⇢) j⇢2

. (4.1)

According to A. Gray and L. Vanhecke, we know the asymptotic expansion of the
volume of geodesic balls [15], [16, Theorem 3.3]:

vol B(y, r) = !nrn
✓
1�

1
120(n + 2)(n + 4)

|Rm(y)|2r4 + O(r6)
◆

.
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We are going to estimate the ”O(r6)” term of this asymptotic expansion. The first
step is to remark that if B(s) is the Euclidean ball of radius s in (TyM, gy) then

expy : B(A⇢) ! B(y, A⇢)

is an immersion, hence for ḡ = exp⇤

y g, we get for all r  A⇢:

vol B(y, r)  volḡ B(⇢).

Estimate (4.1) and the Jacobi equation imply that if t 7! J (t) is a Jacobi field along
the geodesic t 7! expy(tv) with |v| = 1, J (0) = 0 and |J 0(0)| = 1 then for all
t 2 [0, µ⇢/16] and l 2 {0, ..., 7} :���� d

l

dtl
J (t)

����  Bn|Rm(y)|(µ⇢)3�l .

Then Gray and Vanhecke’s computation leads to

8s 2 (0, µ⇢/16) , volḡ B(s) = !nsn
✓
1�

1
120(n + 2)(n + 4)

|Rm(y)|2s4 + �(s)
◆

where for some constant Dn > 1 depending only on the dimension n:

|�(s)|  Dns6|Rm(y)|(µ⇢)�4.

We choose s = ⌘nµ
2⇢ such that

Dns6|Rm(y)|(µ⇢)�4 =

1
240(n + 2)(n + 4)

|Rm(y)|2s4

i.e.,
⌘2n =

1
240(n + 2)(n + 4)Dn

.

Then we get for � = ⌘nµ
2⇢

vol B(y, r)
rn



vol B(y, � )

� n


volḡ B(� )

� n
 !n

 
1�

⌘4nµ
8

240(n + 2)(n + 4)

!
.

4.1. A sphere theorem

With the same idea, we can give a direct proof of the following result.

Theorem 4.3. There is a "n > 0 such that if (Mn, g) is closed Einstein manifold
with positive scalar curvature:

Riccig = (n � 1)g

and
vol(M, g)
volSn � 1� "n

then (M, g) is isometric to the round sphere Sn .
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Perhaps, there is a nice optimal volume pinching for Einstein metrics with pos-
itive scalar curvature; a nice result in this direction has been proved by M. Gursky
([18]); it states that any non-standard Einstein metric g on the sphere S4 must satisfy

vol(S4, g)
volS4 

1
3

.

The same proof will also prove a local version of this result: for r 2 [0,⇡], we
denote by V1(r) the volume of a geodesic ball in Sn:

V1(r) = vol(Sn�1)
Z r

0
(sin(t))n�1dt.

Theorem 4.4. There is a "n > 0 such that if (Mn, g) is closed Einstein manifold
with positive scalar curvature:

Riccig = (n � 1)g

and such that for some r 2 (0,⇡] and all x 2 M:

vol(B(x, r))
V1(r)

� 1� "nr4

then (M, g) has constant sectional curvature.

These theorems are consequences of a result of M. Anderson and of the iso-
lation of the round metric amongst Einstein metrics. Indeed, a consequence of
Anderson’s result ([3, Theorem 1.2]) is the following:

For � > 0, we can choose ✏(n, �) > 0 such that the hypothesis

Riccig = (n � 1)g and
vol(M, g)
volSn � 1� "(n, �)

implies that the sectional curvature of g are in an interval (1 � �, 1 + �). Now
according to [6, 7, 19, 23], we know that a Einstein metric with sectional curvature
in the interval (12 , 2) has constant sectional curvature. If we do not care about the
optimal value of the pinching condition such a rigidity result can be easily proven
with the maximum principle.

Indeed the Weyl tensor W of an Einstein metric satisfies a Bochner formula
([4, Proposition 4.2], [32]):

r
⇤

rW+

2 Scalg
n

W = W ⇤W

where W ⇤W is a quadratic expression in the Weyl tensor. Hence if Riccig =

(n � 1)g, we obtain that the length of the Weyl tensor satisfies:

1|W |
2
+ 4(n � 1)|W |

2
= 2hW,W ⇤Wi � 2|rW |

2.
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Hence at a point where the length of theWeyl tensor reaches its maximum, we have:

4(n � 1)|W |
2

 1|W |
2
+ 4(n � 1)|W |

2
= 2hW,W ⇤Wi  c(n)|W |

3.

Hence either W = 0 or maxx2M |W(x)| �
2(n�1)
c(n) .

Proof. We use again the same idea to prove the above theorems. Assume that
(Mn, g) is a closed Einstein manifold with positive scalar curvature:

Riccig = (n � 1)g

and that the sectional curvature of g are not constant; then we know that

max
M

|W | �

2(n � 1)
c(n)

.

Let x 2 M be a point where this maximum is reached:

1
⇢2

= |W(x)| = max
M

|W |.

By regularity, we obtain estimates on all the covariant derivatives of the Weyl ten-
sor: for j 2 {1, . . . , 7}

max
M

|r
j W |  C(n)

1
⇢ j

(recall that the diameter of M is bounded by ⇡ and that ⇢2 
2(n�1)
c(n) ).

The same argument using the computations of Gray and Vanhecke shows that
for some constant �n > 0 and for all s 2 (0, �n⇢):

vol(B(x, s))
V1(s)

 1�

1
240(n + 2)(n + 4)

✓
s
⇢

◆4
.

Then the Bishop-Gromov comparison principle implies then that:

vol(M, g)
volSn =

vol(B(x,⇡))

V1(⇡)


vol(B(x, �n⇢))

V1(�n⇢)
 1�

�4n
240(n + 2)(n + 4)

.

It also implies that for r 2 (�n⇢,⇡]

vol(B(x, r))
V1(r)

 1�

�4n
240(n + 2)(n + 4)

 1�

�4n r4

240(n + 2)(n + 4)⇡4

and because ⇢2 
2(n�1)
c(n) , we have a constant ⌘n such that for all r 2 (0,⇡]:

vol(B(x, r))
V1(r)

 1� ⌘nr4.
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4.2. Another rigidity result

The same argument can be used to prove a volume rigidity result when the scalar
curvature is zero and when the second term in the asymptotic expansion in the
volume of geodesic balls has a definite sign:

Theorem 4.5. There is a constant "n > 0, such that when (Mn, g) is a complete
locally conformally flat manifold with zero scalar curvature of dimension n � 4
such that for some v > 0:

8x 2 M, 8r > 0 : vrn  vol B(x, r)  !nrn(1+ "nv
4)

then (Mn, g) is isometric to the Euclidean space Rn .

Proof. Indeed at a 4-almost maximal point of the length of the Riemann curvature
tensor, we have

|Rm(x)| =

1
⇢2

and max
B(x,⇢)

|Rm | 

4
⇢2

.

Because vol B(x, r) � vrn , Cheeger’s estimate of the injectivity radius ( [9], [11,
Theorem 4.2]) implies that the injectivity radius at x is bounded from below:

injx � ⌘nv⇢ .

Again if we denote by B(s) the Euclidean ball of radius s in (TxM, gx ) then

expx : B(⌘nv⇢) ! B(y, ⌘nv⇢)

is a diffeomorphism (note that our hypothesis implies in particular that v  !n).
Hence for g = exp⇤

c g, we get for all r  ⌘nv⇢:

vol B(y, r) = volg B(r).

When the metric is locally conformally flat with zero scalar curvature, Gray and
Vanhecke’s computation gives

vol B(x, r) = !nrn
✓
1+

2n � 7
90(n2 � 4)(n + 4)

|Riccig(x)|2r4 + O(r6)
◆

.

The same arguments imply that for some �n > 0 and "n > 0, we have for s = �nv⇢

vol B(x, s) � !nsn
⇣
1+ v4"n

⌘
.

Remark 4.6. Using [16, Corollary 3.4] in dimension 3, and because a control of
the first seven derivatives of the curvature tensor is enough to estimate the remainder
terms in the volume expansion of geodesic balls, the same proof furnishes that there
is a "(3) > 0 such that if (M, g) is complete (3, 7)-regular 3-manifold with zero
scalar curvature such that

8x 2 M, 8r � 0 : vol B(x, r) � !nr3(1� "),

then (M, g) is isometric to the Euclidean space R3.
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[6] C. BÖHM and B. WILKING, Manifolds with positive curvature operators are space forms,
Ann. of Math. 167 (2008), 1079–1097.

[7] S. BRENDLE, Einstein manifolds with nonnegative isotropic curvature are locally symmet-
ric, Duke Math J. 151 (2010), 1–21.
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