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Characterizations of differentiability
for h-convex functions in stratified groups
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Abstract. Using the notion of h-subdifferential, we characterize both first and
second order differentiability of h-convex functions in stratified groups. Besides
some new results involving the h-subdifferential of h-convex functions, we show
that at all h-differentiability points of an h-convex function, the existence of a
second order expansion coincides with a suitable differentiability of its horizontal
gradient.
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(secondary).

1. Introduction

The purpose of this work is to establish new results for first and second order dif-
ferentiability of h-convex functions from the viewpoint of Nonsmooth Calculus,
namely, using a suitable notion of subdifferential.

Following notation and terminology of Section 2, we represent a stratified
group G as a finite-dimensional Hilbert space, that is the direct sum of orthogonal
subspaces H1, H2, . . ., H◆ and that is equipped with a suitable polynomial operation.
Here H1 is the subspace of horizontal directions at the origin, that yields the first
layer V1 of the Lie algebra g, that is formed by the so-called left-invariant horizontal
vector fields. More details and precise definitions can be found in Section 2.

According to [9], an h-convex function u : � �! R defined on an open set
� of a stratified group G satisfies the property of being classically convex when
restricted to all horizontal lines contained in �. More precisely, we say that u :

� �! R is h-convex if for all h 2 H1 with [0, h] = {th : 0  t  1} and
[0, h] ⇢ x�1

· �, we have

u
�
x(th)

�
 (1� t)u(x) + tu(xh) (1.1)
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for every t 2 [0, 1]. This notion of h-convexity is local and does not require any
assumption on �. It is not difficult to observe that smooth h-convex functions
are characterized by an everywhere non-negative horizontal Hessian, see Defini-
tion 2.7. Throughout this work, all h-convex functions on an open subset of G will
be assumed to be measurable, since this assumption implies their Lipschitz con-
tinuity on compact subsets, as proved in [23]. Measurability can be replaced by
local boundedness from above, that also yields the Lipschitz continuity on compact
subsets, [18].

We will also use the following local notion of h-subdifferential. We say that
p 2 H1 is an h-subdifferential of u : � �! R at x 2 � if

u(xh) � u(x) + hp, hi (1.2)

whenever h 2 H1 and [0, h] ⇢ x�1
· �. The set of all h-subdifferentials of u at x

is denoted by @Hu(x). This defines the set-valued mapping @Hu : � ◆ H1. The
scalar product h·, ·i in the inequality (1.2) is the one fixed on G.

Our starting point was the characterization of the second order differentiability
of h-convex functions, that we establish in Theorem 1.5. In tackling this problem,
we realized that it first requires different new tools involving h-subdifferentials, fur-
ther nonsmooth notions of differentiability and the characterization of h-differen-
tiability of h-convex functions through the h-subdifferential. We believe that these
facts should play an important role in the development of a Nonsmooth Calculus
for h-convex functions.

To present our results, we will start from notions of second order differentiabil-
ity. We will say that a locally Lipschitz function u : � ! R is twice h-differentiable
at x if there exists the horizontal gradient rHu(x) of u at x , and moreover there
exists an h-linear map Ax : G ! H1 such that����rHu(xw) � rHu(x) � Ax (w)

kwk

����
L1(B�,H1)

�! 0 as � ! 0+ . (1.3)

Horizontal gradients, h-linear maps and h-differentiability are introduced in Defi-
nition 2.5 and Definition 2.6. If the limit (1.3) holds, then we equivalently say that
rHu is h-differentiable at x in the extended sense. We call Ax the second order
h-differential of u at x and denote it by D2Hu(x), since it is uniquely defined. The
notion of differentiability in the extended sense is well posed, since Lipschitz func-
tions are almost everywhere h-differentiable, [21]. Differentiability in the extended
sense in the Euclidean case has been introduced by Rockafellar, [26]. The next
lemma establishes a precise characterization of this differentiability. In the sequel,
we denote by B the closed unit ball in H1 centered at the origin.

Lemma 1.1. Let u : � �! R be h-convex, let x 2 � and let Ax : G ! H1 be
h-linear. We have that u is h-differentiable at x and satisfies (1.3) if and only if
there exists v 2 H1 such that

@Hu(xw) ✓ v + Ax (w) + o(kwk)B (1.4)
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for all w 2 x�1�. In particular, the validity of (1.4) implies the h-differentiability
of u at x , with v equal to the horizontal gradient rHu(x).

This result is an important tool to establish one implication in the characteri-
zation of the second order differentiability of h-convex functions, stated in Theo-
rem 1.5. Inclusion (1.4) can be seen as a continuity of the subdifferential at those
points where u is h-differentiable, joined with a first order expansion of the horizon-
tal gradient. The delicate implication of Lemma 1.1 is that the extended differen-
tiability of rHu implies the inclusion (1.4). This is a consequence of the following
theorem.

Theorem 1.2. Let u : � ! R be h-convex. Then for every x 2 �, we have

c̄o
�
r

?
Hu(x)

�
= @Hu(x) . (1.5)

We denote by co(E) ⇢ H1 the convex hull in H1 of the subset E ⇢ H1 and by
c̄o(E) its closure. The reachable h-gradient is given by

r
?
Hu(x)=

�
p2H1 : xk ! x,rHu(xk) exists for all k’s and rHu(xk)! p

 
. (1.6)

It is not difficult to prove that (1.5) immediately leads us to the characterization of h-
convex functions by the property of having everywhere nonempty h-subdifferential,
see Remark 3.7. The proof of equality (1.5) in the Euclidean case can be found for
instance in [3]. Here we apply the Hahn-Banach’s theorem inside the horizontal
subspace H1. However, the proof of Theorem 1.2 has a new difficulty. In fact,
the group mollification does not commute with horizontal derivatives, hence the
mollification argument of the Euclidean proof cannot be applied. We overcome this
point by a Fubini type argument with respect to a semidirect factorization, as in [17].
The proof of Theorem 1.2 also uses the fact that the graph of the h-subdifferential
mapping is closed. This follows from the following more general “set continuity”
of the h-subdifferential, that does not require the h-differentiability of the function
at the fixed point.

Proposition 1.3. Let� ⇢ G be an open set and let ui : � ! R denote a sequence
of h-convex functions. Suppose that ui uniformly converges on compact sets to an
h-convex function u : � ! R. Let x be a point in � and let (xi ) be a sequence in
� converging to x . Then for every ✏ > 0, there exists i0 2 N such that

@Hui (xi ) ✓ @Hu(x) + ✏B for all i � i0. (1.7)

In addition, if u is everywhere h-differentiable in �, then for every compact set
K ⇢ � and every ✏ > 0, there exist i✏,K 2 N such that

@Hui (y) ✓ rHu(y) + ✏B for all i � i✏,K , whenever y 2 K . (1.8)

Proposition 1.3 joined with a nonsmooth mean value theorem, see Theorem 3.14,
are used to prove the following first order characterization of h-differentiability.
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Theorem 1.4 (First order characterization). Let u : � �! R be h-convex. Then
u is h-differentiable at x if and only if @Hu(x) = {p} and in this case rHu(x) = p.

This theorem shows that (1.4) implies in particular the h-differentiability of u
at x . The fact that h-differentiability implies the uniqueness of the h-subdifferential
has been already observed in [9]. The opposite implication is more delicate, since in
the Euclidean approach the use of the Hahn-Banach theorem requires the subaddi-
tivity of horizontal directional derivatives, that was not known before. We establish
this property in Corollary 3.17, proving the formula

u0(x, h) = max
p2@Hu(x)

hp, hi , (1.9)

where u0(x, h) is the horizontal directional derivative introduced in Definition 3.16.
Nevertheless, in the proof of Theorem 1.4 we follow a different scheme, that does
not use this subadditivity. We decompose the difference quotient of u into sums of
difference quotients along horizontal directions. This fits with the general approach
to differentiability in stratified groups, [21]. We also point at that Theorem 1.4 is
new also in all Heisenberg groups, see [6] for other related results. The interesting
point here is that the same scheme is one of the important features in the proof of
one implication in the characterization of Theorem 1.5. This corresponds to the fact
that twice h-differentiability implies the existence of a second order h-expansion.

The second order differentiability of h-convex functions is an interesting re-
search area, where several questions are not yet understood. Since the works of
Busemann and Feller, [5], and of Aleksandrov [2], there have been different meth-
ods to establish the a.e. second order differentiability of convex functions in Eu-
clidean spaces. The functional analytic method by Reshetnyak, [22], relies on the
fact that the gradient of a convex function has bounded variation. This scheme can
be extended to stratified groups, provided that an h-convex function is H-BV 2 in the
sense of [4]. This has been established by different authors for h-convex functions
on Heisenberg groups and two step stratified groups [10, 12–14] and for k-convex
functions with respect to Hörmander vector fields of step two, [28].

We refer to [10] for the presently known Aleksandrov-Busemann-Feller theo-
rem in stratified groups: let � be an open set of a two step stratified group and let
u : � �! R be h-convex. Then u has at a.e. x 2 � a second order h-expansion
at x .

We say that u : � �! R has a second order h-expansion at x 2 � if there
exists a polynomial Px : G �! R whose homogeneous degree is less than or equal
to two, such that

u(xw) = Px (w) + o(kwk
2). (1.10)

Unfortunately, in higher step groups the fact that h-convex functions are H-BV 2
is not clear yet, hence the Aleksandrov-Busemann-Feller’s theorem is an important
open question for general stratified groups. On the other hand, the first proofs of this
result in Euclidean spaces, [2,5] and also some of the subsequent proofs, did not use
the bounded variation property of the gradient. For instance, Rockafellar’s proof of
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[24] relies on Mignot’s a.e. differentiability of monotone functions, [20], where the
crucial observation is that the subdifferential of a convex function is monotone. This
approach to Aleksandrov’s theorem constitutes a further motivation to develop the
study of both first and second order Nonsmooth Calculus for h-convex functions.
We are now in the position to state our main characterization.

Theorem 1.5 (Second order characterization). Let u : � �! R be h-convex
and let x 2 �. We have that u has a second order h-expansion at x if and only if it
is twice h-differentiable at x . In addition, in this case the following facts hold:

1. the gradient rV2u(x) =

�
Xm1+1u(x), . . . , Xm2u(x)

�
of u at x along V2 exists,

where (Xm1+1, . . . , Xm2) is an orthonormal basis of the second layer V2;
2. if Px is the second order h-expansion of u at x , then

Px (w) = u(x) +

⌦�
rHu(x) + rV2u(x)

�
, w
↵
+

1
2

hr
2
H Px w,wi,

where (r2H )i j =

Xi X j+X j Xi
2 , i, j = 1, . . . ,m1 is the horizontal Hessian opera-

tor;
3. if D2Hu(x) is the second order h-differential of u at x and a

li
j are the coefficients

appearing in (2.4), then
�
D2Hu(x)

�
i j = Xi X j Px and we have

�
r
2
H Px

�
i j =

�
D2Hu(x)

�
i j �

m2X
l=m1+1

alij Xlu(x) . (1.11)

Joining the Aleksandrov-Busemann-Feller’s Theorem of [10] with our Theorem1.5,
we immediately achieve the following corollary.

Corollary 1.6. Let G be a two step stratified group and let � ⇢ G be an open
subset. If u : � �! R is h-convex, then the second order h-differential D2Hu(x)
exists for a.e. x 2 �. Moreover, the properties 1, 2 and 3 of Theorem 1.5 hold.

Let us point out that (1.11) in the case of commutative groups, namely, finite-
dimensional Banach spaces, yields in particular Rockafellar’s result on symmetry
and nonnegativity of D2Hu(x), see [26]. For h-convex functions on noncommutative
stratified groups the symmetric partr2Hu(x) of D

2
Hu(x) is non-negative and the loss

of symmetry of D2Hu(x) is natural, since it also takes into account the first order
derivatives along directions of the second layer of the Lie algebra of G.

ACKNOWLEDGEMENTS. We are grateful to Andrea Calogero and Rita Pini for
having addressed our attention to the paper by Rockafellar [26], that was our start-
ing point. We thank Luigi Ambrosio for a stimulating conversation and for having
pointed out to us the notion of �-subdifferential in connection with the characteri-
zation of second order differentiability.
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2. Basic notions

A stratified group can be thought of as a graded vector space G = H1 � · · · �

H◆ equipped with a polynomial group operation given by the Backer-Campbell-
Hausdorff formula and whose Lie algebra g satisfies the following properties. There
exist linear subspaces V1, V2, . . . , V◆ of g such that g = V1 � · · · � V◆, Vj =⇥
V1, Vj�1

⇤
, for all j  1 and Vj = {0} if and only if j > ◆. On G we can define

a natural family of dilations �r : G ! G compatible with the group operation,
see [11]. A scalar product on G will be understood, such that all subspaces Hj are
orthogonal. We denote by ⇡ j : G �! Hj the associated orthogonal projections.
For every s = 1, . . . ◆, we fix a basis (ems�1+1, . . . , ems ) of Hs , where m0 = 0, then

msX
i=ms�1+1

xi ei 2 Hs and x =

◆X
s=1

msX
i=ms�1+1

xi ei .

We define (Xms�1+1, . . . , Xms ) to be the basis of Vs such that X j (0)= e j . Through-
out, we fix a homogeneous distance d on G, i.e. a continuous map d : G ⇥ G !

[0,+1) that makes (G, d) a metric space and it has the following properties

(1) d(x, y) = d(ux, uy) for every x, y, u 2 G,
(2) d(�r x, �r y) = rd(x, y) for every r > 0.

For every w 2 G, we denote by kwk the homogeneous norm of w induced by the
distance d by kwk = d(0, w). Open balls with respect to d will be denoted by Bx,r .
The following proposition is a well known fact, see for instance [19].

Proposition 2.1. Let G be a stratified group and let (e1, . . . , em1) be an orthonor-
mal basis of H1. Then there exists a positive integer � along with a vector of
integers (i1, . . . , i� ) 2 {1, . . . ,m1}� and a bounded set U ⇢ R� such that

B0,1 ⇢

(
�Y
s=1

aseis | (a1, . . . , a� ) 2 U

)
. (2.1)

Remark 2.2. The inclusion (2.1) can be always established by a rescaling argu-
ment, once we know that

�Q�
s=1 aseis | (a1, . . . , a� ) 2 U

 
is a neighbourhood of

the origin.
Definition 2.3. Let U ⇢ R� and (i1, . . . , i� ) 2 {1, . . . ,m1}� be as in Proposi-
tion 2.1. Thus, we define

W =

(
�Y
s=1

aseis | (a1, . . . , a� ) 2 U

)
and M = sup

y2W
kyk.

Definition 2.4 (h-convex set). We say that a subset C ⇢ G is h-convex if for every
x, y 2 C such that x 2 Hy we have x��(x�1y) 2 C for all � 2 [0, 1].
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We denote by Hx the left translation of H1 by x , namely Hx = xH1. For any
x 2 G, we set x · [0, h] = {x�t h, 0  t  1} and throughout � denotes an open
subset of G.
Definition 2.5. We say that a linear map L : G �! R is h-linear if L(x) =

L(⇡1(x)) for every x 2 G.
Definition 2.6. We say that u : � �! R is h-differentiable at x 2 �, if there exists
an h-linear mapping L : G �! R such that u(xz) = u(x)+ L(z)+o(kzk). Notice
that L is unique and we denote it by dHu(x). Its associated vector with respect to
the fixed scalar product is the horizontal gradient, denoted by rHu(x).
Definition 2.7. Let u : � �! R be a C2(�) function. We define the horizontal
Hessian of u as follows (r2Hu)i j =

⇣
Xi X j u+X j Xi u

2

⌘
i j

, for all i, j = 1, . . . ,m1.

Definition 2.8. We say that P : G ! R is a polynomial on G, if with respect to
some fixed graded coordinates we have P(x) =

P
↵2A c↵x↵ , under the convention

x↵
=

Qn
i=1 x

↵i
i , and x0j = 1, whereA ⇢ Nn is a finite set.

The homogeneous degree of P is the integer h-deg(P) = max {d(↵), ↵ 2 A},
where d(↵) =

Pn
i=1 di↵i , and di = s if ms�1 + 1  i  ms .

By the previous definitions, any polynomial P can be decomposed into the
sum of its j-homogeneous parts, denoted by P( j), hence

P =

X
0 jh-degP

P( j).

A polynomial is j-homogeneous if it coincides with its j-homogeneous part.
As in [11], given a 2 N, we shall denote by Pa the space of polynomials of

homogeneous degree  a. Moreover, by [11, Proposition 1.25], Pa is invariant
under left translations. Given a multiindex I = (i1, . . . , in), 1  i j  m1, we set

X I
= Xi1 · · · Xin and |I | = n.

Proposition 2.9 ([11, 1.30]). Take a 2 N, and let µ be the dimension of Pa . Then

P ! (X I P(0))|I |a

is a linear isomorphism from Pa to Cµ.

Remark 2.10. Let P be a polynomial of homogeneous degree at most 2, and sup-
pose that P(0) = p0 and Xi P(x) = li (x), for i = 1, . . . ,m1 where li : G ! R are
h-linear maps. Clearly we can compute (X↵P)(0) for each multiindex ↵, |↵|  2,
then by the previous proposition P is uniquely determined.

We are interested in finding the explicit isomorphism of the previous proposi-
tion in the case of real polynomials of homogeneous degree less than or equal to
two.
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Lemma 2.11. Let P be a 2-homogeneous polynomial

P(x) =

1
2

X
1i, jm1

ci j xi x j +

m2X
s=m1+1

cs xs .

Then the following formula holds

P(x) = hrV2P, xi +

1
2
hr

2
H Px, xi , (2.2)

where hrV2P, xi =

Pm2
j=m1+1 X j P x j .

Proof. Let us consider, with respect to the same system of graded coordinates, the
left-invariant vector fields X j = @x j +

Pn
l=md j+1

alj (x)@xl for j = 1, . . . , n, where
alj (x) are (dl�d j )-homogeneous polynomial. SincerV2P=(Xm1+1P, . . . , Xm2P)

and r
2P are 0-homogeneous it follows that they are constant. The explicit expres-

sion of X j immediately yields X j P = c j for all j = m1 + 1, . . . ,m2. Hence, it
remains to prove that

ci j + c j i
2

=

Xi X j P + X j Xi P
2

(2.3)

for 1  i, j  m1. First we observe that

X j (x) = @x j +

m2X
l=m1+1

m1X
i=1

alij xi @xl +

nX
l=m2+1

alj (x) @xl (2.4)

since alj (x) =

Pm1
i=1 a

li
j xi is 1-homogeneous for dl = 2 and d j = 1. Taking into

account the previous expression, we arrive at the following

X j P(x) =

1
2

m1X
i=1

(ci j + c j i ) xi +

m1X
i=1

m2X
l=m1+1

Xl P alij xi

that immediately yields

Xi X j P =

ci j + c j i
2

+

m2X
l=m1+1

Xl P alij . (2.5)

Finally, formula (2.3) follows by the equality alij = �al ji . This is in turn a con-
sequence of the Baker-Campbell-Hausdorff formula for the second order bilinear
terms.



CHARACTERIZATIONS OF DIFFERENTIABILITY FOR h-CONVEX FUNCTIONS 683

Definition 2.12. Let us fix x 2 � and a 2 N. Let f : � �! R be a continuous
function whose distributional derivatives X I f are continuous functions in a neigh-
borhood of x whenever |I |  a. We define the left Taylor polynomial of f at x of
homogeneous degree a as the unique P 2 Pa , such that X I P(0) = X I f (x) for all
|I |  a.

Theorem 2.13 (Stratified Taylor Inequality [11, 1.42]). For each positive integer
k there exists Ck > 0 such that for any continuous function f : � �! R whose
distributional derivatives X I f are continuous functions whenever |I |  k, we have

| f (xy) � Px (y)|  Ckkykk⌘(x, bkkyk)

for all x, y 2 �, where Px is the left Taylor polynomial of f at x of homogeneous
degree k, b is a constant depending only on G, and for small r > 0, we have

⌘(x, r) = sup
kzkr,|I |=k

���X I f (xz) � X I f (x)
��� ,

where we have set X I
= Xi1 · · · Xil and I = (i1, . . . , il) 2 {1, . . . ,m1}l .

Lemma 2.14. Let P : G ! R be a polynomial of homogeneous degree at most 2.
Let P(2)(x) be the 2-homogeneous part of P and define � = maxkwk=1 |P(2)(w)|.
If we consider P(xh) as a function of h 2 G, then for all h 2 H1 there holds

P(xh) � P(x) + hrH P(x), hi � �khk2.

Proof. For every 1  i, j  m1, we have Xi X j P = Xi X j (P(xh)) = ci, j for
every x, h 2 G. This is a consequence of the following general fact, given a smooth
function u and X , a left-invariant vector field on G, then X (u(xh)) = (Xu)(xh).
Consider P(xh) as a function of h, applying Theorem 2.13 we get a polynomial
Px (h) such that

P(xh) = Px (h) + o(khk2).

Notice that by the left translation invariance of P2, P(xh) as a function of h is
a polynomial of homogeneous degree at most 2, hence P(xh) = Px (h). Clearly
P(0)
x (h) = P(x) and P(1)

x (h) = hrH P(x), hi, as a consequence

P(xh) � P(x) � hrH P(x), hi = P(2)
x (h). (2.6)

By (2.6) and previous considerations it follows that

ci, j = Xi X j P(h) = Xi X j P(2)(xh) = Xi X j P(2)
x (h), i, j = 1, . . . ,m1.

Moreover all the other derivatives of P(2)
x are zero, thus we can conclude that

P(2)
x (h) = P(2)(h) by Proposition 2.9. Finally we get

P(xh) = P(x) + hrH P(x), hi + P(2)(h) � P(x) + hrH P(x), hi � �khk2.
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3. Properties of the h-subdifferential

This section is devoted to the proofs of our results concerning h-differentiability, h-
subdifferential, converging sequences of h-convex functions and nonsmooth mean
value theorems for h-convex functions. Recall that B ⇢ H1 is the closed ball
centered at the origin of radius one with respect to the fixed scalar product on G.

Lemma 3.1. Let � ⇢ G be an open set and let u : � ! R be a continuous
function. Then the set @Hu(x) ⇢ H1 is convex.

Proof. Let p and q be in @Hu(x) and choose � 2 [0, 1], we need to prove that
�p + (1� �)q 2 @Hu(x). This follows from adding the two inequalities

�u(xh) � �u(x) + h�p, hi
(1� �)u(xh) � (1� �)u(x) + h(1� �)q, hi .

Remark 3.2. We recall from the introduction that our assumption of measurability
for all h-convex functions yields their Lipschitz continuity on compact subsets, [23].
As a straightforward consequence of this fact, by definition of h-subdifferential it
follows that for every Bx,r with closure contained in � and for every h-convex
function u : � �! R, there exists a positive number L > 0, depending on x 2 �,
r > 0 and u, such that

@Hu(y) ✓ L B for every y 2 Bx,r .

Remark 3.3. As already mentioned, an h-convex function u : � �! R that is
h-differentiable at x 2 � has unique h-subdifferential, hence @Hu(x) = {rHu(x)},
according to [9].

Recall that the symbol co to denote the linear convex envelope in H1. Then
our first important tool is the following theorem.

Theorem 3.4. Let � ⇢ G be an open set, and let u : � ! R be h-convex. Then
for every x 2 � we have

@Hu(x) ✓ c̄o
�
r

?
Hu(x)

�
, (3.1)

where r
?
Hu(x) is defined in (1.6).

Proof. Suppose that there exists p 2 @Hu(x) such that p /2 c̄o
�
r

?
Hu(x)

�
. We

can assume that p = 0, otherwise one considers v(x) = u(x) � hp,⇡1(x)i, that
is still h-convex. Since c̄o

�
r

?
Hu(x)

�
is a closed convex subset of H1, the Hahn-

Banach separation theorem can be applied to this set and the origin, hence there
exists q 2 H1, d(0, q) = 1, and ↵ > 0 such that

hz, qi > ↵ 8z 2 r
?
Hu(x). (3.2)



CHARACTERIZATIONS OF DIFFERENTIABILITY FOR h-CONVEX FUNCTIONS 685

We claim the existence of r > 0 such that Bx,r ⇢ � and hrHu(y), qi > ↵
2 for

every y 2 Bx,r where u is h-differentiable. By contradiction, suppose there exist
sequences r j ! 0 and y j 2 Bx,r j such that

⌦
rHu(y j ), q

↵


↵
2 , then possibly

passing to a subsequence we have y j ! x and rHu(y j ) ! z 2 r
?
Hu(x), with

hz, qi 
↵
2 and this conflicts with (3.2). Denote by r the positive number having the

previous property. Let Q be the set Q = {�t q : t 2 R} and consider µ the Haar
measure on G. By [17, Lemma 2.7] there exists a normal subgroup N ⇢ G, such
that N \ Q = {e} and NQ = G. Moreover, by [17, Proposition 2.8], there exist
⌫q and µN , respectively Haar measures on Q and N such that for every measurable
set A ⇢ G

µ(A) =

Z
N

⌫q(An) dµN (n) (3.3)

where An = {h 2 Q : nh 2 A}. Let P be the set of h-differentiable points of
u, which has full measure in �. From (3.3) it follows that for µN -a.e. n 2 N ,
⌫Q(Q \ n�1P) = 0. Then for µN -a.e. n 2 N , n�t q 2 P for a.e. t 2 R. Let n̄ 2 N
and �t̄ q 2 Q be respectively the unique elements in N and Q such that x = n̄�t̄ q.
Let ✏ > 0 and s > 0 be such that BNn̄,s · BQ�t̄ q,✏ ⇢ Bx,r , where BNn̄,s and B

Q
�t̄ q,✏ are

open balls respectively in N and Q. Fix a point n 2 BNn̄,s where u(nh) is ⌫q -a.e.
differentiable and consider the convex function v(t) = u(n�t q), for ⌫q -a.e. �t q,
t 2 (�✏ + t̄, ✏ + t̄) we have

v0(t) = hrHu(n�t q), qi >
↵

2
.

Integrating the previous inequality and taking into account the Lipschitz regularity
of v we get

v(t1) � v(t2) = u(n�t1q) � u(n�t2q) >
↵

2
(t1 � t2)

where �✏ + t̄ < t2 < t1 < ✏ + t̄ . Now let n j ! n̄ 2 BNn̄,s be such that n jh is
a differentiable point of the map h ! u(n jh) for every j and ⌫q -a.e. h, by the
previous considerations we have

u(n j�t1q) � u(n j�t2q) >
↵

2
(t1 � t2) � ✏ + t̄ < t2 < t1 < ✏ + t̄

finally we can pass to the limit in j and get the strict monotonicity of u(n̄�t q) i.e.

u(n̄�t1q) � u(n̄�t2q) �

↵

2
(t1 � t2) � ✏ + t̄ < t2 < t1 < ✏ + t̄ . (3.4)

Recall that 0 2 @Hu(x), i.e. u(xh) � u(x) whenever [0, h] ✓ H1 \ x�1�. Thus,
u(n̄�t q) � u(n̄�t̄ q) for all t 2 (t̄ � ✏, t̄ + ✏), in contrast with the monotonicity
(3.4).
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Joining Theorem 3.4 with [9, Theorem 9.2], we immediately get:

Corollary 3.5. Let u : � ! R be an h-convex function. There exists C = C(G) >
0 such that for every ball B(x, r) ⇢ G one has

sup
p2@Hu(y)
y2Bx,r

|p| 

C
r

1
|Bx,15r |

Z
Bx,15r

|u(y)|dy. (3.5)

Given a set E ⇢ G and ⇢ > 0, by I (E, ⇢), we denote the open set

I (E, ⇢) = {x 2 G, d(x, E) < ⇢} .

Proof of Proposition 1.3. We argue by contradiction in both cases, hence we sup-
pose that there exist ✏ > 0 and a subsequence pik 2 @Huik (xik ) such that for every
p 2 @Hu(x) we have |pik � p| > ✏. By estimate (3.5) one easily observes that the
sets @Hui (xi ) are equibounded, thus possibly passing to a subsequence, pik ! q
and dist(p jk , @Hu(x jk )) � ✏. Define a monotone family of compact sets

K⌧ =

⇢
x 2 D⌧ : d(x,�c) �

1
⌧

�
,

such that
S

⌧>0 K⌧ = �. Let us select a sequence of compact sets (Kl) and a
subsequence ( jl) such that p jl ! q and kuil � ukL1(Kl ) < 1

l . Recall that p jl 2

@Hu jl (x jl ). It follows that u jl (x jl h) � u jl (x jl ) +

⌦
p jl , h

↵
, whenever [0, h] ✓ H1 \

x�1
jl �. By the uniform convergence of (ui ), for any integer l sufficiently large, we
get

u(x jl h) � u(x jl ) �

1
l

+

⌦
p jl , h

↵
, (3.6)

for all h 2 H1 such that [0, h] ✓ H1 \ x�1
jl · Kl . Now, we fix any h̄ 2 H1 such that

[0, h̄] ✓ x�1
·�. Therefore there exists l0 2 N such that for every l 2 N greater than

l0, we have [0, h̄] ⇢ x�1
· Kl and there exists ⇢ > 0 such that I (x · [0, h̄], ⇢) ⇢ Kl .

By the continuity of left translations, we get l1 2 N greater than l0, such that

x jl · [0, h̄] ✓ I (x · [0, h̄], ⇢),

for all l � l1. It follows that [0, h̄] ✓ x�1
jl Kl for all l � l1 and this allows us to

apply (3.6) for h = h̄ and pass to the limit with respect to l, getting

u(xh̄) � u(x) +

⌦
q, h̄

↵
. (3.7)

The arbitrary choice of h̄ implies that q 2 @Hu(x), giving a contradiction.
Let us now suppose in addition that u is everywhere h-differentiable. Again,

by contradiction, there exist a compact set D ⇢ �, ✏ > 0 and a subsequence ( jl)
such that for all l, x jl 2 D we have

@Hu jl (x jl ) * @Hu(x jl ) + ✏B.
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Therefore we can find p jl 2 @Hu jl (x jl ) such that dist(p jl , @Hu(x jl )) � ✏, for
all l > 0. As before, we can suppose that, possibly passing to a subsequence,
x jl ! x̄ 2 D and p jl ! p̄. By h-differentiability at x̄ and Remark 3.3, taking into
account the first part of this proposition, for every � > 0 there exists l 0 2 N such
that

@Hu jl (x jl ) ⇢ rHu(x̄) + �B

for every l > l 0. Thus, we achieve ✏  dist(p jl , @Hu(x jl ))  2� for all l > l 0. If we
choose � =

✏
4 , then reach a contradiction, concluding the proof.

Taking the constant sequence of h-convex functions in the previous propo-
sition and taking into account (1.7), we immediately reach the following simple
consequence.

Corollary 3.6. Let � be an open set of G and let u : � ! R be an h-convex
function, then @Hu : � ! P(H1) has closed graph.

The previous corollary allows us to complete the proof of Theorem 1.2.

Proof of Theorem 1.2. By virtue of Theorem 3.4, we only have to prove the inclu-
sion

c̄o
�
r

?
Hu(x)

�
✓ @Hu(x).

By Corollary 3.6, the set-valued map @Hu has closed graph and @Hu(y)={rHu(y)}
at any h-differentiable point y of u. This immediately yields

r
?
Hu(x) ✓ @Hu(x).

Moreover @Hu(x) is a convex set in H1 for every x 2 G, then our claim follows.

Remark 3.7. The almost everywhere h-differentiability of an h-convex function u
implies that r⇤

Hu(x) 6= ; for all x 2 �. Thus, in view of formula (1.5), it follows
that @Hu(x) 6= ; for all x 2 �. We have then shown that any h-convex function has
everywhere nonempty h-subdifferential. This fact was first observed in [6] for h-
convex functions on Heisenberg groups. The opposite implication in general strati-
fied groups can be found in [9] for h-convex domains. This implication holds also
for h-convex functions on general open sets. In fact, the everywhere existence of an
h-subdifferential implies the everywhere existence of the one dimensional classical
subdifferential along horizontal lines. Then the one dimensional characterization of
convexity through the subdifferential gives the classical convexity along horizontal
lines and this proves the h-convexity.
Definition 3.8. Let � ⇢ G be open, let u : � ! R and let x 2 �. We define the
set

J 1,�u (x)=
n
p 2 H1 : u(xh) � u(x) + hp, hi + o(khk), if [0, h] ⇢ H1 \ x�1�

o
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Remark 3.9. Let u be an h-convex function in �. Then u is h-subdifferentiable at
x if and only if J 1,�u (x) 6= ;. Moreover J 1,�u (x) = @Hu(x). For the reader’s sake
we give the proof of this property, that in the Heisenberg group has been proved
in [6]. The inclusion J 1,�u (x) ◆ @Hu(x) follows by definition. Now let p be in
J 1,�u (x), and fix [0, h] ✓ (x�1

· �) \ H1 . Then p satisfies

u(x�t h) � u(x) + hp, thi + o(kthk).

By h-convexity of u, tu(xh) + (1� t)u(x) � u(x�t h) which implies

u(xh) � u(x) + hp, hi +

o(kthk)
t

.

Now the claim follows letting t ! 0.
Definition 3.10. Let � ⇢ G an open subset and consider u : � ! R . Given
� � 0 we define the �-subdifferential of u at x 2 � as

@�
Hu(x)

=

n
p 2 H1 : u(xh) � u(x) + hp, hi � �khk2, whenever [0, h] ✓ H1 \ x�1�

o
.

Notice that @0Hu(x) coincides with the h-subdifferential @Hu(x).

Lemma 3.11. Consider a function u = U + P in �, where U is h-convex and P
is a polynomial with h-degP  2. Denote by P(2) the 2-homogeneous part of P .
Thus, defining � = max

kwk=1
|P(2)(w)|, it follows that @�

Hu(x) ◆ @HU(x) + rH P(x).

Proof. Recall that by Lemma 2.14, for every x, h 2 G we have

P(xh) � P(x) + hrH P(x), hi � �khk2.

If p 2 @HU(x), then

U(xh) + P(xh) � U(x) + P(x) + hp + rH P(x), hi � �khk2

whenever [0, h] ✓ x�1� \ H1 and this implies that p + rH P(x) 2 @�
Hu(x).

Proposition 3.12. Let � ⇢ G be open, let U : � ! R be an h-convex function
and let V be in C1H (�). We define the function u be equal to U + V and fix � � 0.
It follows that for every x 2 �, we have @�

Hu(x) ✓ @HU(x) + rHV (x).

Proof. Let p be in @�
Hu(x) and consider any [0, h] ✓ H1 \ x�1�. We have

u(xh) � u(x) + hp, hi � �khk2 ,
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that can be written as follows

U(xh) + V (xh)�U(x) + V (x) + hrHV (x), hi + hp � rHV (x), hi � �khk2 .

Thus, the C1H smoothness of V gives

U(xh) � U(x) + hp � rHV (x), hi + o(khk) ,

hence p � rHV (x) 2 J 1,�U (x). Since U is h-convex, in view of Remark 3.9 we
have that p � rHV (x) 2 @HU(x). This concludes the proof.

The following theorem extends the classical nonsmooth mean value theorem
to stratified groups.

Theorem 3.13. Let U be h-convex and let P be a polynomial, with h-deg P  2
and � = maxkwk=1 |P(2)(w)|. We define the function u as u = U + P . Then for
every x 2 � and every h such that [0, h] ✓ H1 \ x�1�, there exist t 2 [0, 1] and
p 2 @�

Hu(x�t h) such that u(xh) � u(x) = hp, hi.

Proof. Let Ui be a sequence of C1(�) h-convex functions, converging to U uni-
formly on compact sets. Define ui = Ui + P . For such functions the mean value
theorem holds i.e. there exists t j 2 [0, 1] such that

ui (xh) � ui (x) =

⌦
rHui (x�ti h), h

↵
, [0, h] ⇢ H1 \ x�1�.

Possibly passing to a subsequence we have ti ! t and rHui (x�ti h) ! p, thus by
the uniform convergence

u(xh) � u(x) = hp, hi .

Our claim follows if we prove that p 2 @�
Hu(x�t h). By Proposition 1.3, for every

k > 0 there exists ik such that

rHUi (x�ti h) = @HUi (x�ti h) ✓ @HU(x�t h) +

1
k
B, 8i � ik .

Moreover, possibly choosing a larger ik , we have

rHUi (x�ti h) + rH P(x�ti h) ✓ @HU(x�t h) + rH P(x�t h) +

2
k
B, 8i � ik .

By Lemma 3.11, @�
Hu(x) ◆ @HU(x)+rH P(x) thus the previous inclusion implies

that

rHui (x�ti h) = rHUi (x�ti h) + rH P(x�ti h) ✓ @�
Hu(x�t h) +

2
k
B, 8i � ik

then letting k ! 1 we get that p 2 @�
Hu(x�t h).

As a consequence of the previous result, we immediately get the following
theorem.
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Theorem 3.14 (Nonsmooth mean value theorem). Let u : � �! R be an h-
convex function. Then for every x 2 � and every h such that [0, h] ✓ H1 \ x�1�,
there exists t 2 [0, 1] and p 2 @Hu(x�t h) such that u(xh) � u(x) = hp, hi.

Proof. It suffices to apply Theorem 3.13 with P = 0 and � = 0.

Remark 3.15. In the literature a nonsmooth mean value can be found for Lip-
schitz mappings on Banach homogeneous groups, that clearly include stratified
groups, [27]. Unfortunately, this work does not imply our Theorem 3.14, since
it uses the notion of Clarke generalized gradient for Lipschitz mappings adapted to
homogeneous groups.
Definition 3.16. Let� ⇢ G be an open set, and let u : � ! R be a function. Take
h 2 H1. The horizontal directional derivative of u at x , along h, is given by the
limit lim�!0+

�
u(x��h) � u(x)

�
��1, whenever it exists. We denote this derivative

by u0(x, h).

Corollary 3.17. Let u be an h-convex function in �. Then for every x 2 � and
h 2 H1 the horizontal directional derivative u0(x, h) exists and satisfies

u0(x, h) = max
p2@Hu(x)

hp, hi , (3.8)

hence it is subadditive with respect to the variable h.

Proof. The h-convexity of u implies the existence of u0(x, h) for any x 2 � and
h 2 H1. Let p0 2 @Hu(x) be such that hp0, hi = maxp2@Hu(x) hp, hi. By definition
of @Hu(x),

u(x��h) � u(x) + hp0, �hi , whenever [0, �h] ⇢ x�1� \ H1.

Then we easily get that

lim
�!0+

u(x��h) � u(x)
�

� hp0, hi .

Notice that, for � small enough, [0, �h] ⇢ x�1� \ H1, hence we can apply The-
orem 3.13. Then for every � there exist c(�) 2 [0, 1] and p(�) 2 @Hu(x�c(�)�h)
such that

u(x��h) � u(x)
�

= hp(�), hi .

Now fix a sequence �i ! 0 such that p(�i ) ! p̄, then by the closure property of
the subdifferential we get p̄ 2 @Hu(x). Moreover, the existence of the following
limit gives

lim
�!0+

u(x��h) � u(x)
�

= h p̄, hi  max
p2@Hu(x)

hp, hi ,

concluding the proof.
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Proof of Theorem 1.4. Uniqueness of the h-subdifferential under h-differentiability
has already been established in [9], see Remark 3.3. Let us assume now that the h-
subdifferential p of u at x is unique. LetU , W and M be as in Definition 2.3. Thus,
for anyw 2 Gwith kwk = 1, we havew =

Q�
s=1 aseis for some (a1, . . . , a� ) 2 U .

We fix r > 0 such that B0,r ⇢ x�1� and define the h-convex function

g(y) = u(xy) � u(x) � hp, yi

for any y 2 x�1�. We choose ⇢0 > 0 such that ⇢0M < r . Thus, whenever
0 < ⇢ < ⇢0, by Theorem 3.14 and the generating property, we have

g(�⇢w) =

�X
s=1

⌦
ps, ⇢aseis

↵
�

⌦
p, ⇢aseis

↵

where ps 2 @Hu
�
x�⇢(

Qs�1
k=1 akeik )�ts �⇢aseis

�
with ts 2 [0, 1]. By Proposition 1.3,

for every ✏ > 0 there exists ⇢0 such that

@Hu

 
x�⇢

 
s�1Y
k=1

aseik

!
�ts �⇢aseis

!
✓ @Hu(x) + ✏B = {p} + ✏B

for all 0 < ⇢ < ⇢0 and s = 1, . . . , � . Thus |g(�⇢w)|  C� ✏⇢, where C is
independent on (a1, . . . , a� ), since W is a bounded set. This implies that |g(�⇢w)|

⇢

uniformly converges to zero with respect to w 2 W as ⇢ ! 0+.

4. Second order differentiability

The aim of this section is to prove the characterization of the second order dif-
ferentiability of h-convex functions, stated in Theorem 1.5. Let us begin with the
following simple fact.

Proposition 4.1. Let � ⇢ G be an open set and let u : � ! R. If u has a second
order h-expansion Px at x 2 �, then u is h-differentiable at x

P(1)
x (w) = hrHu(x), wi . (4.1)

Proof. If (1.10) holds, then we can rewrite this condition as

u(xw) � P(0)
x (w) � P(1)

x (w) = P(2)
x (w) + o(kwk

2).

Clearly P(0)
x (w) = u(x) and P(1)

x (w) is an h-linear map. Thus, we achieve

|u(xw) � u(x) � P(1)
x (w)| = o(kwk),

and the h-differentiability of u follows. In view of the uniqueness of the h-differ-
ential, we get (4.1), concluding the proof.
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Definition 4.2 (Difference quotients). Let u : � ! R be h-convex and assume
that it is h-differentiable at x . For every ⌧ > 0 define the first order h-quotient at x

ux,⌧ (w) = ⌧�1
{u(x�⌧w) � u(x)}

and the second order h-quotient at x

12
x,⌧u(w) =

u(x�⌧w) � u(x) � ⌧ hrHu(x), wi

⌧ 2
(4.2)

assuming in addition that u is h-differentiable at x . At this h-differentiability point,
the h-difference quotient of @Hu is given by the set-valued mapping

1x,⌧ @Hu(w) =

@Hu(x�⌧w) � rHu(x)
⌧

. (4.3)

Remark 4.3. Notice that 12
x,⌧u can be written as

12
x,⌧u(w) = ⌧�1 ⇥ux,⌧ (w) � hrHu(x), wi

⇤
where ux,⌧ is clearly h-convex. Moreover if we take the subdifferential of 12

x,⌧u
we get

@H
h
12
x,⌧u(w)

i
= ⌧�1 �@Hux,⌧ (w) � rHu(x)

 
= ⌧�1

{@Hu(x�⌧w) � rHu(x)}
= 1x,⌧ @Hu(w),

(4.4)

where the equality @Hux,⌧ (w) = @Hu(x�⌧w) follows from the definition of ux,⌧ .

Proof of Lemma 1.1. Choosing w = 0 we get @Hu(x) = {v}, thus by Theorem 1.4,
u is h-differentiable at x , moreover v = rHu(x). The twice h-differentiability im-
mediately follows from (1.4), taking its restriction to all points of h-differentiability.
For the converse implication, we rewrite expansion (1.3) as follows, for all ✏ > 0
there exists ⇢ > 0 such that����rHu(xh) � rHu(x) � Ax (h)

khk

����  ✏ khk < ⇢, (4.5)

for all h 2 x�1� such that u is h-differentiable at xh. By (1.6), for any w 2

x�1� \ B0,⇢ , taking into account (4.5), we get���� p � rHu(x) � Ax (w)

kwk

����  ✏ for all p 2 r
?
Hu(xw).

In an equivalent form, we have

r
?
Hu(xw) ✓ rHu(x) + Ax (w) + ✏kwkB. (4.6)
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Moreover, the set on the right is convex, hence Theorem 1.2 yields

@Hu(xw) = c̄o
�
r

?
Hu(xw)

�
✓ rHu(x) + Ax (w) + o(kwk)B. (4.7)

This concludes the proof.

Proposition 4.4. If u : � �! R is h-convex, then it is twice h-differentiable at x
if and only if for any compact set D ⇢ � and for all ✏ > 0, there exists � > 0 such
that for all w 2 D and 0 < ⌧ < � we have

1x,⌧ @Hu(w) � Ax (w) ✓ ✏B. (4.8)

Proof. Let u be twice h-differentiable at x , fix a compact set D ⇢ � and ✏ > 0.
We set µD = maxw2D kwk. Then there is ⇢(✏, D,�) > 0 such that

@Hu(xw) ⇢ rHu(x) + Ax (w) +

kwk ✏

µD
B,

whenever kwk < ⇢(✏, D,�) and Bx,⇢(",D,�) ⇢ �. We consider w = �⌧h, where
h 2 D, and 0 < ⌧ < ⇢(✏,D,�)

µD
. It follows that

@Hu(x�⌧h) ⇢ rHu(x) + ⌧ Ax (h) + ✏⌧B

which is equivalent to (4.8). Conversely, let S = {w 2 G : kwk = 1} be a compact
set and fix ✏ > 0. Then there exists � > 0 such that (4.8) holds whenever 0 < ⌧ < �.
Thus, we have

@Hu(x�⌧w) � rHu(x)
⌧

� Ax (w) ✓ ✏B.

In other words, whenever 0 < khk < �, we have

@Hu(xh) ✓ rHu(x) + Ax (h) + ✏khkB,

that establishes the twice h-differentiability of u at x .

Finally, we have enough tools to establish the characterization of second order
differentiability of h-convex functions.

Proof of Theorem 1.5. Let us assume that u has a second order h-expansion at x .
By Proposition 4.1, u is h-differentiable at x , then P(0)

x (w) = u(x) and P(1)
x (w) =

hrHu(x), wi, where Px is the polynomial associated to the second order h-expan-
sion. Define �(w) := P(2)

x (w) and notice that rH P(2)
x (w) is an h-linear map, since

it is a polynomial of homogeneous degree 1. The second order h-expansion yields

12
x,⌧u(w) � �(w) =

u(x�⌧w) � P(0)
x (�⌧w) � P(1)

x (�⌧w) � P(2)
x (�⌧w)

⌧ 2

=

o(k�⌧wk
2)

⌧ 2
.

(4.9)
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As a consequence, 12
x,⌧u uniformly converges to � on compacts sets as ⌧ ! 0+.

Moreover12
x,⌧u is h-convex, then so is �. Applying Proposition 1.3, we can estab-

lish that for every compact set D ⇢ � and ✏ > 0 there exists � > 0 such that

@H12
x,⌧u(w) ✓ rH�(w) + ✏B, for all w 2 D and ⌧ 2 (0, �).

Notice that (4.4) gives @H12
x,⌧u(w) = 1x,⌧ @Hu(w), hence

1x,⌧ @Hu(w) ✓ rH P(2)
x (w) + ✏B.

As a result, we have 1x,⌧ @Hu(w) � rH P(2)
x (w) ⇢ ✏B whenever w 2 D and

0 < ⌧ < �. By Proposition 4.4, u is twice h-differentiable. Furthermore, rH P(2)
x

is the second order h-differential D2Hu(x) of u at x .
We now assume that u is twice h-differentiable at x , where D2Hu(x) denotes

the second order h-differential of u at x . By Lemma 1.1, we have

rHu(xw) = rHu(x) + D2Hu(x)w + o(kwk),

where D2Hu(x) is regarded as an h-linear mapping. Let U , W and M be as intro-
duced in Definition 2.3. We define

v(w) = u(xw) � u(x) � Px (w),

for every w 2 x�1
· � and Px is the unique polynomial with h-degP  2 that

satisfies the condition Px (0) = 0 and

rH Px (w) = rHu(x) + D2Hu(x)w. (4.10)

This is as a consequence of Remark 2.10. Let r > 0 be such that B0,r ⇢ x�1
· �.

Let ⇢0 > 0 be such that ⇢0M < r and choose w such that kwk = 1. We consider
0 < ⇢ < ⇢0 and �⇢w =

Q�
s=1 ⇢aseis , for some (a1, . . . , a� ) 2 U . Then v(�⇢w) =

v(�⇢w) � v(0) can be written as

v(�⇢w) =

�X
s=1

v

 
sY
l=1

⇢ ail eil

!
� v

 
s�1Y
l=1

⇢ ail eil

!
.

Observe that v is an h-convex function plus a polynomial of homogeneous degree
less than or equal to two. By Theorem 3.13 applied to horizontal directions eis , we
get

v(�⇢w) =

�X
i=1

⌦
ps, ⇢ aseis

↵

with ps 2 @�
Hv
�
x
�Qs�1

k=1 ⇢ akeik
�
(ts⇢ aseis )

�
, where ts 2 [0, 1] and

� = max
khk=1

|P(2)
x (h)|.
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Moreover, by Proposition 3.12 we know that

ps+rPx

  
s�1Y
k=1

⇢ akeik

!
(ts⇢ aseis )

!
2@Hu

 
x

 
s�1Y
k=1

⇢ akeik

!
(ts⇢ aseis )

!
. (4.11)

The expansion (1.4) for the h-subdifferential of u implies that

@Hu

 
x

 
s�1Y
k=1

⇢ akeik

!
(ts⇢ aseis )

!
⇢ rHu(x)

+ Ax

  
s�1Y
k=1

⇢ akeik

!
(ts⇢ aseis )

!
+ o

 �����
 
s�1Y
k=1

⇢ akeik

!
(ts⇢ aseis )

�����
!

B.

(4.12)

Thus, by formula (4.10), taking into account (4.11) and (4.12), we get that

|ps | = o

 ������⇢

 
s�1Y
k=1

akeik

!
�ts �⇢aseis

�����
!

= o(⇢).

As a consequence, |v(�⇢w)| = o(⇢2). This concludes the proof of our characteri-
zation.

Next, we have to prove the claims (1), (2) and (3). The first one follows con-
sidering the restriction of (4.9) to directions z 2 H2, with |w| = 1, and taking into
account (2.2), hence getting the uniform limit

u(x exp(t2Z)) � u(x) � t2hrV2P
(2)
x , zi

t2
�! 0

as t ! 0+, where z varies in a compact neighborhood of zero in H2 and Z is the
unique left-invariant vector field such that Z(0) = z. In fact, we have used the
equality

x�t z = x · �t exp(Z) = x · exp(t2Z),

In particular, we have rV2u(x) = rV2P . Taking into account Proposition 4.1
and formula (2.2), then claim (2) follows. Now, with respect to the fixed basis
(e1, . . . , en) of G, we have the coefficients

�
D2Hu(x)

�
i j such that

D2Hu(x)w =

m1X
i, j=1

�
D2Hu(x)

�
i j wi e j ,

therefore (4.10) yields rH P(2)
x (w) = D2Hu(x)w. For any j = 1, . . . ,m1, we have

X j P(2)
x (w) =

m1X
i=1

(Ax )i j wi ,
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then formula (2.5) gives

Xi X j P(2)
x =

�
D2Hu(x)

�
i j = (r2H P

(2)
x
�
i j +

m2X
l=m1+1

Xlu(x) alij .

As a result, we get

(r2H P
(2)
x )i j = (Ax )i j �

m2X
l=m1+1

Xlu(x) alij ,

that coincides with the formula of claim (3). Finally, we recall that P(2)
x is the

uniform limit on compact sets of the h-convex functions 12
x,⌧u. This implies that

P(2)
x is also h-convex and then its horizontal Hessian is non-negative.
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