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Dimensionality and the stability of the Brunn-Minkowski inequality

RONEN ELDAN AND BO‘AZ KLARTAG

Abstract. We prove stability estimates for the Brunn-Minkowski inequality for
convex sets. As opposed to previous stability results, our estimates improve as
the dimension grows. In particular, we obtain a non-trivial conclusion for high
dimensions already when

Voln
✓
K + T
2

◆
 5

p
Voln(K )Voln(T ).

Our results are equivalent to a thin shell bound, which is one of the central ingre-
dients in the proof of the central limit theorem for convex sets.

1. Introduction

The Brunn-Minkowski inequality states, in one of its normalizations, that

Voln
✓
K + T
2

◆
�

p
Voln(K )Voln(T ) (1.1)

for any compact sets K , T ⇢ Rn , where (K + T )/2 = {(x + y)/2 : x 2 K , y 2 T }

is half of the Minkowski sum of K and T , and where Voln stands for the Lebesgue
measure in Rn . Equality in (1.1) holds if and only if K is a translate of T and both
are convex, up to a set of measure zero.

The literature contains various stability estimates for the Brunn-Minkowski
inequality, which imply that when there is almost-equality in (1.1), then K and T are
almost-translates of each other. Such estimates appear in Diskant [8], in Groemer
[13], and in Figalli, Maggi and Pratelli [11,12]. We recommend Osserman [20] for
a general survey on the stability of geometric inequalities.

All of the stability results that we found in the literature share a common fea-
ture: Their estimates deteriorate quickly as the dimension increases. For instance,
suppose that K , T ⇢ Rn are convex sets with

Voln(K ) = Voln(T ) = 1 and Voln
✓
K + T
2

◆
 5. (1.2)
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The present stability estimates do not seem to imply much about the proximity of
K to a translate of T under the assumption (1.2). Only if the constant “5” in (1.2)
is replaced by something like 1 + 1/n or so, then the results of Figalli, Maggi and
Pratelli [12] can yield meaningful information. The goal of this note is to raise the
possibility that the stability of the Brunn-Minkowski inequality actually improves
as the dimension increases. In particular, we would like to deduce from (1.2) that����

R
K p(x � bK )dxR
T p(x � bT )dx

� 1
���� ⌧ 1 (1.3)

for a family of non-negative functions p, when the dimension n is high. Here, bK
and bT denote the barycenters of K and T respectively. Furthermore, in some non-
trivial cases we may conclude (1.3) even when the constant “5” in (1.2) is replaced
by an expression that grows with the dimension, such as log n or n↵ for a small
universal constant ↵ > 0.

In this note we take the first steps towards a dimension-sensitive stability theory
for the Brunn-Minkowski inequality. First, let us focus on the simplest case in
which p(x) in (1.3) is a quadratic polynomial. In fact, we are interested mainly in
expressions related to the quadratic form

qK (x) =

1
Voln(K )

Z
K
hx, yi2dy �

✓
1

Voln(K )

Z
K
hx, yidy

◆2
(x 2 Rn) (1.4)

where h·, ·i is the standard scalar product in Rn . The inertia form of the bounded,
open set K ⇢ Rn is defined as

pK (x) = sup
n
hx, yi2 : qK (y)  1

o
. (1.5)

Note that pK is a positive-definite quadratic form in Rn . We say that K ⇢ Rn is
isotropic when the barycenter of K lies at the origin and qK (x) = |x |2 = hx, xi for
all x . In this case, also pK (x) = |x |2. It is easy to see that any bounded, open set
K ⇢ Rn has an affine image which is isotropic.

A convex body in Rn is a bounded, open convex set. For a convex body K ⇢

Rn we denote by µK the uniform probability measure on K . Our first stability
result is as follows:

Theorem 1.1. Let K , T ⇢ Rn be convex bodies and let R � 1. Assume that

Voln
✓
K + T
2

◆
 R

p
Voln(K )Voln(T ).

Let p(x) = pK (x) be the inertia form of K defined in (1.4) and (1.5). Then,����
R
T p(x � bT )dµT (x)R
K p(x � bK )dµK (x)

� 1
����  C

R↵2

n↵1
. (1.6)

HereC,↵1,↵2 > 0 are universal constants, and bK , bT are the barycenters of K , T
respectively.
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See Theorem 4.6 below for explicit bounds on the universal constants ↵1,↵2
from Theorem 1.1. Our interest in the inertia form pK stems from the central limit
theorem for convex sets, see [9, 14] for background reading. As we shall explain in
Proposition 6.4 below, Theorem 1.1 implies the bound

�n  Cn1/2�↵1 (1.7)

where �n is the thin shell parameter from [10], and C > 0 is a universal constant
and ↵1 > 0 is the constant from Theorem 1.1. In fact, Theorem 4.6 and (4.25)
below show that the inequality (1.7) is essentially an equivalence. Consequently,
the universal constant ↵1 from Theorem 1.1 is intimately connected with the thin
shell parameter �n . The question of whether �n is bounded by a universal constant
is currently one of the central problems in high-dimensional convex geometry.

Next, we address the task of finding a larger class of functions p for which
bounds such as (1.3) hold true. Suppose that µ1 and µ2 are two Borel probability
measures on Rn . A Borel probability measure � on Rn

⇥ Rn is called a coupling
of µ1 and µ2 if (P1)⇤(� ) = µ1 and (P2)⇤(� ) = µ2 where P1(x, y) = x and
P2(x, y) = y. Here, (Pi )⇤(µ) denotes the push-forward of µ under the map Pi for
i = 1, 2. For two Borel probability measures µ1 and µ2 onRn and for 1  p < 1,
we set

Wp (µ1, µ2) = inf
�

✓Z
Rn

⇥Rn
|x � y|pd� (x, y)

◆1/p

where the infimum runs over all couplings � of µ1 and µ2. This is precisely the L p
Monge-Kantorovich-Wasserstein transportation distance between µ1 and µ2. See,
e.g., Villani’s book [22] for more information about this metric. Note that for any
1-Lipschitz function ' : Rn

! R,����
Z

Rn
'(x)dµ1(x) �

Z
Rn

'(x)dµ2(x)
����  W1(µ1, µ2)  W2(µ1, µ2).

In fact, the assumption that ' is 1-Lipschitz may typically be weakened. For in-
stance, when ' is convex or concave, it is well-known that
����
Z

Rn
'dµ1�

Z
Rn

'dµ2

����W2(µ1, µ2)·

s
max

⇢Z
Rn

|r'|
2dµ1,

Z
Rn

|r'|
2dµ2

�
. (1.8)

Theorem 1.2. Let K , T ⇢ Rn be convex bodies whose barycenters lie at the origin
and let R � 1. Suppose that

Voln
✓
K + T
2

◆
 R

p
Voln(K )Voln(T ).

Assume that K is isotropic. Then,

W2(µK , µT )
p

n
 Cn�1/4p�n R5/2  C̃

R5/2

n↵
, (1.9)

where ↵,C, C̃ > 0 are universal constants.



978 RONEN ELDAN AND BO‘AZ KLARTAG

Theorem 1.2 combined with the inequality (1.8) entails the bound (1.3) in the
case where, for instance, p(x) = kxkq for various norms k · k in Rn , q � 0 and
R ⌧ nc. Additionally, the estimate (1.9) implies the non-trivial bound (1.6) via
(1.8). We do not know the optimal value of the exponent ↵ in Theorem 1.2. We
know more in the particular case of unconditional convex bodies. A convex body in
Rn is said to be unconditional if

(x1, . . . , xn) 2 K () (±x1, . . . ,±xn) 2 K

for all (x1, . . . , xn) 2 Rn and for all possible choices of signs. In other words, K is
invariant under coordinate reflections. For unconditional convex bodies, Theorem
1.2 may be sharpened as follows:

Theorem 1.3. Let K , T ⇢ Rn be unconditional convex bodies, and let R � 1.
Assume that K is isotropic and that

Voln
✓
K + T
2

◆
 R

p
Voln(K )Voln(T ).

Then
W2(µK , µT )  C(R � 1)5/2 log n, (1.10)

where C > 0 is a universal constant.

Thus, in the unconditional case, the exponent ↵ from Theorem 1.2 is essentially
1/2, up to logarithmic factors. When substituting '(x) = |x |2 in (1.8) and using
(1.10), we conclude that for any K , T ⇢ Rn as in Theorem 1.3,

����
Z
K

|x |2dµK �

Z
T

|x |2dµT

����  C
p

n · log n · (R � 1)5 (1.11)

(in order to use (1.8) we also need a crude estimate for
R
T |x |2dµT (x), hence we

applied Corollary 2.4 to obtain such an estimate). In view of (1.11) and Proposition
6.4 below, we match (up to logarithmic factors) the best bounds for the width of the
thin spherical shell for unconditional convex bodies proven in [15].

The structure of the remainder of this note is as follows: In the next section we
establish some well-known facts about one-dimensional log-concave measures. In
Section 3 we prove Theorem 1.1 and in Section 4 we prove Theorem 1.2. Section 5
is dedicated to attaining some inequalities related to one-dimensional transportation
of measure. In Section 6, using these inequalities, we prove Theorem 1.3.

Throughout this note, we write c,C, c̃ etc. for various positive universal con-
stants, whose value may change from one line to the next. We usually use upper-
case C to denote universal constants that we consider “sufficiently large”, and
lower-case c to denote universal constants that are “sufficiently small”. We write
log for the natural logarithm. By “measurable” we always mean Borel-measurable.
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2. Background about log-concave densities on the line

In this section we recall some facts, all of which are well-known to experts, about
log-concave densities. A function ⇢ : Rn

! [0,1) is log-concave if for any
x, y 2 Rn ,

⇢ (�x + (1� �)y) � ⇢(x)�⇢(y)1�� for all 0 < � < 1.

A probability measure or a random variable are called log-concave if they posses
a log-concave density. Let µ be a log-concave probability measure on R, whose
log-concave density is denoted by ⇢ : R ! [0,1). Write

8(t) = µ ((�1, t]) =

Z t

�1

⇢(s)ds (t 2 R).

A nice characterization of log-concavity that we learned from Bobkov [3] is that µ
is log-concave if and only if the function

t 7! ⇢(8�1(t)) t 2 [0, 1]

is a concave function. This characterization lies at the heart of the proof of the
following Poincaré-type inequality which appears as Corollary 4.3 in Bobkov [2]:

Lemma 2.1. Let µ be a log-concave probability measure on the real line, and set

Var(µ) =

Z
x2dµ(x) �

✓Z
xdµ(x)

◆2

for the variance of µ. Then for any smooth function f with
R
f dµ = 0,

Z
R
f 2(t)dµ(t)  12Var(µ)

Z
R

| f 0(t)|2dµ(t).

Further information about log-concave densities on the line is provided by the fol-
lowing standard lemma.

Lemma 2.2. Let f : R ! [0,1) be a log-concave probability density. Denote
b =

R
x f (x)dx , the barycenter of the density f , and let � 2 be the variance of the

random variable whose density is f . Then, for any t 2 R,

(a) f (t) 

C
�
exp(�c|t � b|/� ); and

(b) If |t � b|  c� , then f (t) �

c
�
.

Here, c,C > 0 are universal constants.
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Proof. Part (a) is the content of Lemma 3.2 in Bobkov [4]. In order to prove (b),
we show that for some t0 � b + c0� ,

f (t0) � 1/(10C1� ) (2.1)

with c0 = 1/(10C), C1 = c�1 log(10C/c) where here c,C are the constants from
part (a). Indeed, if there is no such t0, then from (a),
Z

1

b
f (t)dt 

Z b+c0�

b

C
�
dt +

Z b+C1�

b+c0�

dt
10C1�

+

Z
1

b+C1�

C
�
exp(�c|t � b|/� )dt



3
10

<
1
e
,

in contradiction to Grünbaum’s inequality (see, e.g., [4, Lemma 3.3]). By symme-
try, there exists some t1  b � c0� with

f (t1) � 1/(10C1� ).

From log-concavity, f (t) � 1/(10C1� ) for t 2 [t1, t0], and (b) is proven since
[t1, t0] ◆ [b � c0�, b + c0� ].

The following lemma is essentially a one-dimensional, functional version of
Theorem 1.1. The lemma states, roughly, that if the supremum-convolution of two
log-concave probability densities has a bounded integral, then their respective vari-
ances cannot be too far from each other.

Lemma 2.3. Let X,Y be random variables with corresponding densities fX , fY
and variances � 2X , � 2Y . Assume that fX and fY are log-concave. Define

h(t) = sup
s2R

p
fX (t + s) fY (t � s), (2.2)

a supremum-convolution of fX and fY . Then,

Z
R
h(t)dt � c

s
max

⇢
�X
�Y

,
�Y
�X

�

where c > 0 is a universal constant.

Proof. The function h is clearly measurable (it is even log-concave). It follows
from Lemma 2.2(b) that there exist intervals IX , IY such that

Length(IX ) � c�X , Length(IY ) � c�Y

and,
fX (t) �

c
�X

, 8t 2 IX ; fY (s) �

c
�Y

, 8s 2 IY .
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Combining this with (2.2), we learn that there exists an interval IZ with
Length(IZ ) � c(�X + �Y )/2 such that,

h(t) �

c
p

�X�Y
, 8t 2 IZ .

This implies,

Z
R
h(t)dt �

Z
IZ
h(t)dt �

c2

2
�X + �Y
p

�X�Y
�

c2

2

s
max

⇢
�X
�Y

,
�X
�Y

�

which completes the proof.

Recall the definition (1.4) of the inertia form qK (x) associated with a convex
body K ⇢ Rn . As a corollary of Lemma 2.3, we have

Corollary 2.4. Let R > 1 and let K , T ⇢ Rn be convex bodies such that

Voln
✓
K + T
2

◆
 R

p
Voln(K )Voln(T ).

Then,
1

CR4
qK (x)  qT (x)  CR4qK (x) for all x 2 Rn (2.3)

where C > 0 is a universal constant.

Proof. Fix a unit vector ✓ 2 Rn . Let X̃ , Ỹ be random vectors distributed uniformly
on K , T respectively, and define X = hX̃ , ✓i and Y = hỸ , ✓i. Observe that

qK (✓) = Var(X), qT (✓) = Var(Y ).

In order to prove (2.3), it suffices to show that

max
⇢
Var(X)

Var(Y )
,
Var(Y )

Var(X)

�
 CR4. (2.4)

Denote the respective densities of X,Y by fX , fY . The Prékopa-Leindler theorem
(see, e.g., the first pages of Pisier [21]) implies that fX and fY are log-concave.
Furthermore, using the Prékopa-Leindler theorem again we derive,

Voln
✓
K + T
2

◆
�

Z
R
sup
s2R

p
fX (t � s)Voln(K ) fY (t + s)Voln(T )dt. (2.5)

Hence, Z
R
sup
s2R

p
fX (t � s) fY (t + s)dt  R.

Plugging this into Lemma 2.3 we deduce (2.4).
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Remark 2.5. Let K , T, R be as in Corollary 2.4 and let X̃ , Ỹ be the random vectors
distributed uniformly on K , T respectively. Corollary 2.4 states that

1
CR4

Cov(X̃)  Cov(Ỹ )  CR4 Cov(X̃) (2.6)

in the sense of symmetric matrices, where Cov(X̃) is the covariance matrix of X̃ .
Furthermore, we do not have to assume that X̃ , Ỹ are distributed uniformly in a con-
vex body. The estimate (2.6) holds true whenever X̃ , Ỹ have log-concave densities
f X̃ , fỸ with

R =

Z
Rn

 
sup
y2Rn

q
f X̃ (x + y) fỸ (x � y)

!
dx .

Next, for a measure µ and measurable sets A, B with 0 < µ(A) < 1 define

µ|A(B) =

µ(A \ B)

µ(A)
.

Thus the probability measure µ|A is the conditioning of µ to the set A. Clearly, for
a log-concave measure µ and an interval I , the measure µ|I remains log-concave.

Lemma 2.6. Let µ be a log-concave probability measure on R. Then for any two
intervals J1 ✓ J2 ⇢ R,

Var(µ|J1)  Var(µ|J2)

(the “intervals” may also be rays, or the entire line: Any convex set in R).

Proof. It is enough to prove the lemma for J1, J2 being rays. Denote by I the inte-
rior of the support ofµ, and by ⇢ the density ofµ. Abbreviate8(t) = µ ((�1, t]) ,
µt = µ|(�1,t] and set

e(t) =

Z
R
xdµt (x), v(t) = Var(µt ) =

Z
R
x2dµt (x) � e2(t) (t 2 I ).

Then for any t 2 I ,

e0(t) =

⇢(t)
8(t)

(t � e(t)) , v0(t) =

⇢(t)
8(t)

⇣
(t � e(t))2 � v(t)

⌘
.

To prove the lemma, it suffices to show that v0(t) � 0 for any t , or equivalently, that

Var(µt ) � (t � Eµt )
2

= v(t) � (t � e(t))2  0 for all t 2 I.

This is equivalent to demonstrating that for any log-concave random variable X
such that X � 0 almost surely, one has Var[X]  (E[X])2. This follows imme-
diately from Borell [5, Lemma 4.1], see also Lovász and Vempala [17, Lemma
5.3(c)].
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3. Deriving a stability estimate
from the central limit theorem for convex sets

In this section we prove Theorem 1.1. The main ingredient we use is the central
limit theorem for convex sets, proven initially in [14]. It states that for any isotropic
convex body K ⇢ Rn , and for “most” subspaces of a small enough dimension, the
marginal of µK is approximately Gaussian. Below we use a pointwise version of
this theorem, proven in [9], which shows that there exists a subspace of dimension
nc, where c > 0 is some universal constant, on which the marginals of both K and
T are both approximately Gaussian density-wise. The Prékopa-Leindler inequal-
ity then implies that the marginal of (K + T )/2 on the same subspace is point-
wise greater than the supremum-convolution of the respective marginals of K and
T . Therefore, the density of the marginal of (K + T )/2 must be greater than the
supremum-convolution of two densities which are both approximately Gaussian,
but typically have different covariances.

A second ingredient will be a calculation which shows that the integral of the
supremum-convolution of two Gaussian densities whose covariance matrix is a mul-
tiple of the identity, becomes very large when their respective covariances are not
close to one another. This will imply that when Voln((K + T )/2) is not large, the
covariance matrices of both marginals are roughly the same multiple of the identity.
Therefore the inertia forms of K and T must have had roughly the same trace (the
trace of the matrix will determine the multiple of the identity).

We write Gn,` for the Grassmannian of all `-dimensional subspaces inRn , and
�n,` stands for the Haar probability measure on Gn,`. A random vector X in Rn is
centered if EX = 0 and is isotropic if its covariance matrix is the identity matrix.
For a subspace E ✓ Rn we write ProjE for the orthogonal projection operator
onto E in Rn . Furthermore, define �k,↵(x) = (2⇡↵2)�k/2 exp(� |x |2

2↵2 ) the centered
Gaussian density in Rk with covariance ↵2, and abbreviate �k(x) = �k,1(x). The
main result of [9] reads as follows:

Theorem 3.1. Let X be a centered, isotropic random vector in Rn with a log-
concave density. Let 1  `  nc1 be an integer. Then there exists a subset E ✓ Gn,`
with �n,`(E) � 1�C exp(�nc2) such that for any E 2 E , the following holds: De-
note by fE the log-concave density of the random vector ProjE (X). Then,

���� fE (x)
�`(x)

� 1
���� 

C
nc3

(3.1)

for all x 2 E with |x |  nc4 . Here, C, c1, c2, c3, c4 > 0 are universal constants.

It can be seen directly from the proof in [9] that the constants in Theorem 3.1
may be selected to be c1, c2, c3 =

1
30 , c4 =

1
60 ,C = 500. Other constants would

imply different universal constants in Theorem 1.1. We shall need the following
elementary lemma:
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Lemma 3.2. For any a > 0,

1+ a
2
p

a
� 1+ c ·min{(↵ � 1)2, 1},

for ↵ =

p

1/a and also for ↵ = a, where c > 0 is a universal constant.

Proof. First we prove the lemma for ↵ = a. Note that for 0 < a  4,

1+ a
2
p

a
= 1+

1� 2
p

a + a
2
p

a
= 1+

(
p

a � 1)2

2
p

a
= 1+

(a � 1)2

2
p

a(
p

a + 1)
� 1+

(a � 1)2

12
,

while for a > 4 we may write

1+ a
2
p

a
= 1+

(
p

a � 1)2

2
p

a
� 1+

p

a � 1
2
p

a
� 1+

p

a/2
2
p

a
= 1+

1
4
.

The case where ↵ =

p

1/a follows as min{(
p

1/a� 1)2, 1}  10min{(a� 1)2, 1}.

The following lemma is the second ingredient in our proof of Theorem 1.1
described above. The essence of the lemma is that the integral of the supremum-
convolution of two spherically-symmetric Gaussian densities must be quite large
when the covariances are not close to each other.

Lemma 3.3. Let k 2 N and A, B,↵ > 0. Let f, g, h : Rk
! [0,1) satisfy

h(x) � sup
y2Rk

p
f (x � y)g(x + y), 8x 2 Rk

and suppose that,
f (x) � A�k,1(x)

whenever |x |  10
p

k, and that

g(x) � B�k,↵(x),

whenever |x |  10↵
p

k. Assume that h is measurable. Then,
Z

Rk
h(x)dx �

1
2
p

AB
⇣
1+ c ·min{(↵ � 1)2, 1}

⌘k/4
, (3.2)

where c > 0 is a universal constant.
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Proof. By homogeneity, we may assume that A = B = 1. Denote a = 1/↵2. Fix
a unit vector ✓ 2 Rn and t > 0. Then for any s 2 R with |s + t |  10

p

k and
|s � t |  10↵

p

k,

h(t✓) �

p
f ((t + s)✓)g((t � s)✓)

�

✓p

a
2⇡

◆k/2
exp

✓
�

1
4
((t + s)2 + a(t � s)2)

◆
.

(3.3)

We would like to find s which maximizes the right-hand side in (3.3). We select
s = t (a � 1)/(a + 1) and verify that when |t | < 5

p

(1+ a)k/a we have |s + t | 

10
p

k and |s � t |  10↵
p

k. We conclude that for any |t | < 5
p

(1+ a)k/a,

h(t✓) �

✓p

a
2⇡

◆k/2
exp

⇣
�t2a/(1+ a)

⌘
.

Consequently,
Z

Rk
h(x)dx �

✓p

a
2⇡

◆k/2 Z
5
p

(1+a)k/aBk2
exp

 
�

a|x |2

1+ a

!
dx

=

✓
1+ a
4⇡

p

a

◆k/2 Z
p

50kBk2
exp

 
�

|x |2

2

!
dx �

1
2

✓
1+ a
2
p

a

◆k/2
,

where Bk2 = {x 2 Rk
; |x |  1}, and where we utilized the fact that

P(|Z |
2

� 50k)  E|Z |
2/(50k) =

1
50

< 1/2

when Z is a standard Gaussian in Rk . All that remains to do is to apply Lemma
3.2.

The following lemma combines Theorem 3.1 with the estimate we have just
proved. For a probability density g on Rn we write Cov(g) for the covariance
matrix of the random vector with density g. We similarly define Cov(µ) for a
probability measure µ on Rn .
Lemma 3.4. Let f, g be log-concave probability densities on Rn such that f is
isotropic. Let {�i }

n
i=1 be the eigenvalues of Cov(g), repeated according to their

multiplicity. Denote

R =

Z
Rn
sup
y2Rn

p
f (x + y)g(x � y)dx .

Then, for 0 < � < 1,

#{i ; |�i � 1| � �}  C
✓
log(2R)

�

◆C1

for some universal constants C,C1 > 1.
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Proof. Clearly, we may assume that the sequence {�i } is non-decreasing. Trans-
lating g, we may assume that the barycenter of g is at the origin. Let X and Y
be random vectors that are distributed according to the laws f, g, respectively. Fix
0 < � < 1. Consider the subspace E spanned by {ei ; �i � 1 � �}, where {ei } is
an orthonormal basis of eigenvectors corresponding the the eigenvalues {�i }. De-
note d = dim E and assume that d � 2. Since the �i ’s are in increasing order, the
subspace E has the form,

E = span{ei , i � i0}

for some 1  i0  n. Write j0 =

j
n�i0
2

k
and V 2 = �i0+ j0 . Now, fix 1  j  j0.

Define,
v j (✓) = ✓ei0+ j0+ j +

p
1� ✓2ei0+ j0� j .

Inspect the function f (✓) = hCov(g)v j (✓), v j (✓)i. We have f (0) = �i0+ j0� j 

V 2 and f (1) = �i0+ j0+ j � V 2. By continuity, there exists a certain 0  ✓ j  1 for
which

hCov(g)v j (✓ j ), v j (✓ j )i = V 2. (3.4)
Denote

F = span
�
v j (✓ j ) | 1  j  j0

 
.

Equation (3.4) and the fact that e1, . . . , en are orthonormal eigenvectors imply that
for every v 2 F , one has hCov(g)v, vi = V 2. Moreover, dim F = j0 �

1
2d�1. We

now apply Theorem 3.1 which claims that if d � C , then there exists a subspace
G ⇢ F with dimG = bd1/40c such that

f̃ (x) �

1
2
�k,1(x), g̃(y) �

1
2
�k,V (y)

for all x with |x |  10d1/80 and for all |y|  10Vd1/80, where f̃ and g̃ are the
densities of ProjG(X),ProjG(Y ) respectively. Next, we use Lemma 3.3 to attainZ

G
sup
y2G

q
f̃ (x � y)g̃(x + y)dx �

1
4
(1+ c ·min{(V � 1)2, 1})dimG/4.

On the other hand, we may use the Prekopá-Leindler inequality as in (2.5) above,
and deduce that Z

G
sup
y2G

q
f̃ (x � y)g̃(x + y)dx  R.

Consequently, under the assumption that d � C ,

min
n
(V � 1)2, 1

o
 C log(2R)/ dim(G). (3.5)

Since V �

p

1+ � � 1+ �/3, we conclude

#{i ; �i � 1 � �}  C
✓
log(2R)

�

◆C1
.
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By repeating the argument, with the subspace {ei ; �i � 1  ��} replacing the
subspace E , we conclude the proof.

Proof of Theorem 1.1. By applying affine transformations to both K and T , we can
assume that both bodies have the origin as their barycenter, and that pK (x) = |x |2
while pT (x) =

P
i x2i /�i . By Lemma 3.4,

# {i; |�i � 1| � �}  C
✓
log(2R)

�

◆C1
, (3.6)

for any 0 < � < 1. Since �i  CR4 for all i , as follows from Corollary 2.4, then

1
n

nX
i=1

(�i �1)2 

C
n

Z 1

0
min

(
n,

✓
log(2R)

�

◆C1)
d� +

C̃(log(2R))C1R4

n
 C

R↵2

n↵1

(3.7)
where C,↵1,↵2 > 0 are universal constants. To obtain (1.6), note that

����
R
T pK (x � bT )dµT (x)R
K pK (x � bK )dµK (x)

� 1
���� =

1
n

�����
nX
i=1

(�i � 1)

����� 

vuut1
n

nX
i=1

(�i � 1)2. (3.8)

Remark 3.5. When K in Theorem 1.1 is isotropic, we actually prove in (3.7) that

kCov(µK ) � Cov(µT )k2HS  CR↵2n1�↵1, (3.9)

where kAk
2
HS = Trace(At A) is the square of the Hilbert-Schmidt norm of the

matrix A.

4. Obtaining stability estimates using a transportation argument

The goal of this section is to prove Theorem 1.2 and to obtain some quantitative es-
timates for the exponents from Theorem 1.1. We begin with several core definitions
which will be used in the proof. For two measurable functions f, g : Rn

! [0,1),
denote by H�( f, g) the supremum-convolution of the two functions, hence,

H�( f, g)(x) := sup
y2Rn

f 1��(x + �y)g�(x � (1� �)y). (4.1)

The function
(�, x) 7! H�( f, g)(x)
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is log-concave in [0, 1] ⇥ Rn . We define

K�( f, g) =

Z
Rn
H�( f, g)(x)dx

the integral over a subspace, and

K ( f, g) =

Z 1

0
K�( f, g)d�,

the entire integral. Next, we write

b( f, g) =

1
K ( f, g)

Z
Rn

Z 1

0
xH�( f, g)(x)d�dx,

the barycenter of
R 1
0 H�( f, g)(x)d�. For x 2 Rn we write x ⌦ x = (xi x j )i, j=1,...,n ,

an n ⇥ n matrix. Set

D( f, g) =

1
K ( f, g)

Z
Rn

Z 1

0
(x ⌦ x) H�( f, g)(x + b( f, g))d�dx, (4.2)

the covariance matrix. Finally, we normalize this density by defining

L( f, g)(�, x) =

1
K ( f, g)

p
det D( f, g) · H�( f, g)(D1/2x + b( f, g))

and

l( f, g)(x) =

Z 1

0
L( f, g)(�, x)d�,

the marginal of L( f, g)with respect to the axis �. Note that by the Prékopa-Leindler
inequality, l( f, g) is an isotropic log-concave probability density in Rn .

The results of this section rely on the so-called Brenier map between two given
log-concave measures. Given two smooth log-concave probability densities f, g on
Rn , one may consider the Monge-Ampère equation,

det(Hess') =

g � r'

f
.

A theorem of Brenier asserts that a convex solution to the above equation on the
domain Supp( f ) = {x; f (x) > 0} exists. The regularity theory developed by
Caffarelli implies that the convex function ' is smooth. For precise definitions
and properties, see [22]. The map F = r' pushes forward the measure whose
density is f to the measure whose density is g, and is referred to as the Brenier
map between the two measures. The matrix rF(x) is positive-definite since it has
a positive determinant and it is the Hessian matrix of a convex function.
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Remark 4.1. The Knothe map, used in Section 6, is in some sense a limiting case
of the Brenier map. See [7].

The following lemma contains the central idea of this section.

Lemma 4.2. Let f, g be log-concave probability densities in Rn . Denote K =

K ( f, g). Let x ! F(x) be the Brenier map pushing forward the measure whose
density is f to the measure whose density is g. Suppose that X is a random vector
distributed according to the law l( f, g) in Rn . Then,

Var[|X |
2
] �

1
K ( f, g)

Z
Rn

f (x)Var
���D�1/2((1� 3)x + 3F(x) � b( f, g))

���2
�
dx

(4.3)
where D = D( f, g) and 3 is a random variable distributed uniformly in [0, 1].

Proof. By a standard approximation argument we may assume that f and g are suf-
ficiently smooth. Denote D = D( f, g) and L(�, x) = L( f, g)(�, x). Furthermore,
define,

f̃ (x) =

p

det D · f (D1/2x + b( f, g)), g̃(x) =

p

det D · g(D1/2x + b( f, g))

so that f̃ (x) = K ( f, g)L(0, x) and g̃(x) = K ( f, g)L(1, x). Denote

F̃(x) = D�1/2(F(D1/2x + b( f, g)) � b( f, g)).

Then F̃ pushes forward the measure whose density is f̃ to the measure whose
density is g̃. Next, define

M(�, x) = (M1(�, x),M2(�, x)) = (�, (1� �)x + �F̃(x)).

By elementary properties of the Brenier map, M is a one-to-one map from [0, 1] ⇥

Supp( f̃ ) to Supp(L). Define a density,

q(�, x) =

f̃ (x)(1��)g̃(F̃(x))�

K ( f, g)
= L(0, x)1��L(1, F̃(x))�.

Using the fact that L is log-concave, we obtain

q(�, x)  L(M(�, x)), 8� 2 [0, 1], x 2 Supp( f̃ ). (4.4)

A simple calculation shows that the Jacobian of M(�, x) is

J (�, x) = det((1� �)I d + �r F̃(x)).

Recall that det(r F̃(x)) =
f̃ (x)

g̃(F̃(x))
. Furthermore, the matrix r F̃(x) is diagonal-

izable with positive eigenvalues, since it is conjugate to the matrix rF(D1/2x +
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b( f, g)) which is a positive-definite matrix. By the arithmetic/geometric means
inequality,

J (�, x) � det(r F̃(x))� =

 
f̃ (x)

g̃(F̃(x))

!�

.

Therefore,

J (�, x)q(�, x) �

f̃ (x)
K ( f, g)

, 8� 2 [0, 1], x 2 Rn. (4.5)

By changing variables using M�1 and applying (4.4) and (4.5), we calculate

Var
h
|X |

2
i
=

Z
Rn

Z
[0,1]

✓
|x |2�

Z
Rn

Z
[0,1]

|y|2L(✓, y)d✓dy
◆2

L(�, x)d�dx

�

Z
Rn

Z
[0,1]

✓
|M2(�, x)|2�

Z
Rn

Z
[0,1]

|y|2L(✓, y)d✓dy
◆2
J (�,x)q(�,x)d�dx

�

Z
Rn

f̃ (x)
K ( f, g)

 Z
[0,1]

✓
|M2(�, x)|2�

Z
Rn

Z
[0,1]

|y|2L(✓, y)d✓dy
◆2
d�

!
dx

�

Z
Rn

f̃ (x)
K ( f, g)

 Z
[0,1]

✓
|M2(�, x)|2 �

Z
[0,1]

|M2(✓, x)|2d✓

◆2
d�

!
dx

=

Z
Rn

f̃ (x)
K ( f, g)

Var
���(1� 3)x + 3F̃(x)

���2
�
dx .

Applying the change of variables x ! D�1/2(x�b( f, g)) completes the proof.

By the definition of the thin-shell parameter �n from [10], for any isotropic
random vector X in Rn with a log-concave density, one has,

Var[|X |
2
]  Cn� 2n . (4.6)

Combining this with the above lemma yields
Z

Rn
f (x)Var

���D( f, g)�1/2((1�3)x+3F(x) � b( f, g))
���2
�
dx  CK ( f, g)n� 2n .

(4.7)
For x, y 2 Rn , define,

v(x, y) = Var
h
|3x + (1� 3)y|2

i
.

In view of (4.7), we would like to have a lower bound for v(x, y) in terms of |x |2�

|y|2 and in terms of |x � y|. The following lemma serves this purpose.
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Lemma 4.3. There exist universal constants C1,C2 > 0, such that for all x, y 2

Rn ,
v(x, y) = C1(|x |2 � |y|2)2 + C2|x � y|4. (4.8)

Proof. Define

f (�) = |�x + (1� �)y|2, g(�) = �|x |2 + (1� �)|y|2,

and h(�) = f (�) � g(�). Then h(1 � �) = h(�) hence COV (g(3), h(3)) = 0.
Consequently,

Var[ f (3)] = Var[h(3)] + Var[g(3)]. (4.9)

It is easy to verify that

Var[g(3)] = (|x |2 � |y|2)2 Var(3) = C1(|x |2 � |y|2)2. (4.10)

Next, using the parallelogram law,

h(�) = ��(1� �)|x � y|2.

Consequently,

Var[h(3)] = |x � y|4 Var [3(1� 3)] = C2|x � y|4. (4.11)

Combining (4.9), (4.10) and (4.11) completes the proof.

Proof of Theorem 1.2. Write b = b( f, g) and D = D( f, g). Substituting the result
of Lemma 4.3 into (4.7) yields
Z

Rn
f (x)

✓⇣
|D�1/2(x � b)|2 � |D�1/2(F(x) � b)|2

⌘2
+ |D�1/2(x � F(x))|4

◆
dx

(4.12)
 CK ( f, g)n� 2n .

Let X,Y be the random vectors whose densities are f, g respectively. By the defi-
nition of the transportation distance,

W 2
2 (D

�1/2X, D�1/2Y ) 

Z
Rn

f (x)|D�1/2(x � F(x))|2dx, (4.13)

where the transportation distance between random vectors is defined to be the dis-
tance between the corresponding distribution measures. The fact that f and g have
barycenters at the origin implies

E[hD�1/2X, D�1/2di] = E[hD�1/2Y, D�1/2di] = 0,



992 RONEN ELDAN AND BO‘AZ KLARTAG

and consequently
Z

Rn
f (x)

⇣
|D�1/2(x � d)|2 � |D�1/2(F(x) � d)|2

⌘
dx (4.14)

= Tr(Cov(D�1/2X) � Cov(D�1/2Y )).

The Cauchy-Schwartz inequality together with (4.12), (4.13) and (4.14) yield,

W2(X̃ , Ỹ )4 +

h
Tr(Cov(X̃) � Cov(Ỹ ))

i2
 CnK ( f, g)� 2n (4.15)

where X̃ = D�1/2X and Ỹ = D�1/2Y . Consequently,

W2(X,Y )2  C
p
nK ( f, g)�n||D||OP

where kDkOP = sup06=x |D(x)|/|x | is the operator norm of D. From the remark to
Corollary 2.4 we conclude that

||D||OP  CK1/2( f, g)4.

The function � 7! K�( f, g) is log-concave and it is bounded from below by one,
according to the Prékopa-Leindler inequality. Therefore,

K1/2( f, g) �

r
sup

�2(0,1)
K�( f, g) �

p
K ( f, g),

and (1.9) is proven.

The rest of this section aims at a better understanding of the exponents in Theo-
rem 1.1. The next lemma exploits the second summand in our basic estimate (4.15).

Lemma 4.4. Let f, g be log-concave probability densities on Rn whose barycen-
ters are at the origin. Suppose that f is isotropic. Then there exists a universal
constant c1 > 0 such that whenever K1/2( f, g)  exp(nc1), there exist two unit
vectors ✓1, ✓2 2 Rn with

hCov(g)✓1, ✓1i  1+ C�n

r
K ( f, g)

n
(4.16)

and

hCov(g)✓2, ✓2i � 1� C�n

r
K ( f, g)

n
. (4.17)

Here, C > 0 is some universal constant.
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Proof. We use the notation of the proof of Theorem 1.2. In order to establish (4.16),
we fix ↵ > 0, and assume that

hCov(g)✓, ✓i > 1+ ↵�n

r
K ( f, g)

n
, 8✓ 2 Sn�1,

where Sn�1 = {x 2 Rn
: |x | = 1}. Our goal is to show that necessarily ↵  C .

Noting that Cov(X̃) = D�1 we have

hCov(X̃)�1/2 Cov(Ỹ )Cov(X̃)�1/2✓, ✓i � 1 > ↵�n

r
K ( f, g)

n
, 8✓ 2 Sn�1,

where X̃ and Ỹ are as in the proof of Theorem 1.2. The last inequality implies,

Tr(Cov(Ỹ ))

Tr(Cov(X̃))
� 1 > ↵�n

r
K ( f, g)

n
.

Consequently, in order to establish (4.16), it suffices to show that for some universal
constant C > 0,

���Tr(Cov(Ỹ )) � Tr(Cov(X̃))
���  C Tr(Cov(X̃))�n

r
K ( f, g)

n
.

In view of (4.15), the last inequality will be concluded if we only manage to show

Tr(Cov(X̃)) = Tr(D�1) �

n
2
. (4.18)

The above fact follows from an application of Lemma 3.4 with � = 1/2 and from
the assumption that K1/2( f, g)  exp(nc1). Equation (4.16) is established, and the
proof of (4.17) is analogous. The proof of the lemma is thus complete.

Next, define

 = lim sup
n!1

log �n
log n

, ⌧n = max
⇢
1, max
1 jn

� j

j

�
, (4.19)

so that �n  ⌧nn . Note that the thin-shell conjecture implies that  = 0 and
⌧n < C . We apply the estimate from the previous lemma for various marginals of
our n-dimensional measures, and obtain:
Lemma 4.5. Let f, g be log-concave probability densities in Rn whose barycenter
is at the origin. Suppose that f is isotropic. Define R = K1/2( f, g) and denote
by {�i } the eigenvalues of Cov(g), repeated according to their multiplicity. Assume
that the sequence {|�i � 1|} is non-increasing. Then, one has

|�i � 1|  CR4, 81  i  n (4.20)

and
|�i � 1|  CR⌧ni�

1
2 , 8(log(2R))C1  i  n (4.21)

where C,C1 > 0 are some universal constants.
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Proof. The bound (4.20) follows directly from the remark to Corollary 2.4. In order
to establish (4.21), denote by {ei } the orthonormal basis of eigenvectors correspond-
ing to the eigenvalues {�i }. Define

E1 = sp{e j ; 1  j  i, � j � 1}, E2 = sp{e j ; 1  j  i, � j  1}.

Let E be the subspace with the larger dimension among these two subspaces. Then
k = dim E � i/2. Denote by i0 the maximal j for which e j 2 E . Then k  i0  i .
According to our assumption, dim(E) � (log(2R))C1/2, and hence we may apply
Lemma 4.4 in the subspace E . Denote by fE and gE the marginals of f and g to
the subspace E . Using (4.16) and (4.17) for fE and gE we obtain

|�i � 1|  |�i0 � 1|  C�k

r
K ( f, g)

k
 C 0R⌧ki�

1
2  C 0R⌧ni�

1
2 (4.22)

where we used the fact that K ( f, g)  K1/2( f, g)2 = R2 as well as the Prékopa-
Leindler inequality which implies that K�( fE , gE )  K�( f, g) for any � 2 (0, 1).

The next theorem demonstrates that the exponent ↵1 in Theorem 1.1 may be
made arbitrarily close to 1/2 �  , thus complementing the inequality (1.7) which
goes in the opposite direction. This provides yet another piece of evidence for the
close relationship between the thin shell problem and the stability of the Brunn-
Minkowski inequality in high dimensions.

Theorem 4.6. Let K , T ⇢ Rn be convex bodies and let R � 1. Assume that K is
isotropic, that the barycenter of T is at the origin and that

Voln
✓
K + T
2

◆
 CR

p
Voln(K )Voln(T ). (4.23)

Then,
kCov(µT ) � I dkHS  C

⇣
R5 + ⌧n Rmax(

p
log n, n)

⌘
, (4.24)

where I d is the identity matrix. Consequently,
�����
R
T |x |2dµT (x)R
K |x |2dµK (x)

� 1

����� 

kCov(µT ) � I dkHS
p

n

 C
R5 + ⌧n Rmax(

p
log n, n)

p

n
.

(4.25)

Here, C > 0 is a universal constant.
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Proof. We may clearly assume that Cov(µT ) is a diagonal matrix whose diagonal
is �1, . . . , �n , where the sequence {|�i � 1|} is non-increasing. Since our measures
are log-concave, then we may use Lemma 4.5 and calculate

nX
i=1

|�i � 1|2  CR8(log(2R))C1 + CR2⌧ 2n
nX
i=1

i2�1

 C̃ R9 + CR2⌧ 2n
✓
1+

Z n

1
s2�1ds

◆

 C 0(R9 + ⌧ 2n R
2 max(log n, n2)).

The bound (4.24) follows. In order to deduce (4.25) from (4.24), argue as in (3.8)
above. The proof is complete.

5. Transportation in one dimension

In this section we recall some basic definitions concerning transportation of one-
dimensional measures. For a Borel measure µ in Rn we write Supp(µ) for the
set of all points x 2 Rn such that all of the neighborhoods of x have positive µ-
measure. The support of µ, denoted by Supp(µ), is defined in this paper to be the
interior of Supp(µ). Suppose that µ1 and µ2 are Borel probability measures on the
real line, with continuous densities ⇢1 and ⇢2, respectively. We further assume that
the Supp(µ2) is connected and that ⇢2 does not vanish in its support. For t 2 R set

8 j (t) = µ j ((�1, t]) ( j = 1, 2).

For j = 1, 2, the map8�1
j pushes forward the uniformmeasure on [0, 1] toµ j . The

monotone transportation map betweenµ1 andµ2 is the continuous, non-decreasing
function

F(t) = 8�1
2 (81(t)),

defined for t 2 Supp(µ1). Observe that

F⇤(µ1) = µ2.

Furthermore, F is differentiable in Supp(µ1) and

⇢1(t) = F 0(t)⇢2(F(t)) for t 2 Supp(µ1). (5.1)

Additionally, it is well-known (see, e.g., Villani’s book [22]) that

W2(µ1, µ2) =

sZ
R

|F(x) � x |2dµ1(x). (5.2)

A probability measure onR is said to be even if µ(A) = µ(�A) for any measurable
A ⇢ R, where �A = {�x : x 2 A}.
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Proposition 5.1. Suppose that µ1 and µ2 are even, log-concave probability mea-
sures on R. Denote � =

p

Var(µ1) + Var(µ2). Then,

W2(µ1, µ2)  C�

sZ
R
min{(F 0(t) � 1)2, 1}dµ1(t) (5.3)

where F is the monotone transportation map between µ1 and µ2 and C > 0 is a
universal constant.

We begin the proof of Proposition 5.1 with the following crude:

Lemma 5.2. Let µ1 and µ2 be probability measures on the real line.

(i) If µ1 and µ2 are even, then

W2(µ1, µ2)2  2(Var(µ1) + Var(µ2)).

(ii) If µ1, µ2 are supported on [A,1) and [B,1) respectively, and have non-
increasing densities, then

W2(µ1, µ2)  |B � A| + 10
p
Var(µ1) + Var(µ2).

Proof. Denote by �0 the Dirac measure at the origin. Assume that µ0 and µ1 are
even. By the triangle inequality for the transportation metric,

W2(µ1, µ2)  W2(µ1, �0) + W2(�0, µ2) =

p
Var(µ1) +

p
Var(µ2),

and (i) follows. We move on to prove (ii). Denote e = E[µ1]. It follows from the
fact that the density of µ1 is non-increasing that the expectation of µ1 is larger than
its median. Hence,

µ1 ([A, e]) �

1
2
, and µ1

✓
A, A +

e � A
2

�◆
�

1
4
.

Therefore,

Var(µ1) �

Z A+
e�A
2

A
(e � x)2dµ1(x) �

(e � A)2

16
.

Let �A, �B, �e be the Dirac measures supported on A, B, e respectively. By the
triangle inequality,

W2(µ1, �A)  W2(µ1, �e) + W2(�e, �A) =

p
Var(µ1) + (e � A)  5

p
Var(µ1).

In the same manner,
W2(µ2, �B)  5

p
Var(µ2).

Therefore, by using W2(µ1, µ2)  W2(µ1, �A) + W2(�A, �B) + W2(�B, µ2),

W2(µ1, µ2)  10
p
Var(µ1) + Var(µ2) + |B � A|.
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Proof of Proposition 5.1. Use (5.1), the definition of F, and the fact that8�1
1 pushes

forward the uniform measure on [0, 1] to µ1, in order to obtain

Z
R
min{(F 0(t) � 1)2, 1}dµ1(t) =

Z 1

0
min

8<
:
 

⇢1(8
�1
1 (t))

⇢2(8
�1
2 (t))

� 1

!2
, 1

9=
; dt.

Recall that when µ j is a log-concave measure, the function ⇢ j (8
�1
j (t)) is concave

on [0, 1]. Denote I j (t) = ⇢ j (8
�1
j (t)) for j = 1, 2. Then I1 and I2 are concave,

non-negative functions on [0, 1], with the property that I j (t) = I j (1 � t) for any
t 2 [0, 1]. These two functions are therefore continuous on (0, 1), increasing on
[0, 1/2], and decreasing on [1/2, 1]. Let " > 0 be such that

"2 =

Z 1

0
min

(✓
I1(t)
I2(t)

� 1
◆2

, 1

)
dt. (5.4)

Suppose first that " > 1/10. In this case, from part (i) of lemma 5.2,

W2(µ1, µ2)2  2 (Var(µ1) + Var(µ2)) .

So whenever " > 1/10, the inequality (5.3) holds trivially for a sufficiently large
universal constant C > 0.

From now on, we restrict attention to the case where "  1/10. We divide the
rest of the proof into several steps.
Step 1: Let us prove that there exists a universal constant C > 0 such that

Z 1�2"2

2"2

✓
I1(t)
I2(t)

� 1
◆2

dt  C"2. (5.5)

To that end, we will show that

I1(t)  4I2(t) for all t 2 [2"2, 1� 2"2]. (5.6)

Once we prove (5.6), the desired bound (5.5) follows from (5.4). We thus focus on
the proof of (5.6). Suppose that t1 2 (0, 1/2] satisfies I1(t1) > 4I2(t1). We will
show that in this case

t1  2"2. (5.7)
If I1(t) > 2I2(t) for all t 2 (0, t1), then t1  "2 according to (5.4). Thus (5.7) holds
true in this case. Otherwise, there exists 0 < t < t1 with I1(t)  2I2(t). Let t0 be
the supremum over all such t . Since I1 and I2 are continuous and non-decreasing
on (0, t1], then

I1(t0) = 2I2(t0)  2I2(t1) < I1(t1)/2.
Since I1 is concave, non-decreasing and non-negative on [0, t1], then necessarily
t0 < t1/2. We conclude that I1(t) > 2I2(t) for any t 2 [t1/2, t1]. From (5.4) it
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follows that t1  2"2. Therefore (5.7) is proven in all cases. By symmetry, we
conclude (5.6), and the proof of (5.5) is complete.

Step 2: For any 0  T  8�1
1 (1� 2"2) we have

Z T

�T
(F 0(t) � 1)2dµ1(t) 

Z 1�2"2

2"2

✓
I1(t)
I2(t)

� 1
◆2

dt  C"2,

where the last inequality is the content of Step 1. Denote ⌫ = µ1|[�T,T ], an even
log-concave probability measure. According to Lemma 2.6, we have Var(⌫) 

Var(µ1)  � . Note that the function F(t) � t is odd, hence its ⌫-average its zero.
Using the Poincaré-type inequality in Lemma 2.1, we see that for any 0  T 

8�1
1 (1� 2"2),
Z T

�T
(F(t) � t)2dµ1(t)  12Var(⌫)

Z T

�T
(F 0(t) � 1)2dµ1(t)  C̃� 2"2. (5.8)

Step 3: Let T1 = 8�1
1 (1 � 3"2) and let T2 = 8�1

1 (1 � 2"2). We use (5.8) and
conclude that there exists T1  T  T2 with

|F(T ) � T |
2

 C̃� 2"2
�

µ1 ([T1, T2]) = C̃� 2. (5.9)

Denote ⌫1 = µ1|[T,1) and ⌫2 = µ2|[F(T ),1). These are log-concave probability
densities with Var(⌫1) + Var(⌫2)  � 2. Note that we have, owing to (5.8),

W2(µ1, µ2)2 =

Z T

�T
(F(t) � t)2dµ1(t) + 2

Z
1

T
(F(t) � t)2dµ1(t)

 C̃� 2"2 + 2µ1([T,1))W2(⌫1, ⌫2)2.

In order to prove the lemma it remains to show that W2(⌫1, ⌫2)2  C� 2. But in
view of (5.9), the latter is a direct consequence of part (ii) in lemma 5.2: Since
T, F(T ) > 0, then the log-concave densities of ⌫1 and ⌫2 are non-increasing. This
completes the proof.

Let f, g : R ! [0,1) be log-concave functions with finite, positive integrals.
Denote by µ f , µg the probability measures on R whose densities are proportional
to f and g, respectively. Let F be the monotone transportation map between µ f
and µg. Then S(x) = (F(x) + x)/2 is a strictly-increasing, continuous map in
Supp(µ1). Define

h (S(x)) =

p
f (x)g(F(x)) (x 2 Supp(µ f )). (5.10)

We set h(x) = 0 for any x which is not in the image of Supp(µ1) under S. Then
h is a well-defined, non-negative, measurable function on R. Observe that for any
x 2 R,

h(x)  sup
y2R

p
f (x � y)g(x + y).
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We thus view the function h as a refined variant of the supremum-convolution of
f and g. The following proposition is a stability estimate for the Prékopa-Leindler
inequality in one dimension. It may be viewed as the transportation-metric version
of the L1-stability estimates from Ball and Böröczky [1].

Proposition 5.3. Suppose that f and g are even, log-concave functions on R with
finite, positive integrals. Denote by µ f , µg the probability measures on R whose
densities are proportional to f, g respectively. Set � =

p
Var(µ f ) + Var(µg).

Then,

W 2
2 (µ f , µg)  C� 2

0
@

R
R hqR

R f
R
R g

� 1

1
A (5.11)

where the function h is defined via (5.10) and C > 0 is a universal constant.

Proof. Multiplying the functions f and g by positive constants, if necessary, we
may assume that

R
f =

R
g = 1. Indeed, neither the left-hand side nor the right-

hand side of (5.3) is changed under such normalization. Let F be the monotone
transportation map between µ f and µg and as before, S(x) = (F(x) + x)/2 for
x 2 Supp(µ f ). Applying the change of variables y = S(x) we see that
Z

R
h(y)dy =

Z
Supp(µ f )

h(S(x))S0(x)dx =

Z
Supp(µ f )

p
f (x)g(F(x))

F 0(x) + 1
2

dx .

According to (5.1), we have F 0(x)g(F(x)) = f (x) for any x in the support of µ f .
Since g is log-concave, it does not vanish in Supp(µg), and hence F 0(x) 6= 0 for
any x 2 Supp(µ f ). Therefore,

Z
R
h(y)dy =

Z
Supp(µ f )

F 0(x) + 1
2
p

F 0(x)
f (x)dx

�

Z
Supp(µ f )

⇣
1+ cmin

n�
F 0(x) � 1

�2
, 1

o⌘
f (x)dx,

where we used Lemma 3.2(ii) in the last passage. Since
R
f = 1, then

Z
R
h(y)dy � 1 � c

Z
Supp(µ f )

min
n�
F 0(x) � 1

�2
, 1

o
f (x)dx .

We may thus apply Proposition 5.1 and deduce that
Z

R
h(y)dy � 1 � c

Z
R
min

n�
F 0(x) � 1

�2
, 1

o
dµ f (x) �

c̃
� 2

W2(µ f , µg)
2

and the proposition is proven.
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6. Unconditional convex bodies

In this section we prove Theorem 1.3 together with its close variant, Theorem 6.1
below. We say that a function ⇢ on Rn is unconditional if it is invariant under
coordinate reflections, i.e., if

⇢(x1, ..., xn) = ⇢(±x1, ...,±xn)

for all (x1, ..., xn) 2 Rn and for any choice of signs. For two functions f, g : Rn
!

[0,1) we abbreviate

H( f, g)(x) = sup
y2Rn

p
f (x + y)g(x � y). (6.1)

Thus, H( f, g) = H1/2( f, g) as defined in (4.1). We will frequently consider
H( f, g)(x) when the functions f and g are defined only on a subset of Rn . For
the purpose of (6.1) we treat such functions as zero outside their original domain of
definition.

Theorem 6.1. Let M > 0 and consider the cube Qn
= [�M,M]

n
⇢ Rn . Suppose

that f, g : Qn
! [0,1) are unconditional, log-concave probability densities.

Then,

W 2
2 (µ f , µg)  CM2

Z
Qn

H( f, g) � 1
�

, (6.2)

where C > 0 is a universal constant and µ f , µg are the probability measures with
densities f, g respectively.

The main tool in the proof of Theorem 6.1 is the Knothe map from [16], which
we define next. Let M, f, g be as in Theorem 6.1. Then the support of µg is a
convex set, and g does not vanish in Supp(µg). The Knothe map between µ f and
µg is the continuous function F = (F1, . . . , Fn) : Supp(µ f ) ! Supp(µg) for
which

(a) F⇤(µ f ) = µg.
(b) For any j , the function Fj (x1, . . . , xn) actually depends only on the variables

x1, . . . , x j . We may thus speak of Fj (x1, . . . , x j ).
(c) For any j and for any fixed x1, . . . , x j�1, the function Fj (x1, . . . , x j ) is non-

decreasing in x j .

It may be proven by induction on n (see [16]) that the Knothe map between µ f and
µg exists, and that in fact, the three requirements above determine the function F
completely. Denoting � j (x) = @Fj (x)

�
@x j � 0, it follows from property (b) that

nY
j=1

� j (x) = JF (x) =

f (x)
g(F(x))

(6.3)
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for any x 2 Supp(µ1), where JF (x) is the Jacobian of the map F . Below we
will also use the fact that the map x 7! x + F(x), defined for x 2 Supp(µ f ), is
one-to-one, as follows from properties (b) and (c). Set

⇡(x1, . . . , xn) = (x1, . . . , xn�1)

and let fn�1, gn�1 be the densities of the probability measures ⇡⇤(µ f ),⇡⇤(µg),
respectively. Then fn�1 and gn�1 are unconditional and log-concave. Write Tn =

F = (F1, . . . , Fn) for the Knothe map between µ f and µg, and set

Tn�1(x1, . . . , xn�1) = (F1(x1), F2(x1, x2), . . . , Fn�1(x1, . . . , xn�1)) .

Then Tn�1 is the Knothe map between ⇡⇤(µ f ) and ⇡⇤(µg). Observe that for fixed
(x1, . . . , xn�1) 2 ⇡(Supp(µ f )), the map

xn 7! Fn(x1, . . . , xn)

is the monotone transportation map between the probability densities proportional
to

t 7! f (x1, . . . , xn�1, t) and s 7! g(z1, ..., zn�1, s),

for (z1, . . . , zn�1) = Tn�1(x1, . . . , xn�1). For i = n � 1, n we set

Si (x) =

x + Ti (x)
2

which is a one-to-one, continuous function, defined for x 2 Supp(µ f ) when i = n
and for x 2 ⇡

�
Supp(µ f )

�
when i = n � 1. According to (6.3) and to property (b),

the Jacobian JSi (x) of the map Si satisfies

JSi (x) =

iY
j=1

✓
1+ � j (x)

2

◆
�

iY
j=1

q
� j (x) =

p
JTi (x). (6.4)

Finally, for i = n � 1, n set

V ( fi , gi ) (Si (x)) =

p
fi (x)gi (Ti (x))  H( fi , gi ) (Si (x)) . (6.5)

Since Si is one-to-one, then V ( fi , gi ) is a well-defined function on a subset of Qi .
We extend V ( fi , gi ) to the entire Qi by setting it to be zero outside its original
domain of definition.

Lemma 6.2. Let ' : Qn�1
! [0,1) be a measurable function. Then,

Z
Qn�1

'(Sn�1(y)) fn�1(y)dy 

Z
Qn�1

'(y)V ( fn�1, gn�1)(y)dy.
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Proof. We use (6.3) for the Knothe map Tn�1 to conclude thatZ
Qn�1

'(Sn�1(y)) fn�1(y)dy

=

Z
Supp( fn�1)

'(Sn�1(y))
p
fn�1(y)gn�1(Tn�1(y))

q
JTn�1(y)dy



Z
Supp( fn�1)

'(Sn�1(y))V ( fn�1, gn�1)(Sn�1(y))JSn�1(y)dy

where we used (6.4) and (6.5) in the last passage. The map Sn�1 is one-to-one in
the support of fn�1. Changing variables z = Sn�1(y) we obtainZ

Qn�1
'(Sn�1(y)) fn�1(y)dy 

Z
Sn�1(Supp( fn�1))

'(z)V ( fn�1, gn�1)(z)dz

and the lemma is proven.

The following lemma will serve as the induction step in the proof of Theorem 6.1.

Lemma 6.3. Let M > 0, Qn
= [�M,M]

n . Suppose that f, g : Qn
! R are

unconditional, log-concave probability densities. Let Tn, Tn�1, fn�1, gn�1 be as
above. Then,Z

Qn
|Tn(x) � x |2 f (x)dx 

Z
Qn�1

|Tn�1(y) � y|2 fn�1(y)dy (6.6)

+ CM2
Z

Qn
V ( f, g) �

Z
Qn�1

V ( fn�1, gn�1)
�

,

where C > 0 is a universal constant (in fact, it is the same constant as in Proposi-
tion (5.3)).

Proof. In this proof we use x = (y, t) 2 Rn�1
⇥ R as coordinates in Rn . From the

definition of Tn�1,Z
Qn

|Tn(x) � x |2 f (x)dx =

Z
Qn�1

|Tn�1(y) � y|2 fn�1(y)dy

+

Z M

�M

Z
Qn�1

|Fn(y, t) � t |2 f (y, t)dydt.

In order to prove the lemma, it therefore suffices to show that
Z M

�M

Z
Qn�1

|Fn(y, t) � t |2 f (y, t)dydt

 CM2
Z

Qn
V ( f, g) �

Z
Qn�1

V ( fn�1, gn�1)
�

.

(6.7)
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Recall that t 7! Fn(y, t) is the monotone transportation map between the even,
log-concave probability measures supported on [�M,M], whose densities are pro-
portional to t 7! f (y, t) and s 7! g(Tn�1(y), s). The variance of an even measure
supported on [�M,M] cannot exceed M2. We may therefore use Proposition 5.3,
together with (5.2), to conclude that for any y 2 ⇡(Supp(µ f )),
Z M

�M
|Fn(y, t)�t |2

f (y, t)
fn�1(y)

dt  CM2

"R M
�M V ( f, g)(Sn�1(y), t)dtp
fn�1(y)gn�1(Tn�1(y))

� 1

#
. (6.8)

In particular, the right-hand side of (6.8) is non-negative. We use the definition (6.5)
and integrate with respect to y. This yields:Z

Qn�1

Z M

�M
|Fn(y, t) � t |2 f (y, t)dtdy

 CM2
Z
Qn�1

"R M
�M V ( f, g)(Sn�1(y), t)dt
V ( fn�1, gn�1)(Sn�1(y))

� 1

#
fn�1(y)dy

 CM2
Z
Qn�1

"R M
�M V ( f, g)(y, t)dt
V ( fn�1, gn�1)(y)

� 1

#
V ( fn�1, gn�1)(y)dy

where the last passage is legal according to Lemma 6.2. The desired estimate (6.7)
follows, and the proof is complete.

Proof of Theorem 6.1. We will prove by induction on the dimension n thatZ
Qn

|Tn(x) � x |2 f (x)dx  CM2
Z

Qn
V ( f, g) � 1

�
, (6.9)

where C is the constant from Lemma 6.3. The case n = 1 follows from Proposition
5.3 and from the fact that the variance of an even measure supported on [�M,M]

cannot exceed M2. We assume that (6.9) is proven for dimension n�1 and proceed
with the proof for dimension n. Apply the induction hypothesis for the uncondi-
tional, log-concave probability densities fn�1, gn�1 and conclude thatZ

Qn�1
|Tn�1(y) � y|2 fn�1(y)dy  CM2

Z
Qn�1

V ( fn�1, gn�1) � 1
�

. (6.10)

Combining (6.6) and (6.10),Z
Qn

|Tn(x) � x |2 f (x)dx

CM2
⇢Z

Qn�1
V ( fn�1, gn�1) � 1

�
+

Z
Qn
V ( f, g) �

Z
Qn�1

V ( fn�1, gn�1)
��

and (6.9) is proven for dimension n, hence for all dimensions. Using (6.9) and the
fact that V ( f, g)  H( f, g), the theorem follows by the definition of transportation
distance.
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The uniform measure on a convex body is a prime example for a log-concave
measure. Consequently, we may deduce Theorem 1.3 from Theorem 6.1 by using a
crude “cut with a big cube” argument. The logarithmic factor of Theorem 1.3 may
be an artifact of this clumsy procedure.

Proof of Theorem 1.3. Let 0  �  1/2 be a parameter to be specified later on.
For ↵,� > 0 we denote

K↵ = K \ [�↵ log n,↵ log n]n, T� = T \ [�� log n,� log n]n.

According to Corollary 2.4, we have Cov(µT )  CR4. Using Lemma 2.2 and a
union bound, we deduce that

µK (K \ K↵)  Cn1�c↵, µT (T \ T�)  Cn1�c�/R2 . (6.11)

We now select ↵ and � so that

µK (K \ K↵) = µT (T \ T�) = � .

According to (6.11),

↵  C
✓
1+

log(1/� )

log n

◆
, �  CR2

✓
1+

log(1/� )

log n

◆
. (6.12)

Denote by µ1K the uniform probability measure on K↵ and similarly for T . By
elementary properties of the transportation metric W2, it follows that

W 2
2 (µK , µT )  µK (K↵) ·W 2

2 (µ
1
K , µ1T )+µK (K \ K↵) · [Diam(K ) + Diam(T )]2 ,

where Diam(K ) = supx,y2K |x�y| is the diameter of K . It is well-known (see [18])
that Diam(K )  Cn

p

kCov(µK )kOP and therefore,

W 2
2 (µK , µT )  W 2

2 (µ
1
K , µ1T ) + C� n2R4. (6.13)

Note thatµ1K andµ1T satisfy the requirements of Theorem 6.1 with M = max{↵,�}·

log n. Denote f (x) = 1K↵ (x)/Voln(K↵), g(x) = 1T� (x)/Voln(T�). Then,
Z

Rn
H( f, g) =

Voln([K↵ + T�]/2)p
Voln(K�)Voln(T�)



R
1� �

 R(1+2� ) = 1+(R�1)+2R� .

From Theorem 6.1 and (6.13) we conclude that

W 2
2 (µK , µT )  C log2 n · [↵2 + �2] · {(R � 1) + 2R� } + C� n2R4

 C log2 n ·

"
R4

✓
1+

log(1/� )

log n

◆2#
(6.14)

· {(R � 1) + 2R� } + C� n2R4.
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All that remains to do is to select � . In the case where R  n2, we choose

� = (R � 1)5 log2 n/(10n4R4)  1/2

and deduce the desired bound (1.10) from (6.14). In the case where R � n2, we
select � = 1/2 and still deduce (1.10). The theorem is thus proven for all cases.

Next, we explain why Theorem 1.1 provides a non-trivial estimate for the thin-
shell parameter, and why Theorem 1.3 provides yet another proof for the thin-shell
estimate from [15], up to logarithmic factors. Observe that when K ⇢ Rn is a
convex body and T ⇢ K , then

Voln
✓
T + K
2

◆
 Voln(K ) = R

p
Voln(K )Voln(T )

for R =

p

Voln(K )/Voln(T ). As before, we write Bn2 = {x 2 Rn
; |x |  1} for the

Euclidean unit ball, centered at the origin in Rn .

Proposition 6.4. Let A > 0 and let K ⇢ Rn be an isotropic convex body. For
s > 0 denote Ks = K \ (sBn2 ). Assume that�����

R
Ks |x |2dµKs (x)R
K |x |2dµK (x)

� 1

�����  A (6.15)

for any s > 0 with Voln(Ks)/Voln(K ) 2 [1/8, 7/8]. Then,

Z
K

 
|x |2

n
� 1

!2
dµK (x)  CA2 (6.16)

where C > 0 is a universal constant.

Proof. Standard bounds on the distribution of polynomials on high-dimensional
convex sets (see Bourgain [6] or Nazarov, Sodin and Volberg [19]) reduce the de-
sired inequality (6.16) to the estimate

µK

 (
x 2 K ;

�����
|x |2

n
� 1

����� � 20A

)!


1
2
. (6.17)

In order to prove (6.17), select a > 0 such that Voln(Ka) = Voln(K )/4. From
(6.15),

max
x2Ka

|x |2

n
�

Z
Ka

|x |2

n
dµKa (x) � 1� A,

or equivalently,

µK

 (
x 2 K ;

|x |2

n
 1� A

)!


1
4
. (6.18)
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For the upper bound, let s < t be such that Voln(Ks)=3Voln(K )/4 and Voln(Kt )=
7Voln(K )/8. Then, from (6.15),

1+ A �

Z
Kt

|x |2

n
dµKt (x) �

6
7

Z
Ks

|x |2

n
dµKs (x) +

1
7
max
x2Ks

|x |2

n

�

6
7
(1� A) +

1
7
max
x2Ks

|x |2

n
.

Hence, maxx2Ks
|x |2
n  1+ 13A, or equivalently,

µK

 (
x 2 K ;

|x |2

n
� 1+ 13A

)!


1
4
. (6.19)

It is now clear that (6.17) follows from (6.18) and (6.19).
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