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Regularity of minimizers
of autonomous convex variational integrals

MENITA CAROZZA, JAN KRISTENSEN AND ANTONIA PASSARELLI DI NAPOLI

Abstract. We establish local higher integrability and differentiability results for
minimizers of variational integrals

F(v,�) =

Z
�
F(Dv(x)) dx

over W1,p-Sobolev mappings v : � ⇢ Rn ! RN satisfying a Dirichlet boundary
condition. The integrands F are assumed to be autonomous, convex and of (p, q)
growth, but are otherwise not subjected to any further structure conditions, and
we consider exponents in the range 1 < p  q < p⇤, where p⇤ denotes the
Sobolev conjugate exponent of p.

Mathematics Subject Classification (2010): 49N15 (primary); 49N60, 49N99
(secondary).

1. Introduction and statement of the results

We prove local higher integrability and differentiability results for minimizers of
the basic autonomous and convex variational integrals

F(v, O) =

Z
O
F(Dv(x)) dx (1.1)

with integrands F satisfying (p, q) growth conditions, defined for mappings
v : � ! RN of Sobolev class W1,p and open subsets O of a fixed bounded and
open subset � of Rn . Our results mainly concern the multi-dimensional vectorial
case n, N � 2, but some aspects are also new in the multi-dimensional scalar case,
n � 2 and N = 1. The one-dimensional case, n = 1 and N � 1, is special and
stronger results apply there.
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In order to state and describe the results we consider an integrand F : RN⇥n
!

R satisfying the following growth and convexity hypotheses:

F(⇠)  L(|⇠ |
q

+ 1) (H1)

⇠ 7! F(⇠) � `
⇣
µ2 + |⇠ |

2
⌘ p
2 is convex (H2)

for all ⇠ 2 RN⇥n . Here L , ` > 0 and µ � 0 are arbitrary but fixed constants,
whereas the exponents q � p > 1 will be subjected to various constraints.

Hypothesis (H2) is a uniform strong p-convexity condition for the integrand
F , and is similar to the condition considered in [10]. In fact, when F is C2 then
(H2) is equivalent to the following standard strong p-ellipticity condition

F 00(⇠)[⌘, ⌘] � c
⇣
µ2 + |⇠ |

2
⌘ p�2

2
|⌘|

2 (H20)

for all ⇠ , ⌘ 2 RN⇥n , where c is a positive constant of form c = c(p)`. While
when F is C1 the hypothesis (H2) is equivalent to the following standard strong
p-monotonicity condition

⌦
F 0(⇠) � F 0(⌘), ⇠ � ⌘

↵
� c

�
µ2 + |⇠ |

2
+ |⌘|

2� p�22
|⇠ � ⌘|

2 (H200)

for all ⇠ , ⌘ 2 RN⇥n , where again c = c̃(p)`. It is easy to see that hypothesis
(H2) in particular implies that the integrand F is bounded from below, and we shall
therefore often implicitly assume that F is nonnegative once (H2) holds.

It is well-known that for convex integrands, the growth condition (H1) implies
a Lipschitz condition, which for C1 integrands can be stated as

|F 0(⇠)|  c(|⇠ |
q�1

+ 1) (1.2)

for all ⇠ 2 RN⇥n , where we can use c = 2q L .
We will be concerned with two closely related classes of F-minimizers of the

variational integral (1.1), under the assumptions (H1), (H2), which are defined as
follows.
Definition 1.1. (i) A mapping u 2 W1,p(�, RN ) is an F-minimizer if F(Du) 2

L1(�) and Z
�
F(Du) 

Z
�
F(Dv)

for all v 2 W1,p
u (�, RN ).

(ii) A mapping u 2 W1,1
loc (�, RN ) is a local F-minimizer if F(Du) 2 L1loc(�) and

Z
O
F(Du) 

Z
O
F(Dv)

for any O b � and any v 2 W1,p
u (O, RN ).
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Here we use the notation O b � as a short-hand for: O is an open set whose clo-
sure, O , is compact and contained in �. Furthermore for an open subset O ⇢ �

(no regularity of @O implied) and u 2 W1,p(O, RN ) we denote by W1,p
u (O, RN )

the Dirichlet class of W1,p Sobolev maps v such that the difference v � u 2

W1,p
0 (O, RN ), where the latter is defined to be the closure of the space of smooth

and compactly supported test maps, C1

c (O, RN ), in W1,p(O, RN ). We refer to the
monograph [29] for background theory on the relevant function spaces.
We emphasize that in the definitions of F-minimality it is crucial for regularity
theory that we include the integrability requirements on F(Du).

The assumptions (H1), (H2) clearly entail a (p, q) growth condition: there
exists a constant c = c(L/`, p, q, µ) > 0 such that

1
c
|⇠ |

p
� c  F(⇠)  c(|⇠ |

q
+ 1) (1.3)

for all ⇠ 2 RN⇥n .
A systematic study of the regularity of minimizers of such functionals was

initiated with the celebrated papers by Marcellini (see in particular [19–21]). From
the beginning it has been clear that no regularity can be expected if the coercitivity
and growth exponents, denoted p and q, respectively, are too far apart (see [13, 15,
18] and also [9, 11]). On the other hand, many regularity results are available if the
ratio q/p is bounded above by a suitable constant that in general depends on the
dimension n, and converges to 1 when n tends to infinity (incl. [1–3,7–9,22,24]).

In the present context of p-convex integrands of q-growth the higher differen-
tiability of minimizers is obtained by a variant of the difference-quotient method
in connection with some sort of regularization procedure (see in particular [7–9]
and [3]). In particular we emphasize that all such results rely heavily on the strong
convexity hypothesis imposed on the integrand, and that this allows for a treatment
based on (a suitable version of) the Euler-Lagrange system. However it should be
noted that for a direct derivation of the Euler-Lagrange system we already have to
require that the exponents p and q are sufficiently close. Indeed, it is well-known
that for a convex C1 integrand F satisfying (1.3) with exponents q  p + 1 the F-
minimality of a W1,p-map u implies that it is an F-extremal too: the field F 0(Du)
is locally integrable (in fact, locally p/(q � 1)-integrable by (1.2)) and is row-wise
solenoidal in the sense that Z

�
hF 0(Du), D'i = 0

for all ' 2 C1

c (�, RN ). Using a regularization procedure and convex duality
theory we shall establish much stronger results in Proposition 3.1 below.

The main results of this paper are the local higher integrability result stated
in Theorem 1.2 and the local higher differentiability result stated in Theorem 1.3.
Both results concern minimizers of the integral functional (1.1) under the assump-
tions (H1) and (H2). We obtain local higher integrability for minimizers when the
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exponents p and q satisfy the condition 1 < p  q < p⇤, where p⇤ denotes the
Sobolev conjugate exponent of p. The interpretation of this is

1 < p  q <
np

n � p
when p < n

1 < p  q < 1 when p � n.
(1.4)

We emphasize that as opposed to many of the above mentioned results, we do not
require any additional structure assumption on the integrand. More precisely we
have the following:

Theorem 1.2. Let F : RN⇥n
! R be C1 and satisfy (H1), (H2) with µ = 0.

Assume
1 < p  q < p⇤, (1.5)

where p⇤ denotes the Sobolev conjugate exponent of p (with the interpretation of
(1.4)). For g 2 W1,q(�, RN ) let u 2 W1,p

g (�, RN ) be the unique F-minimizer.
Then u 2 W1,q

loc (�, RN ) when q < np
n�1 , and u 2 W1,r

loc(�, RN ) for all r< p̄, where

p̄ :=

np

n �
p

p�1

⇣
1� n( 1p �

1
q )
⌘ when q �

np
n � 1

. (1.6)

The proof of Theorem 1.2 is based on the difference-quotient method but, in con-
trast to the above mentioned papers, under our assumptions on the exponents p and
q, we can not use directly that an F-minimizer is a solution to the corresponding
Euler-Lagrange system. Instead we approximate the integrand F by suitably regu-
lar integrands in order to facilitate a systematic use of the dual problems in the sense
of Convex Analysis. Namely we approximate F by strictly convex and uniformly
elliptic integrands Fk , satisfying standard p-growth conditions, whose minimizers
uk strongly converge to the minimizer u in W1,p. To every such minimizer uk we
can associate, essentially according to the standard duality theory for convex prob-
lems [6], a row-wise solenoidal matrix field denoted by �k . For the pair (Duk, �k)
we shall establish suitable estimates, that are preserved in passing to the limit. Such
estimates will provide conditions in order for the Euler-Lagrange system to hold for
an F-minimizer, as well as a first regularity result (see Proposition 3.1 in Section
3). While the dual problems have been used previously in regularity theory, see for
instance [4, 5], it seems that the observations used here have so far not been em-
ployed in the anisotropic growth context. We refer the reader to Remark 3.3 for a
discussion of the somewhat mysterious exponent p̄ that appears in Theorem 1.2.
As a consequence of the higher integrability result of Theorem 1.2, we are to able
to establish the following

Theorem 1.3. Assume F : RN⇥n
! R is C1 and satisfies (H1), (H2) for some

exponents 1 < p  q < 1. Let u 2 W1,p
loc (�, RN ) be a local F-minimizer. Setting

V (Du) :=

⇣
µ2 + |Du|2

⌘ p�2
4 Du,
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we have that
V (Du) 2 W1,2

loc (�, RN⇥n),

provided q < np
n�1 .

We remark that under the assumptions (H1), (H2) on the integrand F the W1,2
loc

higher differentiability of V (Du) has previously been established only when the
exponents p, q satisfy the stronger conditions 1 < p  q < n+1

n p, see [8], and
also [2,3,7,9,10]. Our improved bound q < np

n�1 is in a certain sense more natural as
it also appears in connection with optimal trace and embedding results for Sobolev-
type spaces. Namely when B ⇢ Rn is an open ball (or any smooth bounded do-
main), then any h 2 W1,p(@B) can be extended to H 2 W1,q(B) precisely for
q 

np
n�1 . See for instance [28] for such trace and embedding theorems.

Finally, we remark that our results can be generalized to minimizers of the general
autonomous convex variational integral

Z
�
F(v, Dv) dx .

The precise statements and proofs are left to the interested reader, and we only note
that it is essential that the integrand F = F(y, z) be jointly convex for the validity
of the results. Similar remarks, together with precise statements and sketches of
proofs, were given in [3].

2. Preliminaries

In this paper we follow the usual convention and denote by c a general constant that
may vary on different occasions, even within the same line of estimates. Relevant
dependencies on parameters and special constants will be suitably emphasized us-
ing parentheses or subscripts. All the norms we use on Rn , RN and RN⇥n will be
the standard euclidean ones and denoted by | · | in all cases. In particular, for ma-
trices ⇠ , ⌘ 2 RN⇥n we write h⇠, ⌘i := trace(⇠T ⌘) for the usual inner product of ⇠

and ⌘, and |⇠ | := h⇠, ⇠i

1
2 for the corresponding euclidean norm. When a 2 RN and

b 2 Rn we write a⌦b 2 RN⇥n for the tensor product defined as the matrix that has
the element arbs in its r-th row and s-th column. Observe that (a ⌦ b)x = (b · x)a
for x 2 Rn , and |a ⌦ b| = |a||b|.

When F : RN⇥n
! R is sufficiently differentiable, we write

F 0(⇠)[⌘] :=

d
dt

���
t=0

F(⇠ + t⌘) and F 00(⇠)[⌘, ⌘] :=

d2

dt2
���
t=0

F(⇠ + t⌘)

for ⇠ , ⌘ 2 RN⇥n . Hereby we think of F 0(⇠) both as an N ⇥ n matrix and as
the corresponding linear form on RN⇥n , though |F 0(⇠)| will always denote the
euclidean norm of the matrix F 0(⇠). The second derivative, F 00(⇠), is a real bilinear
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form on RN⇥n . We express growth conditions for the second derivative of the
integrand in terms of the operator norm on bilinear forms:

kF 00(⇠)k := sup
|⌘|1,|⇣ |1

F 00(⇠)[⌘, ⇣ ].

It is convenient, and by now common, to express the convexity and growth condi-
tions for the integrands in terms of two auxiliary functions defined for all ⇠ 2 RN⇥n

as
h⇠i = h⇠iµ :=

⇣
µ2 + |⇠ |

2
⌘ 1
2 (2.1)

and

V (⇠) = Vp,µ(⇠) :=

⇣
µ2 + |⇠ |

2
⌘ p�2

4
⇠, (2.2)

where µ � 0 and p � 1 are parameters. For the auxiliary function Vp,µ, we record
the following estimate (see the proof of [14, Lemma 8.3]):

Lemma 2.1. Let 1 < p < 1 and 0  µ  1. There exists a constant c =

c(n, N , p) > 0 such that

c�1
⇣
µ2 + |⇠ |

2
+ |⌘|

2
⌘ p�2

2


|Vp,µ(⇠) � Vp,µ(⌘)|2

|⇠ � ⌘|
2  c

⇣
µ2 + |⇠ |

2
+ |⌘|

2
⌘ p�2

2

for any ⇠ , ⌘ 2 RN⇥n .

We shall use a class of fractional Sobolev spaces that can be defined in terms of
Nikolskii conditions. For a vector valued function w : A ! Rk , a natural number
1  s  n and a real number h 2 R, we define the finite difference operator

1s,hw(x) := w(x + hes) � w(x),

where {e1, . . . , en} denotes the canonical basis of Rn . Note that hereby 1s,hw(x)
is well-defined whenever x, x + hes 2 A.
Definition 2.2. Let A ⇢ Rn be an open set, k 2 N, ↵ 2 (0, 1) and q 2 [1,1). For
a mapping w 2 Lqloc(A, Rk) we say that w is locally in B↵,q

1
on A provided for each

ball B b A there exist d 2 (0, dist(B, @A)), M > 0 such thatZ
B
|1s,hw(x)|q dx  M|h|q↵

for every s 2 {1, . . . , n} and h 2 R satisfying |h|  d.

Theorem 2.3. On any domain � ⇢ Rn we have the continuous embeddings:

(i) B↵,q
1

,! Lrloc for all r < nq
n�↵q provided ↵ 2 (0, 1), q > 1 and ↵q < n;

(ii) W1,p
loc ,! B↵,q

1
provided ↵ = 1� n( 1p �

1
q ), where 1 < p  q < 1.



REGULARITY OF MINIMIZERS OF AUTONOMOUS CONVEX VARIATIONAL INTEGRALS 1071

We refer to [28, Sections 30-32] for a proof of this theorem. In fact, the above state-
ments follow by localizing the corresponding results proved for functions defined
on Rn in [28] by simply using a smooth cut-off function.

We shall require some further elementary notions from convex analysis, all of
which are discussed in the scalar case N = 1 in [6]. However, as we shall briefly
demonstrate below, the relevant parts easily extend to the vectorial case N > 1 too.
Let F : RN⇥n

! R satisfy the (p, q) growth condition:

c1|⇠ |
p

� c2  F(⇠)  c2(|⇠ |
q

+ 1),

where 0 < c1  c2 and 1 < p  q < 1. Its polar (or Fenchel conjugate) integrand
is defined by

F⇤(⇣ ) := sup
⇠2RN⇥n

⇣
h⇣, ⇠i � F(⇠)

⌘
, ⇣ 2 RN⇥n. (2.3)

Hereby F⇤
: RN⇥n

! R is convex and has (q 0, p0) growth, where p0, q 0 are the
Hölder conjugate exponents of p, q, respectively. More precisely, as can readily be
checked, we have

c3|⇣ |
q 0

� c2  F⇤(⇣ )  c4|⇣ |
p0

+ c2 (2.4)

for all ⇣ 2 RN⇥n , where c3 = c
�

1
q�1

2 (1�
1
q )q�

1
q�1 and c4 = c

�
1
p�1

1 (1�
1
p )p

�
1
p�1 .

One can check that the bipolar integrand F⇤⇤
:= (F⇤)⇤ equals F at ⇠ if and only

if F is lower semicontinuous and convex at ⇠ , and more generally, that it is the
convex envelope of F . In particular, F⇤⇤

= F precisely when F is convex and
lower semicontinuous (the latter being a consequence of the former when, as here,
F is real-valued).

The definition of polar integrand means that we have the Young-type inequality

h⇣, ⇠i  F⇤(⇣ ) + F⇤⇤(⇠) (2.5)

for all ⇣ , ⇠ 2 RN⇥n . Notice that for a given ⇠ we have equality in (2.5) precisely
for ⇣ 2 @F⇤⇤(⇠), the subgradient for F⇤⇤ at ⇠ . Furthermore, we record that F is
strictly convex precisely when F⇤ is C1, and that in this case we also have

(F⇤)0(F 0(⇠)) = ⇠ (2.6)

for all ⇠ 2 RN⇥n .
We now specialize to integrands satisfying standard p-growth and convexity

conditions, and so assume that F : RN⇥n
! R is a C1 function satisfying

|F(⇠)|  L(|⇠ |
p

+ 1) (2.7)

and
⇠ 7! F(⇠) � `|⇠ |

p is convex, (2.8)
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where 0 < `  L < 1 and 1 < p < 1. Note that (2.7) is (H1) with µ = 1
(q = p and slightly larger L) and (2.8) is (H2) with µ = 0. The polar integrand
F⇤

: RN⇥n
! R is then strictly convex and C1, and it satisfies the p0-growth con-

dition:
c1|⇣ |

p0

� c2  F⇤(⇣ )  c2(|⇣ |
p0

+ 1)

for all ⇣ 2 RN⇥n , where c1 = c1(L , p) > 0, c2 = c2(`, p) > 0 and p0
=

p/(p � 1). By standard arguments, for a given g 2 W1,p(�, RN ), the prob-
lem of minimizing

R
�F(Dv) over v 2 W1,p

g (�, RN ) admits a unique solution
u. This minimizer is also the unique weak solution u 2 W1,p

g (�, RN ) to the Euler-
Lagrange system: Z

�
hF 0(Du), D'i = 0

for all ' 2 W1,p
0 (�, RN ). In view of the Young-type inequality (2.5), and the

subsequent remark, we have for the minimizer u the extremality relation:

hF 0(Du), Dui = F⇤(F 0(Du)) + F(Du) (2.9)

valid pointwise almost everywhere on �. Hence for any row-wise solenoidal field
� 2 Lp0

(�, RN⇥n) it follows that
Z

�

⇣
hF 0(Du), Dui � F⇤(F 0(Du))

⌘
�

Z
�

⇣
h�, Dui � F⇤(� )

⌘
.

Because u� g 2 W1,p
0 (�, RN ) and � is row-wise solenoidal and p0-integrable, we

have
R
�h�, Dui =

R
�h�, Dgi. Consequently, F 0(Du) is the unique maximizer of

the functional
� 7!

Z
�

⇣
h�, Dgi � F⇤(� )

⌘
(2.10)

over all row-wise solenoidal fields � 2 Lp0

(�, RN⇥n). The extremality relation
(2.9) can also be expressed in terms of � ⇤

:= F 0(Du) and then reads as

h� ⇤, (F⇤)0(� ⇤)i = F⇤(� ⇤) + F((F⇤)0(� ⇤)), (2.11)

where (F⇤)0(� ⇤) = Du being row-wise curl-free is merely a restatement of the
Euler-Lagrange equation for the maximization problem of the functional (2.10) over
solenoidal fields.

3. Proof of Theorem 1.2

Throughout this section we let F : RN⇥n
! R be a C1 integrand satisfying

⇠ 7! F(⇠) � `|⇠ |
p is convex (3.1)
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and
0  F(⇠)  c(|⇠ |

q
+ 1) (3.2)

where 1 < p  q < 1 and `, c > 0 are constants. We shall impose additional
conditions on the exponents p and q as we go along. It is a routine matter to check
that F(v,�) =

R
�F(Dv) under the assumptions (3.1), (3.2) is a strictly convex,

lower semicontinuous and proper functional on W1,p(�, RN ). Hence for a given
g 2 W1,p(�, RN ) with F(g,�) < 1 the existence and uniqueness of a minimizer
u in the Dirichlet class W1,p

g (�, RN ) is then evident.
We split the proof of Theorem 1.2 in two parts and start with the following

preliminary result. We state it as a separate result because we believe it could have
independent interest. It gives conditions for the Euler-Lagrange system to hold for
the minimizer u, and also contains a first higher integrability result.

Proposition 3.1. Assume F : RN⇥n
! R is C1 and satisfies (3.1), (3.2). For g 2

W1,p(�, RN ) with F(Dg) 2 L1(�), let u 2 W1,p
g (�, RN ) denote the unique F-

minimizer. We then have the following two statements (where F⇤ denotes the polar
of F):

(i) If g 2 W1,q(�, RN ), then F⇤(F 0(Du)) 2 L1(�) and F 0(Du) is row-wise
solenoidal.

(ii) If q 
np
n�1 , then F

⇤(F 0(Du)) 2 L1loc(�) and F 0(Du) is row-wise solenoidal.

Hence in both cases (i)-(ii), u is in particular an F-extremal and F 0(Du) 2

Lq 0

(�, RN⇥n), where q 0
= q/(q � 1).

Remark 3.2. Note that in (i) above, apart from 1 < p  q < 1, we do not
impose any conditions on the exponents p and q. Furthermore, as the reader can
observe from the proof below, we in fact establish that � ⇤

:= F 0(Du) is the unique
maximizer of the dual problem that consists in maximizing the functional

� 7!

Z
�

⇣
hDg, � i � F⇤(� )

⌘

over row-wise solenoidal fields � 2 Lq 0

(�, RN⇥n), where F⇤ denotes the polar
integrand of F and q 0

= q/(q � 1).

Proof. We start by constructing a class of auxiliary problems, whose solutions on
the one hand approximate the minimizer u, and on the other can be dealt with
by standard means. The construction might seem a bit elaborate at first, but all
properties that we establish play a role in the proof, though some only at a later
stage of the proof of the main result. Put

G(⇠) := F(⇠) �

`

2
|⇠ |

p,
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⇠ 2 RN⇥n. Then G�
`
2 | · |

p is convex by (3.1) so that in particular G(⇠)�
`
2 |⇠ |

p
�

G(0) + hG 0(0), ⇠i for all ⇠ , and hence invoking also (3.2) we find a (new) constant
c > 0 such that

c(|⇠ |
q

+ 1) � G(⇠) �

1
c
|⇠ |

p
� c (3.3)

for all ⇠ 2 RN⇥n . Consequently, the polar of G,

G⇤(z) := sup
⇠2RN⇥n

⇣
h⇠, zi � G(⇠)

⌘

is a real-valued convex function satisfying a (q 0, p0) growth condition, where q 0, p0

denote the Hölder conjugate exponents of q, p, respectively (compare with (2.4)).
For each k > 0 define

Gk(⇠) := max
|z|k

⇣
h⇠, zi � G⇤(z)

⌘
.

Then Gk is a real-valued convex, globally k-Lipschitz function, and because G is
(lower semicontinuous and) convex we have that

Gk(⇠) % G⇤⇤(⇠) = G(⇠) as k % 1

pointwise in ⇠ 2 RN⇥n . Define

G̃k(⇠) := max{Gk(⇠),
1
c
|⇠ |

p
� c}.

In view of (3.3) we still have that G̃k(⇠) % G(⇠) as k % 1. Since p > 1 and
Gk is k-Lipschitz there exist numbers rk > 0 such that rk % 1 as k % 1 and
G̃k(⇠) =

1
c |⇠ |

p
� c for |⇠ | � rk � 1. Define

Hk(⇠) :=

(
G̃k(⇠) when |⇠ |  rk
p
c r

p�1
k |⇠ | �

p�1
c r pk � c when |⇠ | > rk .

It is not hard to check that Hk is convex and globally mk-Lipschitz (we may take
any mk �

p
c r

p�1
k ). Moreover,

Hk(⇠) % G⇤⇤(⇠) = G(⇠) as k % 1 (3.4)

pointwise in ⇠ 2 RN⇥n . Next we regularize Hk by use of the following standard
radially symmetric and smooth convolution kernel

8(⇠) :=

(
c exp

⇣
1

|⇠ |
2
�1

⌘
for |⇠ | < 1

0 for |⇠ | � 1,
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where the constant c = c(nN ) is chosen such that
R
RN⇥n8 = 1, and for each " > 0

we put 8"(⇠) := "�nN8("�1⇠). It is routine to check that the mollified function
8"⇤Hk (as usual defined by convolution) is convex and C1, and since Hk is convex
and mk-Lipschitz that

Hk(⇠)  (8" ⇤ Hk)(⇠)  Hk(⇠) + mk" (3.5)

holds for all ⇠ 2 RN⇥n . For integers k > 1 and sequences (�k), (µk) ⇢ (0,1)
(specified at (3.7) below), we define

Fk(⇠) := (8�k ⇤ Hk)(⇠) � µk +

`

2
|⇠ |

p. (3.6)

Then we have for all ⇠ 2 RN⇥n and k > 1:

Fk(⇠)  Hk(⇠) + mk�k � µk +

`

2
|⇠ |

p

 Hk+1(⇠) + mk�k � µk +

`

2
|⇠ |

p

 (8�k+1 ⇤ Hk+1)(⇠) + mk�k � µk +

`

2
|⇠ |

p

= Fk+1(⇠) + µk+1 + mk�k � µk .

where we used (3.5) and the monotonicity of the sequence Hk . Hence taking

�k :=

1
k2mk

and µk :=

1
k � 1

(3.7)

we have that Fk(⇠) % F(⇠) as k % 1 pointwise in ⇠ . It follows in particular from
Dini’s Lemma that the convergence is locally uniform in ⇠ . We note that Fk is C1 on
RN⇥n , C1 on RN⇥n

\ {0}, and that it is C2 on RN⇥n when p � 2. Next we check
that also F 0

k(⇠) ! F 0(⇠) locally uniformly in ⇠ as k ! 1. To that end assume that
⇠k ! ⇠ and consider (F 0

k(⇠k)). Because difference-quotients of convex functions
are increasing in the increment, we have for all ⌘ 2 RN⇥n and 0 < |t |  1:

���hF 0

k(⇠k) � F 0(⇠), ⌘i

��� 

����Fk(⇠k + t⌘) � Fk(⇠k) � hF 0(⇠), t⌘i

t

����


���Fk(⇠k + ⌘) � Fk(⇠k) � hF 0(⇠), ⌘i

���.
Consequently, we have for all ⌘ 2 RN⇥n that

lim sup
k!1

���hF 0

k(⇠k) � F 0(⇠), ⌘i

��� 

���F(⇠ + ⌘) � F(⇠) � hF 0(⇠), ⌘i

���,
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and since F in particular is differentiable at ⇠ we conclude that the left-hand side
must vanish. This proves the asserted local uniform convergence of derivatives.
Finally, we also record that Fk �

`
2 | · |

p is convex, that

kF 00

k (⇠)k  ck(|⇠ |
p�2

+ 1) (3.8)

for all ⇠ 2 RN⇥n
\ {0}, where ck are positive real constants (possibly ck % 1 of

course). It is also easy to see that Fk satisfy a uniform (p, q) growth condition.
Let uk 2 W1,p

g (�, RN ) denote the unique Fk-minimizer, and recall from above
that the row-wise solenoidal matrix field �k := F 0

k(Duk) 2 Lp0

(�, RN⇥n) is a
solution to the dual problem that consists in maximizing the functionalZ

�

⇣
h�, Dgi � F⇤

k (� )
⌘

over row-wise solenoidal matrix fields � 2 Lp(�, RN⇥n), where F⇤

k denotes the
polar of Fk . As the Fk satisfy a uniform (p, q) growth condition, the F⇤

k satisfy
a uniform (q 0, p0) growth condition, and it is not difficult to check that F⇤

k (⇣ ) &

F⇤(⇣ ) as k % 1 pointwise in ⇣ . Furthermore, we record the extremality relation

h�k, Duki = F⇤

k (�k) + Fk(Duk) a.e. on � (3.9)

that holds for all k > 1, and that, since �k 2 Lp0 is row-wise solenoidal and uk�g 2

W1,p
0 (�, RN ), Z

�
h�k, Duki =

Z
�
h�k, Dgi. (3.10)

Our next goal is to show that uk ! u strongly in W1,p. To that end, we start by
observing that Z

�

�1
c
|Duk |p � c

⌘


Z
�
Fk(Duk) 

Z
�
F(Dg) < 1

so (uk) is bounded in W1,p(�, RN ). Let (uk0) be a subsequence. Then by the
reflexivity of W1,p, it admits a further subsequence (uk00) that converges weakly to
some v in W1,p. By Mazur’s lemma, W1,p

g (�, RN ) is also W1,p-weakly closed, so
v 2 W1,p

g (�, RN ), and relabelling the subsequence we write simply uk * v. Now,
by Mazur’s Lemma, we get for each k > 1

lim inf
j!1

Z
�
Fk(Du j ) �

Z
�
Fk(Dv),

and since Fk % F , we find by monotone convergence and minimality of u

lim inf
k!1

Z
�
Fk(Duk) �

Z
�
F(Dv) �

Z
�
F(Du).
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Using first that uk is Fk-minimizing, and then monotone convergence, yield

lim sup
k!1

Z
�
Fk(Duk)  lim sup

k!1

Z
�
Fk(Du) =

Z
�
F(Du),

and by comparing this with the foregoing inequalities we deduce thatZ
�
Fk(Duk) !

Z
�
F(Du) =

Z
�
F(Dv). (3.11)

By uniqueness of F-minimizers, v = u. To deduce that the convergence is actually
strong we use the uniform p-convexity of the Fk , we have that Fk �

`
2 | · |

p is convex
for all k > 1. So, as Fk is C1, we deduce from Lemma 2.1 that there exists a
constant c > 0 such that

c|V (⇠) � V (⌘)|2  Fk(⇠) � Fk(⌘) � hF 0

k(⌘), ⇠ � ⌘i

holds for all ⇠ , ⌘ 2 RN⇥n and k > 1. Here V (⇠) = Vp,0(⇠) = |⇠ |

p�2
2 ⇠ . Conse-

quently,

c
Z

�
|V (Du) � V (Duk)|2 

Z
�

⇣
Fk(Du) � Fk(Duk) � hF 0

k(Duk), D(u � uk)i
⌘

=

Z
�

⇣
Fk(Du) � Fk(Duk)

⌘
! 0

as k!1. It follows that Duk !Du in measure on� and that |V (Duk)|2= |Duk |p
is equi-integrable on �, hence, by Vitali’s convergence theorem, that Duk ! Du
strongly in Lp. Since uk � u 2 W1,p

0 (�, RN ) we have shown that the (relabelled)
subsequence (uk) converges strongly to u in W1,p. By the uniqueness of limit we
conclude by a standard argument that the full sequence (uk) converges strongly in
W1,p to u. It follows in particular that �k = F 0

k(Duk) ! F 0(Du) in measure on�,
and so passing to the limit in (3.9) we recover, with � ⇤

:= F 0(Du), the pointwise
extremality relation

h� ⇤, Dui = F⇤(� ⇤) + F(Du) a.e. on �. (3.12)

Up to this point we have not used any of the conditions on the boundary datum g
or on the exponents p, q listed in (i)-(ii). We now assume that g 2 W1,q(�, RN )
corresponding to (i). Then in view of (3.9), (3.10) and the uniform (q 0, p0) growth
of F⇤

k we deduce that (�k) is bounded in L
q 0

(�, RN⇥n). Namely,Z
�

�1
c
|�k |

q 0

� c
�



Z
�
F⇤

k (�k) =

Z
�
h�k, Duki � Fk(Duk)

=

Z
�
h�k, Dgi � Fk(Duk) (3.13)



c
2

Z
�

|�k |
q 0

+ c
Z

�
|Dg|q +

Z
�
Fk(Duk)
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and hence Z
�

|�k |
q 0

 c
✓Z

�
|Dg|q +

Z
�
Fk(Duk)

◆
(3.14)

Therefore, by Fatou’s lemma and by (3.11), we have that

kF 0(Du)kq
0

Lq0
 lim inf

k!1

k�kk
q 0

Lq0
 c

✓Z
�

|Dg|q +

Z
�
F(Du)

◆
.

As it is then clear that F 0(Du) is row-wise solenoidal this proves (i). Finally, re-
garding Remark 3.2, note that in view of (3.9), (3.10) the field � ⇤ is a maximizer
of

� 7!

Z
�

⇣
hDg, � i � F⇤(� )

⌘

over row-wise solenoidal fields � 2 Lq 0

(�, RN⇥n). By strict convexity it is then
the unique such maximizer.

We next turn to (ii), and assume that q  np/(n�1). Since u 2 W1,p(�, RN )
we can for each x0 2 � find a ball B = B(x0, R) ⇢ � such that u|@B 2

W1,p(@B, RN ), see for instance [29]. If h denotes the harmonic extension of u|@B
to B, then it is well-known that h 2 W1, np

n�1 (B, RN ). We can now repeat the above
argument for (i), where this time we define the auxiliary minimizers uk with B, h
substituted for �, g, respectively.

Now, we are going to prove Theorem 1.2 from the Introduction. The key new
point in the proof is that we estimate the field � ⇤

= F 0(Du) using Proposition 3.1
rather than merely by use of the (consequence of the) growth condition (1.2). The
outcome is a better higher integrability estimate for the minimizer. The remaining
parts of the proof are standard in the present context, and consist of a difference-
quotient argument applied in the setting of fractional Sobolev spaces (compare for
instance [9]) and the regularized problems defined in the proof of Proposition 3.1.

Proof of Theorem 1.2: Conclusion. Define the integrands Fk and corresponding
Fk-minimizers uk of class W1,p

g (�, RN ) as in the proof of Proposition 3.1 (see
in particular (3.6)). We have shown there that uk ! u strongly in W1,p and that
�k := F 0

k(Duk) ! F 0(Du) weakly in Lq 0 and in measure on �. Furthermore,
Fk �

`
2 | · |

p is convex and
Z

�
hF 0

k(Duk), D'i = 0

for all ' 2 W1,p
0 (�, RN ). We shall establish uniform integrability bounds on (uk)

to conclude the proof. Recall that the auxiliary V -function for the degenerate case
µ = 0 is defined as V (Duk) = Vp,0(Duk) = |Duk |

p�2
2 Duk .
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Fix B3R = B(x0, 3R) ⇢ �, an integer 1  s  n, and an increment 0 6= h 2

(�R, R). It follows that Z
B2R

h1s,h F 0

k(Duk), D'i = 0 (3.15)

for all ' 2 W1,p
0 (B2R, RN ). In particular we may take ' = ✓1s,huk for ✓ 2

C1c(B2R), wherebyZ
B2R

h1s,h F 0

k(Duk),1s,hDuki✓ = �

Z
B2R

h1s,h F 0

k(Duk),1s,huk ⌦ D✓i

follows. Consequently, taking ✓ nonnegative and so ✓ = 1 on BR we may use
(H200) (since Fk is C1), Lemma 3 and Hölder’s inequality to find a constant c > 0,
which in particular is independent of k, such that

Z
BR

|1s,hV (Duk)|2  c
✓Z

B3R
|�k |

q 0

◆ 1
q0

✓Z
B2R

|1s,huk |q
◆ 1

q
sup |D✓ |

 c̃
✓Z

B2R
|1s,huk |q

◆ 1
q

,

(3.16)

where

c̃ := c sup
k

✓Z
B3R

|�k |
q 0

◆ 1
q0

sup |D✓ |

is finite according to Proposition 3.1. Now to extract information from this estimate,
we recall that (uk) in particular is bounded in W1,p, and that by the version (ii) of
the Sobolev Embedding stated in Theorem 2.3, W1,p

loc ,! B↵,q
1
boundedly, provided

↵ = 1 � n( 1p �
1
q ). The condition (1.5) on q guarantees that ↵ 2 (0, 1]. Divide

(3.16) by |h|↵ , and infer from the arbitrariness of the ball B, the direction s and
the increment h, that (V (Duk)) is bounded in B

↵
2 ,2
1

locally on �. Now by version
(i) of the Sobolev Embedding stated in Theorem 2.3, we have that B

↵
2 ,2
1

,! Lrloc
boundedly for each r < 2n

n�↵ . Therefore (Duk) is bounded in Lrloc for each r < np
n�↵

and hence (uk) is bounded in W1,r
loc for each r < np

n�↵ .
We can now repeat the above estimation using this improved bound on (uk).

The details are as follows. Put

p0 := p, p j :=

np
n � 1+ n( 1

p j�1 �
1
q )

for j 2 N. Observe that we can rewrite the exponent p̄ at (1.6) as

p̄ =

np
n �

p
p�1 (1� n( 1p �

1
q ))

=

n(p � 1)
n � 1�

n
q
,
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and that, for p j�1 < p̄, we have p j�1 < p j < p̄. Because

p̄ > p precisely when q < p⇤,

a straightforward calculation yields that

p j % p̄ as j % 1.

With these observations in place we apply the above difference-quotient argument
to deduce that if (uk) is bounded in W1,r

loc for each r < p j�1 and p  p j�1  q,
then it is also bounded in W1,r

loc for each r < p j . In view of Remark 3.3 below
it follows that, for q < np

n�1 , the sequence (uk) is bounded in W1,q
loc , while for

np
n�1  q < p⇤ it is bounded in W1,r

loc for all r < p̄. The conclusion follows easily
from this.

Remark 3.3. We record that

p <
np

n �
p

p�1

⇣
1� n( 1p �

1
q )
⌘ < q when

np
n � 1

< q < p⇤

and
np

n �
p

p�1

⇣
1� n( 1p �

1
q )
⌘ � q when p  q 

np
n � 1

and q >
n

n � 1
.

Hence there is integrability improvement locally in � of F-minimizers for the full
range of exponents q satisfying (1.5). Furthermore, p̄ =

np
n�1 when q =

np
n�1 , and

p̄ = p̄(q) is decreasing as a function of q with
8<
:
p̄ & p as q % p⇤ when 1 < p < n

p̄ &
n(p�1)
n�1 as q % 1 when p � n,

where we remark that n(p�1)n�1 � p for p � n with equality precisely when p = n.

4. Proof of Theorem 1.3

Throughout this section u 2 W1,p
loc (�, RN ) denotes a local F-minimizer. For the

sake of simplicity, we shall give the proof in case the integrand F : RN⇥n
! R is

C2 and satisfies the hypotheses (H1) and (H20), with q < pn
n�1 . The general case

can be treated by a suitable approximation argument, inspired by [10] and [8], and
also sketched in [3].
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Our aim is to show that V (Du) 2 W1,2
loc (�, RN⇥n), where we recall the definition

of the auxiliary functions as

V (⇠) := h⇠i

p�2
2 ⇠, h⇠i :=

q
µ2 + |⇠ |

2.

For later reference we note that for a C2 map w a routine calculation yields
���DhV (Dw)

i���2 

⇣
|p � 2|
2

+ 1
⌘2

hDwi
p�2

|D2w|
2. (4.1)

Before proceeding with the proof of Theorem 1.3, we need to carry out an approx-
imation procedure, which is essentially based on the arguments contained in [3].
Here we give a version suitable for our needs, partly for the sake of completeness
and partly because the present set-up differs slightly from that of [3].
Fix a subdomain with a smooth boundary �0 b � and take k 2 N, so large that
we have the continuous embedding Wk,2(�0) ,! C2(�0). For a smooth kernel
� 2 C1

c (B1(0))with � � 0 and
R
B1(0)� = 1, we consider the corresponding family

of mollifiers (�")">0 and put ũ" := �" ⇤u on�0 for each positive " < dist (�0, @�).
By Theorem 1.2, we have that Du 2 Lqloc and hence

ũ" ! u as " & 0 strongly in W1,q(�0, RN ) . (4.2)

Moreover we remark that, for a suitable function "̃ = "̃(") with "̃ & 0 as " & 0,
we also have

"̃

Z
�0

|Dkũ"|
2

! 0 as " & 0. (4.3)

For small " > 0, we let u" 2 Wk,2(�0) \ W1,p
ũ"

(�0) denote a minimizer to the
functional

v 7!

Z
�0

⇣
F(Dv) +

"̃

2
|Dkv|

2
⌘

on the Sobolev class Wk,2(�0)\W1,p
ũ"

(�0). The existence of u" is easily established
by the direct method. Next two Lemmas are proven in [3] (see Lemmas 8 and 9
there) in a more general version. Here we state them in the form needed for our
aims.

Lemma 4.1. For each ' 2 Wk,2(�0) \W1,p
0 (�0),

0 =

Z
�0

⇣
hF 0(Du"), D'i + "̃hDku", Dk'i

⌘
. (4.4)

Furthermore, u" 2 W2k,2
loc (�0).
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Lemma 4.2. As " & 0, we have that
Z

�0

|Du" � Du|p dx ! 0

and Z
�0

F(Du") dx !

Z
�0

F(Du) dx .

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. Fix B2R = B2R(x0) ⇢ �0, radii R  r < s  2R  2 and a
smooth cut-off function ⇢ satisfying 1Br  ⇢  1Bs and |Di⇢| 

⇣
2
s�r

⌘i
for each

i 2 N. According to Lemma 4.1, we can test the Euler-Lagrange system (4.4) with
' = ⇢2k D2j u", for each direction 1  j  n, thus getting

0 =

Z
�0

D
F 0(Du"), D2j Du"

E
⇢2k +

Z
�0

D
F 0(Du"), D2j u" ⌦ D

⇣
⇢2k

⌘E

+ "̃

Z
�0

D
Dku", Dk

⇣
D2j u"⇢

2k
⌘E

=: I + II + III.

(4.5)

Integration by parts yields

I = �

Z
�0

⇣
⇢2k F 00(Du")

h
Dj Du", Dj Du"

i⌘

�

Z
�0

⇣
2k
D
⇢2k�1Dj⇢F 0(Du"), Dj Du"

E⌘

 �

Z
�0

⇢2khDu"i
p�2

|Dj Du"|
2
+ 2k

Z
�0

⇢2k�1|Dj⇢|hDu"i
q�1

|Dj Du"|

where we used assumptions (H20) and (1.2). Hence, using Young’s inequality in
the last integral, we obtain

I  �

Z
�0

⇢2khDu"i
p�2

|Dj Du"|
2
+

1
2

Z
�0

⇢2khDu"i
p�2

|Dj Du"|
2

+ c(p, k)
Z

�0

⇢2(k�1)|Dj⇢|
2
hDu"i

2q�p

�

1
2

Z
�0

⇢2khDu"i
p�2

|Dj Du"|
2
+ c(p, k)

Z
�0

⇢2(k�1)|Dj⇢|
2
hDu"i

2q�p.

(4.6)
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Similarly, by virtue of (1.2) and Cauchy-Schwarz’ inequality, we get

II  c(p, k)
Z

�0

hDu"i
q�1⇢2k�1|D⇢||D2j u"|

 c(p, k)
Z

�0

hDu"i
2q�p⇢2(k�1)|D⇢|

2
+

1
4

Z
�0

⇢2khDu"i
p�2

|Dj Du"|
2.

(4.7)

In order to estimate III , we argue as in [3] writing

III = "̃

Z
�0

D
Dku", Dj Dk

⇣
⇢2k D ju"

⌘
� Dk

⇣
Dj
�
⇢2k

�
Dju"

⌘E

and integrating the first term by parts,

III = �"̃

Z
�0

⇣D
Dj Dku", Dk

⇣
⇢2k D ju"

⌘E
� "̃

Z
�0

D
Dku", Dk

⇣
Dj
�
⇢2k

�
Dju"

⌘E⌘

=: III1 + III2.

We estimate these terms by use of Cauchy-Schwarz’ inequality, Leibniz’ product
formula and the assumptions on Di⇢ (simplifying also by use of s � r  1):

III1  �"̃

Z
�0

⇢2k |Dj Dku"|
2
+

ck "̃
(s � r)k

Z
�0

⇢k |Dj Dku"|

k�1X
i=0

|Di D ju"|

 �

2"̃
3

Z
�0

⇢2k |Dj Dku"|
2
+

ck "̃
(s � r)2k

Z
B2R

⇣k�1X
i=0

|Di D ju"|

⌘2

 �

2"̃
3

Z
�0

⇢2k |Dj Dku"|
2
+

ck "̃
(s � r)2k

Z
B2R

k�1X
i=0

|Di D ju"|
2

for a (new) constant ck . Likewise,

III2 

"̃

3

Z
�0

⇢2k |Dj Dku"|
2
+

ck "̃
(s � r)2k+2

Z
B2R

 
k�1X
i=0

|Di D ju"|
2
+ |Dku"|

2

!
,

where we remark that the increased power of the factor (s�r) is due to the presence
of an additional Dj -derivative on ⇢2k in III2. Collecting the above bounds and
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adjusting the constant ck we arrive at

III �

"̃

3

Z
�0

⇢2k |Dj Dku"|
2
+

ck "̃
(s � r)2k+2

Z
B2R

 
k�1X
i=0

|Di D ju"|
2
+ |Dku"|

2

!
. (4.8)

Inserting the bounds (4.6), (4.7), (4.8) in (4.5) and using the properties of ⇢ we get
for each 1  j  n:

1
4

Z
�0

⇢2khDu"i
p�2

|Dj Du"|
2
+

"̃

3

Z
�0

⇢2k |Dj Dku"|
2



c(p, k)
(s � r)2

Z
Bs\Br

hDu"i
2q�p

+

c"̃
(s � r)2k+2

Z
B2R

 
k�1X
i=0

|Dj Diu"|
2
+ |Dku"|

2

!
.

Adding up these inequalities over j 2 {1, . . . , n} and adjusting the constants we
arrive at Z

�0

⇢2khDu"i
p�2

|D2u"|
2
+

4"̃
3

Z
�0

⇢2k |Dk+1u"|
2



c(n, p, k)
(s � r)2

Z
Bs\Br

hDu"i
2q�p

+

A(")

(s � r)2k+2
,

(4.9)

where A(") is independent of r , s and where, by a suitable version of the Gagliardo-
Nirenberg interpolation inequality,

A(") ! 0 as " & 0.

Omitting the second term, involving (k + 1)-th order derivatives, on the left-hand
side, the above inequality reduces to

Z
�0

⇢2khDu"i
p�2

|D2u"|
2



c(n, p, k)
(s � r)2

Z
Bs\Br

hDu"i
2q�p

+

A(")

(s � r)2k+2
. (4.10)

Now, taking into account estimate (4.1), an elementary calculation implies that

���D ⇣⇢kV (Du")
⌘���2  c(p)

h
⇢2khDu"i

p�2
|D2u"|

2
+ k2⇢2k�2|D⇢|

2
|V (Du")|

2
i
,

Therefore, by virtue of estimate (4.10) and by the Sobolev Embedding Theorem,
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we obtain

✓Z
�0

���⇢kV (Du")
��� 2nn�2

◆ n�2
n

 c
Z

�0

���D ⇣⇢kV (Du")
⌘���2



c(n,N ,p,k)
(s � r)2

Z
Bs\Br

hDu"i
2q�p

+

c(n,N ,p,k)
(s � r)2

Z
Bs\Br

|V (Du")|
2

+

A(")

(s�r)2k+2



c(n, N , p, k)
(s � r)2

Z
Bs\Br\{|Du"|µ}

hDu"i
2q�p

+

c(n, N , p, k)
(s � r)2

Z
Bs\Br\{|Du"|>µ}

hDu"i
2q�p

+

c(n, N , p, k)
(s � r)2

Z
Bs\Br

|V (Du")|
2
+

A(")

(s � r)2k+2



c(n, N , p, k, µ)

(s � r)2

Z
Bs\Br

(1+ |V (Du")|
2)

2q�p
p

+

c(n, N , p, k)
(s � r)2

Z
Bs\Br

|V (Du")|
2
+

A(")

(s � r)2k+2

(4.11)

We can write
p

2q � p
=

✓
n

n�2
+

1� ✓
q
p

,

where, since p < q < p n
n�1 ,

✓ =

q � p
2q � p

⇥

pn
pn � q(n � 2)

2 (0, 1)

(note that the case p = q does not require these arguments). Hölder’s inequality
yields

Z
Bs\Br

|V (Du")|
2(2q�p)

p



✓Z
Bs\Br

|V (Du")|
2n
n�2

◆ ✓(n�2)
n

2q�p
p
✓Z

Bs\Br
|V (Du")|

2q
p

◆ (1�✓)(2q�p)
q
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Inserting the previous inequality in (4.11), we obtain

Z
�0

���⇢kV (Du")
��� 2nn�2



c(n,N ,p,k,µ)

(s � r)
2n
n�2

✓Z
Bs\Br

|V (Du")|
2n
n�2

◆✓ 2q�p
p
✓Z

Bs\Br
|V (Du")|

2q
p

◆ (1�✓)(2q�p)
q

n
n�2

+

c(n, N , p, k)

(s � r)
2n
n�2

✓Z
Bs\Br

|V (Du")|
2
◆ n

n�2
+

c(n, N , p, k, µ)

(s � r)
2n
n�2

|Bs \ Br |
n

n�2

+

Ã(")

(s � r)
(2k+2)n
n�2

(4.12)

where we set Ã(") = (A("))
n

n�2 . Since

2q � p
p

✓ =

(q � p)n
pn � q(n � 2)

< 1

for q < pn
n�1 , it is legitimate to apply Young’s inequality with the pair of conjugate

exponents

d =

pn � q(n � 2)
(q � p)n

and d 0

=

1
2
pn � q(n � 2)
pn � q(n � 1)

in the second line of (4.12), thus getting

Z
Br

|V (Du")|
2n
n�2 

Z
�0

���⇢kV (Du")
��� 2nn�2



1
2

✓Z
Bs\Br

|V (Du")|
2n
n�2

◆

+

c(n, N , p, k, µ)

(s � r)d 0 2n
n�2

✓Z
Bs\Br

|V (Du")|
2q
p

◆(p�q)n+2q�p
pn�q(n�1)

n
n�2

(4.13)

+

c(n, N , p, k)

(s � r)
2n
n�2

✓Z
Bs\Br

|V (Du")|
2
◆ n

n�2

+

c(n, N , p, k, µ)

(s � r)
2n
n�2

|Bs \ Br |
n

n�2 +

Ã(")

(s � r)
(2k+2)n
n�2

.
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As this estimate is valid for all radii R  r < s  2R, we can apply the hole-filling
method of Widman. This yields in the usual manner

Z
BR

|V (Du")|
2n
n�2 

c(n, N , p, k, µ)

Rd 0 2n
n�2

✓Z
B2R

|V (Du")|
2q
p

◆ (p�q)n+2q�p
pn�q(n�1)

n
n�2

+

c(n, N , p, k)

R
2n
n�2

✓Z
B2R

|V (Du")|
2
◆ n

n�2
(4.14)

+ c(n, N , p, k, µ)Rn +

Ã(")

R
(2k+2)n
n�2

.

From estimate (4.14), through the higher integrability of Theorem 1.2, it follows
that V (Du") is bounded in L

2n
n�2 (BR, RN⇥n) uniformly as " & 0 and so, by the

arbitrariness of the ball B2R(x0) ⇢ �0 and a simple covering argument, we conclude

that V (Du") is bounded in L
2n
n�2
loc (�0, RN⇥n). In view of (4.1) and (4.10) it then

also follows that (V (Du")) is bounded in W1,2
loc (�

0, RN⇥n) uniformly as " & 0.
Therefore, we conclude by passing to the limits as " & 0, using also compactness
of the Sobolev embedding on the right-hand side and Fatou’s Lemma on the left-
hand side, that

Z
BR

|V (Du)|
2n
n�2 

c(n, N , p, µ)

Rd 0 2n
n�2

✓Z
B2R

|V (Du)|
2q
p

◆ (p�q)n+2q�p
pn�q(n�1)

n
n�2

+

c(n, N , p)

R
2n
n�2

✓Z
B2R

|V (Du)|2
◆ n

n�2
(4.15)

+ c(n, N , p, µ)Rn

and

Z
BR

|D(V (Du))|2 

c(n, N , p, µ)

Rd 0 2n
n�2

✓Z
B2R

|V (Du)|
2q
p

◆ (p�q)n+2q�p
pn�q(n�1)

n
n�2

+

c(n, N , p)

R
2n
n�2

✓Z
B2R

|V (Du)|2
◆ n

n�2
(4.16)

+ c(n, N , p, µ)Rn
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[11] I. FONSECA, J. MALÝ and G. MINGIONE, Scalar minimizers with fractional singular sets,
Arch. Ration. Mech. Anal. 172 (2004), 295–307.

[12] N. FUSCO and C. SBORDONE, Higher integrability of the gradient of minimizers of func-
tionals with nonstandard growth conditions, Comm. Pure Appl. Math. 43 (1990), 673–683.

[13] M. GIAQUINTA, Growth conditions and regularity, a counterexample, Manuscripta Math.
59 (1987), 245–248.

[14] E. GIUSTI, “Direct Methods in the Calculus of Variations”, World Scientific, 2003.
[15] M.C. HONG, Some remarks on the minimizers of variational integrals with nonstandard

growth conditions, Boll. Un. Mat. Ital. A (7) 6 (1992), 91–101.
[16] J. KRISTENSEN and C. MELCHER, Regularity in oscillatory nonlinear elliptic systems,

Math. Z. 260 (2008), 813–847.
[17] J. KRISTENSEN and G. MINGIONE, The singular set of minima of integral functionals,

Arch. Ration. Mech. Anal. 180 (2006), 331–398.
[18] P. MARCELLINI, Un example de solution discontinue d’un probléme variationnel dans le
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