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Normal forms of Levi-flat hypersurfaces
with Arnold type singularities

ARTURO FERNÁNDEZ-PÉREZ

Abstract. In this paper we study normal forms of Levi-flat hypersurfaces with
singularities. We prove a result analogous to the Burns-Gong theorem for the
existence of rigid normal forms of Levi-flat hypersurfaces which are defined by
the vanishing of the real part of Ak , Dk , Ek singularities.
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ondary).

1. Introduction

In 1999 D. Burns and X. Gong proved the following result (cf. [5]):

Theorem 1.1 (Burns-Gong). Let M be a germ of real analytic Levi-flat hypersur-
face at 0 2 Cn , with n � 2, defined by

Re(z21 + . . . + z2n) + H(z, z̄) = 0

with H(z, z̄) = O(|z|3), and H(z, z̄) = H(z̄, z). Then there exists a holomorphic
coordinate system such that

M = (Re(x21 + . . . + x2n) = 0).

This result can be viewed as a Morse Lemma for Levi-flat hypersurfaces and it
is a normal form in the case of a generic (Morse) singularity. Singular Levi-flat
hypersurfaces have been studied by many authors, see for example Bedford [4],
Brunella [6], Cerveau-Lins Neto [8], Lebl [16] and the author [12, 13]. In the same
spirit the purpose of this paper is to prove the existence of normal forms of Levi-flat
hypersurfaces with Arnold type singularities. More precisely, we are interested in
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obtaining normal forms of Levi-flat hypersurfaces which are defined by the vanish-
ing of the real part of Ak, Dk, Ek singularities.

One motivation for considering Ak, Dk, Ek singularities is the following: when
we consider the problem of classifying holomorphic germs f with an isolated sin-
gularity at 0 2 Cn , with respect to holomorphic changes of coordinates, the list
starts with the famous Ak, Dk, Ek singularities or simple singularities, see for in-
stance Arnold’s papers [1, 2]:

Table 1.1. Ak, Dk, Ek singularities.

Type Normal form Conditions
Ak z21 + zk+12 + . . . + z2n, k � 1
Dk z21z2 + zk�12 + z23 + . . . + z2n, k � 4
E6 z41 + z32 + z23 + . . . + z2n
E7 z31z2 + z32 + z23 + . . . + z2n
E8 z51 + z32 + z23 + . . . + z2n

Several characterizations of the Ak, Dk, Ek singularities are well-known, see for
instance [10]. Let us give the precise statement of these results. Let M be a germ
at 0 2 Cn of an irreducible real analytic hypersurface defined by (F = 0). The
singular set of M is defined by Sing (M) = (F = 0) \ (dF = 0) and its smooth
part (F = 0)\(dF = 0) will be denoted by M⇤. The Levi distribution L on M⇤ is
defined by

L p := Ker (@F(p)) ⇢ TpM⇤

= Ker (dF(p)), for any p 2 M⇤.

We shall say that M is Levi-flat if the Levi distribution L on M⇤ is integrable.
The integrability condition of L implies that M is smoothly foliated by immersed
complex manifolds of complex dimension n�1. The Levi foliation, that we denote
by L, is the foliation defined by this distribution.

The Levi distribution L on M⇤ can be defined by the real analytic 1-form
⌘ = i(@F � @̄F)|M⇤ , which will be called the Levi 1-form of F . The integra-
bility condition is equivalent to (@F � @̄F) ^ @@̄F |M⇤ = 0. Since dF = @F + @̄F ,
this is also equivalent to

@F(p) ^ @̄F(p) ^ @@̄F(p) = 0, 8 p 2 M.

See the book [3] for the basic language and background about Levi-flat hypersur-
faces. Before stating our result, let us describe some known results and examples.
Example 1.2. If M is smooth, by a classical result of E. Cartan there exists a holo-
morphic coordinate system (z1, . . . , zn) 2 Cn such that M can be represented as
M = (Re(zn) = 0).
Example 1.3. If h : (Cn, 0) ! (C, 0) is holomorphic and non-constant then the
analytic set defined by M = (Re(h) = 0) is Levi-flat and Sing (M) = crit( f )\M ,
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where crit( f ) is the set of critical points of f . The leaves of L on M are the
imaginary levels of h.
Example 1.4. Let M = (Re(z21 + . . . + z2n) + H(z, z̄) = 0) be as in Theorem 1.1
then there exists a holomorphic coordinate system such that M = (Re(x21 + . . . +

x2n) = 0), we remark that it is a normal form (Levi-flat) of A1 type. This result was
generalized in [12], where we considered the real part of a homogeneous polyno-
mial of degree k � 2 with an isolated singularity.
Example 1.5. Let M be a germ of real analytic Levi-flat hypersurface at 0 2 C2
defined by F = 0, where

F(x, y) = Re(x2y + y3) + H(x, y, x̄, ȳ)

with H(x, y, x̄, ȳ) = O(|(x, y)|4) and H(x, y, x̄, ȳ) = H(x̄, ȳ, x, y). Then in [12]
we proved that there exists a holomorphic coordinate system such that

M = (Re(x21 y1 + y31) = 0),

which is a normal form of D4 type when n = 2. On the other hand, if n � 3 the
analogous result is also valid by [12, Theorem 2].

These results were proved using techniques of holomorphic foliations devel-
oped in [11]. This new approach provides new normal forms of Levi-flat hypersur-
faces. Our main result is an Arnold type result for singular Levi-flat hypersurfaces.
Theorem 1. Let M = F�1(0) be a germ at 0 2 Cn , with n � 2, of irreducible real
analytic Levi-flat hypersurface. Suppose that F is of one of the following types:

(a) F(z) = Re(z21 + zk+12 + z23 + . . . + z2n) + H(z, z̄), where k � 2 and

H(z, z̄) = O(|z|k+2) , H(z, z̄) = H(z̄, z).

(b) F(z) = Re(z21z2 + zk�12 + z23 + . . . + z2n) + H(z, z̄), where k � 5 and

H(z, z̄) = O(|z|k) , H(z, z̄) = H(z̄, z).

(c) F(z) = Re(z41 + z32 + z23 + . . . + z2n) + H(z, z̄), where

H(z, z̄) = O(|z|5) , H(z, z̄) = H(z̄, z).

(d) F(z) = Re(z31z2 + z32 + z23 + . . . + z2n) + H(z, z̄), where

H(z, z̄) = O(|z|5) , H(z, z̄) = H(z̄, z).

(e) F(z) = Re(z51 + z32 + z23 + . . . + z2n) + H(z, z̄), where

H(z, z̄) = O(|z|6) , H(z, z̄) = H(z̄, z).
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Then there exists a germ of biholomorphism ' : (Cn, 0) ! (Cn, 0) such that

(a) '(M) = (Re(z21 + zk+12 + z23 + . . . + z2n) = 0),
(b) '(M) = (Re(z21z2 + zk�12 + z23 + . . . + z2n) = 0),
(c) '(M) = (Re(z41 + z32 + z23 + . . . + z2n) = 0),
(d) '(M) = (Re(z31z2 + z32 + z23 + . . . + z2n) = 0),
(e) '(M) = (Re(z51 + z32 + z23 + . . . + z2n) = 0), respectively.

We find the following list:

Table 1.2. Levi-flat hypersurfaces with Ak, Dk, Ek singularities.

Type Normal form Conditions
Ak Re(z21 + zk+12 + . . . + z2n) = 0 k � 1
Dk Re(z21z2 + zk�12 + z23 + . . . + z2n) = 0 k � 4
E6 Re(z41 + z32 + z23 + . . . + z2n) = 0
E7 Re(z31z2 + z32 + z23 + . . . + z2n) = 0
E8 Re(z51 + z32 + z23 + . . . + z2n) = 0

The main tool for proving this theorem is a result of Cerveau and Lins Neto [8], that
gives sufficient conditions for a Levi-flat hypersurface to be defined by the zeros of
the real part of a holomorphic function.

This paper is organized as follows: in Section 2, we recall some properties and
known results about singular Levi-flat hypersurfaces. Section 3 is devoted to recall
the notions of weighted projective space and weighted blow-ups. In Section 4 we
prove Theorem 1 for dimension n � 3. Finally, in Section 5 we conclude the proof
for dimension two.

ACKNOWLEDGEMENTS. I wish to thank my advisor Alcides Lins Neto for many
useful discussions and many suggestions for improvements of these results. I also
would like to thank Hossein Movasati, Jorge Vitório Pereira and Daniel Panazzolo
for helpful conversations about this work.

2. Preliminaries

Let us fix some notation that will be used from now on:

1. On : the ring of germs of holomorphic functions at 0 2 Cn;
O(U) : the set of holomorphic functions on the open set U ⇢ Cn;
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2. O⇤

n = { f 2 On| f (0) 6= 0},
O⇤(U) = { f 2 O(U)| f (z) 6= 0,8z 2 U};

3. Mn = { f 2 On| f (0) = 0} the maximal ideal ofOn;
4. An: the ring of germs at 0 2 Cn of complex valued real analytic functions;
5. AnR: the ring of germs at 0 2 Cn of real valued real analytic functions. Note
that F 2 An is inAnR if and only if F = F̄ ;

6. Diff(Cn, 0): the group of germs at 0 2 Cn of holomorphic diffeomorphisms
f : (Cn, 0) ! (Cn, 0) with the operation of composition;

7. j k0 ( f ) : the k-jet at 0 2 Cn of f 2 On .

Definition 2.1. Two germs f, g 2 On are right-equivalent if there exists � 2

Diff(Cn, 0) such that f � ��1
= g.

The local algebra of f 2 On is by definition

A f := On/h@ f/@z1, . . . , @ f/@zni.

We denote by µ( f, 0) := dimA f the Milnor number of f at 0 2 Cn . This number
is finite if and only if 0 is an isolated singularity of f .
Definition 2.2. A germ f 2 On is said to be quasihomogeneous of degree d with
indices ↵1, . . . ,↵n if for any � 2 C⇤ and (z1, . . . , zn) 2 Cn we have

f (�↵1z1, . . . , �↵n zn) = �d f (z1, . . . , zn).

The index ↵s is also called the weight of the variable zs .

2.1. Complexification of a Levi-flat hypersurface

Given F 2 An , we can write its Taylor series at 0 2 Cn as

F(z) =

X
µ,⌫

Fµ⌫zµ z̄⌫, (2.1)

where Fµ⌫ 2 C, µ = (µ1, . . . , µn), ⌫ = (⌫1, . . . , ⌫n), zµ = zµ11 . . . zµnn , z̄⌫ =

z̄⌫11 . . . z̄⌫nn . When F 2 AnR, the coefficients Fµ⌫ satisfy

F̄µ⌫ = F⌫µ.

The complexification FC 2 O2n of F is defined by the series

FC(z, w) =

X
µ,⌫

Fµ⌫zµw⌫ . (2.2)

If the series in (2.1) converges in the polydisk Dn
r = {z 2 Cn

: |z j | < r} then the
series in (2.2) converges in the polydisk D2nr . Moreover, F(z) = FC(z, z̄) for all
z 2 Dn

r .
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Let M = F�1(0) be a Levi-flat hypersurface, where F 2 AnR. The complexi-
fication ⌘C of its Levi 1-form ⌘ = i(@F � @̄F) can be written as

⌘C = i(@z FC � @wFC) = i
X
µ,⌫

(Fµ⌫w
⌫d(zµ) � Fµ⌫zµd(w⌫)).

The complexification MC of M is defined as MC = F�1
C (0) and its smooth part is

M⇤

C = MC\(dFC = 0). Clearly MC defines a complex subvariety of dimension
2n � 1. The integrability condition of ⌘ = i(@F � @̄F)|M⇤ implies that ⌘C|M⇤

C
is

integrable. Therefore ⌘C|M⇤

C
= 0 defines a holomorphic foliation LC on M⇤

C that
will be called the complexification of L.
Remark 2.3. Let ⌘ = i(@F � @̄F) and ⌘C be as before. Then ⌘|M⇤ and ⌘C|M⇤

C

define L and LC, respectively. Set ↵ =

Pn
j=1

@FC
@z j dz j and � =

Pn
j=1

@FC
@w j

dw j .
Hence dFC = ↵ + � and ⌘C = i(↵ � �), so that

⌘C|M⇤

C
= 2i↵|M⇤

C
= �2i�|M⇤

C
. (2.3)

In particular, ↵|M⇤

C
and �|M⇤

C
define LC.

2.2. Holomorphic foliations and Levi-flat hypersurfaces

This section is devoted to recalling some results about Levi-flat hypersurfaces in-
variant by holomorphic foliations.
Definition 2.4. Let F and M = F�1(0) be germs at (Cn, 0), with n � 2, of
a codimension-one singular holomorphic foliation and of a real Levi-flat hyper-
surface, respectively. We say that F and M are tangent if the leaves of the Levi
foliation L on M are also leaves of F .

The algebraic dimension of Sing (M) is the complex dimension of the singular
set of MC.

In the proof of Theorem 1 we will use the following result of [8], which es-
sentially assures that if the singularities of M are sufficiently small (in the algebraic
sense) then M is given by the zeroes of the real part of a holomorphic function.

Theorem 2.5 (Cerveau-Lins Neto [8]). Let M = F�1(0) be a germ of an irre-
ducible real analytic Levi-flat hypersurface at 0 2 Cn , n � 2, with Levi 1-form
⌘ = i(@F � @̄F). Assume that the algebraic dimension of Sing (M) is less than
or equal to 2n � 4. Then there exists an unique germ at 0 2 Cn of holomorphic
codimension-one foliation FM tangent to M , if one of the following conditions is
fulfilled:

1. n � 3 and cod M⇤

C
(Sing (⌘C|M⇤

C
)) � 3;

2. n � 2, cod M⇤

C
(Sing (⌘C|M⇤

C
)) � 2 and LC has a non-constant holomorphic first

integral.
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Moreover, in both cases the foliation FM has a non-constant holomorphic first in-
tegral f such that M = (Re( f ) = 0).

We will assume that the Taylor series of F converges in the polydisk Dn
r . Set

W := M⇤

C\Sing (⌘C|M⇤

C
) and denote by L p the leaf ofLC through p, where p 2 W .

Lemma 2.6 (Cerveau-Lins Neto [8]). For any p = (z0, w0) 2 W the leaf L p is
closed in M⇤

C.

3. Weighted projective varieties and weighted blow-ups

In this section we recall the notions of weighted projective space and weighted
blow-ups, which will also be used in the proof of Theorem 1. See [9] and [15, page
634] for the basic language and background.

Let � := (a0, . . . , an) be positive integers. The group C⇤ acts on Cn+1
\{0} by

� · (x0, . . . , xn) = (�a0x0, . . . , �an xn).

The quotient space by this action is the weighted projective space of type � ,
P(a0, . . . , an) := P� . In case ai > 1 for some i , P� is a compact algebraic va-
riety with cyclic quotient singularities.

Let [x0 : . . . : xn] be the homogeneous coordinates on P(a0, . . . , an). The
affine piece xi 6= 0 is isomorphic to Cn/Zai , where Zai denotes the quotient group
modulo ai . Let ✏ be an athi -primitive root of unity. The group acts by

z j 7�! ✏a j z j

for all j 6= i , on the coordinates (z0, . . . , ẑi , . . . , zn) of Cn; here z j is thought of
as x j/x1/aii . Compare this to the case of Pn where the affine coordinates on xi 6= 0
are z j = x j/xi .
Definition 3.1. P(a0, . . . , an) is well-formed if for each i

g.c.d. (a0, . . . , âi , . . . , an) = 1.

We have a natural orbifold map �� : Pn ! P� defined by

[x0 : . . . : xn] 7! [xa00 : . . . : xann ]� . (3.1)

Definition 3.2. Let X be a closed subvariety of a weighted projective space P� , and
let ⇢ : Cn+1

\{0} ! P� be the canonical projection. The punctured affine cone C⇤

X
over X is given by C⇤

X = ⇢�1(X), and the affine cone CX over X is the completion
of C⇤

X in Cn+1.
Observe that C⇤ acts on C⇤

X to give X = C⇤

X/C⇤.

Lemma 3.3. C⇤

X has no isolated singularities.
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Proof. If P 2 C⇤

X is singular then every point on the same fibre of the C⇤-action is
singular.

Definition 3.4. We say that X in P� is quasi-smooth of dimension m if its affine
cone CX is smooth of dimension m + 1 outside its vertex 0 2 Cn+1.

When X ⇢ P� is quasi-smooth the singularities of X are given by the C⇤-
action and hence are cyclic quotient singularities. Notice that this definition is not
equivalent to the smoothness of the inverse image ��1

� (X) under the quotient map
given in (3.1).

Another important fact (cf. [9, Theorem 3.1.6]) is that a quasi-smooth subva-
riety X of P� is a V -variety, that is, a complex space which is locally isomorphic
to the quotient of a complex manifold by a finite group of holomorphic automor-
phisms.

Now, let X = Cn/Zm(a1, . . . , an) be a cyclic quotient singularity. That is, X
is the quotient variety Cn/⌧ , where ⌧ is given by

xi 7�! ✏ai xi

for all i , where ✏ is an mth-primitive root of unity.

3.1. Weighted blow-ups

In this part we will construct the blow-up of X . First, we describe X using the
theory of toric varieties (cf. [14]). Let

e1 = (1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1) and e =

1
m

(a1, . . . , an).

Then X = Cn/Zm(a1, . . . , an) is the toric variety corresponding to the lattice N =

Ze1 + . . . + Zen + Ze and the cone C = R�0e1 + . . . + R�0en . Denote by 4 the
fan associated to X consisting of all the faces of C .

Take ⌫ =
1
m (a1, . . . , an) 2 N with a1, . . . , an > 0 and assume that e1, . . . , en

and ⌫ generate the lattice N . Such ⌫ 2 N will be called a weight. We can construct
the weighted blow-up

E : X̃ ! X = Cn/Zm(a1, . . . , an)

with weight ⌫ as follows: we divide the cone C by adding the 1-dimensional cone
R�0⌫, that is, we divide C into n cones

Ci = R�0e1 + . . . +
i�th

R�0⌫ + . . . + R�0en (i = 1, . . . , n).

Let 4
0 be the fan consisting of all the faces of C1, . . . ,Cn . Then X̃ is the toric

variety corresponding to N and4
0 and E is the morphism induced from the natural

map of fans (N ,40) ! (N ,4).
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The variety X̃ is covered by n affine open sets Ũ1, . . . , Ũn which correspond
to the cones C1, . . . ,Cn respectively. These affine open sets and E are described as
follows:

Ũi = Cn/Zai

✓
�a1, . . . ,

i thm, . . . ,�an
◆

(3.2)

E |Ũi : Ũi 3 (y1, . . . , yn) 7�!

0
@y1ya1/mi , . . . ,

i th

yai/mi , . . . , yn y
an/m
i

1
A 2 X. (3.3)

The exceptional divisor D of E is isomorphic to the weighted projective space
P(a1, . . . , an) and D \ Ũi = {yi = 0}/Zai .

4. Theorem 1 in dimension n � 3

Theorem 1 will be an immediate consequence of the following proposition. The
result is proved in [12], although it is not stated as a separate theorem. We reprove
it here for completeness.
Proposition 4.1. Let Q be a quasihomogeneous polynomial with an isolated sin-
gularity at 0 2 Cn , n � 3, such that:
1. F(z1, . . . , zn) = Re(Q(z1, . . . , zn)) + H(z, z̄), with

H(z, z̄) = O
⇣
|z|deg(Q)+1

⌘
, H(z, z̄) = H(z̄, z),

where deg(Q) is the degree of Q (as a polynomial);
2. M = F�1(0) is Levi-flat.
Then there exists a unique germ at 0 2 Cn of holomorphic codimension-one folia-
tionFM tangent to M . Moreover, the foliationFM has a non-constant holomorphic
first integral f (z) = Q(z) + h.o.t. and M = (Re( f ) = 0).
Proof. The idea is to use Theorem 2.5 to prove that there exists a germ f 2 On
such that the holomorphic foliation F defined by d f = 0 is tangent to M and
M = (Re( f ) = 0). Note that if M = (Re( f ) = 0) = (F = 0), with F 2 AnR
irreducible, we must have that Re( f ) = UF , where U 2 AnR and U(0) 6= 0. In
particular, this implies that f (z) = Q(z) + h.o.t .

Let us prove that we can apply Theorem 2.5. We can write

F(z) = Re(Q(z1, . . . , zn)) + H(z, z̄),

where H : (Cn, 0) ! (R, 0) is a germ of real-analytic function and jdeg(Q)
0 (H) =

0. For simplicity, we assume that Q has real coefficients. Then we get the complex-
ification

FC(z, w) =

1
2
(Q(z) + Q(w)) + HC(z, w)

and MC = F�1
C (0) ⇢ (C2n, 0).
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Since Q(z) has an isolated singularity at 0 2 Cn , we get Sing (MC) = {0}, so
the algebraic dimension of Sing (M) is 0. On other hand, the complexification of
⌘ = i(@F � @̄F) is

⌘C = i(@z FC � @wFC).

Recall that ⌘|M⇤ and ⌘C|M⇤

C
define L and LC. Now we compute Sing (⌘C|M⇤

C
). We

can write dFC = ↵ + �, with

↵ =

nX
j=1

@FC
@z j

dz j :=

1
2

nX
j=1

✓
@Q
@z j

(z) + A j

◆
dz j

and

� =

nX
j=1

@FC
@w j

dw j :=

1
2

nX
j=1

✓
@Q
@w j

(w) + Bj
◆
dw j ,

where 12
Pn

j=1 A jdz j =

Pn
j=1

@HC
@z j dz j and

1
2
Pn

j=1 Bjdw j =

Pn
j=1

@HC
@w j

dw j .
Then ⌘C = i(↵ � �), and so

⌘C|M⇤

C
= (⌘C + idFC)|M⇤

C
= 2i↵|M⇤

C
= �2i�|M⇤

C
. (4.1)

In particular, ↵|M⇤

C
and �|M⇤

C
define LC. Therefore Sing (⌘C|M⇤

C
) can be split in

two parts. Let M1 = {(z, w) 2 MC|
@FC
@w j

6= 0 for some j = 1, . . . , n} and M2 =

{(z, w) 2 MC|
@FC
@z j 6= 0 for some j = 1, . . . , n}, note that MC = M1 [ M2; if we

denote by

X1 := M1 \

⇢
@Q
@z1

(z) + A1 = . . . =

@Q
@zn

(z) + An = 0
�

and
X2 := M2 \

⇢
@Q
@w1

(w) + B1 = . . . =

@Q
@wn

(w) + Bn = 0
�

,

then Sing (⌘C|M⇤

C
) = X1[ X2. Since Q 2 C[z1, . . . , zn] has an isolated singularity

at 0 2 Cn , we conclude that cod M⇤

C
Sing (⌘C|M⇤

C
) = n. If n � 3, we can directly

apply Theorem 2.5 and the proof is complete.

Remark 4.2. The normal forms of Ak, Dk, Ek singularities given by Arnold are
complex quasihomogeneous polynomials with an isolated singularity at 0 2 Cn ,
and they are stable under deformations. For instance, let us consider f 2 On of
Ak type and g = f + h.o.t. Then g is right-equivalent to f ; i.e. there exists
' 2 Diff(Cn, 0) such that g � '�1

= f (cf. [20, page 32]).
The proposition and remark above imply Theorem 1 for n � 3 as we will see

in the next subsection.
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4.1. Proof of Theorem 1 for n � 3

Let g be a germ at 0 2 Cn , with n � 3, of Ak, Dk or Ek type, and F(z) =

Re(g(z)) + H(z, z̄), where

H(z, z̄) = O(|z|deg(g)+1) , H(z, z̄) = H(z̄, z).

Assume that M = F�1(0) is Levi-flat. Since g is a quasihomogenous polynomial
with µ(g, 0) < 1, we can apply Proposition 4.1, so that there exists f 2 On such
that f (z) = g(z) + h.o.t. and M = (Re( f ) = 0). According to Remark 4.2, g is
stable under deformations then there exists ' 2 Diff(Cn, 0) such that f � '�1

= g.
Therefore, '(M) = (Re(g) = 0).

5. Theorem 1 in dimension two

Let us consider a special situation that appears in the proof of Theorem 1. Let Y ⇢

Z = (x, y, z, w)/Zm(a1, . . . , a4) be germ of a V -subvariety with unique cyclic
quotient singularity at 0 2 C4, where ai 2 N are pairwise coprime. Let us consider
a codimension-one holomorphic foliation G on Y with cod Y ⇤(SingG) = 2. Let E :

Z̃ ! Z be the weighted blow-up with weight ⌫ =
1
m� , where � = (a1, . . . , a4).

Denote by Ỹ the strict transform of Y by E and by ˜G := E⇤G the foliation on Ỹ .
Suppose Ỹ is smooth and set C̃ = Ỹ \ P� , where P� is the exceptional divisor

of E . Assume that C̃ is invariant by ˜G; i.e., it is a union of leaves and singularities
of ˜G. We will assume the following cases:

(i) Sing ( ˜G) \ SingP� = ;;
(ii) SingP� ( Sing ( ˜G).

Take S = C̃\Sing ( ˜G); then S is a smooth leaf of ˜G. Fix p0 2 S\SingP� and a
transverse section

P
through p0 (note that if (ii) holds, we shall only need to take

p0 2 S). Let G ⇢ Diff
�P

, p0
�
be the holonomy group of the leaf S of ˜G. Since

dim
�P�

= 1, we can assume that G ⇢ Diff(C, 0).
Observe that if p 2 SingP� and ⇣ is a loop around p in the leaf Sp of ˜G

through p, then the holonomy of ˜G along ⇣ is not the identity, but it is a periodic
diffeomorphism. This is consistent with the fact that the local fundamental group
of the orbifold Sp at p is the cyclic group of finite order. See [7] for more details.

Theorem 5.1. In the above situation, suppose that the following properties are
verified:

1. For any p 2 Y ⇤
\Sing (G) the leaf L p of G through p is closed in Y ⇤;

2. g0(0) is a primitive root of unity, for all g 2 G\{id}.

Then G has a non-constant holomorphic first integral.
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Proof. Let G 0
= {g0(0)/g 2 G} and consider the homomorphism � : G ! G 0

defined by �(g) = g0(0). We claim that � is injective. In fact, assume that �(g) = 1
and suppose by contradiction that g 6= id. In this case g(z) = z+azr+1+. . ., where
a 6= 0. According to [17], the pseudo-orbits of this transformation accumulate at
0 2 (

P
, 0), contradicting the fact that the leaves of ˜G are closed and so the assertion

is proved. Now, it suffices to prove that any element g 2 G has finite order (cf. [18]).
In fact, �(g) = g0(0) is a root of unity thus g has finite order because � is injective.
Hence, all transformations of G have finite order and G is linearizable.

This implies that there is a coordinate system w on
�P

, 0
�
such that G =

hw ! �wi, where � is a dth-primitive root of unity (cf. [18]). In particular,  (w) =

wd is a first integral of G, that is  � g =  for any g 2 G.
Let 0 be the union of the separatrices of G through 0 2 C4 and 0̃ be its

strict transform under E . The first integral  can be extended to a first integral
' : Ỹ\0̃ ! C by setting

'(q) =  
⇣
L̃q \

X⌘
,

where L̃ p denotes the leaf of ˜G through q. Since  is bounded (in a compact
neighborhood of 0 2

P
), so is '. It follows from Riemann extension theorem that

' can be extended holomorphically to 0̃ with '(0̃) = 0. This provides the first
integral of G.

5.1. Proof of Theorem 1 in dimension two

The idea is to use Theorem 2.5. Let us assume for the moment that there exists a
foliation FM with a non-constant holomorphic first integral f and M = (Re( f ) =

0). Without loss of generality, we can suppose that f is not a power in O2 so that
Re( f ) is irreducible (cf. [8, Lemma 2.2]). This implies Re( f ) = UF , where
U 2 AnR and U(0) 6= 0.

Consider for instance F(x, y) = Re(x2+yk+1)+h.o.t. If the Taylor expansion
of f at 0 2 C2 is

f =

X
j�2

f j ,

where f j is a homogeneous polynomial of degree j , then

Re( f2) = j20 (Re( f )) = j20 (UF) = U(0)Re(x2)

hence f2 = U(0)x2. Similarly, fk+1 = U(0)yk+1 so that

f (x, y) = U(0)(x2 + yk+1) + h.o.t.

Therefore by Remark 4.2 there exists ' 2 Diff(C2, 0) such that f � '�1
= x21 +

yk+11 . Hence, '(M) = (Re(x21 + yk+11 ) = 0) and this finishes the proof of Theo-
rem 1. We proceed analogously for the other cases.



NORMAL FORMS OF LEVI-FLAT HYPERSURFACES WITH ARNOLD SINGULARITIES 757

Remark 5.2. Let M be as in Theorem 1, that is, given by
Re(h(z)) + H(z, z̄) = 0,

where h(z) is a germ at 0 2 C2 of Ak, Dk or Ek type. It is easy to check that MC
is complex variety of dimension three with an isolated singularity at 0 2 C4 and
cod M⇤

C
Sing (⌘C|M⇤

C
) = 2. Recall that LC is defined by ⌘C|M⇤

C
= 0.

The rest of the paper is devoted to proving that we are indeed in the conditions
of Theorem 2.5. In all cases the idea is to consider a weighted blow-up E at the
singularity and prove that each generator of the holonomy group G of ˜LC := E⇤LC
with respect to a leaf has finite order. Now as all leaves are closed (see Lemma 2.6),
Theorem 5.1 implies that LC has a holomorphic first integral. For convenience, the
proof will be divided into the following cases: case Ak with k � 2; case Dk with
k � 5; case E6; case E7 and case E8.

5.2. Case Ak with k � 2

Let (x, y) 2 C2. Write

F(x, y) = Re
⇣
x2 + yk+1

⌘
+ H(x, y, x̄, ȳ),

therefore, the complexification FC of F can be written as

FC(x, y, z, w) =

1
2

⇣
x2 + yk+1

⌘
+

1
2

⇣
z2 + wk+1

⌘
+ HC(x, y, z, w) (5.1)

so that MC = F�1
C (0) ⇢ (C4, 0) has an isolated singularity at 0 2 C4; i.e. the

algebraic dimension of Sing (M) is 0.
We can define the following algebraic hypersurface on P(k + 1, 2, k + 1, 2)

VMC =

n
Z20 + Zk+11 + Z22 + Zk+13 = 0

o
,

where [Z0 : Z1 : Z2 : Z3] 2 P(k + 1, 2, k + 1, 2). It is not difficult to see that
Sing (MC) ✓ Sing VMC . Observe that VMC can be considered as a V -subvariety

VMC ⇢ Z = C4/Z(k + 1, 2, k + 1, 2).

Now we can construct the weighted blow-up E :
eZ ! Z with weight � = (k +

1, 2, k+ 1, 2). Let M̃C be the strict transform of MC by E . We take the exceptional
divisor D ⇠

= P� of E with coordinates (Z0, Z1, Z2, Z3) 2 C4\{0}. The intersection
of M̃C with the divisor P� is the singular algebraic surface

C̃ := M̃C \ P� =

n
Z20 + Zk+11 + Z22 + Zk+13 = 0

o
. (5.2)

On the other hand, as we have seen in Remark 2.3, the foliation LC is defined by
↵|M⇤

C
= 0, where

↵ = xdx +

(k + 1)
2

ykdy + ✓, (5.3)

and ✓ is a 1-form with j k0 (✓) = 0.
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5.2.1. Case k even

For each i = 1, . . . , 4 we have the affine open sets of E

Ũi = C4/Zai

 
�a1, . . . ,

i th
1 , . . . ,�a4

!
,

where � = (a1, a2, a3, a4). In Ũ3, the blow-up E has the expression

E(x1, y1, z1, w1) = (x, y, z, w),

where x = x1zk+11 , y = y1z21, z = zk+11 , w = w1z21 and

D \ Ũ3 = {z1 = 0}/Zk+1.

In this chart, the pull-back of ↵ by E is given by

E⇤↵ = z2k+11


(k + 1)(x21 + yk+11 )dz1 + x1z1dx1 +

(k + 1)
2

z1yk1dy1 + z1✓1
�

,

where ✓1 = E⇤✓/z2k+21 . Therefore, the foliation ˜LC := E⇤LC is defined by
↵1|M̃C

= 0, where

↵1 = (k + 1)(x21 + yk+11 )dz1 + x1z1dx1 +

(k + 1)
2

z1yk1dy1 + z1✓1. (5.4)

On the other hand, from (5.2) we have

C̃ \ Ũ3 = {z1 = 1+ x21 + yk+11 + wk+1
1 = 0}/Zk+1,

which implies that C̃ is invariant by ˜LC; i.e., it is a union of leaves and singularities
of ˜LC.

From (5.4) we conclude that the singular set of ˜LC is given by

Sing ˜LC \ Ũ3 = {z1 = x21 + yk+11 = 1+ wk+1
1 = 0}/Zk+1. (5.5)

In Ũ4 we introduce coordinates (x2, y2, z2, w2) so that E has the following expres-
sion

E(x2, y2, z2, w2) = (x, y, z, w),

where x = x2wk+1
2 , y = y2w22, z = z2wk+1

2 , w = w22. In this chart, we have ˜LC is
defined by ↵2|M̃C

= 0, where

↵2 = (k + 1)(x22 + yk+12 )dw2 + x2w2dx2 +

(k + 1)
2

w2yk2dy2 + w2�1, (5.6)
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and �1 = E⇤✓/w2k+22 . Moreover,

Sing ˜LC \ Ũ4 =

n
w2 = x22 + yk+12 = z22 + 1 = 0

o
/Z2. (5.7)

Now we claim that Sing D \ Sing ˜LC = ;, where D is the exceptional divisor of
E . In fact, on D \ Ũ3 the group acts via

x1 7�! x1, y1 7�! e4⇡ i/k+1y1, w1 7�! e4⇡ i/k+1w1

and on D \ Ũ4 the group acts via

x2 7�! e(k+1)⇡ i x2, y2 7�! y2, z2 7�! e(k+1)⇡ i z2.

Then
Sing D \ Ũ3 = {y1 = w1 = z1 = 0}/Zk+1

and
Sing D \ Ũ4 = {x2 = w2 = z2 = 0}/Z2,

hence Sing D \ Sing ˜LC = ;, and so the assertion is proved.

5.2.2. Case k odd

Let � = ((k + 1)/2, 1, (k + 1)/2, 1); since P� is well-formed, let us consider the
blow-up E with weight � . For each i = 1, . . . , 4, we have the affine open sets of
E ,

Ũi = C4/Zai

 
�a1, . . . ,

i th
1 , . . . ,�a4

!
,

where � = (a1, a2, a3, a4). In Ũ3, the blow-up E has the following expression

E(x1, y1, z1, w1) = (x, y, z, w),

where x = x1z
(k+1)/2
1 , y = y1z1, z = z(k+1)/21 , w = w1z1 and

D \ Ũ3 = {z1 = 0}/Z(k+1)/2.

In this chart, the pull-back of ↵ by E is given by

E⇤↵ = zk1


(k + 1)
2

(x21 + yk+11 )dz1 + x1z1dx1 +

(k + 1)
2

z1yk1dy1 + z1✓1
�

,

where ✓1 = E⇤✓/zk+11 . Therefore, the foliation ˜LC := E⇤LC is defined by
↵1|M̃C

= 0, where

↵1 =

(k + 1)
2

(x21 + yk+11 )dz1 + x1z1dx1 +

(k + 1)
2

z1yk1dy1 + z1✓1. (5.8)
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We see from (5.2) and (5.8) that C̃ is invariant by ˜LC. Moreover, the singular set of
˜LC is given by

Sing ˜LC \ Ũ3 =

n
z1 = x21 + yk+11 = wk+1

1 + 1 = 0
o

/Z(k+1)/2. (5.9)

In Ũ4 we introduce coordinates (x2, y2, z2, w2) so that E has the expression

E(x2, y2, z2, w2) = (x, y, z, w),

where x = x2w
(k+1)/2
2 , y = y2w2, z = z2w

(k+1)/2
2 , w = w2. In this chart, ˜LC is

defined by ↵2|M̃C
= 0, where

↵2 =

(k + 1)
2

(x22 + yk+12 )dw2 + x2w2dx2 +

(k + 1)
2

w2yk2dy2 + w2�1, (5.10)

and �1 = E⇤✓/wk+1
2 . Moreover,

Sing ˜LC \ Ũ4 =

n
w2 = x22 + yk+12 = z22 + 1 = 0

o
. (5.11)

As in case of even k, it is not difficult to see that Sing D \ Sing ˜LC = ;.

5.2.3. End of the proof of case Ak

Take S = C̃\Sing ˜LC so that S is a smooth leaf of ˜LC. Fix q0 2 S\Sing D and a
transversal

P
to S.

In the case of even k, we can work in the chart Ũ4, because of the symmetry
of the variables in the definition of the variety MC. Take q0 = (1, 0, 0, 0) and the
section

P
= {(1, 0, 0, t)|t 2 C}, parameterized by t . Call G the holonomy group

of the leaf S of ˆLC in the section
P
. From (5.7), we have that

Sing ˜LC \ Ũ4 =

n
w2 = x22 + yk+12 = z22 + 1 = 0

o
/Z2.

For each j = 1, 2, let ⇢ j be a 2td -primitive root of �1. According to [19], the
fundamental group ⇡1(S, q0) can be written in terms of generators and relations as

⇡1(S, q0) = h� j , � j : � k+1j = �2j i1 j2,

where for each j , � j , � j are two loops that turn around
n
w2 = x22 + yk+12 = z2 � ⇢ j = 0

o
.

Therefore G = h f j , g j i1 j2, where f j and g j correspond to [� j ] and [� j ], respec-
tively. We get from (5.6) that f 0

j (0) = e�2⇡ i/k+1, g0

j (0) = e�⇡ i for all 1  j  2.
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In the case of odd k, we work in the chart Ũ4. Take q0 = (1, 0, 0, 0) and the
section

P
= {(1, 0, 0, t)| t 2 C}, parameterized by t . From (5.11) we have that

Sing ˜LC \ Ũ4 =

n
w2 = x22 + yk+12 = z22 + 1 = 0

o
.

The group ⇡1(S, q0) can be written in terms of generators and relations as

⇡1(S, q0) = h� j , � j : �
(k+1)/2
j � j = � j�

(k+1)/2
j i1 j2

where for each j , � j , � j are two loops that turn aroundn
w2 = x22 + yk+12 = z2 � ⇢ j = 0

o
.

Therefore G = h f j , g j i1 j2, where f j and g j correspond to [�i ] and [�i ] respec-
tively. We get from (5.10) that f 0

j (0) = e�4⇡ i/k+1, g0

j (0) = 1 for all 1  j  2.

5.3. Case Dk with k � 5

Write
F(x, y) = Re(x2y + yk�1) + H(x, y, x̄, ȳ).

The complexification FC of F can be written as

FC(x, y, z, w) =

1
2
(x2y + yk�1) +

1
2
(z2w + wk�1) + HC(x, y, z, w), (5.12)

so that MC = F�1
C (0) ⇢ (C4, 0) has an isolated singularity at 0 2 C4; i.e., the

algebraic dimension of Sing (MC) is 0.
We can define the following algebraic hypersurface on P(k � 2, 2, k � 2, 2)

VMC = {Z20Z1 + Zk�11 + Z22Z3 + Zk�13 = 0},

where [Z0 : Z1 : Z2 : Z3] 2 P(k � 2, 2, k � 2, 2). It is not difficult to see that
Sing (MC) ✓ Sing VMC . Note that VMC can be considered as a V -subvariety

VMC ⇢ Z = C4/Z(k � 2, 2, k � 2, 2).

We consider the weighted blow-up E :
eZ ! Z with weight � = (k�2, 2, k�2, 2).

Let M̃C be the strict transform of MC by E . We take the exceptional divisor D ⇠
= P�

of E with coordinates (Z0, Z1, Z2, Z3) 2 C4\{0}. The intersection of M̃C with the
divisor P� is the singular algebraic surface

C̃ := M̃C \ P� = {Z20Z1 + Zk�11 + Z22Z3 + Zk�13 = 0}. (5.13)

On the other hand, as we have seen in Remark 2.3, the foliation LC is defined by
↵|M⇤

C
= 0, where

↵ = xydx +

1
2
(x2 + (k � 1)yk�2)dy + ✓, (5.14)

and ✓ is a 1-form with j k�20 (✓) = 0.
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5.3.1. Case k even

Let � = ((k � 2)/2, 1, (k � 2)/2, 1); since P� is well-formed, let us consider E
with weight � . For each i = 1, . . . , 4, we have the affine open sets of E ,

Ũi = C4/Zai

 
�a1, . . . ,

i th
1 , . . . ,�a4

!
,

where � = (a1, a2, a3, a4). In Ũ3, the blow-up E has the expression

E(x1, y1, z1, w1) = (x, y, z, w),

where x = x1z
(k�2)/2
1 , y = y1z1, z = z(k�2)/21 , w = w1z1 and

D \ Ũ3 = {z1 = 0}/Z(k�2)/2.

In this chart, the pull-back of ↵ by E is given by

E⇤↵ = zk�21


(k � 1)
2

(x21 y1 + yk�11 )dz1 + x1y1z1dx1

+

1
2
(x21 + (k � 1)yk�21 )z1dy1 + z1✓1

�
,

where ✓1 = E⇤✓/zk�11 . Therefore, the foliation ˜LC := E⇤LC is defined by
↵1|M̃C

= 0, where

↵1 =

(k � 1)
2

(x21 y1 + yk�11 )dz1 + x1y1z1dx1

+

1
2
(x21 + (k � 1)yk�21 )z1dy1 + z1✓1.

(5.15)

From (5.13) we have

C̃ \ Ũ3 = {z1 = x21 y1 + yk�11 + w1 + wk�1
1 = 0}/Z(k�2)/2

which implies that C̃ is invariant by ˜LC. Now from (5.15) we deduce that the
singular set of ˜LC is given by

Sing ˜LC \ Ũ3 = {z1 = x21 y1 + yk�11 = w1 + wk�1
1 = 0}/Z(k�2)/2. (5.16)

In Ũ4 we introduce coordinates (x2, y2, z2, w2) so that E has the expression

E(x2, y2, z2, w2) = (x, y, z, w),
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where x = x2w
(k�2)/2
2 , y = y2w2, z = z2w

(k�2)/2
2 , w = w2. In this chart, we have

that ˜LC is defined by ↵2|M̃C
= 0, where

↵2 =

(k � 1)
2

(x22 y2 + yk�12 )dw2 + x2y2w2dx2

+

1
2
(x22 + (k � 1)yk�22 )w2dy2 + w2�1,

(5.17)

and �1 = E⇤✓/w̄k�1
1 . Moreover,

Sing ˜LC \ Ũ4 = {w2 = x22 y2 + yk�12 = z22 + 1 = 0}. (5.18)

We claim that Sing D ( Sing ˜LC, where D is the exceptional divisor of E . In fact,
on D \ Ũ3 the group acts via

x1 7�! x1, y1 7�! e4⇡ i/k�2y1, w1 7�! e4⇡ i/k�2w1.

Since k is even, Sing D \ Ũ4 = ;, so

Sing D \ Ũ3 = {y1 = z1 = w1 = 0}/Z(k�2)/2.

Note that it is an irreducible component of Sing ˜LC and so the assertion is proved.

5.3.2. Case k odd

Let us consider E with weight � = (k � 2, 2, k � 2, 2). For each i = 1, . . . , 4, we
have the affine open sets of E ,

Ũi = C4/Zai

 
�a1, . . . ,

i th
1 , . . . ,�a4

!
,

where � = (a1, a2, a3, a4). In Ũ3, the blow-up E has the expression:

E(x1, y1, z1, w1) = (x, y, z, w),

where x = x1zk�21 , y = y1z21, z = zk�21 , w = w1z21 and

D \ Ũ3 = {z1 = 0}/Zk�2.

In this chart, the pull-back of ↵ by E is given by

E⇤↵ = z2k�31

h
(k � 1)(x21 y1 + yk�11 )dz1 + x1y1z1dx1

+

1
2
(x21 + (k � 1)yk�21 )z1dy1 + z1✓1

i
,



764 ARTURO FERNÁNDEZ-PÉREZ

where ✓1 = E⇤✓/z2k�41 . Therefore, the foliation ˜LC := E⇤LC is defined by
↵1|M̃C

= 0, where

↵1 = (k � 1)(x21 y1 + yk�11 )dz1 + x1y1z1dx1

+

1
2
(x21 + (k � 1)yk�21 )z1dy1 + z1✓1.

(5.19)

From (5.13) we have

C̃ \ Ũ3 = {z1 = x21 y1 + yk�11 + w1 + wk�1
1 = 0}/Zk�2

which implies that C̃ is invariant by ˜LC. Now from (5.15) we deduce that the
singular set of ˜LC is given by

Sing ˜LC \ Ũ3 = {z1 = x21 y1 + yk�11 = w1 + wk�1
1 = 0}/Zk�2. (5.20)

In Ũ4 we introduce coordinates (x2, y2, z2, w2) so that E has the expression

E(x2, y2, z2, w2) = (x, y, z, w),

where x = x2wk�2
2 , y = y2w22, z = z2wk�2

2 , w = w22 and

D \ Ũ3 = {w2 = 0}/Z2.

In this chart, we have ˜LC is defined by ↵2|M̃C
= 0, where

↵2 = (k � 1)(x22 y2 + yk�12 )dw2 + x2y2w2dx2

+

1
2
(x22 + (k � 1)yk�22 )w2dy2 + w2�1,

(5.21)

and �1 = E⇤✓/w2k�42 . Moreover,

Sing ˜LC \ Ũ4 = {w2 = x22 y2 + yk�12 = z22 + 1 = 0}/Z2. (5.22)

Now we assert that Sing D ( Sing ˜LC, where D is the exceptional divisor of E . In
fact, on D \ Ũ3 the group acts via

x1 7�! x1, y1 7�! e4⇡ i/k�2y1, w1 7�! e4⇡ i/k�2w1

and on D \ Ũ4 the group acts via

x2 7�! e(k�2)⇡ i x2, y2 7�! y2, z2 7�! e(k�2)⇡ i z2.

Therefore
Sing D \ Ũ3 = {y1 = z1 = w1 = 0}/Zk�2

is an irreducible component of Sing ˜LC and

Sing D \ Ũ4 = {x2 = z2 = w2 = 0}/Z2
does not intersect the singular set of ˜LC, so the assertion is proved.



NORMAL FORMS OF LEVI-FLAT HYPERSURFACES WITH ARNOLD SINGULARITIES 765

5.3.3. End of the proof of case Dk

Take S = C̃\Sing ˜LC, so that S is a smooth leaf of ˜LC. Fix q0 2 S and a transversalP
to S. Observe that the above assertion implies that q0 62 Sing D.
In the case of even k, we work in the chart Ũ4. Take q0 = (1, 0, 0, 0) and the

section
P

= {(1, 0, 0, t)| t 2 C}, parameterized by t . Call G the holonomy group
of the leaf S of ˜LC in the section

P
. From (5.18), we have that

Sing ˜LC \ Ũ4 = {w2 = x22 y2 + yk�12 = z22 + 1 = 0}.

For each j = 1, 2, denote by r j a 2td -primitive root of �1. The group ⇡1(S, q0)
can be written in terms of generators and relations as

⇡1(S, q0) = h� j , � j , ⇣ j : �
(k�2)/2
j � j = � j�

(k�2)/2
j i1 j2

where for each j , � j , � j are loops that turn around

{w2 = x22 + yk�22 = z2 � r j = 0},

and ⇣ j are loops that turn around {w2 = y2 = z2 � r j = 0} Therefore G =

h f j , g j , h j i1 j2, where f j , g j and h j correspond to [� j ], [� j ] and [⇣ j ] respec-
tively. We get from (5.17) that f 0

j (0) = e�4⇡ i/k�2, g0

j (0) = 1 and h0

j (0) = 1 for all
1  j  2.

In the case of odd k, we work in the chart Ũ4. Take q0 = (1, 0, 0, 0) and the
section

P
= {(1, 0, 0, t)|t 2 C}, parameterized by t . From (5.22) we have that

Sing ˜LC \ Ũ4 =

n
w2 = x22 y2 + yk�12 = z22 + 1 = 0

o
/Z2.

The fundamental group ⇡1(S, q0) is generated by

⇡1(S, q0) = h� j , � j , ⇣ j : � k�2j = �2j i1 j2,

where for each j , � j , � j are loops that turn around

{w2 = x22 + yk�22 = z2 � r j = 0},

⇣ j are loops that turn around {w2 = y2 = z2 � r j = 0}. Therefore G =

h f j , g j , h j i1 j2, where f j , g j and h j correspond to [�i ], [�i ] and [⇣i ] respec-
tively. We get from (5.17) that f 0

j (0) = e�2⇡ i/k�2, g0

j (0) = e�⇡ i and h0

j (0) = 1
for all 1  j  2.
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5.4. Case E6

Write
F(x, y) = Re(x4 + y3) + H(x, y, x̄, ȳ).

The complexification FC of F can be written as

FC(x, y, z, w) =

1
2
(x4 + y3) +

1
2
(z4 + w3) + HC(x, y, z, w), (5.23)

so that MC = F�1
C (0) ⇢ (C4, 0). Note that 0 2 C4 is an isolated singularity of MC

so the algebraic dimension of SingM is 0.
Let us define the following algebraic hypersurface on P(3, 4, 3, 4)

VMC := {Z40 + Z31 + Z42 + Z33 = 0},

where [Z0 : Z1 : Z2 : Z3] 2 P(3, 4, 3, 4). Clearly SingMC ⇢ Sing VMC and VMC
can be considered as a V -subvariety

VMC ⇢ Z = C4/Z(3, 4, 3, 4).

Let E : Z̃ ! Z be the weighted blow-up with weight � = (3, 4, 3, 4). Denote by
M̃C the strict transform of MC under E . Take the exceptional divisor D ⇠

= P� of
E with coordinates (Z0, Z1, Z2, Z3) 2 C4\{0}. The intersection of M̃C with P� is
the algebraic surface

C̃ = M̃C \ P� = {Z40 + Z31 + Z42 + Z33 = 0}. (5.24)

On the other hand, according to Remark (2.3), the foliationLC is defined by ↵|M⇤

C
=

0, where
↵ = 2x3dx +

3
2
y2dy + ✓, (5.25)

where ✓ is a 1-form with j30 (✓) = 0. For each i = 1, . . . , 4, we have the affine open
sets of E

Ũi = C4/Zai

 
�a1, . . . ,

i th
1 , . . . ,�a4

!
,

where � = (a1, a2, a3, a4). In Ũ3, the blow-up E has the expression:

E(x1, y1, z1, w1) = (x, y, z, w),

where x = x1z31, y = y1z41, z = z31, w = w1z41 and D \ Ũ3 = {z1 = 0}/Z3.
In this chart, the pull-back of ↵ by E is given by

E⇤↵ = z111


6(x41 + y31)dz1 + 2z1x31dx1 +

3
2
z1y21dy1 + z1✓1

�
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where ✓1 = E⇤↵/z121 . Therefore the foliation ˜LC := E⇤LC is defined by ↵1|M̃C
=

0, where

↵1 = 6(x41 + y31)dz1 + 2z1x31dx1 +

3
2
z1y21dy1 + z1✓1. (5.26)

From (5.24) we have

C̃ \ Ũ3 = {z1 = x41 + y31 + w31 + 1 = 0}/Z3

which implies that C̃ is invariant by ˜LC. Now it follows from (5.26) that the singular
set of ˜LC is given by

Sing ˜LC \ Ũ3 = {z1 = x41 + y31 = w31 + 1 = 0}/Z3. (5.27)

In Ũ4 we introduce coordinates (x2, y2, z2, w2) so that E has the expression

E(x2, y2, z2, w2) = (x, y, z, w),

where x = x2w32, y = y2w42, z = z2w32, w = w42 and D \ Ũ4 = {w2 = 0}/Z4. In
this chart, the foliation ˜LC is defined by ↵2|M̃C

= 0, where

↵2 = 6(x42 + y32)dw2 + 2w2x32dx2 +

3
2
w2y22dy2 + w2�1, (5.28)

and �1 = E⇤✓/w122 . Moreover

Sing ˜LC \ Ũ4 = {w2 = x42 + y32 = z42 + 1 = 0}/Z4. (5.29)

We assert that Sing D \ Sing ˜LC = ;, where D ⇠
= P(3, 4, 3, 4) is the exceptional

divisor of E . In fact, on D \ Ũ3 the group acts via

x1 7�! x1, y1 7�! e8⇡ i/3y1, w1 7�! e8⇡ i/3w1

and on D \ Ũ4 the group acts via

x2 7�! e3⇡ i/2x2, y2 7�! y2, z2 7�! e3⇡ i/2z2.

Therefore
Sing D \ Ũ3 = {y1 = z1 = w1 = 0}/Z3

and
Sing D \ Ũ4 = {x2 = z2 = w2 = 0}/Z4,

hence Sing ˜LC \ Sing D = ;, so the assertion is proved.
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5.4.1. End of the proof of case E6

Take S = C̃\Sing ˜LC so that S is a smooth leaf of ˜LC. Fix q0 2 S\Sing D and a
transversal

P
to S.

We work in the chart Ũ3. Take q0=(1,0,0,0) and the section
P

={(1,0,t,0)| t2
C}, parameterized by t . Call G the holonomy group of the leaf S of ˆLC in the
section

P
. From (5.27), we have

Sing ˜LC \ Ũ3 = {z1 = x41 + y31 = w31 + 1 = 0}/Z3.

For each j = 1, 2, 3, denote by ⇢ j a 3td -primitive root of �1. The group ⇡1(S, q0)
can be written in terms of generators and relations as

⇡(S, q0) = h� j , ⇣ j : � 3j = ⇣ 4j i1 j3

where � j , ⇣ j are loops that turn around

{z1 = x41 + y31 = w1 � ⇢ j = 0}, for all 1  j  3.

Therefore G = h f j , g j i1 j3, where f j and g j correspond to [� j ] and [⇣ j ] respec-
tively. We get from (5.26) that f 0

j (0) = e�2⇡ i/3, g0

j (0) = e�⇡ i/2, for all 1  j  3.

5.5. Case E7

Let us consider

F(x, y) = Re(x3y + y3) + H(x, y, x̄, ȳ),

therefore, the complexification FC of F can be written as

FC(x, y, z, w) =

1
2
(x3y + y3) +

1
2
(z3w + w3) + HC(x, y, z, w), (5.30)

so that MC = F�1
C (0) ⇢ (C4, 0). Note that 0 2 C4 is an isolated singularity of MC

so the algebraic dimension of SingM is 0.
Let us define the following algebraic hypersurface on P(2, 3, 2, 3)

VMC := {Z30Z1 + Z31 + Z32Z3 + Z33 = 0},

where [Z0 : Z1 : Z2 : Z3] 2 P(2, 3, 2, 3). Clearly SingMC ⇢ Sing VMC and VMC
can be considered as a V -subvariety

VMC ⇢ Z = C4/Z(2, 3, 2, 3).

Let E : Z̃ ! Z be the weighted blow-up with weight � = (2, 3, 2, 3). Denote by
M̃C the strict transform of MC by E . Take the exceptional divisor D ⇠

= P� of E
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with coordinates (Z0, Z1, Z2, Z3) 2 C4\{0}. The intersection of M̃C with P� is the
algebraic surface

C̃ = M̃C \ P� = {Z30Z1 + Z31 + Z32Z3 + Z33 = 0}. (5.31)

On the other hand, according to Remark (2.3), the foliationLC is defined by ↵|M⇤

C
=

0, where
↵ =

3
2
x2ydx +

1
2
(x3 + 3y2)dy + ✓, (5.32)

where ✓ is a 1-form with j30 (✓) = 0. For each i = 1, . . . , 4, we have the affine open
sets of E

Ũi = C4/Zai

 
�a1, . . . ,

i th
1 , . . . ,�a4

!
,

where � = (a1, a2, a3, a4). In Ũ3, the blow-up E has the expression

E(x1, y1, z1, w1) = (x, y, z, w),

where x = x1z21, y = y1z31, z = z21, w = w1z31 and D \ Ũ3 = {z1 = 0}/Z2.
In this chart, the pull-back of ↵ by E is given by

E⇤↵ = z81


9
2
(x31 y1 + y31)dz1 +

3
2
z1x21 y1dx1 +

1
2
z1(x31 + 3y21)dy1 + z1✓1

�

where ✓1 = E⇤↵/z91. Therefore the foliation ˜LC := E⇤LC is defined by ↵1|M̃C
= 0,

where

↵1 =

9
2
(x31 y1 + y31)dz1 +

3
2
z1x21 y1dx1 +

1
2
z1(x31 + 3y21)dy1 + z1✓1. (5.33)

From (5.31) we have

C̃ \ Ũ3 = {z1 = x31 y1 + y31 + w31 + w1 = 0}/Z2

which implies that C̃ is invariant by ˜LC. Now it follows from (5.33) that the singular
set of ˜LC is given by

Sing ˜LC \ Ũ3 = {z1 = x31 y1 + y31 = w31 + w1 = 0}/Z2. (5.34)

In Ũ4 we introduce coordinates (x2, y2, z2, w2) and E has the expression

E(x2, y2, z2, w2) = (x, y, z, w),

where x = x2w22, y = y2w32, z = z2w22, w = w32 and D \ Ũ4 = {w2 = 0}/Z3.
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In this chart, the foliation ˜LC is defined by ↵2|M̃C
= 0, where

↵2 =

9
2
(x32 y2 + y32)dw2 +

3
2
w2x22 y2dx2 +

1
2
w2(x32 + 3y22)dy2 + w2�1, (5.35)

and �1 = E⇤✓/w92. Moreover

Sing ˜LC \ Ũ4 = {w2 = x32 y2 + y32 = z32 + 1 = 0}/Z3. (5.36)

We claim that Sing D ( Sing ˜LC, where D ⇠
= P(2, 3, 2, 3) is the exceptional divi-

sor of E . In fact, on Ũ3 the group acts via

x1 7�! x1, y1 7�! �y1, w1 7�! �w1

and on Ũ4 the group acts via

x2 7�! e4⇡ i/3x2, y2 7�! y2, z2 7�! e4⇡ i/3z2.

Therefore
Sing D \ Ũ3 = {y1 = z1 = w1 = 0}/Z2

and
Sing D \ Ũ4 = {x2 = z2 = w2 = 0}/Z3,

hence Sing D ( Sing ˜LC, so the assertion is proved.

5.5.1. End of the proof of case E7

Take S = C̃\Sing ˜LC, so that S is a smooth leaf of ˜LC. Fix q0 2 S and a transversalP
to S.
We work in the chart Ũ4. Take q0=(1,0,0,0) and the section

P
={(1,0,0,t)|t 2

C}, parameterized by t . Call G the holonomy group of the leaf S of ˆLC in the
section

P
. From (5.36), we have

Sing ˜LC \ Ũ4 = {w2 = x32 y2 + y32 = z32 + 1 = 0}/Z3.
The fundamental group ⇡1(S, q0) is generated by

⇡1(S, q0) = h� j , � j , ⇣ j : �3j = ⇣ 2j i1 j3.

For each j = 1, 2, 3, denote by ⇢ j a 3td -primitive root of �1, we have � j are loops
that turn around

{w2 = y2 = z2 � ⇢ j = 0} for all 1  j  3

and � j , ⇣ j are loops that turn around

{w2 = x32 + y22 = z2 � ⇢ j = 0}, for all 1  j  3.

Therefore G = h f j , g j , h j i1 j3, where f j , g j and h j correspond to [� j ], [� j ]

and [⇣ j ], respectively. We get from (5.35) that f 0

j (0) = e�2⇡ i/9, g0

j (0) = e�2⇡ i/3,
h0

j (0) = e�⇡ i , for all 1  j  3.
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5.6. Case E8

Write
F(x, y) = Re(x5 + y3) + H(x, y, x̄, ȳ).

The complexification FC of F can be written as

FC(x, y, z, w) =

1
2
(x5 + y3) +

1
2
(z5 + w3) + HC(x, y, z, w), (5.37)

so that MC = F�1
C (0) ⇢ (C4, 0). Note that 0 2 C4 is an isolated singularity of MC

so the algebraic dimension of SingM is 0.
Let us define the following algebraic hypersurface on P(3, 5, 3, 5)

VMC := {Z50 + Z31 + Z52 + Z33 = 0},

where [Z0 : Z1 : Z2 : Z3] 2 P(3, 5, 3, 5). Clearly SingMC ⇢ Sing VMC and VMC
can be considered as a V -subvariety

VMC ⇢ Z = C4/Z(3, 5, 3, 5).

Let E : Z̃ ! Z be the weighted blow-up with weight � = (3, 5, 3, 5). Denote by
M̃C the strict transform of MC by E . Take the exceptional divisor D ⇠

= P� of E
with coordinates (Z0, Z1, Z2, Z3) 2 C4\{0}. The intersection of M̃C with P� is the
algebraic surface

C̃ = M̃C \ P� = {Z50 + Z31 + Z52 + Z33 = 0}. (5.38)

On the other hand, according to Remark (2.3), the foliationLC is defined by ↵|M⇤

C
=

0, where
↵ =

5
2
x4dx +

3
2
y2dy + ✓, (5.39)

where ✓ is a 1-form with j40 (✓) = 0. For each i = 1, . . . , 4, we have the affine open
sets of E :

Ũi = C4/Zai (�a1, . . . ,
i�th
1 , . . . ,�a4),

where � = (a1, a2, a3, a4). In Ũ3, the blow-up E has the expression

E(x1, y1, z1, w1) = (x, y, z, w);

where x = x1z31, y = y1z51, z = z31, w = w1z51 and D \ Ũ3 = {z1 = 0}/Z3.
In this chart, the pull-back of ↵ by E is given by

E⇤↵ = z141


15
2

(x51 + y31)dz1 +

5
2
z1x41dx1 +

3
2
z1y21dy1 + z1✓1

�
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where ✓1 = E⇤↵/z151 . Therefore the foliation ˜LC = E⇤LC is defined by ↵1|M̃C
=

0, where

↵1 =

15
2

(x51 + y31)dz1 +

5
2
z1x41dx1 +

3
2
z1y21dy1 + z1✓1. (5.40)

From (5.38) we have

C̃ \ Ũ3 = {z1 = x51 + y31 + w31 + 1 = 0}/Z3

which implies that C̃ is invariant by ˜LC. From (5.40), the singular set of ˜LC is
given by

Sing ˜LC \ Ũ3 = {z1 = x51 + y31 = w31 + 1 = 0}/Z3. (5.41)

In Ũ4 we introduce coordinates (x2, y2, z2, w2), and E has the expression

E(x2, y2, z2, w2) = (x, y, z, w),

where x = x2w32, y = y2w52, z = z2w32, w = w52 and D \ Ũ4 = {w̄1 = 0}/Z4.
In this chart, the foliation ˜LC is defined by ↵2|M̃C

= 0, where

↵2 =

15
2

(x52 + y32)dw2 +

5
2
w2x42dx2 +

3
2
w2y22dy2 + w2�1, (5.42)

and �1 = E⇤✓/w152 . Moreover

Sing ˜LC \ Ũ4 = {w2 = x52 + y32 = z52 + 1 = 0}/Z5. (5.43)

We assert that Sing D \ Sing ˜LC = ;, where D ⇠
= P(3, 5, 3, 5) is the exceptional

divisor of E . In fact, on D \ Ũ3 the group acts via

x1 7�! x1, y1 7�! e10⇡ i/3y1, w1 7�! e10⇡ i/3w1,

and on D \ Ũ4 the group acts via

x2 7�! e6⇡ i/5x2, y2 7�! y2, z2 7�! e6⇡ i/5z2.

Therefore
Sing D \ Ũ3 = {y1 = z1 = w1 = 0}/Z3

and
Sing D \ Ũ4 = {x2 = z2 = w2 = 0}/Z5,

hence Sing ˜LC \ Sing D = ;, so the assertion is proved.
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5.6.1. End of the proof of case E8

Take S = C̃\Sing ˜LC, so that S is a smooth leaf of ˜LC. Fix q0 2 S\Sing D and a
transversal

P
to S.

We work in the chart Ũ3. Take q0=(1,0,0,0) and the section
P

={(1,0,t,0)| t2
C}, parameterized by t . Call G the holonomy group of the leaf S of ˆLC in the
section

P
. From (5.41), we have that

Sing ˜LC \ Ũ3 = {z1 = x51 + y31 = w31 + 1 = 0}/Z3.

In this chart Sing ˜LC has three irreducible components. For each j = 1, 2, 3, denote
by ⇢ j a 3td -primitive root of �1. The group ⇡1(S, q0) can be written is terms of
generators and relations as

⇡(S, q0) = h� j , ⇣ j : � 3j = ⇣ 5j i1 j3

where � j , ⇣ j are loops that turn around

{z1 = x51 + y31 = w1 � ⇢ j = 0}, for all 1  j  3.

Therefore G = h f j , g j i1 j3, where f j and g j correspond to [� j ] and [⇣ j ], re-
spectively. We get from (5.40) that f 0

j (0) = e�2⇡ i/3, g0

j (0) = e�2⇡ i/5, for all
1  j  3. This finishes the proof of Theorem 1.
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[20] H. ŻO LADEK, “The Monodromy Group”, Mathematics Institute of the Polish Academy of

Sciences. Mathematical Monographs (New Series), 67, Birkhäuser Verlag, Basel, 2006.
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