
Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)
Vol. XIII (2014), 889-923

Quadrature rules and distribution of points on manifolds
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Abstract. We study the error in quadrature rules on a compact manifold. Our
estimates are in the same spirit of the Koksma-Hlawka inequality and they depend
on a sort of discrepancy of the sampling points and a generalized variation of the
function. In particular, we give sharp quantitative estimates for quadrature rules
of functions in Sobolev classes.
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1. Introduction

In what follows, M is a smooth compact d-dimensional Riemannian manifold
without boundary, with Riemannian measure dx , normalized so that the total vol-
ume of the manifold is 1, and 1 is the Laplace-Beltrami operator. This opera-
tor is self-adjoint in L2(M), it has a sequence of eigenvalues {�2} and an or-
thonormal complete system of eigenfunctions {'�(x)}, 1'�(x) = �2'�(x). The
eigenvalues, possibly repeated, are ordered with increasing modulus. In partic-
ular, the first eigenvalue is 0 and the associated eigenfunction is 1. An exam-
ple is the torus Td

= Rd/Zd with the Laplace operator �

P
@2/@x2j , eigenval-

ues {4⇡2|k|2}k2Zd and eigenfunctions {exp(2⇡ ikx)}k2Zd . Another example is the
sphere Sd = {x 2 Rd+1

: |x | = 1} with dx the normalized surface measure and
with 1 the angular component of the Laplacian in the space Rd+1, eigenvalues
{n(n+ d � 1)}+1

n=0 and eigenfunctions the restriction to the sphere of homogeneous
harmonic polynomials in space. With a small abuse of notation and in analogy with
the Euclidean space, the Riemannian distance between x and y will be denoted
|x � y|.

A classical problem is to approximate an integral
R
M f (x)dx with Riemann

sums N�1PN
j=1 f (z j ), or weighted analogues

PN
j=1 ! j f (z j ), and what follows

will be concerned with the discrepancy between integrals and sums for functions in
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Sobolev classes W↵,p(M) with 1  p  +1 and ↵ > d/p. The assumption ↵ >
d/p guarantees the boundedness and continuity of the function f (x), otherwise the
point evaluations f (z j ) may not be defined. As a motivation, assume there exists
a decomposition ofM into N disjoint piecesM = U1 [ U2 [ ... [ UN so that
these pieces have measure N�1 and diameter at most cN�1/d . In what follows, as
usual, the constants a, b, c, . . . may change from step to step. Choosing a point z j
in each Uj , one obtains the estimate�����N�1

NX
j=1

f
�
z j
�
�

Z
M

f (x)dx

�����


NX
j=1

Z
Uj

�� f �z j� � f (x)
�� dx  sup

|y�x |cN�1/d
| f (y) � f (x)| .

In particular, since functions in W↵,p(M) with ↵ > d/p are Hölder continuous of
degree ↵ � d/p, one obtains�����N�1

NX
j=1

f
�
z j
�
�

Z
M

f (x)dx

�����  cN�(↵�d/p)/d
k f kW↵,p(M) .

On the other hand, it will be shown that suitable choices of the sampling points
{z j }Nj=1 improve the exponent 1/p � ↵/d to �↵/d, which is the best possible.
More precisely, the main results of this paper are the following:
(A) For every d/2 < ↵ < d/2 + 1 there exists c > 0 such that if M = U1 [

U2 [ ... [ UN is a decomposition of the manifold in disjoint pieces with measure
|Uj | = ! j , then there exists a distribution of points {z j }Nj=1 with z j 2 Uj such that
for every function f (x) in the Sobolev space W↵,2(M),�����

NX
j=1

! j f
�
z j
�
�

Z
M

f (x)dx

�����  c max
1 jN

diameter
�
Uj

�↵
k f kW↵,2 .

(B) Assume that the points {z j }Nj=1 and the positive weights {! j }
N
j=1 give an exact

quadrature for all eigenfunctions with eigenvalues �2 < r2, that is

NX
j=1

! j'�
�
z j
�

=

Z
M
'�(x)dx =

⇢
1 if � = 0,
0 if 0 < � < r .

Then for every 1  p  +1 and ↵ > d/p there exist c > 0, which may depend
onM, p, ↵, but is independent of r , {z j }Nj=1 and {! j }

N
j=1, such that�����

NX
j=1

! j f
�
z j
�
�

Z
M

f (x)dx

�����  cr�↵
k f kW↵,p .
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(C) If 1  p  +1, if ↵ > d/p and if  � 1/2, then there exists c > 0 with the
following property: let {z j }Nj=1 be a distribution of points onM with

supx2Mmin j
��x � z j

��
mini 6= j

��zi � z j
��  .

Then there exist positive weights {! j }
N
j=1 such that

�����
NX
j=1

! j f
�
z j
�
�

Z
M

f (x)dx

�����  cN�↵/d
k f kW↵,p .

(D) For every 1  p  +1 and ↵ > d/p there exists c > 0 such that for every
distribution of points {z j }Nj=1 and numbers {! j }

N
j=1 there exists a function f (x) in

W↵,p(M) with
�����
NX
j=1

! j f
�
z j
�
�

Z
M

f (x)dx

����� � cN�↵/d
k f kW↵,p .

In (C) the quantity supx2Mmin j |x � z j | is the mesh norm, mini 6= j |zi � z j | is the
separation distance, and their ratio is the mesh-separation ratio of the distribution of
points {z j }Nj=1. See [16]. An explicit example is the following. The torus Td can be
partitioned into N = nd congruent cubes with sides 1/n and this partition generates
the mesh of points (n�1Zd) \ Td , which gives an exact quadrature at least for all
exponentials exp(2⇡ ikx) with k in the hypercube {max j=1,...,d |k j | < n}. In this
case, (A) and (B) give an upper bound for the error in numerical integration of the
order of N�↵/d . More generally, if a manifold is decomposed into N disjoint pieces
M = U1[U2[ ...[UN with diameters cN�1/d , then (A) gives the upper bound
N�↵/d . Moreover, by Weyl’s estimates on the spectrum of an elliptic operator, for
every r > 1 there are approximately crd eigenfunctions with eigenvalues �2 < r2
and there exist N  crd nodes {z j }Nj=1 and positive weights {! j }

N
j=1 which give

an exact quadrature for these eigenfunctions. Then in this case (B) gives the above
upper bound N�↵/d . Hence both (A) and (B) give the bound N�↵/d , and by (D)
this latter is optimal. Similarly, observe that if r > 0 and if {|x � z j | < r}Nj=1 is a
maximal set of pairwise disjoint spheres inM, then the centers {z j }Nj=1 satisfy the
assumption of (C) with  = 1 and N ⇡ r�d . Hence, by (C) and (D), these nodes
give an optimal cubature rule. When the manifold is a torus or a sphere these results
are essentially known, and indeed there is a huge literature on this subject. See [29]
for deterministic and stochastic error bounds in numerical analysis. In particular,
(B) and (D) for p = 2 and for spheres are contained in [7, 17–19] and [20]. For
Besov spaces on spheres some results slightly more precise than (B) and (D) are
in [21], while a result slightly weaker than (D) for compact two point homogeneous
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spaces is in [25]. See also [10] and, for a survey on related results, [15] and [30].
Beside the proofs of (A), (B), (C), (D), which are contained in the following section,
the paper contains also a final section with a number of further results and remarks.
Among them it is proved that if a quadrature rule achieves optimal error bounds in
the Sobolev space W↵,2(M), then this quadrature rule is optimal also in all spaces
W�,2(M)with d/2 < � < ↵. Moreover, it is proved that there is a relation between
quadrature rules and geometric discrepancy:
(E) If d⌫(x) is a probability measure onM, then the norm of the measure d⌫(x)�

dx as a linear functional on W↵,2(M) decreases as ↵ increases. Moreover, if the
norm of d⌫(x) � dx on W↵,2(M) is r�↵ for some r > 1,����

Z
M

f (x)d⌫(x) �

Z
M

f (x)dx
����  r�↵

k f kW↵,2 ,

then for every d/2 < � < ↵ there exists a constant c which may depend on ↵, �,
M, but is independent of r and d⌫(x), such that����

Z
M

f (x)d⌫(x) �

Z
M

f (x)dx
����  cr��

k f kW�,2 .

(F) Assume that for some r � 1 the discrepancy of the probability measure d⌫(x)
with respect to the balls B(y, �) with center y and radius � satisfies the estimates����

Z
B(y,�)

d⌫(x) �

Z
B(y,�)

dx
���� 

⇢
r�d if �  1/r ,
r�1�d�1 if � � 1/r .

Then for every 1  p  +1 and ↵ > d/p, there exists a constant c, which may
depend on ↵ and p, but is independent of d⌫(x) and r , such that

����
Z
M

f (x)d⌫(x) �

Z
M

f (x)dx
���� 

8<
:
cr�↵

k f kW↵,p if 0 < ↵ < 1,
cr�1 log(1+ r) k f kW↵,p if ↵ = 1,
cr�1

k f kW↵,p if ↵ > 1.

Observe that while (A) and (B) hold for specific quadrature rules, (E) is a result
for arbitrary quadratures. Actually, (E) is only one way, from ↵ to � < ↵. The
estimate r�↵ for an ↵ does not necessarily imply the estimate cr�� for � > ↵.
Moreover, the sets B(y, �) in (F) are not precisely geodesic balls, but level sets
of suitable kernels on the manifold. However, for spheres or compact rank one
symmetric spaces these sets are geodesic balls, and the discrepancy of the measure
is the spherical cap discrepancy. See [4] or [28], and for other relations between
quadrature and discrepancy on spheres see also [2]. Finally, we would like to point
out that our paper is (almost) self-contained, it does not rely on explicit properties of
manifolds or special functions, and it may provide a unified perspective and simple
alternative proofs of some known results.

We would like to thank the referee for some useful suggestions and especially
for bringing to our attention the papers [14] and [27], which have led us to improve
the original draft, in particular Corollary 2.15.
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2. Main results

The eigenfunction expansions of functions and operators are a basic tool in what
follows. The system of eigenfunctions {'�(x)} is orthonormal complete in L2(M)
and every square integrable function has a Fourier transform and a Fourier expan-
sion,

F f (�) =

Z
M

f (y)'�(y)dy, f (x) =

X
�

F f (�)'�(x).

Since the Laplace operator is elliptic, the eigenfunctions are smooth and it is possi-
ble to extend the definition of Fourier transforms and series to distributions. In par-
ticular, these Fourier expansions are always convergent, at least in the topology of
distributions. One can write the discrepancy between integral and Riemann sum as
a single integral with respect to a signed measure dµ(x) =

PN
j=1 ! j d�z j (x) � dx ,

with d�y(x) the Dirac measure concentrated at the point y and dx the Riemannian
measure,

NX
j=1

! j f
�
z j
�
�

Z
M

f (x)dx =

Z
M

f (x)dµ(x).

Then the estimate of the numerical integration error reduces to the estimate of the
norm of a linear functional dµ(x) on a space of test functions f (x). Some of
the results which follow will be stated for generic finite complex-valued measures
dµ(x), for signed measures of the form dµ(x) = d⌫(x)�dx with d⌫(x) a probabil-
ity measure, and also for atomic probability measures d⌫(x) =

PN
j=1 ! j d�z j (x).

The following is an easy and straightforward extension to compact manifolds and
p-norms of some abstract results for reproducing kernel Hilbert spaces. See, e.g.,
[1, 6, 12, 13].

Theorem 2.1. Let { (�)} be a complex sequence indexed by the eigenvalues {�2},
with { (�)} and { (�)�1} slowly increasing, that is | (�)|  a(1 + �2)↵/2 and
| (�)�1|  b(1 + �2)�/2. Let the operators A and B and the associated adjoints
A⇤ and B⇤ be defined by

A f (x) =

X
�

 (�)F f (�)'�(x), A⇤g(x) =

X
�

 (�)F (g) (�)'�(x),

B f (x) =

X
�

 (�)�1F f (�)'�(x), B⇤g(x) =

X
�

 (�)�1F (g) (�)'�(x).

All these operators are well defined and continuous on test functions, and they can
be extended by duality to tempered distributions. Finally, let f (x) be a continuous
function and let dµ(x) be a finite complex measure onM. If 1  p, q  +1 and
1/p + 1/q = 1, then

����
Z
M

f (x)dµ(x)
���� 

⇢Z
M

|A f (x)|p dx
�1/p ⇢Z

M

��B⇤µ(x)
��q dx

�1/q
.



894 L. BRANDOLINI, C. CHOIRAT, L. COLZANI, G. GIGANTE, R. SERI, G. TRAVAGLINI

In particular, when p = q = 2, if B⇤µ(x) is square integrable and if f (x) =

B(B⇤µ)(x) is continuous, then the above inequality reduces to an equality.

Proof. Integration by parts shows that �2nF f (�) = F(1n f )(�). It follows that the
space of test functions is characterized by the rapid decay of the Fourier transform.
In particular, if { (�)} is slowly increasing and {F f (�)} is rapidly decreasing, then
also { (�)F f (�)} is rapidly decreasing, hence it is the Fourier transform of a test
function. This implies that the operator A is well defined on test functions, and
the same for A⇤, B, B⇤. In what follows the pairing between a test function and a
distribution is denoted with an integral, even when the distribution is not a function
and the integral is divergent. In particular, if f (x) is a test function, by Hölder
inequality with 1/p + 1/q = 1, since the operators A and B are inverses of each
other,

����
Z
M

f (x)dµ(x)
���� =

����
Z
M

BA f (x)dµ(x)
����

=

����
Z
M

A f (x)B⇤µ(x)dx
����



⇢Z
M

|A f (x)|p dx
�1/p ⇢Z

M

��B⇤µ(x)
��q dx

�1/q
.

The general case of f (x) continuous follows by approximation with test functions.
Finally, when p = q = 2 the Cauchy inequality reduces to an equality if the
functions A f (x) and B⇤µ(x) are square integrable and proportional.

In what follows the operators A and B will be fractional powers of the Laplace-
Beltrami operator: (I +1)±↵/2.
Definition 2.2. The Sobolev space W↵,p(M), �1 < ↵ < +1 and 1  p 

+1, is the set of all distributions onM with (I + 1)↵/2 f (x) in L p(M), that is
with

k f kW↵,p =

(Z
M

�����
X
�

⇣
1+ �2

⌘↵/2
F f (�)'�(x)

�����
p

dx

)1/p
<+1, 1 p<+1,

k f kW↵,1 = sup ess
x2M

�����
X
�

⇣
1+ �2

⌘↵/2
F f (�)'�(x)

����� < +1.

An equivalent definition is the following:
Definition 2.3. Let B↵(x, y), �1 < ↵ < +1, be the Bessel kernel

B↵(x, y) =

X
�

⇣
1+ �2

⌘
�↵/2

'�(x)'�(y).
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A distribution f (x) is in the Sobolev space W↵,p (M) if and only if it is a Bessel
potential of a function g(x) in L p (M),

f (x) =

Z
M

B↵(x, y)g(y)dy.

Moreover, k f kW↵,p = kgkL p .
In particular, when p = 2,

k f kW↵,2 =

(X
�

⇣
1+ �2

⌘↵
|F f (�)|2

)1/2
.

Another equivalent definition is a localization result: A distribution f (x) is in
W↵,p(M) if and only if for every smooth function g(x) with support in a local
card x =  (y) : Rd  M, the distribution g( (y)) f ( (y)) is in W↵,p(Rd). In
particular, if ↵ is a positive even integer, then f (x) is in W↵,p(M) if and only if
the p-th power of f (x) and of 1↵/2 f (x) are integrable. Moreover, distributions in
W↵,p(M) with ↵ > d/p are Hölder continuous of degree ↵ � d/p. When applied
to functions in Sobolev classes, Theorem 2.1 gives the following:

Corollary 2.4. (1) If B↵(x, y) is the Bessel kernel, if dµ(x) is a finite complex
measure onM, and if f (x) is a continuous function inW↵,p(M), with 1  p, q 

+1 and 1/p + 1/q = 1, then
����
Z
M

f (x)dµ(x)
���� 

⇢Z
M

����
Z
M

B↵(x, y)dµ(x)
����
q
dy

�1/q
k f kW↵,p .

In particular, if ↵ > d/p then every element in W↵,p(M) has a continuous rep-
resentative and the above integrals are well defined and finite. On the contrary,
the spaces W↵,p(M) with ↵  d/p contain unbounded functions and, if the mea-
sure dµ(x) does not vanish on the set where f (x) = 1, then

R
M f (x)dµ(x) may

diverge.

(2)When p = q = 2 and ↵ > d/2, then the above inequality simplifies to
����
Z
M

f (x)dµ(x)
���� 

⇢Z
M

Z
M

B2↵ (x, y) dµ(x)dµ(y)
�1/2

k f kW↵,2 .

Equivalently, by the Fourier expansion of the Bessel kernel,

����
Z
M

f (x)dµ(x)
���� 

(X
�

⇣
1+ �2

⌘
�↵

|Fµ (�)|2
)1/2

k f kW↵,2 .

Moreover, with f (x) =

R
M B2↵(x, y)dµ(y), the above inequalities reduce to

equalities.
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(3) If dµ(x) = d⌫(x) � dx is the difference between a probability measure d⌫(x)
and the Riemannian measure dx , then
����
Z
M
f (x)d⌫(x) �

Z
M

f (x)dx
����

⇢Z
M

Z
M
B2↵ (x, y) d⌫(x)d⌫(y) � 1

�1/2
k f kW↵,2 .

Equivalently,

����
Z
M

f (x)d⌫(x) �

Z
M

f (x)dx
���� 

(X
�>0

⇣
1+ �2

⌘
�↵

|F⌫ (�)|2
)1/2

k f kW↵,2 .

Proof. (1) is an immediate corollary of Theorem 2.1. In order to prove (2), observe
that Z

M
B↵(x, y)B�(y, z)dy = B↵+� (x, z) .

Moreover, this Bessel kernel is real and symmetric, see Lemma 2.6 below. Hence,

Z
M

����
Z
M

B↵(x, y)dµ(x)
����
2
dy =

Z
M

Z
M

Z
M

B↵(x, y)B↵(z, y)dydµ(x)dµ(z)

=

Z
M

Z
M

B2↵(x, z)dµ(x)dµ(z).

(3) Is a corollary of (1) and (2). Indeed, since B2↵ (x, y) = B2↵ (y, x) andR
M B2↵ (x, y) dy = 1, it follows that

Z
M

Z
M
B2↵ (x,y) (d⌫(x)�dx) (d⌫(y)�dy)

=

Z
M

Z
M

B2↵ (x, y) d⌫(x)d⌫(y) �

Z
M

Z
M

B2↵ (x, y) d⌫(x)dy

�

Z
M

Z
M

B2↵ (x, y) dxd⌫(y) +

Z
M

Z
M

B2↵ (x, y) dxdy

=

Z
M

Z
M
B2↵ (x,y) d⌫(x)d⌫(y)�1.

Finally, by the Sobolev imbedding theorem, functions in W↵,p(M) with ↵ > d/p
are continuous and all the above integrals are well defined and finite. The Sobolev
imbedding also follows from the estimates on the Bessel kernel provided in Lemma
2.6, as explained in Remark 3.3 below.
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The above corollary leads to estimate the energy integral
⇢Z
M

����
Z
M

B↵(x, y)dµ(x)
����
q
dy

�1/q
,

which for q = 2 and dµ(x) = d⌫(x) � dx simplifies to

⇢Z
M

Z
M

B2↵ (x, y) d⌫(x)d⌫(y) � 1
�1/2

=

(X
�>0

⇣
1+ �2

⌘
�↵

|F⌫ (�)|2
)1/2

.

By the last formula, the energy attains a minimum if and only if F⌫(�) = 0 for
all � > 0. Hence d⌫(x) has the eigenfunction expansion F⌫(0)'0(x), and since
'0(x) = 1 this gives the Riemannian measure dx . The meaning of the corollary
is that measures with low energy are close to the Riemannian measure and they
give good quadrature rules. In order to provide quantitative estimates for the above
integrals, one has to collect some properties of the Bessel kernels. The norm of the
function y ! B↵(x, y) in W � ,2(M) is

��B↵(x, ·)��W � ,2 =

(X
�

⇣
1+ �2

⌘��↵
|'�(x)|2

)1/2
.

ByWeyl’s estimates on the spectrum of an elliptic operator, see [9, Chapter 6.4] and
[22, Theorem 17.5.3 and Corollary 17.5.8], for every r > 1 there are approximately
crd eigenfunctions '�(x) with eigenvalues �2 < r2 and

P
�r |'�(x)|2  crd . It

then follows that the norm in W � ,2(M) of B↵(x, y) is finite provided that � <
↵ � d/2 and, by the Sobolev imbedding theorem, it also follows that B↵(x, y) is
Hölder continuous of degree � < ↵�d. Indeed, we shall see that a bit more is true:
B↵(x, y) is Hölder continuous of degree ↵ � d.

Lemma 2.5. The heat kernel

W (t, x, y) =

X
�

exp
⇣
��2t

⌘
'�(x)'�(y),

which is the fundamental solution to the heat equation @/@t = �1 on R+ ⇥M,
is symmetric, real and positive: W (t, x, y) = W (t, y, x) > 0 for every x, y 2 M
and t > 0. Moreover, for all non-negative integers m and n there exists c such that,
if |x � y| denotes the Riemannian distance between x and y, and r the gradient,

(
|r

mW (t, x, y)|  ct�(d+m)/2 �1+ |x � y| /
p

t
�
�n if 0 < t  1,

|r
mW (t, x, y)|  c if 1  t < +1.

Proof. All of this is well known, see, e.g., [9, 23,33] and [35]. Anyhow we want to
provide a proof for the torus and a hint for the general case. The idea is that heat has
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essentially a finite speed of propagation and diffusion on manifolds is comparable
to diffusion on Euclidean spaces, at least for small times. The heat kernel in the
Euclidean space Rd is a Gaussian,

W (t, x, y) =

Z
Rd
exp

⇣
�4⇡2t |⇠ |2

⌘
exp (2⇡ i (x � y) ⇠) d⇠

= (4⇡ t)�d/2 exp
⇣
� |x � y|2 /4t

⌘
.

By the Poisson summation formula, the heat kernel on the torus Td
= Rd/Zd is the

periodization of the kernel in the space,
X
k2Zd

exp
⇣
�4⇡2 |k|2 t

⌘
exp (2⇡ ik (x � y))

=

X
k2Zd

(4⇡ t)�d/2 exp
⇣
� |x � y � k|2 /4t

⌘
.

Periodicity allows to assume that x�y 2 [�1/2, 1/2)d , and in this case the Rieman-
nian distance between x and y coincides with the Euclidean distance. An explicit
computation shows that the term k = 0 in the above series satisfies the required
estimate,

(4⇡ t)�d/2 exp
⇣
� |x�y|2 /4t

⌘


(
ct�d/2 �1+ |x�y| /

p

t
�
�n if 0 < t  1,

c if 1  t < +1.

The sum for k 6= 0 is negligible. Indeed, since exp(�z)  cz�N for z > 0,
X
k 6=0

(4⇡ t)�d/2 exp
⇣
� |x � y � k|2 /4t

⌘

 ct N�d/2
X
k 6=0

|x � y � k|�2N  ct N�d/2,

and this satisfies the required estimate when 0 < t  1. When t > 1 it suffices to
observe that

X
k 6=0

(4⇡ t)�d/2 exp
⇣
� |x � y � k|2 /4t

⌘

 c
Z

Rd
(4⇡ t)�d/2 exp

⇣
� |z|2 /4t

⌘
dz  c.

The estimates for the derivatives are analogous. This proves the lemma for the torus.
The heat kernel on a compact manifold is similar, in particular it has an asymptotic
expansion with Euclidean main term. See, e.g., [9, Chapter VI]. More precisely,
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by the Minakshisundaram-Pleijel recursion formulas, there exist smooth functions
uk(x, y) such that, if t is small and |x � y| denotes the distance between x and y,

W (t, x, y) ⇡ (4⇡ t)�d/2 exp
⇣
� |x � y|2 /4t

⌘ nX
k=0

tkuk (x, y) + O
⇣
tn+1

⌘!
.

On the other hand, W (t, x, y) ! 1 as t ! +1. The estimates on the size of
this kernel and its derivatives follow from this asymptotic expansion. The positivity
W (t, x, y) > 0 is a consequence of the maximum principle for the heat equation
and the symmetry W (t, x, y) = W (t, y, x) follows from this positivity and the
eigenfunction expansion.

Lemma 2.6. (1) The Bessel kernel B↵(x, y) with ↵ > 0 is a superposition of heat
kernels W (t, x, y):

B↵(x, y) = 0 (↵/2)�1
Z

+1

0
t↵/2�1 exp (�t)W (t, x, y) dt.

(2) The Bessel kernel B↵(x, y) with ↵ > 0 is real and positive for every x, y 2M,
and it is smooth in {x 6= y}. Moreover, for suitable constants 0 < a < b,

a |x � y|↵�d
 B↵(x, y)  b |x � y|↵�d if 0 < ↵ < d,

a log
⇣
1+ |x � y|�1

⌘
 B↵(x, y)  b log

⇣
1+ |x � y|�1

⌘
if ↵ = d,

a  B↵(x, y)  b if ↵ > d.

(3) If d < ↵ < d + 1, then B↵(x, y) is Hölder continuous of degree ↵ � d, that is
there exists c such that for every x, y, z 2M,

��B↵(x, y) � B↵(x, z)
��
 c |y � z|↵�d .

(4) If d < ↵ < d + 2, then there exists c such that for every x, y 2M,
��B↵(x, x) � B↵(x, y)

��
 c |x � y|↵�d .

Proof. When the manifold is a torus and the eigenfunctions are exponentials the
proof is elementary. The Bessel kernel on the torus Td is an even function, and thus
a sum of cosines,

B↵(x, y) =

X
k2Zd

⇣
1+ 4⇡2 |k|2

⌘
�↵/2

exp (2⇡ ikx) exp (�2⇡ iky)

=

X
k2Zd

⇣
1+ 4⇡2 |k|2

⌘
�↵/2

cos (2⇡k (x � y)) .
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Hence,

B↵(x, x) � B↵(x, y) = 2
X
k2Zd

⇣
1+ 4⇡2 |k|2

⌘
�↵/2

sin2 (⇡k (x � y))

 2⇡2 |x � y|2
X

|k||x�y|�1
|k|2

⇣
1+ 4⇡2 |k|2

⌘
�↵/2

+ 2
X

|k|>|x�y|�1

⇣
1+ 4⇡2 |k|2

⌘
�↵/2



8><
>:
c |x � y|↵�d if d < ↵ < d + 2,
c |x � y|2 log

�
1+ |x � y|�1

�
if ↵ = d + 2,

c |x � y|2 if ↵ > d + 2.

Also observe that the series which defines B↵(x, x) � B↵(x, y) has positive terms
and the above inequalities can be reversed. This proves (4) for a torus, and the
proof of (3) and (2) is similar. A proof for a generic manifold follows from the
representation of Bessel kernels as superposition of heat kernels and the estimates
in the previous lemma. In particular, (1) follows from the identity for the Gamma
function

⇣
1+ �2

⌘
�↵/2

= 0 (↵/2)�1
Z

+1

0
t↵/2�1 exp

⇣
�t

⇣
1+ �2

⌘⌘
dt.

Since the manifold is compact, its diameter is bounded. For ease of notation, in
what follows we shall assume that |x � y|  1. By Lemma 2.5, for every n,

0 < W (t, x, y) 

8><
>:
ct (n�d)/2

|x � y|�n if 0 < t  |x � y|2 ,
ct�d/2 if |x � y|2  t  1,
c if t � 1.

Hence, if 0 < ↵ < d and n > d � ↵,

B↵(x, y) = 0 (↵/2)�1
Z

+1

0
t↵/2�1 exp (�t)W (t, x, y) dt

 c |x � y|�n
Z

|x�y|2

0
t (↵+n�d)/2�1dt

+ c
Z 1

|x�y|2
t (↵�d)/2�1dt +

Z
+1

1
t↵/2�1 exp (�t) dt

 c |x � y|↵�d .

Indeed it follows from the estimates of the heat kernel from below (see [9] and [35])
that these inequalities can be reversed. Hence B↵(x, y) ⇡ c|x� y|↵�d . This proves
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(2) when 0 < ↵ < d, and the proofs of the cases ↵ = d and ↵ > d are similar. Also
the proof of (3) is similar. Write

B↵(x,y)�B↵(x,z)=0 (↵/2)�1
Z

+1

0
t↵/2�1 exp (�t) (W (t, x,y) �W (t, x, z)) dt.

Then recall that, by Lemma 2.5,

|W (t, x, y) � W (t, x, z)| 

8><
>:
ct�d/2 if 0 < t  |y � z|2 ,
ct�(d+1)/2

|y � z| if |y � z|2  t  1,
c |y � z| if t � 1.

Hence,

��B↵(x, y) � B↵(x, z)
��
 c

Z
|y�z|2

0
t (↵�d)/2�1 exp (�t) dt

+ c |y � z|
Z 1

|y�z|2
t (↵�d�1)/2�1 exp (�t) dt

+ c |y � z|
Z

+1

1
t↵/2�1 exp (�t) dt

 c |y � z|↵�d .

Finally, the estimate for |B↵(x, x) � B↵(x, y)| in (4) is analogous to the previous
one, but it holds in a larger range of ↵. It suffices to observe that W (t, x, y) is
stationary at x = y and it satisfies the estimates

|W (t, x, x) � W (t, x, y)| 

8><
>:
ct�d/2 if 0 < t  |x � y|2 ,
ct�d/2�1

|x � y|2 if |x � y|2  t  1,
c |x � y|2 if t � 1.

The following is Result (A) in the Introduction:

Theorem 2.7. For every d/2 < ↵ < d/2+ 1 there exists c > 0 with the following
property: IfM = U1 [ U2 [ ... [ UN is a decomposition ofM in disjoint pieces
with measures |Uj | = ! j , then there exists a distribution of points {z j }Nj=1 with
z j 2 Uj such that

�����
NX
j=1

! j f
�
z j
�
�

Z
M

f (x)dx

�����  c max
1 jN

diameter
�
Uj

�↵
k f kW↵,2(M) .
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Proof. By Corollary 2.4 (3), with d⌫(x) =

PN
j=1 ! j d�z j (x),

����
Z
M

f (x)d⌫(x) �

Z
M

f (x)dx
���� 

(
NX
i=1

NX
j=1

!i! j B2↵
�
zi , z j

�
� 1

)1/2
k f kW↵,2 .

It suffices to compute the average value of
PN

i=1
PN

j=1 !i! j B2↵(zi , z j ) � 1 on
U1 ⇥ U2 ⇥ ... ⇥ UN with respect to the probability measures !�1

j dz j uniformly
distributed on Uj . First observe that 

NY
k=1

!�1
k

!Z
U1

...

Z
UN

dz1...dzN = 1,

1 =

Z
M

Z
M

B2↵ (x, y) dxdy =

NX
i=1

NX
j=1

Z
Ui

Z
Uj

B2↵ (x, y) dxdy.

Then,  
NY
k=1

!�1
k

!Z
U1

...

Z
UN

 
NX
i=1

NX
j=1

!i! j B2↵
�
zi , z j

�
� 1

!
dz1...dzN

=

X
j
! j

Z
Uj

B2↵
�
z j , z j

�
dz j +

XX
i 6= j

Z
Ui

Z
Uj

B2↵
�
zi , z j

�
dzidz j

�

X
j

Z
Uj

Z
Uj

B2↵ (x, y) dxdy �

XX
i 6= j

Z
Ui

Z
Uj

B2↵ (x, y) dxdy

=

NX
j=1

Z
Uj

Z
Uj

⇣
B2↵ (x, x) � B2↵ (x, y)

⌘
dxdy.

Since, by Lemma 2.6 (4), |B2↵(x, x)�B2↵(x, y) |  c|x� y|2↵�d when d < 2↵ <
d + 2, and since |Uj |  c diameter(Uj )

d ,

NX
j=1

Z
Uj

Z
Uj

���B2↵(x,x)�B2↵(x,y)
��� dxdy

NX
j=1

��Uj
��2 sup
x,y2Uj

���B2↵(x,x)�B2↵ (x,y)
���

 c
NX
j=1

��Uj
��2 diameter �Uj

�2↵�d

 c
NX
j=1

��Uj
�� diameter �Uj

�2↵
.

For the next result we shall need estimates for partial sums of Fourier expansions
of the Bessel kernels.
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Lemma 2.8. Let�1 < ↵ < +1, let �(�) be an even smooth function on�1 <
� < +1 with support in 1/2  |�|  2, and let

P↵(r, x, y) =

X
�

� (�/r)
⇣
1+ �2

⌘
�↵/2

'�(x)'�(y).

Then for every positive integer n there exists c such that for every r > 1 and
x, y 2M, ��P↵(r, x, y)��  crd�↵ (1+ r |x � y|)�n .

Proof. The numerology behind this estimate is quite simple. The approximation
of the Bessel kernel B↵(x, y) by linear combinations of eigenfunctions with eigen-
values �2 < r2 is localized and only points x and y with |x � y|  1/r really
matter. In particular, since B↵(x, y) is smooth away from the diagonal, at distance
|x � y|  1/r the approximation is rough, but at distance |x � y| � 1/r it is quite
good. The analogue of P↵(r, x, y) in the Euclidean setting is the kernel

Q (r, x � y) =

Z
Rd
� (2⇡ |⇠ | /r)

⇣
1+ 4⇡2 |⇠ |2

⌘
�↵/2

exp (2⇡ i (x � y) ⇠) d⇠

= rd
Z

Rd
� (2⇡ |⇠ |)

⇣
1+ 4⇡2r2 |⇠ |2

⌘
�↵/2

exp (2⇡ ir (x � y) ⇠) d⇠.

Since �(2⇡ |⇠ |) has support in 1/2  2⇡ |⇠ |  2, for every r > 1 and x, y 2 Rd

one has ����rd
Z

Rd
� (2⇡ |⇠ |)

⇣
1+ 4⇡2r2 |⇠ |2

⌘
�↵/2

exp (2⇡ ir (x � y) ⇠) d⇠
����

 rd�↵

Z
Rd

(2⇡ |⇠ |)�↵ |� (2⇡ |⇠ |)| d⇠  crd�↵.

This estimate can be improved in the range |x � y| � 1/r . Indeed, integration by
parts gives

rd
Z

Rd
� (2⇡ |⇠ |)

⇣
1+ 4⇡2r2 |⇠ |2

⌘
�
↵
2 exp (2⇡ ir (x � y) ⇠) d⇠

= rd
Z

Rd
�(2⇡ |⇠ |)

⇣
1+4⇡2r2 |⇠ |2

⌘
�
↵
2
1n
⇠

✓⇣
4⇡2r2 |x�y|2

⌘
�n
exp (2⇡ ir (x�y) ⇠)

◆
d⇠

=rd
⇣
4⇡2r2|x�y|2

⌘
�nZ

Rd
exp (2⇡ ir (x�y) ⇠)1n

⇠

✓
�(2⇡ |⇠ |)

⇣
1+4⇡2r2 |⇠ |2

⌘
�
↵
2
◆
d⇠.

Hence,����rd
Z

Rd
� (2⇡ |⇠ |)

⇣
1+ 4⇡2r2 |⇠ |2

⌘
�↵/2

exp (2⇡ ir (x � y) ⇠) d⇠
����

 rd
⇣
4⇡2r2 |x � y|2

⌘
�n Z

Rd

����1n
⇠

✓
� (2⇡ |⇠ |)

⇣
1+ 4⇡2r2 |⇠ |2

⌘
�↵/2

◆���� d⇠
 crd�↵�2n

|x � y|�2n .
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Now it suffices to transfer these estimates from the Euclidean space to the manifold.
For the torus, this can be done via the Poisson summation formula. If Q(r, x � y)
is the truncated Bessel kernel in Rd defined above, then the truncated Bessel kernel
in Td is
X
k2Zd

� (2⇡ |k| /r)
⇣
1+ 4⇡2 |k|2

⌘
�↵/2

exp (2⇡ ik (x � y))=
X
k2Zd

Q (r, x � y + k) .

When |x j � y j |  1/2, the main term in the last sum is the one with k = 0, while
the contribution of terms with k 6= 0 is negligible,

|Q (r, x � y)|  crd�↵ (1+ r |x � y|)�n ,X
k2Zd�{0}

|Q (r, x � y � k)|  crd�↵�n.

Finally, the estimate for the truncated Bessel kernel on a generic manifold can be
obtained by transference from Rd via pseudodifferential techniques. For more de-
tails, see, e.g., [34, Chapter XII], or [5]. For a more general approach on metric
measure spaces see [14] and [27].

The following is a result on the homogeneity of measures which appear in
quadrature rules and it gives sharp estimates of the discrepancy of such measures.
Similar estimates on spheres are in [2].

Lemma 2.9. Assume that d⌫(x) is a probability measure onM with the property
that for every eigenfunction '�(x) with eigenvalues �2 < r2,

Z
M
'�(x)d⌫(x) =

Z
M
'�(x)dx .

Then for every positive integer n there exists c, which may depend on n andM, but
is independent of r and d⌫(x), such that for every measurable set � inM,

����
Z
�
d⌫(x) �

Z
�
dx

����  c
Z
M

(1+ r distance {x, @�})�n dx .

In particular, the discrepancy between the measures d⌫(x) and dx with respect to
balls {x : |x � y|  s} is dominated by

����
Z

{|x�y|s}
d⌫(x) �

Z
{|x�y|s}

dx
���� 

(
cr�d if s  1/r ,
cr�1sd�1 if s � 1/r .

Proof. It is proved in [11] that, given n, there exists c such that for every measurable
set � inM and every r > 0 there exist two linear combinations of eigenfunctions
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A(x) =

P
�<r a(�)'�(x) and B(x) =

P
�<r b(�)'�(x) which approximate the

characteristic function ��(x) from above and below,

A(x)  ��(x)  B(x), B(x) � A(x)  c (1+ r distance {x, @�})�n .

In particular, the properties of the function A(x) and of the measure d⌫(x) give
Z
�
d⌫(x) �

Z
M

A(x)d⌫(x) =

Z
M

A(x)dx

�

Z
M
��(x)dx � c

Z
M

(1+ r distance {x, @�})�n dx .

Similarly, by the properties of B(x) and d⌫(x),
Z
�
d⌫(x) 

Z
M

B(x)d⌫(x) =

Z
M

B(x)dx



Z
M
��(x)dx + c

Z
M

(1+ r distance {x, @�})�n dx .

In particular the choice of � = {x : |x � y|  s} gives the estimate for the
discrepancy of balls. We omit the details.

Lemma 2.10. Assume that d⌫(x) is a probability measure onM which gives an
exact quadrature for all eigenfunctions '�(x) with eigenvalues �2 < r2,Z

M
'�(x)d⌫(x) =

Z
M
'�(x)dx .

If 1  q  +1 and ↵ > d(1� 1/q), then there exists c, which may depend on q,
↵,M, but is independent of r and d⌫(x), such that

⇢Z
M

����
Z
M

B↵(x, y)d⌫(x) � 1
����
q
dy

�1/q
 cr�↵.

Proof. Let �(�) be an even smooth function on �1 < � < +1, with support in
1/2  |�|  2 and with the property that

P
+1

j=�1
�(2� j�) = 1 for every � 6= 0.

Also, let
P↵(s, x, y) =

X
�

� (�/s)
⇣
1+ �2

⌘
�↵/2

'�(x)'�(y).

Hence, B↵(x, y) = 1 +

P
+1

j=�1
P↵(2 j , x, y). Since d⌫(x) annihilates all eigen-

functions with 0 < � < r , it also annihilates all P↵(2 j , x, y) with 2 j  r/2 and
this gives

Z
M

B↵(x, y)d⌫(x) � 1 =

X
2 j>r/2

Z
M

P↵(2 j , x, y)d⌫(x).
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When q = 1, by Lemma 2.8 with n > d,
Z
M

����
Z
M

P↵(s, x, y)d⌫(x)
���� dy

 csd�↵

Z
M

Z
M

(1+ s |x � y|)�n d⌫(x)dy

 cs�↵ sup
x2M

⇢Z
M
sd (1+ s |x � y|)�n dy

�
 cs�↵.

When q = +1 and s � r and n > d, by Lemma 2.8 and Lemma 2.9,

sup
y2M

⇢����
Z
M

P↵(s, x, y)d⌫(x)
����
�

 csd�↵ sup
y2M

⇢Z
M

(1+ s |x � y|)�n d⌫(x)
�

 csd�↵ sup
y2M

⇢Z
{|x�y|1/r}

d⌫(x)
�

+ csd�↵ sup
y2M

(
+1X
j=0

⇣
2 j s/r

⌘
�n Z

{2 j/r<|x�y|2 j+1/r}
d⌫(x)

)

 csd�↵r�d
+ csd�↵�nrn�d  csd�↵r�d .

Hence, when s � r and 1 < q < +1, by interpolation between 1 and +1,

⇢Z
M

����
Z
M

P↵(s, x, y)d⌫(x)
����
q
dy

�1/q

 sup
y2M

⇢����
Z
M

P↵(s, x, y)d⌫(x)
����
�(q�1)/q ⇢Z

M

����
Z
M

P↵(s, x, y)d⌫(x)
���� dy

�1/q

 csd(1�1/q)�↵r�d(1�1/q).

When ↵ > d(1� 1/q) these estimates sum to

⇢Z
M

����
Z
M
B↵(x,y)d⌫(x)�1

����
q
dy

�1/q


X
2 j>r/2

⇢Z
M

����
Z
M

P↵(2 j ,x,y)d⌫(x)
����
q
dy
�1/q

 cr�d(1�1/q)
X
2 j>r/2

2 j(d(1�1/q)�↵)

 cr�↵.
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Finally, the existence of exact quadrature rules associated to any system of contin-
uous functions is a simple result in functional analysis, or in convex geometry.

Lemma 2.11. Given any collection '1(x), '2(x),..., 'n(x) of real continuous func-
tions onM, there exist an integer N  n + 1, points {z j }Nj=1 inM and positive
weights {! j }

N
j=1 with

PN
j=1 ! j = 1, such that for every such 'i (x),

Z
M
'i (x)dx =

NX
j=1

! j'i
�
z j
�
.

If the functions 'i (x) are complex-valued then the same holds with N  2n + 1.

Proof. Define

8(x) = ('1(x),'2(x), ...,'n(x)) ,

E =

Z
M
8(x)dx =

✓Z
M
'1(x)dx,

Z
M
'2(x)dx, ...,

Z
M
'n(x)dx

◆
.

If all functions 'i (x) are real-valued, then 8(x) and E are vectors in Rn . If the
'i (x) are complex, then 8(x) and E can be seen as vectors in R2n . Moreover,
E is in the convex hull of the vectors 8(x) with x 2 M. It then follows from
Carathéodory’s theorem that E is also a convex combination of at most n+1 vectors
8(x) in the real case, or 2n + 1 in the complex case, E =

PN
j=1 ! j8(z j ) with

! j > 0 and
PN

j=1 ! j = 1.

The above result is simple but non constructive. See [32, Theorem 3.1.1],
or [31], or [8] for explicit constructions on spheres. The following is Result (B) in
the Introduction. Note that in the case of the sphere it is contained in [21].

Theorem 2.12. Assume that the probability measure d⌫(x) onM gives an exact
quadrature for all eigenfunctions '�(x) with eigenvalues �2 < r2,

Z
M
'�(x)d⌫(x) =

Z
M
'�(x)dx .

Then, for every 1  p  +1 and ↵ > d/p there exists a constant c > 0 indepen-
dent of d⌫(x) and r , such that for every function f (x) in W↵,p(M),

����
Z
M

f (x)d⌫(x) �

Z
M

f (x)dx
����  cr�↵

k f kW↵,p .

Proof. By Corollary 2.4 (1) with dµ(x) = d⌫(x) � dx and 1/p + 1/q = 1,
����
Z
M

f (x)dµ(x)
���� 

⇢Z
M

����
Z
M

B↵(x, y)d⌫(x) � 1
����
q
dy

�1/q
k f kW↵,p .
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By the assumption
R
M '�(x)dµ(x) = 0 for every � < r , and Lemma 2.10,

⇢Z
M

����
Z
M

B↵(x, y)d⌫(x) � 1
����
q
dy

�1/q
 cr�↵.

Corollary 2.13. If 1  p  +1 and ↵ > d/p, then there exists c > 0 with the
property that for every N there exist a point distribution {z j }Nj=1 and associated
positive weights {! j }

N
j=1, such that for every function f (x) in W↵,p (M),

�����
NX
j=1

! j f
�
z j
�
�

Z
M

f (x)dx

�����  cN�↵/d
k f kW↵,p .

Proof. It suffices to show that the above bound holds for infinitely many integers
N , say N1 < N2 < N3 < . . . satisfying Nr+1  cNr . Indeed, introducing multiple
nodes and distributing the associated weights among them, gives the result for every
positive integer N . Let r = 1, 2, 3, . . . and let nr be the number of eigenfunctions
'�(x) with �2 < r2. By Weyl’s estimates on the spectrum of an elliptic operator,
see [9, Chapter 6.4] or [22, Corollary 17.5.8], we have c1rd  nr  c2rd . By
Lemma 2.11, possibly introducing multiple nodes, there are Nr = nr + 1 nodes
{z j }Nrj=1 and positive weights {! j }

Nr
j=1 such that for all �

2 < r2,

NrX
j=1

! j'�
�
z j
�

=

Z
M
'�(x)dx .

Finally, by Theorem 2.12
�����
NrX
j=1

! j f
�
z j
�
�

Z
M

f (x)dx

�����  cr�↵
k f kW↵,p  cn�↵/d

r k f kW↵,p

 cN�↵/d
r k f kW↵,p .

The above corollary relies on Lemma 2.11 and guarantees the existence of nodes
and weights that give good bounds for the corresponding quadrature rule, but it
gives no information on how to find these nodes and weights. In [14] there is a
less elementary but somehow stronger result than Lemma 2.11, that essentialy says
that any choice of well distributed nodes works. For our purposes this result can be
restated as follows.

Lemma 2.14. Let {z j }Nj=1 be a distribution of points. Define the mesh norm � and
the minimal separation q of this collection by

� = sup
x2M

min
j

��x � z j
�� , q = min

i 6= j

��zi � z j
�� .
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Then there exist positive constants a and b depending only onM and on  = �/q,
and positive weights {w j }

N
j=1 withw j � a�d , such that for all eigenfunctions '�(x)

with eigenvalues �2 < b��2,

Z
M
'�(x)dx =

NX
j=1

! j'�
�
z j
�
.

By applying Theorem 2.12 to a point distribution as in the above lemma, one obtains
the following corollary, which is result (C) in the Introduction.

Corollary 2.15. Let 1  p  +1 and ↵ > d/p. Let {z j }Nj=1 be a distribution
of points with mesh norm � and minimal separation distance q. Then there exist a
positive constant c depending only on  = �/q and onM, and positive weights
{! j }

N
j=1 such that

�����
NX
j=1

! j f
�
z j
�
�

Z
M

f (x)dx

�����  cN�↵/d
k f kW↵,p .

Proof. By the above lemma and Theorem 2.12 with r2 = b��2, there exists c1 such
that �����

NX
j=1

! j f
�
z j
�
�

Z
M

f (x)dx

�����  c1�↵ k f kW↵,p .

By the definition of mesh norm � and minimal separation distance q, the balls
{|x � z j | < �}Nj=1 coverM with finite overlapping, that is for some constant c2
depending only on  = �/q,

NX
j=1

�
{|x�z j |<�} (x)  c2.

See Lemma 4.4 in [14] for the details. It follows that

c3N�d 

Z
M

NX
j=1

�
{|x�z j |<�} (x) dx  c2.

Therefore �  c4N�1/d .

Finally, easy examples show that the above estimates for the error in approxi-
mate quadrature are, up to constants, best possible. Again, see [21] for the case of
the sphere. In particular, the following is Result (D) in the Introduction.
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Theorem 2.16. For every 1  p  +1 and ↵ > 0 there exists c > 0 with the
following property: For every distribution of points {z j }Nj=1 there exists a function
f (x) in W↵,p(M) which vanishes in a neighborhood of these points and satisfies

k f kW↵,p  cN↵/d ,
Z
M

f (x)dx = 1.

As a consequence, for every distribution of points {z j }Nj=1 and complex weights
{! j }

N
j=1, there exists a function f (x) with

�����
NX
j=1

! j f
�
z j
�
�

Z
M

f (x)dx

����� � cN�↵/d
k f kW↵,p .

Proof. If " is small, then one can choose 2N disjoint balls inM with diameters
"N�1/d and, given N points {z j }Nj=1, at least N balls have no points inside. On
each empty ball construct a bump function  j (x) supported on it with

sup
x

���1k j (x)
���  cN2k/d ,

Z
M
 j (x)dx = N�1.

The construction of such functions in Rd can be done by translating and dilating
any fixed smooth function with compact support and integral 1. Then one can
transport and normalize these functions to the local charts of the manifold and,
by compactness, the constant c can be chosen independent of j and N . Define
f (x) =

PN
j=1  j (x). Then,

k f kW↵,p  cN↵/d ,
Z
M

f (x)dx = 1.

The estimate of the L p(M) norms of (I +1)↵/2 f (x) when ↵/2 is an integer fol-
lows from the fact that (I + 1)↵/2 is a differential operator and the terms
(I + 1)↵/2 j (x) have disjoint supports. The case of ↵/2 not an integer follows
from the integer case. The proof when p = 2 is elementary. If n is an integer
greater than ↵/2, then by Hölder inequality,

k f kW↵,2 =

(X
�

⇣
1+ �2

⌘↵
|F f (�)|2

)1/2



(X
�

|F f (�)|2
)(2n�↵)/4n (X

�

⇣
1+ �2

⌘2n
|F f (�)|2

)↵/4n

 cN↵/d .
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In the general case, let r > 0 be a parameter to be fixed later, let n be an integer
greater than ↵/2 and, with the same notation as in Lemma 2.8 and Lemma 2.10,
decompose (I +1)↵/2 f (x) into

(I+1)↵/2 f (x)= F f (0) +

X
2 jr

X
�

�
⇣
2� j�

⌘ ⇣
1+ �2

⌘↵/2
F f (�)'� (x)

+

X
2 j>r

X
�

�
⇣
2� j�

⌘ ⇣
1+ �2

⌘(↵�2n)/2⇣
1+ �2

⌘n
F f (�)'� (x)

= F f (0) +

X
2 jr

Z
M

P�↵
⇣
2 j , x, y

⌘
f (y) dy

+

X
2 j>r

Z
M

P2n�↵
⇣
2 j , x, y

⌘
(I +1)n f (y) dy.

By the Hölder inequality,

|F f (0)| 

Z
M

| f (x)| dx 

⇢Z
M

| f (x)|p dx
�1/p

 c.

By Lemma 2.8,
8<
:
Z
M

������
X
2 jr

Z
M

P�↵
⇣
2 j , x, y

⌘
f (y) dy

������
p

dx

9=
;
1/p



X
2 jr

⇢
sup
y

Z
M

���P�↵
⇣
2 j , x, y

⌘��� dx
�⇢Z

M
| f (x)|p dx

�1/p

 c
X
2 jr

2↵ j
⇢Z
M

| f (x)|p dx
�1/p

 cr↵.

Again, by Lemma 2.8,
(Z
M

�����
X
2 j>r

Z
M

P2n�↵
⇣
2 j , x, y

⌘
(I +1)n f (y) dy

�����
p

dx

)1/p



X
2 j>r

⇢
sup
y

Z
M

���P2n�↵ ⇣2 j , x, y⌘��� dx
�⇢Z

M

��(I +1)n f (x)
��p dx

�1/p

 c
X
2 j>r

2�(2n�↵) j
⇢Z
M

��(I +1)n f (x)
��p dx

�1/p
 cr↵�2nN2n/d .

Choosing r = N1/d , so that r↵ = r↵�2nN2n/d = N↵/d , one obtains the desired
result.
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3. Further results

The following is Result (E) in the Introduction and it states that a quadrature rule
which gives an optimal error in the Sobolev space W↵,2(M) is also optimal in all
spaces W�,2(M) with d/2 < � < ↵.
Theorem 3.1. If d⌫(x) is a probability measure onM, then the norm of the mea-
sure d⌫(x) � dx as a linear functional on W↵,2(M) decreases as ↵ increases.
Moreover, if the norm of d⌫(x) � dx on W↵,2(M) is r�↵ for some r > 1,����

Z
M

f (x)d⌫(x) �

Z
M

f (x)dx
����  r�↵

k f kW↵,2 ,

then for every d/2 < � < ↵ there exists a constant c which may depend on ↵, �,
M, but is independent of r and d⌫(x), such that����

Z
M

f (x)d⌫(x) �

Z
M

f (x)dx
����  cr��

k f kW�,2 .

Proof. By Corollary 2.4 (2) and (3), the norm of the measure d⌫(x)�dx as a linear
functional on W↵,2(M) is
⇢Z
M

Z
M

B2↵ (x, y) d⌫(x)d⌫(y) � 1
�1/2

=

(X
�>0

⇣
1+ �2

⌘
�↵

|F⌫ (�)|2
)1/2

.

Since (1+�2)�↵  (1+�2)�� when � < ↵, it follows that this norm is a decreasing
function of ↵. Write d⌫(x) � dx = dµ(x). By Lemma 2.6 (1), the norm of the
functional

R
M f (x)dµ(x) on W↵,2(M) can be written as

⇢Z
M

Z
M

B2↵ (x, y) dµ(x)dµ(y)
�1/2

=

⇢
0 (↵)�1

Z
+1

0
t↵�1 exp (�t)

✓Z
M

Z
M
W (t, x, y) dµ(x)dµ(y)

◆
dt
�1/2

.

Note thatZ
M

Z
M
W (t, x, y) dµ(x)dµ(y) =

X
�

exp
⇣
��2t

⌘
|Fµ (�)|2 � 0.

Assuming that this norm is r�↵ , one has to show that the corresponding expression
with � instead of ↵ is at most cr�� . Since � < ↵, the integral over 1  t < +1

satisfies the estimateZ
+1

1
t��1 exp (�t)

✓Z
M

Z
M
W (t, x, y) dµ(x)dµ(y)

◆
dt



Z
+1

1
t↵�1 exp (�t)

✓Z
M

Z
M
W (t, x, y) dµ(x)dµ(y)

◆
dt

 0 (↵) r�2↵.
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Similarly, if � < ↵ the integral over r�2/2  t  1 satisfies the estimate
Z 1

r�2/2
t��1 exp (�t)

✓Z
M

Z
M
W (t, x, y) dµ(x)dµ(y)

◆
dt



⇣
r�2/2

⌘��↵
Z 1

r�2/2
t↵�1 exp (�t)

✓Z
M

Z
M
W (t, x, y) dµ(x)dµ(y)

◆
dt

 2↵��0 (↵) r�2� .

Finally, by the small-time Gaussian estimate on the heat diffusion kernel in [35], if
0 < t < r�2/2 then

td/2W (t, x, y)  cr�dW
⇣
r�2, x, y

⌘
.

It then follows that if � > d/2 the integral over 0  t  r�2/2 satisfies the estimate
Z r�2/2

0
t��1 exp (�t)

✓Z
M

Z
M
W (t, x, y) dµ(x)dµ(y)

◆
dt

 cr�2�
Z
M

Z
M
W

⇣
r�2, x, y

⌘
d |µ| (x)d |µ| (y).

It remains to show that the last double integral is uniformly bounded in r . Since
d|µ|(x)  d⌫(x) + dx and since

R
MW (r�2, x, y)dx = 1, replacing d|µ|(x) with

dµ(x) it suffices to show thatZ
M

Z
M
W

⇣
r�2, x, y

⌘
dµ(x)dµ(y)  c.

By the assumption on dµ(x) and the eigenfunction expansion of W (r�2, x, y),
Z
M

Z
M
W

⇣
r�2, x, y

⌘
dµ(x)dµ(y)

 r�↵

����
Z
M
W

⇣
r�2, ·, y

⌘
dµ(y)

����
W↵,2

= r�↵

(X
�

⇣
1+ �2

⌘↵
exp

⇣
�2 (�/r)2

⌘
|Fµ(�)|2

)1/2

 r�↵

(X
�

⇣
1+ �2

⌘
�↵

|Fµ(�)|2
)1/2

sup
�

n⇣
1+ �2

⌘↵
exp

⇣
� (�/r)2

⌘o
.

Finally, the last sum with {Fµ(�)} is the norm of the measure dµ(x) as a func-
tional on W↵,2(M), hence by assumption it equals r�↵ , and the last supremum is
dominated by cr2↵ .
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As we said, the above result is only one way, from ↵ to � < ↵. If the norm of
d⌫(x) � dx on W↵,p(M) is r�↵ and if � > ↵, then one cannot conclude that the
norm of d⌫(x)�dx onW�,p(M) is at most cr�� . As a counterexample, it suffices
to perturb a good quadrature rule with nodes {z j }Nj=1 and weights {! j }

N
j=1 by mov-

ing the last point zN into a new point tN , so that the new quadrature differs from the
old one by the quantity !N | f (zN ) � f (tN )|. If ↵ > d/p+ 1 then the function f is
differentiable and, by the mean value theorem, !N | f (zN )� f (tN )| ⇡ !N |zN � tN |.
Then, by choosing |zN � tN | = r�↵/!N one obtains a quadrature rule which gives
an error ⇡ r�↵ in all spaces W�,p(M) with � > ↵. The counterexample when
d/p < ↵  d/p + 1 is slightly more complicated but similar.

In all the above results, the accuracy in a quadrature rule has been estimated
in terms of the energy of a measure. It is also possible to estimate this accuracy in
terms of a geometric discrepancy. Let B(y, t) be the level sets of the Bessel kernel,

B (y, t) =

�
x 2M : B↵ (x, y) > t

 
.

Then the Bessel kernel can be decomposed as superposition of the characteristic
functions of these level sets,

B↵(x, y) =

Z
+1

0
�B(y,t)(x)dt.

If 1  p, q  +1 and 1/p + 1/q = 1, by Corollary 2.4 (1) and Minkowski
inequality, the following Koksma-Hlawka type inequality holds:

����
Z
M

f (x)dµ(x)
����  k f kW↵,p

⇢Z
M

����
Z
M

B↵(x, y)dµ(x)
����
q
dy

�1/q

 k f kW↵,p

Z
+1

0

⇢Z
M

����
Z
M
�B(y,t)(x)dµ(x)

����
q
dy

�1/q
dt.

The quantity |

R
M �B(y,t)(x)dµ(x)| is the discrepancy of the measure dµ(x) with

respect to the level set B (y, t). It can be proved that, for specific measures and at
least in the range 0 < ↵ < 1, the above estimates are sharp and can lead to optimal
quadrature rules. In particular, the following is Result (F) in the Introduction:

Theorem 3.2. Denote by �(t) the supremum with respect to y of the diameters of
the level sets {B(y, t)} and assume that there exists r � 1 such that the discrepancy
of the measure dµ(x) with respect to {B(y, t)} satisfies the estimates

����
Z
M
�B(y,t)(x)dµ(x)

���� 

(
r�d if �(t)  1/r ,
r�1�(t)d�1 if �(t) � 1/r .

Also assume that 1  p  +1 and ↵ > d/p. Then there exists a constant c, which
may depend on ↵ and p and on the total variation of the measure |µ|(M), but is
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independent of r , such that

����
Z
M

f (x)dµ(x)
���� 

8><
>:
cr�↵

k f kW↵,p if 0 < ↵ < 1,
cr�1 log(1+ r) k f kW↵,p if ↵ = 1,
cr�1

k f kW↵,p if ↵ > 1.

Proof. If 1  p, q  +1 and 1/p + 1/q = 1, by Corollary 2.4 (1) and the
Minkowski inequality,

����
Z
M

f (x)dµ(x)
����  k f kW↵,p

Z
+1

0

⇢Z
M

����
Z
M
�B(y,t)(x)dµ(x)

����
q
dy

�1/q
dt.

By Lemma 2.6 (2), when 0 < ↵ < d then B↵(x, y) ⇡ |x� y|↵�d , and the level sets
B(y, t) have diameters of order min{1, t1/(↵�d)

}. Hence, writing q = (q � 1) + 1,
the estimate of the discrepancy of small level sets with t � rd�↵ gives

⇢Z
M

����
Z
M
�B(y,t)(x)dµ(x)

����
q
dy

�1/q



(
sup
y2M

����
Z
M
�B(y,t)(x)dµ(x)

����
)(q�1)/q ⇢Z

M

Z
M
�B(y,t)(x)d |µ| (x)dy

�1/q



(
sup
y2M

����
Z
M
�B(y,t)(x)dµ(x)

����
)(q�1)/q n

c |µ| (M)td/(↵�d)
o1/q

 cr�d(q�1)/q td/q(↵�d).

Hence, if ↵ > d/p the integral over rd�↵
 t < +1 satisfies the inequality

Z
+1

rd�↵

⇢Z
M

����
Z
M
�B(y,t)(x)dµ(x)

����
q
dy

�1/q
dt

 cr�d(q�1)/q
Z

+1

rd�↵
td/q(↵�d)dt

 cr�↵.

Similarly, the integral over 0  t  rd�↵ , that is the discrepancy of large level sets,
satisfies the inequality
Z rd�↵

0

⇢Z
M

����
Z
M
�B(y,t)(x)dµ(x)

����
q
dy

�1/q
dt  r�1

Z rd�↵

0
min

n
1, t (d�1)/(↵�d)

o
dt



8><
>:
cr�↵ if 0 < ↵ < 1,
cr�1 log(1+ r) if ↵ = 1,
cr�1 if ↵ > 1.
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The proof in the case ↵ = d is similar and follows from the estimate B↵(x, y) ⇡

� log(|x � y|). The proof in the case ↵ > d is even simpler, since in this case
B↵(x, y) is bounded and it suffices to integrate on 0  t  supx,y2M B↵(x, y) the
inequality |

R
M �B(y,t)(x)dµ(x)|  cr�1.

Observe that the hypotheses on the discrepancy in the above theorem match
the estimates in Lemma 2.9. Indeed, by this lemma, the measures d⌫(x) which give
exact quadrature for eigenfunctions with eigenvalues �2 < r2 have discrepancy

����
Z

{|x�y|s}
d⌫(x) �

Z
{|x�y|s}

dx
���� 

(
cr�d if s  1/r ,
cr�1sd�1 if s � 1/r .

Actually, these estimates hold not only for balls {|x � y|  s}, but also for sets with
boundary with finite (d � 1)-dimensional Minkowski measure, such as the level
sets {B(y, t)}. Also observe that these estimates are natural, since the discrepancy
of large sets is qualitatively different from the one of small sets. In particular, it
follows from Lemma 2.9, Theorem 2.12, Theorem 2.16, that, at least in the range
0 < ↵ < 1, Theorem 3.2 gives an optimal quadrature. We conclude with a series of
remarks.
Remark 3.3. As we said, the assumption ↵ > d/2 with p = 2 in Theorem 2.7, or
↵ > d/p with 1  p  +1 in Theorem 2.12, guarantees the boundedness and
continuity of f (x), otherwise the point evaluation f (z j ) may be not defined. This
follows from the Sobolev imbedding theorem. Indeed, the imbedding is an easy
corollary of Lemma 2.6. A function f (x) is in the Sobolev space W↵,p(M) if and
only if there exists a function g(x) in L p(M) with

f (x) =

Z
M

B↵(x, y)g(y)dy.

When 1  p, q  +1, 1/p + 1/q = 1, d/p < ↵ < d, then B↵(x, y) 

c|x � y|↵�d is in Lq(M) and this implies that distributions in the Sobolev space
W↵,p(M) with ↵ > d/p are continuous functions. Indeed they are also Hölder
continuous of order ↵ � d/p.
Remark 3.4. When the manifold is a Lie group or a homogeneous space, one can
restate Theorem 2.1 in terms of convolutions. In the particular case of the torus
Td

= Rd/Zd , let

A(x) =

X
k2Zd

 (k) exp (2⇡ ikx) , B(x) =

X
k2Zd

 (k)�1 exp (2⇡ ikx) .

Then, if 1  p, q, r  +1 with 1/p + 1/q = 1/r + 1,
⇢Z

Td

����
Z

Td
f (x�y) dµ(y)

����
r
dx

�1/r
=

⇢Z
Td

|B ⇤ A ⇤ f ⇤ µ(x)|r dx
�1/r



⇢Z
Td

|A ⇤ f (x)|pdx
�1/p⇢Z

Td
|B ⇤ µ(x)|q dx

�1/q
.
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In the case of the sphere Sd = {x 2 Rd+1, |x | = 1}, let {Zn(xy)} be the system of
zonal spherical harmonic polynomials and let

A(xy) =

+1X
n=0

 (n)Zn (xy) , B(xy) =

+1X
n=0

 (n)�1Zn (xy) .

Then, if 1  p, q  +1 with 1/p + 1/q = 1,

����
Z

Sd
f (x) dµ(x)

����
⇢Z

Sd

����
Z

Sd
A(xy) f (y)dy

����
p
dx

�1/p ⇢Z
Sd

����
Z

Sd
B(xy)dµ(y)

����
q
dx

�1/q
.

Both results on the torus and the sphere follow from the Young inequality for con-
volutions.

Remark 3.5. A result related to Theorem 2.1 and to the previous remark is the
following. Identify Td with the unit cube {(x1, . . . , xd) : 0 x j < 1} and denote
by �P(y)(x) the characteristic function of the parallelepiped P(y)={(x1, . . . , xd) :

0  x j < y j }. Then define

B(x) =

Z
Td
�P(y)(x)dy � 2�d

=

dY
j=1

�
1� x j

�
� 2�d

=

X
k2Zd�{0}

0
@
0
@Y
k j=0

2

1
A

0
@Y
k j 6=0

2⇡ ik j

1
A
1
A

�1

exp (2⇡ ikx) .

Also, define the differential integral operator

A ⇤ f (x) =

X
k 6=0

0
@Y
k j=0

2

1
A

0
@Y
k j 6=0

2⇡ ik j

1
A bf (k) exp (2⇡ ikx)

= 2d�1
X
1 jd

Z
Td�1

@

@x j
f (x)

Y
i 6= j

dxi

+ 2d�2
X

1i 6= jd

Z
Td�2

@2

@xi@x j
f (x)

Y
h 6=i, j

dxh

+ . . . +
@d

@x1 . . . @xd
f (x).

Observe that, as in Theorem 2.1, the Fourier coefficients of the distribution A(x)
and of the function B(x) are one inverse to the other, however here the Fourier coef-
ficients are indexed by the lattice points 2⇡ ik, and not by the eigenvalues 4⇡2|k|2. If
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d⌫(x) = N�1PN
j=1 d�z j (x), and if 1  p, q, r  +1 with 1/p+1/q = 1/r+1,

then

(Z
Td

�����N�1
NX
j=1

f
�
x � z j

�
�

Z
Td

f (y)dy

�����
r

dx

)1/r



⇢Z
Td

|A ⇤ f (x)|p dx
�1/p ⇢Z

Td
|B ⇤ ⌫(x)|q dx

�1/q
.

The norm of A ⇤ f (x) is dominated by an analogue of the Hardy-Krause variation,

⇢Z
Td

|A ⇤ f (x)|p dx
�1/p

 2d�1
X
1 jd

(Z
T

�����
Z

Td�1

@

@x j
f (x)

Y
i= j

dxi

�����
p

dx j

)1/p

+ 2d�2
X

1i 6= jd

(Z
T2

�����
Z

Td�2

@2

@xi@x j
f (x)

Y
h 6=i, j

dxh

�����
p

dxidx j

)1/p

+ . . . +

(Z
Td

���� @d

@x1 . . . @xd
f (x)

����
p

dx

)1/p
.

The norm of B ⇤ ⌫(x) is dominated by the discrepancy of the points {z j }Nj=1 with
respect to the family of boxes P(y),

⇢Z
Td

|B ⇤ ⌫(x)|q dx
�1/q



Z
Td

(Z
Td

�����N�1
NX
j=1

�P(y)
�
z j + x

�
�

dY
j=1

y j

�����
q

dx

)1/q
dy.

In particular, the case where p = 1 and q = +1 is an analogue of the Koksma-
Hlawka inequality. See [24]. A generalization of this classical inequality is con-
tained in [6].

Remark 3.6. By Lemma 2.6 (1), the Bessel kernel B↵(x, y) with ↵ > 0 is a
superposition of heat kernels W (t, x, y). Indeed, it is possible to state an analogue
of Corollary 2.4 in terms of the heat kernel, without explicit mention of Bessel
potentials: If {z j }Nj=1 is a sequence of points inM, if {! j }

N
j=1 are positive weights
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with
P

j ! j = 1, and if f (x) is a function in W↵,p(M) with ↵ > d/2, then
�����
NX
j=1

! j f
�
z j
�
�

Z
M

f (x)dx

�����


(
0 (↵)�1

Z
+1

0

�����
NX
i=1

NX
j=1

!i! jW
�
t, zi , z j

�
� 1

����� t↵�1 exp (�t) dt

)1/2
k f kW↵,2 .

This suggests the following heuristic interpretation: Mathematically, a set of points
on a manifold is well distributed if the associated Riemann sums are close to the
integrals. Physically, a set of points is well distributed if the heat, initially concen-
trated on them, in a short time diffuses uniformly across the manifold.
Remark 3.7. In order to minimize the errors in the numerical integration in Corol-
lary 2.4 (3), one has to minimize the energies

Z
M

Z
M

B2↵ (x, y) d⌫(x)d⌫(y),
NX
i=1

NX
j=1

!i! j B2↵
�
zi , z j

�
.

These are analogous to the energy integrals in potential theoryZ
M

Z
M

|x � y|�" d⌫(x)d⌫(y).

See [15]. When d < ↵ < d + 1 the kernel B2↵(x, y) is positive and bounded,
with a maximum at x = y and a spike A � B|x � y|2↵�d when x ! y. In
particular, the gradient at x = y is infinite. This implies that in order to minimize
the discrete energy

P
i, j !i! j B2↵(zi , z j ) the points {z j } have to be well separated.

This suggests the following heuristic interpretation: Mathematically, a set of points
on a manifold is well distributed if the energy is minimal. Physically, a set of points,
free to move and repelling each other according to some law, is well distributed
when they reach an equilibrium.
Remark 3.8. It can be proved that if 2↵ > d + 2 then���B2↵ (x, x) � B2↵ (x, y)

���  c |x � y|2 .

This estimate in the proof of Theorem 2.7 yields that for most choices of sampling
points z j 2 Uj ,�����

NX
j=1

! j f
�
z j
�
�

Z
M

f (x)dx

�����  c max
1 jN

n
diameter

�
Uj

�d/2+1
o

k f kW↵,2(M) .

The same result holds if 2↵ = d + 2, with a logarithmic transgression. Observe
that these estimates hold for most choices of sampling points, but not for all choices.
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Indeed, if the manifoldM is decomposed in disjoint piecesM = U1[U2[...[UN
with measure a1N�1

 |Uj | = ! j  a2N�1 and b1N�1/d
 diameter(Uj ) 

b2N�1/d , if f (x) is a smooth non constant function and if the points z j 2 Uj are
the maxima of f (x) in Uj , then

PN
j=1 ! j f (z j ) is an upper sum of the integralR

M f (x)dx and

NX
j=1

! j f
�
z j
�
�

Z
M

f (x)dx =

NX
j=1

Z
Uj

�
f
�
z j
�
� f (x)

�
dx � cN�1/d .

Remark 3.9. Theorem 3.2 gives an estimate of the accuracy in a quadrature rule in
terms of the discrepancy of a measure with respect to level sets of the Bessel kernel.
The following argument shows that when the manifold is a sphere, or a rank-one
compact symmetric space, then the level sets of the heat kernel {W (t, x, y) > s},
and hence of the Bessel kernels {B↵(x, y)  t}, are geodesic balls {|x � y|  r}.
The Laplace operator on the sphere Sd with respect to a system of polar coordinates
x = (#, � ), with 0  #  ⇡ the colatitude with respect to a given pole and
� 2 Sd�1 the longitude, is

1x = 1(#,� ) = � sin1�d (#)
@

@#

✓
sind�1 (#)

@

@#

◆
+ sin�2 (#) 1� .

Let u(t, x) be the solution of the Cauchy problem for the heat equation
(
@

@t
u (t, x) = �1xu (t, x) ,

u (0, x) = f (x) .

If f (x) depends only on the colatitude # , and if it is even and decreasing in 0 < # <
⇡ , then also u(t, x) depends only on the colatitude and it is even and decreasing in
0 < # < ⇡ . In order to prove this, set u(t, x) = U(t,#), f (x) = F(#), and
sind�1(#)@U(t,#)/@# = V (t,#). Then

8><
>:

@

@#

@

@t
U(t,#) =

@

@#

⇢
sin1�d (#)

@

@#

✓
sind�1 (#)

@

@#
U(t,#)

◆�
,

@

@#
U(0,#) =

@

@#
F (#) ,

8>>><
>>>:

@

@t
V (t,#) =

@2

@#2
V (t,#) + (1� d)

cos(#)

sin(#)

@

@#
V (t,#),

V (0,#) = sind�1 (#)
@

@#
F (#) ,

V (t, 0) = V (t,⇡) = 0.

If F(#) is decreasing in 0 < # < ⇡ , then V (0,#)  0 and, by the maximum
principle, V (t,#)  0, henceU(t,#) is decreasing in 0 < # < ⇡ . In particular, by



QUADRATURE RULES AND DISTRIBUTION OF POINTS ON MANIFOLDS 921

considering a sequence of initial data { fn(x)} which depend only on the colatitude
# , even and decreasing in 0 < # < ⇡ , and which converge to the Dirac �(x), one
proves that the heat kernel W (t, cos(#)) is decreasing in 0 < # < ⇡ . Since Bessel
kernels are superpositions of heat kernels, they are also superpositions of spherical
caps.
Remark 3.10. In [3] and [26] the discrepancy of orbits of discrete subgroups of
rotations of a sphere are studied. Let G be a compact Lie group, K a closed sub-
group,M = G/K a homogeneous space of dimension d. Also, let H be a finitely
generated free subgroup in G and assume that the action ofH onM is free. Given
a positive integer n, let {� j }Nj=1 be an ordering of the elements in H with length at
most n and for every function f (x) onM, define

T f (x) = N�1
NX
j=1

f
�
� j x

�
.

This operator is self-adjoint and it has eigenvalues and eigenfunctions in L2(M).
Moreover, since the operators T and1 commute, they have a common orthonormal
system of eigenfunctions, 1'�(x) = �2'�(x) and T'�(x) = T (�)'�(x). All
eigenvalues of T have modulus at most 1 and indeed 1 is an eigenvalue and the
constants are eigenfunctions. Assume that all non constant eigenfunctions have
eigenvalues much smaller than 1. Then, if ↵ > d/2,�����N�1

NX
j=1

f
�
� j x

�
�

Z
M

f (x)dx

����� =

�����
X
�6=0

T (�)F f (�)'�(x)

�����


(
sup
�6=0

|T (�)|

)(X
�

⇣
1+ �2

⌘↵
|F f (�)|2

)1/2 (X
�

⇣
1+ �2

⌘
�↵

|'�(x)|2
)1/2

 c

(
sup
�6=0

|T (�)|

)⇢Z
M

���(I +1)↵/2 f (x)
���2 dx

�1/2
.

The absolute convergence of the above series is a consequence of the Sobolev
imbeddings, or the Weyl estimates for eigenfunctions. In particular, whenM =

SO(3)/SO(2) is the two-dimensional sphere andH is the free group generated by
rotations of angles arccos(�3/5) around orthogonal axes, it has been proved in [26]
that the eigenvalues of the operator T satisfy the Ramanujan bounds

sup
�6=0

{|T (�)|}  cN�1/2 log(N ).

Hence, for the sphere,�����N�1
NX
j=1

f
�
� j x

�
�

Z
M

f (x)dx

�����cN�1/2 log(N )

⇢Z
M

���(I+1)↵/2 f (x)
���2dx

�1/2
.

All of this is essentially contained in [26]. Although this bound N�1/2 log(N ) is
worse than the bound N�↵/2 in Corollary 2.13, the matrices {� j } have rational
entries and the sampling points {� j x} are completely explicit.
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