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L p estimates for the wave equation associated
to the Grushin operator

KAUR JOTSAROOP AND SUNDARAM THANGAVELU

Abstract. We prove that the solution of the wave equation associated to the
Grushin operator G = �1� |x |2@2t is bounded on L p(Rn+1), with 1 < p < 1,

when
�� 1
p �

1
2
�� < 1

n+2 .
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1. Introduction

Consider the solution of the initial value problem

@2t u(x, t) = 1u(x, t), u(x, 0) = 0, @t u(x, 0) = f (x)

for the standard wave equation associated to the Laplacian on Rn. Representing the
solution as u(x, t) =

sin t
p

�1
p

�1
f (x) one can investigate the L p mapping proper-

ties of sin t
p

�1
p

�1
. This problem has been studied by several authors: Peral [9] and

Miyachi [5] have obtained the sharp range of p, viz.
�� 1
p �

1
2
��


1

n�1 , for which
sin t

p

�1
p

�1
is bounded on L p(Rn). Other L p-Lq estimates were considered, e.g., by

Strichartz [12]. The case of the Hermite operator �1 + |x |2 has been treated by
one of us [7], and more general operators of the form �1 + V by Zhong [16]. In
all these cases the optimal range of p for which the solution operator is bounded on
L p(Rn) is known.

All the operators mentioned above are elliptic, but results for operators from
the subelliptic case are also available. The wave equation associated to the sub-
laplacian L on the Heisenberg group Hn has been studied by Müller and Stein [6].
They have shown that the solution operator sin t

p

L
p

L is bounded on L p(Hn) for all p
satisfying

�� 1
p �

1
2
�� < 1

d�1 where d = 2n+1 is the Euclidean dimension ofHn. The
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interesting point to note here is the appearance of d � 1 rather that Q � 1, where
Q = 2n+ 2 is the homogeneous dimension. The weaker result with Q� 1 in place
of d � 1 is known from earlier works. Also when one considers only functions on
the Heisenberg group which are band limited in the central variable, the range can
be further extended to

�� 1
p �

1
2
�� < 1

2n�1 , as was shown in [8].
In this article we are interested in the wave equation associated to the Grushin

operator G = �1 � |x |2@2t on Rn+1. Though this operator is very similar to the
sublaplacian with a very explicit spectral decomposition, the study of spectral multi-
pliers poses formidable problems due to the lack of a group structure onRn+1 com-
patible with the operator. However, G can be obtained from L on the Heisenberg
group via a certain representation and hence in principle transference techniques
can be used to prove weaker versions of multiplier theorems. As the dimension of
Hn is 2n + 1 whereas G lies on an (n + 1)-dimensional space, results obtained via
transference are far from optimal. In a recent work [3] the authors have studied
multipliers associated to G using operator-valued Fourier multipliers.

The study of the wave equation associated to the Grushin operator in one di-
mension has been initiated by Ralf Meyer [4]. In his unpublished thesis written
under the guidance of Detlef Müller, he has proved the following theorem. He
considers the class of functions which are supported in SC1 = {(x, t) : |x |  C1}.

Theorem 1.1. For every C1, s > 0, 1  p  1 and ↵ >
�� 1
p �

1
2
�� there exists a

constant C = C↵p,s,C1 such that for all f 2 L p(R2) with support contained in SC1
the estimates �����

cos s
p

G
(1+ G)↵/2

f

�����
L p(R2)

 Ck f kL p(R2),

and �����
sin s

p

G
p

G(1+ G)(↵�1)/2
f

�����
L p(R2)

 Ck f kL p(R2)

are valid.

Meyer has proved the above theorem following the approach used by Müller
and Stein for the Heisenberg group. By a very careful analysis of certain kernels
he obtained extremely delicate estimates which were possible only under some as-
sumptions on the support. It is almost impossible either to get rid of this assumption
or to use the same method in higher dimensions. Fortunately, there is an alternative
approach that we have used elsewhere in studying multipliers for the Grushin opera-
tor. This approach allows us to prove L p estimates for the wave equation associated
to higher-dimensional Grushin operators. The idea is to consider multipliers for G
as operator-valued multipliers for the one-dimensional Euclidean Fourier transform.
To elaborate on this let us consider the spectral decomposition of G. Let

f �(x) =

Z
1

�1

f (x, t)ei�t dt
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stand for the inverse Fourier transform of f (x, t) in the variable t . Then by applying
G to the inversion formula

f (x, t) =

1
2⇡

Z
1

�1

e�i�t f �(x)d�

we see that
G f (x, t) =

1
2⇡

Z
1

�1

e�i�t H(�) f �(x)d�

where H(�) = �1 + �2|x |2 is the scaled Hermite operator on Rn. The spectral
decomposition of H(�) is explicitly known and given by

H(�) =

1X
k=0

(2k + n)|�|Pk(�)

where the Pk(�)’s are the Hermite projections, see [13]. (We will say more about
these projections later in the paper.) Consequently, the spectral decomposition of G
is written as

G f (x, t) =

1
2⇡

Z
1

�1

e�i�t
 

1X
k=0

(2k + n)|�|Pk(�) f �(x)

!
d�.

Given a bounded function m on the spectrum of G, which is just the half-line
[0,1), we can define m(G) by the spectral theorem. In view of the above de-
composition we see that

m(G) f (x, t) =

1
2⇡

Z
1

�1

e�i�tm(H(�)) f �(x)d�

where the Hermite multiplier m(H(�)) is given by

m(H(�)) =

1X
k=0

m((2k + n)|�|)Pk(�).

Set X = L p(Rn) and identify L p(Rn+1) to L p(R, X), the L p space of Banach
space-valued functions on R.With this identification we see that m(G) can be con-
sidered as a Fourier multiplier on R for X-valued functions, the multiplier being
given by m(H(�)). Of course, we need to assume that the m(H(�))’s are uniformly
bounded on X = L p(Rn) even for the boundedness of m(G) on L2(R, X). Further
conditions are needed to guarantee the boundedness of m(G) on L p(R, X).

Fortunately for us the problem of operator-valued multipliers has been studied
by L. Weis [15], who has obtained some sufficient conditions. The following theo-
rem has been proved in a slightly more general set-up. Given a function m taking
values in B(X,Y ), the space of bounded linear operators from X into Y , one can
define

Tm f (t) =

1
2⇡

Z
1

�1

ei�tm(�) f̂ (�)d�
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for all f 2L2(R,X). This operator is clearly bounded from L2(R, X) into L2(R,Y )
provided m(�) is uniformly bounded. For such operators we have the following
result:

Theorem 1.2. Let X and Y be UMD spaces. Let m : R⇤
! B(X,Y ) be a differen-

tiable function such that the families {m(�) : � 2 R⇤
} and {� d

d�m(�) : � 2 R⇤
} are

R-bounded. Then m defines a Fourier multiplier which is bounded from L p(R, X)
into L p(R,Y ) for all 1 < p < 1.

Note that mere uniform boundedness of m(�) and � d
d�m(�) are not enough to

guarantee the L p boundedness of the Fourier multiplier. However, as the reader
may recall, they are sufficient in the scalar case. In most applications of the above
theorem, the crux of the matter lies in proving the R-boundedness of these families.
For our main result we only need to use this theorem when X = Y = L p(Rn),
in which case the R-boundedeness is equivalent to vector-valued inequalities for
m(�) and � d

d�m(�). Indeed, the R-boundedness of a family of operators T (�) is
equivalent to the inequality

������
 

1X
j=1

|T (� j ) f j |2
! 1
2
������
p

 C

������
 

1X
j=1

| f j |2
! 1
2
������
p

for all possible choices of � j 2 R⇤ and f j 2 L p(Rn). Thus we only need to verify
this vector-valued inequality for the two families in the theorem.

We consider the following initial value problem for the wave equation:

@2s u(x, t; s) + Gu(x, t; s) = 0
u(x, t; 0) = 0, @su(x, t; 0) = f (x, t).

(1.1)

Using the functional calculus for G, it is easy to see that the solution of the above
equation is given by

u(x, t; s) =

sin s
p

G
p

G
f (x, t).

Since G is a homogeneous operator of degree n+ 2 under the nonisotropic dilation
Ds f (x, t) = f (sx, s2t), it is enough to consider the case s = 1. Our main result is
the following theorem:

Theorem 1.3. Let n � 2. The operator sin
p

G
p

G
is bounded on L p(Rn+1) for all p

satisfying
�� 1
p �

1
2
�� < 1

n+2 .

Note that in the above theorem the homogeneous dimension n + 2 occurs. We
believe that the optimal result is that in which n + 2 is replaced by n. The Fourier
multiplier corresponding to sin s

p

G
p

G
is given by sin s

p

H(�)
p

H(�)
, which is precisely the

solution operator for the wave equation associated to the Hermite operator. For a
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fixed �, boundedness of this operator on L p(Rn) is known for the range |
1
p�

1
2 |<

1
n ,

see [7,16]. What we need to prove is the R-boundedness of the above family as well
as the same for � times its derivative. The major part of this paper is concerned with
this problem.

To prove Theorem 1.3 we consider a more general class of oscillatory multi-

pliers of G, viz. J↵
�
p

G
�

p

G↵
for <↵ � �1/2, where J↵ is the Bessel function of order

↵. This is a densely defined analytic family of operators acting on L p(Rn+1).When
↵ = 1/2 we get back the solution operator of the wave equation and hence Theorem
1.3 descends once we prove the following:

Theorem 1.4. Let n � 2 and 1 < p < 1. Then J↵
�
p

G
�

p

G↵
is bounded on L p(Rn+1)

whenever <(↵) > (n + 2)| 1p �
1
2 | �

1
2 .

Recall that the Bessel functions J↵(t) are defined even for complex values of
↵. In fact the Poisson integral representation

J↵(t) =

(t/2)↵

0((2↵ + 1)/2)0(1/2)

Z 1

�1
eits(1� s2)(2↵�1)/2ds

is valid as long as <(↵) > �1/2. Moreover, when ↵ = � + � + i� with � >
�1/2, � > 0, � 2 R, we have the identity

J↵(t)
t↵

=

21���i�

0(� + i� )

Z 1

0

J�(st)
(st)�

(1� s2)�+i��1s2�+1ds.

Thus we see that J↵
�
p

G
�

p

G↵
is an analytic family of operators which is bounded on

L2(Rn+1) whenever <(↵) � �
1
2 . Using the above formula we can also check that

the family is admissible. Hence we can appeal to Stein’s analytic interpolation
theorem to obtain Theorem 1.4 as soon as we get the following:

Theorem 1.5. Let n � 2. Then J↵
�
p

G
�

p

G↵
is bounded on L p(Rn+1) for all 1 < p <

1 provided <(↵) > n+1
2 .

Thus by setting m↵(u) =

J↵
�
p

u
�

p

u↵ we study the R-boundedness of the fam-
ily m↵(H(�)) when <(↵) > n+1

2 . We also need to study the R-boundedness of
� d
d�m↵(H(�)).We address these problems in the next two sections.
We conclude this introduction with the following remarks. In all the theo-

rems stated above we have assumed n � 2. The reason is the following: in the
proof of Proposition 2.2 below, which is used Theorem 2.1, we need to use the
estimate 8k(x, x)  C(2k + n)n/2�1, for x 2 Rn , which is valid only when
n � 2. Here 8k(x, y) is the kernel of the projection Pk associated to the Her-
mite operator H. In the one-dimensional case8k(x, x) = (hk(x))2, where hk is the
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k-th Hermite function on R, behaves like k�1/6 and hence we do not get an ana-
logue of Proposition 2.2. However, when B is a compact subset of R we do have
supx2B(hk(x))2  C(2k + 1)�1/2 and hence it is possible to prove a version of
Theorem 1.3 for the operator �B sin

p

G
p

G
�B .We do not pursue this here as the result

of Meyer is stronger than what we can prove.

ACKNOWLEDGEMENTS. The authors wish to thank the referee for her/his careful
reading of the manuscript and many useful suggestions.

2. A maximal theorem for m↵(H(�))

As we mentioned at the end of the introduction we are interested in proving vector-
valued inequalities for the families T↵(�) = m↵(H(�)) and � d

d�T↵(�). In order
to do so we need a maximal theorem for the family T↵(�), which means that we
have to get estimates for the maximal function T ⇤

↵ f (x) = sup�2R⇤ |T↵(�) f (x)|.
For 1  p < 1 let Mp f (x) = (M| f |p(x))1/p where M f is the Hardy-Littlewood
maximal function. Let ↵ = x+ iy.We call c(↵) an admissible function (or function
of admissible growth) if

sup
y2R

e�b|y| log(|c(↵)|) < 1

for some b < ⇡.With this terminolgy we have the following:

Theorem 2.1. Let n � 2. Then:

(i) For <(↵) > (n�1)
2 we have

T ⇤

↵ f (x)  C2(↵)M2 f (x);

(ii) For <(↵) > n �
1
2 we have T

⇤

↵ f (x)  C1(↵)M f (x), where the functions C1
and C2 are admissible.

This theorem will be proved by obtaining good estimates for the kernel of T↵(�).
We briefly recall some details from the spectral theory of the Hermite operator
H(�). Let 8↵ , with ↵ 2 Nn , stand for the normalised Hermite functions on Rn ,
which are eigenfunctions of H = H(1) with eigenvalues 2|↵| + n and form an
orthonormal basis for L2(Rn). It follows that for � 2 R⇤ the functions 8�↵(x) =

|�|n/48↵(|�|1/2x) satisfy H(�)8�↵ = (2|↵| + n)|�|8�↵. The spectral projections
Pk(�) of H(�) are defined by

Pk(�) f =

X
|↵|=k

( f,8�↵)8
�
↵.
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It follows that Pk(�) = ��Pk��1� where �� f (x) = f (|�|
1
2 x) and Pk = Pk(1).

Therefore, m(H(�)) = ��m(|�|H)��1� for any multiplier m.
The above remarks imply that

J↵
�p

H(�)
�

p

H(�)
↵ f (x) = ��

J↵
�p

|�|H
�

�p
|�|H

�↵ ���1 f (x).

In view of this relation, a moment’s thought reveals that it is enough to consider the
maximal function

sup
t>0

�������
J↵
⇣
t
p

H
⌘

⇣
t
p

H
⌘↵ f (x)

�������
and establish the estimates stated in the theorem above.

By the definition

J↵
⇣
t
p

H
⌘

⇣
t
p

H
⌘↵ f =

1X
k=0

J↵
�
t
p

2k + n
�

�
t
p

2k + n
�↵ Pk f

and hence it follows that J↵
�
t
p

H
�

�
t
p

H
�↵ is an integral operator whose kernel K ↵t (x, y) is

given by

K ↵t (x, y) =

1X
k=0

J↵
�
t
p

2k + n
�

�
t
p

2k + n
�↵ 8k(x, y),

where 8k(x, y) =

P
|�|=k 8�(x)8�(y) is the kernel of Pk .We require the follow-

ing estimates on the kernel K ↵t .

Proposition 2.2. Let n � 2. Then:

(i) For <(↵) > n�1
2 we have

Z
|x�y|>r

|K ↵t (x, y)|2dy  C2(↵)t�n(1+ rt�1)�2<(↵)�1
;

(ii) For <(↵) > n �
1
2 we have

sup
|x�y|>r

|K ↵t (x, y)|  C1(↵)t�n(1+ rt�1)�<(↵)�1/2

where C1 and C2 are functions of admissible growth.
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Assuming the proposition for a moment, we complete the proof of Theorem 2.1.
For x 2 Rn we define fk(y) = �

{y:2k<|x�y|2k+1}(y) f (y), for k 2 Z, so that
f =

P
1

k=�1
fk and

J↵(t
p

H)

(t
p

H)↵
f (x) =

1X
k=�1

Z
Rn
K ↵t (x, y) fk(y)dy.

After applying the Cauchy-Schwarz inequality to each term in the sum we see that
J↵(t

p

H)

(t
p

H)↵
f (x) is bounded by

1X
k=�1

2(k+1)n/2
✓Z

|x�y|>2k
|K ↵t (x, y)|2dy

◆ 1
2
✓

1
2(k+1)n

Z
|x�y|2k+1

| f (y)|2dy
◆ 1
2
.

As the second factor inside the summation is bounded by M2 f (x), in view of
Proposition 2.2 we have, whenever <(↵) > n�1

2 , the estimate
�����
J↵(t

p

H)

(t
p

H)↵
f (x)

�����  C(↵)

 
1X

k=�1

(2kt�1)n/2(1+ 2kt�1)�<↵�1/2

!
M2 f (x).

Thus we are left to show that

G(t) :=

1X
k=�1

(2kt�1)n/2(1+ 2kt�1)�<↵�1/2

is a uniformly bounded function of t > 0. Note that G(2i t) = G(t), for all i 2 Z
and hence it is enough to prove the boundedness of G on the interval [1, 2]. But G
is a continuous function on [1, 2] as the series converges uniformly on this interval
when <(↵) > n�1

2 .

This proves part (i) of Theorem 2.1. To prove (ii) we proceed as above and use
the second estimate of Proposition 2.2, which is valid when <(↵) > n �

1
2 . The

details are left to the reader. Theorem 2.1 is established.

We now turn our attention to the proof of Proposition 2.2. We will treat the
cases rt�1  1 and rt�1 > 1 separately. In the first case we only need to show that

Z
|x�y|>r

|K ↵t (x, y)|2dy  C(↵)t�n.

Since Z
|x�y|>r

|K ↵t (x, y)|2dy 

Z
Rn

|K ↵t (x, y)|2dy,
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we will actually estimate the second integral in the above inequality. Recalling the
definition of K ↵t (x, y) and using the orthogonality of the Hermite functions we see
that Z

Rn
|K ↵t (x, y)|2dy =

1X
k=0

���� J↵
�
t
p

2k + n
�

�
t
p

2k + n
�↵
����
2
8k(x, x).

Splitting the sum into two parts we first consider

1X
j=1

X
2� j<t

p

2k+n2� j+1

���� J↵
�
t
p

2k + n
�

�
t
p

2k + n
�↵
����
2
8k(x, x).

As
�� J↵(s)
s↵
��
 c(↵) [14], where c(↵) is an admissible function of ↵, for all s � 0 the

above sum is bounded by

c(↵)2
1X
j=1

X
2� j<t

p

2k+n2� j+1

8k(x, x).

Finally, we make use of the estimate 8k(x, x)  C(2k + n)n/2�1 proved in [13,
Lemma 3.2.2, Chapter 3], valid for n � 2, to see that the above sum is bounded by

1X
j=1

⇣
2�2 j t�2

⌘n/2
 Ct�n

which takes care of the first sum.
To estimate the second sum, namely

1X
j=0

X
t
p

2k+n⇠2 j

���� J↵(t
p

2k + n)�
t
p

2k + n
�↵
����
2
8k(x, x)

we make use of the estimate���� J↵
�
t
p

2k + n
�

�
t
p

2k + n
�↵
����  c(↵)

⇣
t
p

2k + n
⌘

�<(↵)�1/2
,

when t
p

2k + n � 1. As before this leads to the estimate

c(↵)2
1X
j=0

X
2 j<t

p

2k+n2 j+1

⇣
t
p

2k + n
⌘

�2<(↵)�1
(2k + n)

n
2�1.

After simplifying further this sum we get the estimate

c(↵)2t�n
1X
j=0
2�2 j (<(↵)+ 1�n

2 ).
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The sum over j converges if and only if <(↵) > n�1
2 . This takes care of the second

sum. Thus we have proved the required estimate when rt�1  1.
We now treat the second case, namely rt�1 > 1.We estimate the integral when

<(↵) > n�1
2 first. Note that it is enough to prove the estimateZ

|x�y|>r
|K ↵t (x, y)|2dy  c(↵)t�n+2mr�2m

for some integer m > <(↵) +
1
2 . SinceZ

|x�y|>r
|K ↵t (x, y)|2dy  r�2m

Z
||x � y|mK ↵t (x, y)|2dy,

it is enough to proveZ
|(x � y)�K ↵t (x, y)|2dy  c(↵)t�n+2m

for all � 2 Nn with |�| = m. In order to do this we make use of [13, Lemma 3.2.3],
that we state below for the convenience of the reader.

Given a function  defined on [0,1) consider the kernel M defined by

M (x, y) =

X
µ2Nn

 (|µ|)8µ(x)8µ(y).

Let 1 (s) =  (s + 1) �  (s) be the forward finite difference and let 1k be
defined inductively. Let 1kM stand for the kernel M1k . We also define Bj =

�@y j + y j , and A j = �@x j +x j for j = 1, 2, · · · , n. For multi-indices µ, we define
Aµ, Bµ in the usual manner. With this notation we have the following:

Lemma 2.3. For any multi-index � 2 Nn we have

(x � y)�M (x, y) =

X
� ,µ

C� ,µ(B � A)�4|µ|M (x, y),

where the sum extends over all multi-indices µ and � satisfying 2µ j � � j = � j ,
and µ j  � j .

Let us fix � 2 Nn with |�| = m. In view of the above lemma we have

(x � y)�K ↵t (x, y) =

X
� ,k

c� k(B � A)�4kM (x, y)

where  (|µ|) =
J↵(t

p

2|µ|+n)
(t

p

2|µ|+n)↵ and the sum extends over all � and k with |� | =

2k � m, and k  m. After expanding (B � A)� the above becomes a finite linear
combination of terms of the formX

µ

4
k (|µ|)A⌧8µ(x)B�8µ(y)
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where |⌧ | + |� | = |� |. By the mean value theorem we can write

4
k (|µ|) =

Z 1

0
· · ·

Z 1

0
 (k)(|µ| + s1 + · · · + sk)ds1ds2 · · · dsk,

and hence it is enough to prove that

Z
Rn

�����
X
µ

 (k)(|µ|)A⌧8µ(x)B�8µ(y)

�����
2

dy  Ct�n+2m

for each ⌧, � and k as above.
We make use of the facts

A j8µ(x) = (2|µ j | + 2)
1
28µ+e j (x), Bj8µ(y) = (2|µ j | + 2)

1
28µ+e j (y)

(see [13]) where e j are the coordinate vectors. In view of this the above integral is
dominated by

1X
N=0

| (k)(N )|2(2N + n)|⌧ |+|� |8N+|⌧ |(x, x).

Again, if we use the estimate 8N (x, x)  C(2N + n)
n
2�1 and the fact that |⌧ | +

|� | = 2k � m, the above quantity is dominated by
1X
N=0

| k(N )|2(2N + n)2k�m+
n
2�1.

Now recall that  (N ) =
J↵(t

p

2N+n)
(t

p

2N+n)↵
, so that  (k)(N ) =

dk
d�k

J↵(t
p

�)

(t
p

�)
↵ |�=2N+n.Mak-

ing use of the well-known relation

d
d�

J↵
⇣
p

�
⌘

⇣
p

�
⌘↵ = �

1
2

J↵+1
⇣
p

�
⌘

⇣
p

�
⌘↵+1 ,

(see [14]) we get

 (k)(N ) = t2k
J↵+k

�
t
p

2N + n
�

�
t
p

2N + n
�↵+k .

Plugging this in the above expression we get

Z �����
X
µ

 (k)(|µ|)A⌧8µ(x)B�8µ(y)

�����
2

dy

 C
1X
N=0

����t2k J↵+k
�
t
p

2N + n
�

(t
p

2N + n)↵+k

����
2
(2N + n)2k�m+

n
2�1.
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As before we estimate the above sum by splitting it into two parts. For the part
1X
j=1

X
t
p

2N+n⇠2� j

����t2k J↵+k
�
t
p

2N + n
�

�
t
p

2N + n
�↵+k

����
2
(2N + n)2k�m+

n
2�1

we use the boundedness of the Bessel function which results in the estimate

ck(↵)2
1X
j=1

t4k
 
2�2 j

t2

!2k�m+
n
2

= ck(↵)2t�n+2m
1X
j=1
2�2 j (2k�m)2�nj .

Since 2k � m = |� | � 0 the above sum clearly converges. To treat the sum
1X
j=0

X
t
p

2N+n⇠2 j

����t2k J↵+k
�
t
p

2N + n
�

�
t
p

2N + n
�↵+k

����
2
(2N + n)2k�m+

n
2�1

we make use of the estimate�����
J↵+k(t

p

2N + n)�
t
p

2N + n
�↵+k

�����  ck(↵)
⇣
t
p

2N + n
⌘

�<(↵+k)� 1
2
.

Using the above estimate and simplifying we get

ck(↵)2
1X
j=0

t4k2�2 j (<(↵+k)+ 1
2 )

 
22 j

t2

!2k�m+
n
2

= ck(↵)2t�n+2m
1X
j=0
2�2 j (<(↵)+ 1�n

2 ))22 j (k�m).

As k  m, the sum over j is finite as soon as <(↵) > n�1
2 .

Thus Proposition 2.2 (i) is completely proved when <(↵) > n�1
2 . What re-

mains to be considered is the second part for<(↵) > n�
1
2 .Here again we consider

two cases, namely rt�1  1 and rt�1 > 1. When rt�1  1 it is enough to show
that

sup
|x�y|>r

|K ↵t (x, y)|  c(↵)t�n

for <(↵) > n �
1
2 . Clearly,

sup
|x�y|>r

|K ↵t (x, y)|  sup
x,y2Rn

|K ↵t (x, y)|.

So it suffices to show that

sup
x,y2Rn

|K ↵t (x, y)|  c(↵)t�n.
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Using the definition of K ↵t we get that

|K ↵t (x, y)| 

X
k

�����
J↵
�
t
p

2k + n
�

�
t
p

2k + n
�↵
����� · |8k(x, y)|.

Since 8k(x, y) =

P
|�|=k 8�(x)8�(y), an application of the Cauchy-Schwarz in-

equality gives us
�����
X
|�|=k

8�(x)8�(y)

����� 

p
8k(x, x)8k(y, y).

For n � 2 we know from [13] that supx2Rn 8k(x, x)  (2k + n)
n
2�1. Using this

estimate we get that

|K ↵t (x, y)| 

X
k

�����
J↵
�
t
p

2k + n
�

�
t
p

2k + n
�↵
����� (2k + n)

n
2�1.

Now, proceeding as in the previous part, i.e., splitting the sum into two parts and
using the estimates on the Bessel function, we get the desired inequality for<(↵) >
n �

1
2 .

When rt�1 > 1 it is enough to show that

sup
|x�y|>r

|K ↵t (x, y)|  c(↵)t�n+<(↵)+ 1
2 r�<(↵)� 1

2

for <(↵) > n �
1
2 . As before we only need to show that

sup
|x�y|>r

|K ↵t (x, y)|  c(↵)t�n+mr�m

for some m > <(↵) +
1
2 which in turn will follow once we show thatX

|�|=m
sup

x,y2Rn
|(x � y)�K ↵t (x, y)|  c(↵)t�n+m .

Keeping the same notation as in the previous part, the above estimate will follow
from the estimates

sup
x,y2Rn

�����
X
µ

 (k)(|µ|)A⌧8µ(x)B�8µ(y)

�����  c(↵)t�n+m,

where k  m and |⌧ | + |� | = 2k � m � 0.
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Recalling the action of A j and Bj on Hermite functions we see thatX
|µ|=N

|A⌧8µ(x)B�8µ(y)|  C(2N + n)
1
2 (|⌧ |+|� |)

p
8N+m(x, x)8N+m(y, y).

Using the fact that |⌧ | + |� | = 2k � m the estimates on 8k(x, x) lead toX
|µ|=N

|A⌧8µ(x)B�8µ(y)|  C(2N + n)k�m/2+ n
2�1.

Recalling that  (k)(N ) = t2k J↵+k(t
p

2N+n)
(t

p

2N+n)↵+k we need to estimate

1X
N=0

����t2k J↵+k
�
t
p

2N + n
�

�
t
p

2N + n
�↵+k

����(2N + n)k�
m
2 +

n
2�1.

As before splitting the above sum into two parts and using the estimates on Bessel
functions we get the required estimate for <(↵) > n �

1
2 . Thus Proposition 2.2 is

completely proved.
In the next section when trying to prove the R-boundedness of � d

d�T↵(�) we
will encounter the family H(�)m↵+1(H(�)). Hence we require the following max-
imal theorem for this family:

Theorem 2.4. Let n � 2.

(i) For <(↵) > (n+1)
2 ,

sup
�2R⇤

|H(�)m↵+1(H(�)) f (x)|  C2(↵)M2 f (x);

(ii) For <(↵) > n +
1
2 ,

sup
�2R⇤

|H(�)m↵+1(H(�)) f (x)|  C1(↵)M f (x)

where the functions C1 and C2 are admissible.

In order to prove this theorem we need an analogue of Proposition 2.2 for the kernel

K̃t
↵
(x, y) =

1X
k=0

t2(2k + n)
J↵+1

�
t
p

2k + n
�

�
t
p

2k + n
�↵+1 8k(x, y).

This kernel is estimated just like the kernel K ↵t . Note that when t
p

2k + n  1
both J↵(t

p

2k+n)�
t
p

2k+n
�↵ and t2(2k + n) J↵+1(t

p

2k+n)
(t

p

2k+n)↵+1 are bounded. On the other hand when

t
p

2k + n � 1

t2(2k + n)

�����
J↵+1

�
t
p

2k + n
�

�
t
p

2k + n
�↵+1

�����  C(↵)
⇣
t
p

2k + n
⌘

�<(↵)+1/2
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and since we are assuming <(↵) > n+1
2 the same estimates as in Proposition 2.2

are satisfied by K̃t
↵
(x, y). This takes care of the part when rt�1  1. Recall that

in the proof of Proposition 2.2 when rt�1 > 1 we needed some estimates on the
derivative of the multiplier. The k-th derivative of the function t2u m↵+1(t2u) at
|µ| is given by

t2k
"
k
J↵+k

�
t
p

2|µ| + n
�

�
t
p

2|µ| + n
�↵+k + t2(2|µ| + n)

J↵+1+k
�
t
p

2|µ| + n
�

�
t
p

2|µ| + n
�↵+1+k

#

which can be estimated in a similar way as in the case of K ↵t . We leave the details
to the reader.

3. The R-boundedness of T↵(�) and d
d�T↵(�)

3.1. The R-boundedness of m↵(H(�))

Making use of the maximal theorem proved in the previous section we will now
prove the required vector-valued inequalities for the family T↵(�) = m↵(H(�)).
Using Proposition 2.2 it is possible to get the estimate
✓Z

|x�y|>r
|K ↵t (x, y)|pdy

◆1/p
 C2(↵)t�n/(2p

0)
⇣
1+ rt�1

⌘
�<(↵)�1/2+n( 1p�

1
2 )

for 1 < p  2 and <(↵) > n�1
2 . This will lead as before to the estimate

sup
�2R⇤

|T↵(�) f (x)|  C(↵)Mp f (x)

whenever p � 2. Unfortunately, this estimate is not good enough to yield the re-
quired vector-valued inequality for the family T↵(�). What we can prove is the
inequality ������

 
1X
j=1

|T↵(� j ) f j |r
!1/r������

p

 C

������
 

1X
j=1

| f j |r
!1/r������

p

for all r > p � 2. As we need the case r = 2 we have to proceed in a different way
using analytic interpolation. We first prove the following:

Proposition 3.1. For any ' 2 C1

c (Rn) the operator T↵(�) satisfies the followingZ
Rn

|T↵(�) f (x)|2|'(x)|dx  c(↵)

Z
Rn

| f (x)|2M'(x)dx

for <(↵) > n�1
2 . Moreover, c(↵) is an admissible function of ↵, and it is indepen-

dent of the choice of ' and �.
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Proof. We make use of Theorem 2.1 along with a lemma due to Fefferman and
Stein [1, Section 3, Lemma 1] which states thatZ

Rn
M f (x)r |'(x)|dx  Cr

Z
| f (x)|r M'(x)dx,

for all r > 1 with Cr independent of f and '. Therefore, for <(↵) > n�1
2 we have,

from Theorem 2.1,Z
Rn

|T↵(�) f (x)|p|'(x)|dx  C2(↵)

Z
(M| f |2(x))p/2|'(x)|dx

which using the Fefferman-Stein Lemma yields
Z

Rn
|T↵(�) f (x)|p|'(x)|dx  C3(↵)

Z
| f (x)|pM'(x)dx

for all p > 2. Similarly, when <(↵) > n �
1
2 we haveZ

Rn
|T↵(�) f (x)|p|'(x)|dx  C4(↵)

Z
Rn

| f (x)|pM'(x)dx

for all p > 1. Thus we see that

T↵(�) : L p(Rn,M'(x) dx) �! L p(Rn, |'(x)| dx)

is bounded for all p > 2 if <(↵) > n�1
2 and for all p > 1 if <(↵) > n �

1
2 .

We want to apply Stein’s anaytic interpolation theorem [10, Chapter 5, Theo-
rem 4.1] to the family T↵(�). It is easy to see that the norm of T↵(�) is independent
of ' and � in both cases and is an admissible family of operators in ↵. Fix ↵ 2 C
such that <↵ > n�1

2 and � 6= 0. Let � > 0 be chosen so that <↵ =
n�1
2 + �. Define

an analytic family of operators Sz on the strip S = {z 2 C : 0  <(z)  1} by set-
ting Sz f = T(nz+n�1+�)/2(�). Let ✏ =

1
2 (�1+

p

1+ (8�)/n) and take p0 = 2+ ✏
and p1 = 1+ ✏. Then it is clear, from Theorem 2.1, thatZ

Rn
|Siy f (x)|p0 |'(x)| dx  C1(iy)

Z
Rn

| f (x)|p0M'(x) dx

and Z
Rn

|S1+iy f (x)|p1 |'(x)| dx  C2(1+ iy)
Z

Rn
| f (x)|p1M'(x) dx,

where C1(iy) and C2(1 + iy) are admissible functions independent of ' and �.
By interpolation, it follows that S�/n is bounded from L p(Rn,M'(x) dx) into
L p(Rn, |'(x)| dx) where 1

p =
1��/n
2+✏ +

�/n
1+✏ . A simple calculation recalling the

definition of ✏, shows that p = 2 and hence S�/n = Tn�1
2 +�(�) is bounded from
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L2(Rn,M'(x) dx) into L2(Rn, |'(x)| dx) which proves the theorem when ↵ is
real.

When ↵ is not real we write ↵ = � + � + i� where � > n�1
2 , � > 0, and we

make use of the identity

J�+�+i�
�p

H(�)
�

�p
H(�)

��+�+i� =

21���i�

0(� + i� )

Z 1

0

J�
�
s
p

H(�)
�

�
s
p

H(�)
��

⇣
1� s2

⌘�+i��1
s2�+1ds.

We can now prove the vector-valued inequality for {T↵(�)}�2R⇤ thus proving the
R-boundedness of m(H(�)).

Theorem 3.2. Let T↵(�) be as defined before. Then for any choice of � j 2 R⇤ and
f j 2 L p(Rn) we have

������
 

1X
j=1

|T↵(� j ) f j |2
! 1
2
������
p

 C

������
 

1X
j=1

| f j |2
! 1
2
������
p

for all 1 < p < 1 provided <(↵) > n�1
2 .

Proof. When p = 2 the vector-valued inequality follows trivially as J↵(
p

(2k+n)|� j |)
(
p

(2k+n)|� j |)
↵

is uniformly bounded independently of j and k for any ↵ with <↵ � �
1
2 . So it

follows that kT↵(� j ) f jk2  Ck f jk2, where C is independent of j and hence we
get the vector-valued inequality for p = 2.

We will now deal with the case p 6= 2. Without loss of generality we can
assume that p > 2, as the case 1 < p < 2 can be treated using a duality argument.
Let p2 = q. Clearly,

������
 

1X
j=1

|T↵(� j ) f j |2
! 1
2
������
p

=

�����
1X
j=1

|T↵(� j ) f j |2
�����
1
2

q

.

So, it is sufficient to deal with k

P
1

j=1 |T↵(� j ) f j |2kq . As we know
�����

1X
j=1

|T↵(� j ) f j |2
�����
q

= sup
k'kq01,'2C1

c (Rn)

�����
Z

Rn

1X
j=1

|T↵(� j ) f j (x)|2'(x)dx

�����
it is enough to estimate the integral on the right-hand side. In view of Proposi-
tion 3.1, for <(↵) > n�1

2 we have
Z

Rn
|T↵(� j ) f j (x)|2|'(x)|dx  C

Z
Rn

| f j (x)|2M'(x) dx,
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where C is independent of ' and � j . Therefore,
�����
Z

Rn

1X
j=1

|T↵(� j ) f j (x)|2'(x)dx

����� 

1X
j=1

Z
Rn

|T↵(� j ) f j (x)|2|'(x)|dx

 C
Z

Rn

1X
j=1

| f j (x)|2M'(x)dx .

Applying Hölder’s inequality to the right-hand side of the above we get
�����
Z

Rn

1X
j=1

|T↵(� j ) f j (x)|2'(x)dx

�����  Ck

1X
j=1

| f j |2kqkM'kq 0,

for <(↵) > n�1
2 . Since q 0 > 1 and k'kq 0  1, by the boundedness of the Hardy-

Littlewood maximal function on Lq 0

(Rn), we get

sup
k'kq01,'2C1

c (Rn)

�����
Z

Rn

1X
j=1

|T↵(� j ) f j (x)|2'(x) dx

�����  Ck

1X
j=1

| f j |2kq ,

for<(↵) > n�1
2 .Hence we get the required vector-valued inequality for T↵(�).

3.2. The R-boundedness of � d
d�m↵(H(�))

In this subsection we prove the vector-valued inequality required to establish the
R-boundedness of the family � d

d�m↵(H(�)).Without loss of generality we assume
that � > 0 as the case of � < 0 follows in a similar fashion with � replaced by ��.
The derivative ofm↵(H(�)) has been calculated in our earlier work [3, Lemma 3.4].
It has been shown that � d

d�m↵(H(�)) is a linear combination of terms of the form

A2j (�)
Z 1

0
m0

↵(H(�) + 2s�)ds, A⇤2
j (�)

Z 1

0
m0

↵(H(�) + 2s�)ds

and H(�)m0

↵(H(�)).

Theorem 3.3. The family S↵(�) = � d
d�T↵(�) satisfies the inequality

������
 

1X
j=1

|S↵(� j ) f j |2
! 1
2
������
p

 C

������
 

1X
j=1

| f j |2
! 1
2
������
p

for 1 < p < 1 when <(↵) > n+1
2 for all choices of � j 2 R⇤ and f j 2 L p(Rn).
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As we have noted above, S↵(�) is a linear combination of several terms. We
will show that each term satisfies the above vector-valued inequality. Since we
have already taken care of m↵(H(�)) we will begin with the term H(�)m0

↵(H(�)).

Recalling that m↵(u) =
J↵(

p

u)
p

u↵ , in view of the relation d
dt

J↵(
p

t)
p

t↵
=

�1
2

J↵+1(
p

t)
p

t↵+1 we
get

H(�)m0

↵(H(�)) = �

1
2
H(�)m↵+1(H(�)).

The required maximal theorem for this family has been proved at the end of the
previous section. The R-boundedness of this family can now be proved repeating
the proofs of Proposition 3.1 and Theorem 3.2.

We will now sketch the proof of the vector-valued inequality for the remaining
terms. We will only consider the term

A2j (�)
Z 1

0
m0

↵(H(�) + 2s�)ds,

as the other one can be treated similarly. As observed above

m0

↵(H(�) + 2s�) = �

1
2
m↵+1(H(�) + 2s�)

and hence we have to consider

A2j (�)H(�)�1
Z 1

0
H(�)m↵+1(H(�) + 2s�)ds.

As was shown in [3] the operator A2j (�)H(�)�1turns out to be a Calderon-Zygmund
singular integral operator whose CZ constants are uniform in �.Hence by a theorem
of Cordoba and Fefferman [2] the family A2j (�)H(�)�1 satisfies a vector-valued
inequality. (See [3, Theorem 2.1].)

Finally we are left with the operator family

Z 1

0
H(�)m↵+1(H(�) + 2s�)ds

and hence it is enough to show that the family

H(�)m↵+1(H(�) + 2s�)

is R-bounded uniformly in s 2 (0, 1). But the treatment of this is very similar to that
of H(�)m↵+1(H(�)) which we considered before using the maximal Theorem 2.3.
Once again we leave the details to the reader. This completes the proof.
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