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The corona theorem for weighted Hardy and Morrey spaces

CARME CASCANTE, JOAN FABREGA AND JOAQUIN M. ORTEGA

Abstract. The main goal of this paper is to give a unified proof of the corona
theorem for weighted Hardy spaces and for Morrey spaces. We use a technique

that reduces the problem to the weighted Hardy spaces H 2(6).

Mathematics Subject Classification (2010): 32A35 (primary); 32A37 (sec-
ondary).

1. Introduction

The corona theorem for a space X of holomorphic functions on the unit ball B of
C” consists in proving that if gj, ..., g, are pointwise multipliers of X satisfying
the corona condition

inf{lg@)* = lg1@* + -+ lgn(@)|* : z€B} >0, (1.1)

then the map M, : X x---x X — X defined by (f1, ..., fu) = g1 fi+...+&nfm
is onto.

In this work we give a unified proof of this corona theorem for weighted Hardy
and Morrey spaces of holomorphic functions on B. The methods we use to prove
our main result give a simplified proof of the well-known unweighted corona theo-
rem for Hardy spaces.

Before we state our main results, we introduce some notation and definitions.
Let S be the unit sphere in C" and let dv and do denote the corresponding Lebesgue
measures on B and S respectively. For 1 < p < oo we denote by .A,, the Mucken-
houpt class of weights on S. For 1 < p < co,and 6 € A, the Hardy space H” ()
consists of the holomorphic functions f on B satisfying

1/p
1l = (Sup /S If(rs“)l”G({)do({)) < . (12)
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For1 < p <ooand —1 < s < n/p, we also define the Morrey-Campanato space
MP>S on S given by

MPS ={f € LP(S): | flps < oo},

where

1/p
I fllp.s = I1fNlp + sup (8”’_”/[ Lf(m) — f(s“)l”da(n)) , (1.3)
e

I e

| 1, denotes the L?(do)-normof fand I; . = {n € S; |1 — cnl < €}

It is clear that if s = n/p, then the space MP"/P coincides with L”(S) and
that if s = 0, then MP0 coincides with the non isotropic BMO space. It is also
well-known that if —1 < s < 0, then M?-* coincides with a non isotropic Lipschitz
space.

When O < s < n/p, the norm (1.3) is equivalent to the so-called Morrey norm
(see for instance [20])

1/p
Il flmps = sup (8”’_"/1 If(n)lpda(n)> . (1.4)
C.e

[(,g

We denote by HMP® = M?* N HP the corresponding holomorphic Morrey space.
The main result of this work is the following theorem.

Theorem 1.1. Let 1 < p <oocand0 <s <n/p.Let gy, ..., 8gm € H®. Then the
following assertions are equivalent:

(i) The functions gi, k =1, ..., m satisfy inf{|g(z)| : z € B} > 0.
(ii) Mg maps HP(0) x --- x HP(0) onto HP(0) for any 1 < p < oo and any

0eAp.

(iii) Mg maps HP (0) x --- x HP(0) onto HP (6) for some 1 < p < 00 and some
6eAp.

(iv) Mg maps HMP* x --- x HMP-* onto HMP>* for any 1 < p < oo and any
0<s<n/p.

(v) Mgy maps HMP® x --- x HMP* onto HMP-* for some 1 < p < oo and
some(0 < s <n/p.

Moreover, there exists a linear operator Ty such that Mg(To(f)) = f for all the
functions f in one of the above spaces.

Note that for n = 1 the above results are a consequence of the celebrated
Carleson corona theorem [11]. Therefore, in what follows we will only consider
the case n > 1. We recall that the corona problem for H” was proved in [2]
and [4,5].

There is an extensive literature on corona problems in several spaces of holo-
morphic functions For instance, the corona problem for the Morrey-Campanato
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spaces in the scale —1 < s < 0, which corresponds to Lipschitz spaces, was consid-
ered in [19], the case s = 0, which corresponds to BMOA, in [24] and [8]. Related
results involving, among others, Bergman, Besov and Bloch spaces can be found
in [7,8,15,16,22,24-26,32]. See also the book [29] and the references therein.

The study of the corona problem for certain weighted Hardy spaces has been
the object of interest of several authors. It is interesting to remark that in [3] it is
shown that solving the corona theorem for H° is equivalent to solving the corona
problem for all the weighted Hardy spaces H? (i), for any probabilistic measure i
on S. In [32] the authors prove that it is possible to constrain the class of measures
to a certain family of weights.

We believe that the interest of this paper lies not only on the results but on the
techniques, which are based on the use of some extrapolation theorems, that allow
to reduce the proof of the corona theorem for weighted Hardy spaces and Morrey
spaces to the particular case H2(0) for any weight @ € A,. Since H>(0) coincides
with a weighted Besov space (see Proposition 2.6 below), some computations are
easier to deal with.

We will finish the introduction giving a brief sketch of the proof of Theorem 1.1
and the distribution of the parts of its proof in the different sections of the paper.

In the proof, it will be convenient to add to the list of assertions in Theorem 1.1
the following one

(vi) M, maps H2(0) x ... x H*() onto H?(0) for any 0 € A,.

The scheme of the proof of the corona theorem for the case of weighted Hardy
spaces will be the following:

(i) = (iii) = (i) = (vi) = (ii).

Clearly (ii) = (iii). The implication (iii) = (i), which states that the necessity
of the condition (1.1), is proved in Section 4. The proof of (i) = (vi) is quite
technical. In order to make the paper more readable, we prove first this result for
the particular case of two generators in Section 5, and next in Section 6 we prove
the general case. For the case of two generators we will use minimal solutions of
the 33-equation and Wolff type techniques that allow to estimate the solutions of
the corona problem using Carleson measures for H>(6).

For the proof of the general case, we will consider as usual the Koszul complex
with estimates of the involved operators which are suitable for the study of the
required continuities.

Finally, in Section 7 we prove that (vi) = (ii). This result will be a consequence
of an extrapolation theorem due to J.L. Rubio de Francia.

The scheme of the proof of the Morrey case is similar and we will show in this
case that

(iv) = (v) = (1) & (1) = @{v).
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The first implication is obvious, and the proof of the second will be given in Sec-
tion 4. The proof of (ii) = (iv), given in Section 7, follows from a theorem proved
by H. Arai and T. Mizuhara in [9].

In Section 2 we recall some well-known results about weighted Hardy spaces
and Morrey spaces. In Section 3 we prove some results about pointwise multipliers
and Carleson measures needed to prove the main results.

2. Preliminaries

2.1. Notation

In this subsection we include most of the definitions of operators, spaces of func-
tions and measures that we will use throughout the paper and that have not already
been introduced.

As usual, we will adopt the convention of using the same letter for various
absolute constants whose values may change in each occurrence, and we will write
A § B if there exists an absolute constant M such that A < M B. We will say that
two quantities A and B are equivalent if both A < B and B < A, and, in this case,
we will write A & B.

2.1.1. Sets

For{ € Sandr > O,let I, = {n € S : [1 —n¢| < r}. When ¢ = z/|z| and
r=(1-— |z|2),f0r z € B,z # 0, we write I, instead of I, . If ¢ € S,and o > 1,
the admissible region I'; o is defined by I'r o = {z € B; |1 — 2Z| < a(l — |z},
and if A C S, then T, (A) = B \ (Urgal'¢(¢)) is the tent over A. When o = 1,
we will write I'y = I'¢ 1, and T(A) = T1(A). If ¢ € S, and r > 0, we will write
I, =T ,) and if £ = z/|z| and r = (1 — |z|?), we write I, = I ,.

By |A| we denote the Lebesgue measure of a measurable set A C S.

2.1.2. Differential operators

Forl <j<n,letD; = %. If1 <i < j < n,let D; ; be the complex-tangential
differential operator defined by D; ; = z;D; — z; D ;. The tangential operators D; ;
appear when one computes the coefficients of the (2,0)-form

dp() AdlP = Y Djje2)dz Adz.
I<i<j<n

The pointwise norms of d¢ and of the above differential form are

0p(2)| =) IDjp(z)], and
j=1

ore@| = l0p@) AdlPl= Y Dol

I<i<j<n
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Let R be the radial derivative R = Z'}:l zjDj. Forl > 0 and k a positive integer,

we define ro
k _ _
R; = NS (A+k—1DI+R)...dIT+R), 2.1

where 7 denotes the identity operator.

2.1.3. Integral operators

We will denote by C the Cauchy projection and by [P the Poisson-Szégo projection,
that is

1= z»)"

0 () / (
C = | ——=—d , P = ——d .
@)@ /S Gl © @)@ = | 9O Z5rdo(©)

We introduce the following kernels and their corresponding integral operators.

Definition 2.1. Let N, M, L be real numbers satisfying N > 0 and L < n. For
z,w € B, let
= wPN!
= zoMp(w, )b
where ¢ (w, z) = |1 — zw|* — (1 — [w[*)(1 — [z]?).
El/&, ;, will also denote the corresponding integral operator given by

C%’L(w, 2)

V(2) = Ly ()@) = /B Y (w) Ly (w, 2)dv(w).

The proof of the following result can be found in [14, Lemma I.1].

Lemma 2.2. Let N, M, L be real numbers satisfying N > Qand L < n. If n +
N — M — 2L # 0 then

f Ly w, Ddvw) S 1+ (1= [z TN-M=2L e B
B

oge N
Definition 2.3. We define the type of the kernel £ m.L by
type(Ly; ) =n+N—M—2L.

2.2. The Muckenhoupt class A, on S

Given a non-negative weight 6 € L'(do) and a measurable set E in S, let 0(E) =
/, p0do.Forz =r¢,with¢ € Sand 0 < r < 1, we consider the average function

on BB associated to 6 defined by ©(z) = 9‘(15) ,
1— r2}.

where I, = I, = {n € S: [1-n¢| <
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The Muckenhoupt class .Ap on S, with 1 < p < o0, consists of the non-
negative weights 6 € L!(do) satisfying

Ap(®) = sup (©(2) 7 (0/(2))" < 22)
zeB

where 8/ = 07P/P and ©'(z) = e;g‘Z). Observe that 6 € A,, if and only if,
0'e Ay. )
If p = 1, the class .A; on S is the set of non-negative weights 6 € L!(do)
satisfying
My (0)()
0(%)

where My _1(0)(¢) = sup, ©(r¢) is the Hardy-Littlewood maximal function of 8
in¢.

Some well-known properties on Muckenhoupt weights are summarized in the
following proposition.

A1(0) = ’ 00, (2.3)

LOO

Proposition 2.4.

(i) If1 < pthen Ay C Ap.
(ii) If 1 < p <ooand ¢ € A then there exists 1 < q < p such that ¢ € A.
(iii) For any 0 € A, the measure Odo is a doubling measure. In fact, there
exist C > 0and 0 < A < np such that for any { € S and any r > 0,
0(Ic2) < C2'0(I;,p).

The proof of (i) can be found in [31, page 197] and the proof of (ii) in [31, page
202]. The estimate in (iii) with A < np is proved in [31, page 196]. This estimate
together with (ii) gives A < np.

2.3. Holomorphic weighted Hardy spaces

Let us start by recalling some facts on weighted Hardy-Sobolev spaces H? (), with
e A p» which can be found for instance in [23, Section 5].

Proposition 2.5. Let 1 < p < oo and let 6 be an A, weight.

(1) If My, (f) is the admissible maximal function

Mo (f)(&) = sup{|f(2)]:z € Tra}

then |Mo(f)llLr @) = || fllHr@)-

(ii) There exist 1 < p; < p < pj such that HP2 C HP(9) C HP!.

(iii) If 1 < p < oo and § € A, then the Cauchy projection C maps LP(0) to
HP ).
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(iv) If 1 < p < oo then the dual of HP(0) can be identified with H (@) with
respect to the pairing

(/. 8)s = lim /S frédo, (2.4)
where f(¢) = f(0).

The following result (see [12]) implies that, as it happens in the unweighted case,
the weighted space H?(6) can be considered as a weighted Besov space.

Proposition 2.6. Let 0 € Ay and let k be any positive integer. The following asser-
tions are equivalent

(i) f € H*0),
(i) (1— 2120 21T + R  f(2)] € LAB),

with equivalence of norms.

Other equivalent norms in H2(#) can be obtained replacing in (2.6) the opera-
tor (Z+7R)* by the operator Rf‘ defined in (2.1), or using the estimates in [1, Lemma
3.6], which state that if « < , then there exists C > 0 such that

/ 197k (2)1*(1 — |z) "dv(z) < C / IRR()1*(1 — |z1) ! "dv(z),
F[’a

Tep

forany ¢ € Sand h € H(B). Therefore, using Fubini’s theorem to compute the
L' (6)-norms of the above terms, we obtain the following estimate:

f|D,~,,~h(z)|2®(z)dv(z)§/ IRh(2)1?(1 = 21O (2)dv(z). 2.5)
B B

In particular, we have from this observation and Proposition 2.6 the following:
Proposition 2.7. If f € H?(0) then

lo@"2 (1o @1 + (= 122107 1)

@) S la2e)-

2.4. Holomorphic Morrey spaces0 < s < n/p

The following embedding is a consequence of Holder’s inequality:

Proposition 2.8. If1 < p < oo and0 < s < n/p then H"* ¢ HMP* C HP.

3. Pointwise multipliers and Carleson measures

In this section we check that the space of pointwise multipliers of the holomorphic
weighted Hardy spaces H”(6) and of the holomorphic Morrey spaces M?** coin-
cide with H®°. We also give examples of Carleson measures for H” (9), which will
play an important role in the proof of the main theorem.
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3.1. Pointwise multipliers and Carleson measures on weighted Hardy spaces

In the next propositions we state some results on weighted Hardy spaces. These
results are analogous to those corresponding to the unweighted case, but we include
sketches of the proofs for a sake of completeness.

Proposition 3.1. A holomorphic function g onB is a pointwise multiplier of HP (0)
ifand only if g € H*.

Proof. 1tis clear that if g € H® then g is a pointwise multiplier of H?(6).
The other implication is a consequence of the inequality ||g”||gr@) =<

M I™ 111l zr6), Where || M, || denotes the norm of the operator M, (f) = gf,
1

and that ||l = < sup,, 8" | 11t O

Proposition 32. Let 1 < p < 00,0 € A, and N > n. If f.(w) = m,for

7z € B, we then have
0(l,)
P b4
”fz”Hp(g) ~ W

Proof. By Proposition 2.4, the measure Odo is a doubling measure and 0(21;) <
240(I;) with A < np < Np. If z = [z]¢, and 21, = I, 5(_|,2), We have

1 p / 1 0(2k1,)
————=w = | ——=7,9)do(§) S
H(l —w)N llgrey  Js 11— ¢zIVP gszp(l — |z|HNP
kA
S Z kN = 9(12)2 N N 9(113 Np’
S 2V (L= 2PN (1= [2P)NP
where in last estimate we have used the fact that Np > A. O

We recall that a positive Borel measure w on B is a Carleson measure for a
space X P of functions on B, if there exists C > 0 such that, for any f € X7,

/B F@IPdu) < CIf I 3.1)

As it happens in the unweighted case, if 1 < p < 00,6 is an A, and X7 is either
HP?(0) or the space P[L” ()], then these measures can be characterized in terms of
size conditions on the measure of tents over balls.

The space P[L?(0)] is normed by ||u|lpir@) = Il fllLr@), where u = P[],
and we recall that ||lu|lpirr @) = |MalulllLre).

We then have:

Proposition 3.3. Let 1 < p < 00, u a positive Borel measure on B and 6 be a
weight in A, . Then the following assertions are equivalent:

(i) w is a Carleson measure for P[L? (6)];
(ii) wu is a Carleson measure for H? (0);
(iii) There is a constant C such that for all 7 € B, u(1;) < Co(1,).
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Proof. From [28, Theorem 5.6.8] and Proposition 2.5, it is immediate to deduce that
for any function f € H?(0), f =C[f*1=P[f*], and || fllure) = | fllp(Lr o) =~
Il f*IlLr6), where f* are the boundary values of the function f. Hence, any Car-
leson measure for P[L?[6]] is also a Carleson measure for H?(9), and, as a conse-
quence, (i) implies (ii).

Next, assume that (ii) holds, and for N > 0 big enough, let f,(w) = 1

(I—wp)N*
We then have that for any w € I, |1 — wz| < 1 — |z|2. Thus Proposition 3.2 gives

pd) / duw) _ 0(1,)

So we are left to show that (iii) implies (i). We have

/B PLf11Pdp = p /0 W(BLFT > Apar~da.

But {P[f] > A} C T({¢; MuP[f] > A}). Since A, = {¢ : M P[f] > A} isan
open set, Ay = Ul ;,, and for any compact K C A, there exists a finite subfamily
of pairwise disjoint open balls Ig r,, such that K C Uf/’ 15 37, - Consequently,

M M
w(T(K) <Y u(T U 3,)) S Y 0Uz 30,
i=1 i=l

M
S 00U ) =0 I, ) S 0(AL,

i=l1

and
o0
/ PLf11Pdp < f O(AA " d ~ / M PLF1IPd6 < / f1Pde,
B 0 S S
which ends the proof. 0
Proposition 3.4. If g € H™ then the measures
19g(2)12(1 — 21O (2)dv(z) and |37g(z)*O(2)dv(2)

are Carleson measures for H 29).

Proof. Let f € H*(9). Since gf € H?(0), by Proposition 2.7 we have

/B 88D = 12HO@dv@) ~ 18f 13, S I I3,
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This observation, the fact that f € H*(0),g € H® and fdg = d(gf) — gdf . give
/B L @PRI0g@ (1 = 12P)OE)dv ()
< /B 9P = PO ()

+ /B 8f @18 P = 1z)O@dv(@) S 1124

We now deal with the second assertion. We have that fD; jg¢ = D; j(gf) —
gD; jf.Hence,

/B |f(@)P197g (21?0 (2)dv(z) < /B 197 (£f)(2) 2O (2)dv(z)

+ /B 197 £ 2) 121> (1 = 1z1)O(2)dv(2).

Applying Proposition 2.8 to both f and gf in the preceding estimate with g € H*®,
we obtain that

fE |f@P1Org@PO@dvE) S 18f 13m0 + 1/ 136, S 11320,

which ends the proof. O

As a consequence of Propositions 3.3 and 3.4 we have:

Proposition 3.5. Let 6 € Ay and g € H*®. Let

dng.a(@) = O ((1 = 12108 @ + 1978 ) dv(2).

If o € L2(0) then /B P@) P d1ig (@) S 19122,

3.2. Multipliers on Morrey spaces

The next result gives a characterization of the pointwise multipliers of H M?-*, for
0<s<n/p.

Proposition 3.6. If 1 < p < coand0 < s < n/p, a function g is a pointwise
multiplier of HMP-* if and only if g € H*.

Proof. Ttis clear thatif g € H®, then ||gf |mrs < llgllooll fllazrs.
In order to prove the necessity we recall that, for a positive integer m,

lg"Ilp < Ng™ lmrs < IMgl™ Ll agps,

where || M, | denotes the norm of the operator f — gf. Therefore, gl pm S
|Mgll. Since [|glloo = limy,— o0 lIgll pm We obtain the result. O
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4. Necessary conditions on the corona data

In this section we prove that if any of the assertions (ii), (iii), (iv) or (v) in Theo-
rem 1.1 holds, then the corona data g satisfies (i).

4.1. Necessary conditions for weighted Hardy spaces

In order to obtain necessary conditions on the corona problem we recall the follow-
ing lemma which has been proved in [12]:

Lemmad4.1. Let 1 < p < oo and 6 be a weight in A,. There exists C > 0 such
that for any holomorphic function f in B, and any z = |z|¢,

1
dt
sar=c(ifor+ [ il ).
122 0Ue,)'P e @
As a corollary we obtain:

Corollary 4.2. Let 1 < p < 0o and 6 be a weight in A,,. There exists C > 0 such
that for any holomorphic function f in B, and any z € B,

(Q—P’/P(IZ)> v

lf() = CW

| fllEr@)-

Proof. Let z = |z|¢ # 0. The fact that 6 is in A, gives that 6=P'/P is in Ay, it
satisfies a doubling condition of order A < np’, and consequently

, 1y
/1 1 dtwfl UP N
e OUe )Pt Jigp " P

(g—p’/p(lz)y/p/ (9—p’/p(lz)>l/p/
A—=Pr - P

< 3ok
k>0

(e—ﬂ’/p(lz)) e

T This is a

In order to finish we just have to show that | f(0)| <
consequence from the fact that

)] < /Slflda =/§|f|01/”9‘1/”d0 < 1 v,

and

o' (57 ra) " (o)
1S < . .
(= lzPy (= lzPy
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Proposition 4.3. Let gy, ..., g, € H*® and 0 € A, If the operator My : H? (9) x

- X HP(0) — HP(0) is onto, then g = (g1, . . ., gm) satisfies inf,cp |g(z)| > 0.
Proof. We first observe that by the Open Mapping Theorem, for every f € H?(0),
there exist functions f; € H?(0),i = 1, ..., m,such that:

i f=X20r, flgl,

Q) I fillarey S fllpe) fori =1,
If z € B, let f,(w) = m, where N > 0 is to be chosen. We then have

that there exist f;, withi = 1, ..., m, satisfying conditions (i) and (ii) above for
f = f;. Therefore, if N is big enough, Corollary 4.2 and Proposition 3.2 give that

1 m
— = (2] < I fi @)Ilgi ()]
(1—1z]»)N ;

(9—1)//17(]1))1/17/ m
< Ifllery Y 18i ()]

ST Do
(I —z|5)" =
, 1/p'
o—P/r(] )) \/p m
(. 9(” >l
~ooA =P — 2PN &=
and since 6 is in A, we obtain that 1 < Y7, |gi (2)]. O

4.2. Necessary conditions for Morrey spaces

The next lemma gives a pointwise growth estimate for functions in H M?>5.

Proposition4.4. Let 1 < p < 00,0 <s <n/p, fin HMPS, and z € B. Then
F@IS I llpaes (1= 127

Proof. Assume z # 0, and let ¢ = z/|z|. For a positive integer j,let I; = {n € S:
1 —n¢| <2711 — |z}
Therefore, by Cauchy’s formula,

ICIE O tom+ Y [ o

j>171j+1=1; 11—

<SS @i - Py /] 1Sl

j=1
Next, Holder’s inequality gives

FOIS D QA= 12PN f s S A =1 75N fllmars,

j=1

which concludes the proof. O
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Proposition 4.5. Assume that gy, ..., g, € H®. If for some 1 < p < 00 and
0<s<n/pthemap Mgy : HMPS x - x HMP* — HMP* is surjective, then
inf{|g(z)| : z € B} > 0.

Proof. By the Open Mapping Theorem, for every function f in HM?-S there exist
functions f1, ..., f,n in HMP-® such that

m
e =f and | filmrs S I fllars.
k=1

By Proposition 4.4

f@I < D@ S N fllars A= 127 Y i@ @)

i=1 i=1

For N > s, we consider the function f,(w) = (1 — wz)~". Since, by Proposi-
tion 2.8, H"/S ¢ HMP*, we have

~ 2ys—N
I fellmrs S M fell s & (1= 12|

Therefore, by (4.1)

m

A=1zPH™N = £@) S I fillurs =127 > 1gi(2)]

i=1
m

SA=1zH™N Y s,
i=1

which proves the result. O

5. The H?(0)-corona theorem for 2 generators

Throughout this section we will assume that the functions g1, go € H™ satisfy
infzep [g(2)] > 0.
We want to prove that the operator M, defined by M (f1, f2) = g1 fi+&/

maps H2(0) x H*(0) onto H*(9) for any weightf € Ay.
Let g = (g1, &2) and let G = (G, G2) where G; = é—"é,forj =1,2. An
easy computation proves that

0G1 = —Q, 06> =gQ, (5.1
where
81082 — £2081
gl*
Clearly g1G1 + 82G2 = 1,32 = 0 and |G [l .29y S I/ I w2¢0)-

= G10G2 — G23G,. (5.2)
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Since the functions G f are not holomorphic on B, we must correct them
using a solution of a d-problem. Since 3(S2f) = O forany f € H 20), we will
choose a suitable integral operator /C such that 0/ C(€2f) = Qf and such that the
linear operator

T.(f) = Gf + g K(Qf), g+ = (g2,—81) (5.3)

maps H2(0) to H>(9) x H*(9).
It is clear by construction that the components of 7, ( f) are holomorphic func-
tions on B and that My (7, (f)) = f.

In order to choose a suitable operator K, let

ZC le OV A @) (w, 2)

Zw)"+N(1 _ wZ)" k

K (w, z) = A (y (w))

o|w|

where 0 = 0,, (differential respect w), y(w) = 9 1_|w2|2 and s(w,z) = (1 —

wD)dwl? = (1 = [w|*)dy (w2).
It is well-known that the corresponding integral operators associated to these
kernels, also denoted by ICN that is, if ¢ is a (0, 1)-form,

KY @) () = /B/C(I)V(w, 2) AU (w),

solve the é—equation or the 5b—equati0n on the unit ball of C" (see for instance [30]
or [14]).

The following proposition summarizes the main properties of these operators.
In particular it gives a decomposition of IC(])V (¥) as a sum of two functions. The
first one is an antiholomorphic function on B, and the other term involves d¢. The
main advantatge of this last term is that if ¥ is the form €2 defined in (5.2), then,
by Proposition 3.4, we obtain expressions like OW)|aQw) > — |w|>)dv(w) or
O W) (w) A d|w|* A d|w|?|*dv(w), which are Carleson measures for H2(6),
and these facts will play an important role in the calculus of the estimates.

Proposition 5.1. Let 9 be a (0, 1)-form with coefficients in C' (]E%). Then, for each
positive integer N, there exist integral operators Q(I)V 1 and Q(I)V 2 satisfying the fol-
lowing properties:

(i) K@) = Q ")+ QO 2(09);
(i) ALY () =¥ if 99 =0;
(iii) The function Q(l)v 1) (2) is antiholomorphic on B and for ¢ € S

n+N 2\N P 3 2yn—1
Mol oo _ (1= Yo (w) A dwE) A @3y~
o @ =ena Y [ o ,



THE CORONA THEOREM FOR WEIGHTED HARDY AND MORREY SPACES 593

(iv) Forany ¢ €S,

N.2 (1 — w39 (w)]
192 @n @ = O [ EE B v
(1 —wHN9d (w) A d|w|* A dlw|?|
i /IBS 11— wg N dviw).

Assertion (ii) is proved in [30] and [14]. Assertions (i) and (iii) can be found in [6,
page 46]. Finally, (iv) follows from [6, Theorem 2].
We want to prove that, for N > 0 big enough, TgN maps H?(9) to H*(0) x

H?2(9), that is ||’];,N 20 < Il f 1l 2oy With a constant depending of n, N, g
and 6.

Since |7V (N < IGILf1 + 1 IIKN (D] < 1Gllool £1 + lgllocl N (1)1,
we only need to prove that for N > 0 large enough we have the estimate

1Y (@) 120y S 1S 120y
Since KY(Qf) = Q)1 (Qf) + QY2 (3(f)), we will need the following
estimates of Qf and of 9(L2f).

Lemma 5.2. Let Q as in (5.2). Then

Q) (w)] < 18g )] f (w)]
13(2)w)| S [dgw)*|f (w)] + [dg(w)|af (w)].
19(QF)(w) A dwl* A dlwl*| < 197 g(w)*| f(w)] + 187 g (w137 f (w)].

Proof. All the above estimates follow from the definition of €2 and the formulas
9gk () A Blw|?| = |97 gk (w)| and [3f (w) A d|wl*| = |7 f (w)]. [

The estimate of the L?(0)-norm of IC(I)V (2f) will be obtained by duality. We
first state the following lemma that will be used in the proof of these L?(8)-estimates.

Lemma 5.3. If N > 0 then
K (@] S195 Q@) + Ly (WD),

where

Ww) = (1 — |wl? (|ag<w)|2|f<w>| + Iag(w)llaf(w)l)
+ 197 g (W) 2] f (W)| + |97 g (w)!|37 f (w)].

Proof. The proof is a consequence of Proposition 5.1 and Lemma 5.2. O
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Lemma 5.4. Let i be a continuous function on S. If N > n then

‘/ KY(Qf) vdo
S

n+N n

S Z Zf |0gw)[] f (w)l (1 — Jw]*)Y

=1 j=1

+ fBu — 1) (105 @)1 f )] + 185 )I[3f )] ) Py D (w)dv(w)

LAC)
/S 7(1 — wg:)"da(é)‘ dv(w)

+ /B (178 @)PLf )l + [org)llar £ w)] ) P ) (w)dv(w).

Proof. The proof is a consequence of Lemma 5.3, Fubini’s Theorem and the esti-
mate 1 — |w|> < 2|1 —¢w|. O

Lemma 5.5. If0 € A then for any positive integer N we have

2

@(%) dv(w) < ||<P||2LZ<9>'

s = wp

n+N
/@(w)(l jw|?)2N =1

Proof. Since 6 € Aj;, we have

5 ||§0||L2(6)‘
H(9)

1C@) 20y = H / (1‘”@) ()

Next,if n <k <n+ N, we have

®(&)

g mdg(é') = Rﬁ_nc(fﬂ)(z),

(see (2.1) for the definition of R’,fl_"). Therefore, the desired result follows from
Proposition 2.6.
In order to prove the case 1 < k < n, observe that

(&)

Lo ©).

n—k
Cp)(2) =Ry /(1

By Proposition 2.6 and the fact that ||C(¢)]| H2(0) < ol 12(p) We conclude the
proof. O

Proposition 5.6. If N > n and 0 € A, then

1KY @O 20y S 1 2oy
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Proof. Let 0’ = 0~ € A, and let © and @’ be the corresponding averages of 6
and 0. Let also

dg.a(@) = O ((1 = 12108 @ + 1978 ) dv(2).

By Proposition 3.5, g ¢ is a Carleson measure for H 20).
Let € L?(0’) and let

n+N n =
W(w) = 1 — lwlHyN-1/2 leﬁ(é)@_(é“)d ‘ ‘
(w) kz=1 JEZI( lw[*) A wil o (%)

By Lemma 5.4, Holder’s Inequality and the fact that ®(z) 20/ (z)% ~ 1, we have

k5 @puas=| [ (9 @)+ Q) a@) vao

1/2 1/2
< ( / |f|2dl/«g,0> ( f ®’|w|2dv)
B B
1/2 1/2
+< fB |f|2dﬂg,9> ( /B |P(x/f>|2dug,9/)

1/2 1/2
+<fB<<1—|w|2>|af|2+|aff|2>®dv> (/B|P(vf>|2dug,9/) :

Therefore, Propositions 2.7 and 3.5, and Lemma 5.5 give

)/SIC{)V(QJ‘) Vdo

S ||f||H2(9)||W||L2(«9/)-

This estimate combined with the fact that (L?(9))'=L?(#’) concludes the proof. [
As a consequence of the above proposition we have:

Theorem 5.7. Let g1, go € H satisfy inf{|g(z)| : z € B} > 0}. If N > n then
’TgN(f) =Gf — gLIC(I)V(Qf) is a bounded operator from H2(0) to H*(9) x H%(9)
forany 9 € A;.

6. The H?(0)-corona problem for m generators

It is a well-known fact that one way to prove the corona problem with m generators
is based on the so-called Koszul complex. In order to make the reading easier, we
briefly recall this method using the notation of [8, Theorem 3.1], which provides
solutions of the corona problem for H?”.



596 CARME CASCANTE, JOAN FABREGA AND JOAQUIN M. ORTEGA

6.1. The Koszul complex

We begin with some notation and definitions. Let E = {eq, ..., e} be a basis of
C™ and let E* be the corresponding dual basis. We denote by A/ = A!(E) the
set of all elements e; = ¢;, M ...Me;;, where I = {iy, ..., i}, of degree [ of the
exterior algebra A = A(E). In order to avoid any confusion in our notation, we use
M to denote the exterior multiplication in A and A to denote the exterior product of
differential forms. If v* € E* then 8,+ : A'T! — A! denotes the anti-derivation
defined by

l
j—1
50*(61'1 M... |_|ei,) = Z(—l)‘/ vje ... I‘Ieij_, |_|eij+1 ...Mej.
=1

Let £, denote the space of (0, ¢)-forms with coefficients in C ©([B)and £ = UZ:OS,, .
We also consider the space &, (A) of A-valued forms

Zﬂlel, nr €&,
7

and the union £(A) = UZ:qu (A) of these spaces.

We will use similar notation to consider other A-valued spaces of functions.
For instance, H2(6, A) consists of sums of h;(z)e; with h; € H?(9).

For F =) ;nie;and H =) ;9se5 € E(A) we let

FI_IG:ZHI/\I9161I_I€J.
1,J

If I : £ — £ is alinear operator, we will also use X to denote the operator defined
on E(A) by K(nrer) = K(np)er. If h* = Tzlhj(z) Mej* € Eo((A®)Y) (that
ish; e C®(B)), let 8p=(nrer) = ny M dp(ey) = Z;'-l:] hjm(Sej,e,. We denote
by 8+ IKC : E(A) — E(A) the composition of K and 8y, that is (85K (nrer) =
Kn) népser) =371, thC(UI)Sej.el-

Now we can give an explicit formula that solves the corona problem. Observe
that Z;’Ll gjFj = f can be written as 8¢+ F = f, where g* = Z'}-’:l gj(z)ejf and
F = Z’;?:] Fj(2)e;.

As usual, if F = ), nsey, then |F| denotes the pointwise norm |F| =

Z I nrl.

Let us introduce a family of kernels ' and their corresponding integral oper-
ators KV : £ — & which satisfy d/CN () = 5 for any (0, ¢ + 1)-form 7 such that
an = 0 (see for instance [14]).

For N > 0, we consider the kernel

1= wHV* (s A @) 10 (w, 2)

k
(1= o)V " (w.2) A (Y (w))”,

n—1
KN (w, z) = Z Ck,N(
k=0
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where d = 9, + E_JZ (0 in both the variables the w and z), and
- dw|? ad|lwZ  dw|* Ad|w|?
y(w) =2 2 = 2 272
1 —|w] 1 —|w] (1 —Jwl?)
s(w,z) = (1 —w2)d|lw)® — (1 — |[w>)d(w3)
=1 -w2d(w> = w?) + (w|* — w2)d(w3)
p(w,2) = |1 —wz]* — (1 — w1 — [z]*)
= |(w — 20>+ (1 = |w)|w —z|*

6.1)

Set KN = Z;;(l) ICfIV , where ICfIV denotes the component in XV of bidegree (0, ¢)

inzand (n,n —qg — 1) inw. If g = 0, then IC(I)V (w, z) coincides with the kernel in
Proposition 5.1.
Formulas (6.1) together with

dws(w, ) = (1 — w2) By dy |w|* — Jp(WZ) A 3wl
des(w, 7)) =—d(wZ) A dy|w]? — (1 — [w[*)d,dy (w3)
=3, (|z]* = wZ) Ady w|* — (1 —|w[*) 8,3y (WZ) — 3 |z|* A By |w]?,
du(WZ) A By |w]? =8y (WZ — [w|*) A By |w|?
give (see [17, page 69]) the following decomposition of ICfIV (w, 2):
Lemma 6.1.
Ky (w,2) = K (w, 2) + KY 2w, 2) Adlwl? + K P (w, ) Adlz, (62)

with the following estimates:

N,1 N+1
G (w. 2 S LT et p (W, 2),

N+1/2
N2, )1, 1KY 3w, )1 S Ly 2, 1w, 2).

(6.3)

(The kernels EZAY,’ ; are introduced in Definition 2.1).

Note that, if ¢ = 0, then IC(’)V does not contain the terms dz;, and therefore
IC(I)V’3 = 0. Analogously, lCiv_’zl =0.

If ¢ € Sthen ¢(w, ) = |1 — ¢w|? and
Ky w, o)l S LN ow. 0. 1KY w. Ol S LYo ). (64)

Observe that, by (6.3), |IC,]IV ‘| is bounded by a kernel of type 1, and |IC£IV 2| and

|IC§V ’3| are bounded by kernels of type 1/2. Therefore, |ICZIV | is globally bounded by
a kernel of type 1/2.
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i Now, given g = (g1, ..., 8n) € H* satisfying inf,cg|g(z)| > 0,let G; =
;—-(2 andlet G = 27:1 Gj(z)ej. Clearly, §o«(G) = g G = 1.

Then, we will use the following formula which provides a solution of the
corona problem on Hardy spaces.

Theorem 6.2 ([8]). If1 < p <ocand g = (g1, ...,8m), with gj € H*, satisfies
inf,cp |g(z)| > 0, then the linear operator

() = minmzm_l)(—n" (6g*l<:N)k (rGn@o)) (6.5)

k=0
maps HP to HP (A'), with 1 < p < 00, and 83«(TN (f)) = f.

In order to facilitate the reading of this paper, we will give the explicit compu-
tations of 7V (f) form =2 andm = 3,and n > 3.

If m = 2 formula (6.5) coincides with that of Section 5. In order to prove this
observe that, by bidegree arguments, the term k = 1 in (6.5) is

8+ KN) (f(Grer + Gae2) N (3G €1 + 3Gaer))
= (84+K{) (f(Gie1 + G2e2) N (3G €1 + 3Gaer))
and that
8+ KC0) (f(Grer + G2ex) M (3G1e) + 3Gaer))
= (85:K{) (f(G13G2 — G23G1)ey Mey)
=K (fG13G2 — £G23G1)(g1e2 — g2e1).
Employing the notation of Section 5, by (5.2) we have fG10G, — fG20G| = fQ

and, therefore,

TV (f) = (fG1 + &K (f)er + (G2 — 1K) (fQ)er.  (6.6)

which coincides with (5.3).
If m = 3 then similar computations prove that the term k = 1 in (6.5) is

B KNG MAG) = KN (£G13G2 — fG20G1)(g1e2 — g2e1)
+ KY (fG20G3 — fG33G2)(g2e3 — g3€2)
+ KY (fG30G| — fG13G3)(g3e1 — g1€3).

Gi Gj

Now, if Q; ; = '5G- 5G.|=GidGj — G;9G; then
i J

B KNG MIG) = (2K (fQ2.1) + 83K (F23.1))en
+ (@1 K (fQ12) + 8K (fQ3.2)e2 (6.7)
+ (@Y (fQ13) + 8K5 (f223))es.
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In order to calculate the term & = 2 in (6.5), set

G G2 G3
Q23 =|9G1 9G2 9G3
0G| 0G, 30G3

=2 (GléGz A3G3 + G20G3 A G| + G3dG | A 5G2) .

It is easy to check that G MdGMAG = Q123 ejMeaMes. The use of the determinants
of forms to formulate the Koszul complex can be found in [22]. Therefore,

B KV (Q23 €1 MexMes)

= g1KY (Qu23) e2 Mes + KN (Qua3) e3 Mer + g3KY (Qua3) e1 Mea,
and

B ICY ) B KV ) (123 €1 Mea Mes) = K (g1 KN (Q123)) (8263 — g3€2)
+ K (22K (22123)) (g3e1 — g1e3)
+ K (83K (22123)) (g1€2 — ga2e1).

Observe that in general we have the following:

Lemma 6.3. The coefficients of ((Sg* IC)k (fG M (5G)k),f0r k > 1, are linear com-
binations of terms of type

Fre; = gigKo(gi, (K1 (eou(gi_ Ki=1(fGj,0Gjy A...AIG ;)N e (6.8)

To conclude, for completeness, we recall the proof of the fact that ’];,N (f) e HA D,
which can be found in [8, Theorem 3.1].

Let 7 = min{n,m — 1} and let V; = G n (dG)*. We define by induction
the forms U, = V, and Uy = Vi — (8g«K)(Ur41), 0 < k < r. Observe that
Uo = TN (f),84+(3G) = (0(84:G)) = 0 and 8+(Vi) = (0G)F.

We want to prove that U, =0forall0 < k <r.Ifr = n, then by bidegree
arguments, the form V, = G 1 (3G)" satisfies 9V, =0.Ifr =m — 1, then using
3¢4+0G = 0 we also obtain 9V, = 0. Assume that U1 = 0. Since 8§* =0, we

have 8« Ug+1 = 8¢+ Viy1 = (0G)* ! = §Vj. Therefore, we have

(B Ki) (Ug41)) = 8¢+ (3Kk (U41)) = 8g-Up1 = 8V,

which proves that dUj = 0.



600 CARME CASCANTE, JOAN FABREGA AND JOAQUIN M. ORTEGA

6.2. Estimates of the terms appearing in (6.5)

We want to obtain L?(6)-norm estimates of

, k=0,---,min{n,m — 1}.

6K (16N @6} @

By (6.6), the estimates with £ = 0, 1 have been obtained in Section 5. In order to
obtain the corresponding estimates for k > 2 we need the next:

Proposition 6.4. For N large enough and k > 2, we have

|6 KM (FG N BG)) ©)|
< [ L WP dg ) + org@)) (1 = fwP)"
=B

11— ¢w|>

dv(w).

Assuming this result, it is easy to prove the corona theorem for p = 2.

Theorem 6.5. Let g = (g1, ..., 8m), with gj € H™, satisfy inf,cp |g(z)| > 0. If
N is large enough, then the operator 7;,N in Theorem 6.2 maps H*>(0) to H*(6, A")
forall9 € A;.

Proof. The estimate of (Sg*ICN )Y(fG) = fG, corresponding to the term k = 0 in
(6.5), is clear. The estimate of the term k = 1, that is (Sg*ICN )(fG M aG), follows
arguing as in the case of two generators. Observe that as it happens in (6.7) the
coefficients of the terms that appear in the representation of (§ g*ICN )(fGMG) are

of the same type of the expressions g; IC{)V (f<2) considered in Section 5.

Therefore, it remains to consider the terms k > 2. For any ¢ € L2(9_1),
Proposition 6.4 gives

‘/SFI(C)w({)dU(C)' SfEIf(w)lIBTg(w)Izp(le)(w)dV(w)

+/E<1 — [wlH] £ (w)]|dg (W) PPy |) (w)dv(w).

Thus, arguing as in Proposition 5.6, Holder’s inequality, the fact that 0107 ~ 1
and Proposition 3.5 give

12 12
' /S Fz<c>1/f(;>do(;>' < ( /S |f|2dug,e) ( é |P(w)|2dug,e/)

S I 2@ 1V L2y
which proves that F;(¢) € L*(0) and || Fill 120y S I f 26 - O

Therefore, it remains to prove Proposition 6.4.
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Lemma 6.6. Fork > 2,
(GjydGj, A ... ADG ) (w) = Gr(w) + Gr(w) A dlw|? (6.9)
with
1Grw)| < (1= [w)?|9gw)* + (1 — [w)! o g(w)]?

- (6.10)
Gr)] S (= w22 (1 = wPlagw) +lorgw)?],

and consequently
Gl S (=242 = wPagw)P +1orgw)] .

Proof. The decomposition

n n
8Gi(w) = (1 — [w3Gw) + > > wiw; DiGi(w)d,
=1i=1
non _ _
+ Zzwi(wiDle(w) —w;D;Gi(w))dw;
=1i=1

= (1 — [w3Gi(w) + RGi(w)d|w|* + Y iy Di jGi(w)di
ij

and (1 = [w)!/2dr g(w)] + (1 = [w)]dg(w)| S 1, prove (6.9) with
1Grwl £ [0~ Doz +1orga)]
S A= wP?log)l? + (1 = w7 jorgw)?
Grw) < [~ Py gl +1orgwy]  logw)l.
Since k > 2, (1 = [w*~Hog)[* < (1 = [w|*)|9g(w)|? and

197 g(w)*Nagw) < (A — [w> 7297 g (w)1ag (w)]
S A= 1wP) 22 (jarg ) + (1 = wP)logw)l?)

which concludes the proof. O

The next lemma is well-known (see for instance [24, Lemma 2.5]).
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Lemma6.7. f 0< A, B<N <n+ A+ Bandz,w € B, then

(1 —JuHM! < 1
T =z A — w8 VW S T AN

Lemma 6.8. If the kernel E%’L has type k = n+ N — M — 2L > 0, then for
k—n<A<Nand B >0,

fB LY 0@ OLYEE  (w,2dv(@) S LY 4 0w, ©).

N

Observe that the type of L, A,

o 18 the sum of the types ofﬁflerA o and E% L

Proof. Since L’%ﬁ‘rg LW, 2) S [,IAYI ;. (w, z) we can consider B = 0.

The left-hand side term in the above inequality is

1o)== P! [ Ul dv(2)

’ B |1 —¢ZI"PAIl — zwM ¢ (w, 2)F '
Let ¢y (2) denotes the automorphism of the unit ball which maps w to 0. We will
use the change of variables u = ¢, (z) and the formulas in [28, Section 2.2] to
reduce the estimate to that of Lemma 6.7.

Since )
—— (= |wP{ - zi)
1 — o (2)pu(u) = 1 20)(1 —wi)’ (6.11)
we have
_ 2 _ 2
1—|<pw(u)|2=(1 (A1) - g d(w, z) = |1 — 209w (2) %

[1 —uw|?

Therefore, the change of variables u = ¢,,(z) gives

_ 2\N—1 _ 2\N—1 _ 2\n+1
Iw. o) :c/ (1ﬂ )R |§0w(lff)| ) (1 Iw_l ) o).
B |1 — 20w @)A1 — @y ()| MA2L |y 2L 1 — uw|2n+2
By (6.11),
_ —  1—|w?
I —pu@)w =1— @y u)ey,0) = 17_
—uw

(I =Zfw) = gu()u)

I = Cowu) =1 = @u(pw(C))pwu) = 1 —ud
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therefore,

T(w,¢)=c

1 2\N—1+« 1, 12\N-1
(I = Jwl*) / (1 — ful”) dv(w).
B

|1 —¢w|N+4 11— @u (O™ AT — w|N+e=A | 2L

We decompose the above integral in the sum of the integral in the ball %IB% ={ue
B; |u] < 1/2} and of the integral in its complementary set. Since L < 2n and |1 —
uz| = 1on %IB%, the integral in this set is bounded. By Lemma 6.7, the integral over
17 - 1 _ l1=¢w
the complementary of 5B is bounded by e @oF = U_JoPF’

the estimate. O

which concludes

Proof of Proposition 6.4. Observe that by the decomposition obtained in (6.2), and
the facts that 9|w|? A d|w|? = 0,

K2 u) AKN (w.2) =0, forall0 <g <n—1, and

(6.12)
K=o,

the term in (6.8) is a sum of terms of type

Fi = gioKo ™ (gi, (KN (g O TN (FGY) ),

with j; = 1,2, 3 and at least one of them equal to 1, and one term of type
F2 = 8K 2 (81 ()2 (81, JOUT(FGT)) - D))

Observe that, by (6.12), all terms including IC;V ’3( f G) are considered in the first
type Fi.

Since |ICéV ’1| is bounded by a kernel of type 1 and |/Cév ’2|, |IC£IV ’3| are bounded
by a kernel of type 1/2, the kernels in F are bounded by a product of kernels of type
1 or 1/2 whose sum of types is greater than or equal to (k — 1)/2 + 1 = (k + 1) /2.

Analogously, the kernels in F; are bounded by a product of kernels of type 1/2
and whose sum of types is equal to k/2.

Therefore, if N is large enough, the pointwise estimate of G in Lemma 6.6,
together Lemma 6.8 give

(1 — [w[HN =12
B |1 _ §w|n+N—k/2

(1= )V
Z‘/B 11— ;wln—kN—k/Zd'U“g(w)’

|F1(0)] < (1 — wHY>*2d 1, (w)

where djig (w) = [(1 — [w|*)|9g(w)[* + |97 g(w)*|] dv(w).
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Analogously,

(L= w2 -

(11— |w|2)N+1/2—k/2
= _[B In— §w|n+N+1/2—k/2dMg(w)'

Therefore, taking N > n + k/2 we obtain the estimate in Proposition 6.4. 0

7. End of the proof of Theorem 1.1

7.1. Corona theorem for weighted Hardy spaces

The following extrapolation theorem was proved in [27] (see also [31, page 233]).

Theorem 7.1. Let 1 < r < 00, and T be a sublinear operator which is bounded on
L"(0) for any 6 € A,, with constant depending only on the constant A, (0) of the
condition A,. Then T is bounded on L () forany 1 < p < coandany 6 € A,
with constant depending only on A,(6).

Next we will prove the corona theorem for H” (6).

Theorem 7.2. Let1 < p <ocoand0 <s <n/p.Let g1, ..., gm € H®. Then the
following assertions are equivalent:

(i) The functions gg, k = 1, ..., m satisfy inf{|g(z)| : z € B} > 0;
(i) Mg maps HP () x --- x HP(0) onto HP () for any 1 < p < oo and any
6 €Ay,
(iii) Mg maps HP(0) x - -- x HP(0) onto HP () for some 1 < p < 0o and some
0eA,
(iv) Mg maps H2(0) x --- x H%(6) onto HZ(G)for any 9 € Aj.

Proof. We will follow the scheme (ii) = (iii) = (i) = (iii) = (ii).

Clearly (ii) = (iii). The implication (iii) = (i) is proved in Proposition 4.3.
The proof of (i) = (iv) is given in Theorem 6.5 using the linear operator TgN . The
proof of (iv) = (ii) follows from Theorem 7.1 applied to r = 2 and to each one
of the operators 7 = 7;, Nl oC,i=1,...,m. Here TgAZ are the components of the

operator ’Z;,N and C is the Cauchy kernel. O



THE CORONA THEOREM FOR WEIGHTED HARDY AND MORREY SPACES 605

7.2. Corona theorem for Morrey spaces
The following result was proved in [9, Theorem 3.1].

Theorem 7.3. Let ¢ and  be non-negative Borel measurable functions on S. Sup-
pose that for each a > 1 and every bounded weight 6 € A, such that A;(9) < «,
there exists c(a) such that

/go@do < c(a)/t/féda.
S S

Then, for 0 < t < n, there exists a constant C depending on n and t, such that
1
l@llane < ClWllppe for any @, € M.

Theorem 74. Let1 < p <oocand0 <s <n/p.Let gy, ..., gm € H®. Then the
following assertions are equivalent:

(i) The functions gg, k = 1, ..., m satisfy inf{|g(z)| : z € B} > 0;
(i) Mg maps HMP>* x --- x HMP* onto HMP* for any 1 < p < oo and any
0<s<n/p;
(iii) Mg maps HMP* x --- x HMP>* onto HMP** for some 1 < p < oo and
some(0 < s <n/p.

Proof. The scheme of the proof of the Morrey case is similar and we will show in
this case that

(i1) = (iil) = (1) < (ii)[Theorem 7.2] = (ii).

The first implication is obvious, and the proof of the second one is given in Proposi-
tion 4.5. The proof of (ii)[Theorem 7.2] = (ii) follows from Theorem 7.3. Observe
that,if 1 < p < 00,0 = |To(f)IP, ¥ = |f|” and t = sp < n, then the fact that
A C A, (iD)[Theorem 7.2] and Theorem 7.3 give

T (P grs = MO lagrsr < CULF P Hagrsr = 1 Wygs

which proves the result. ]
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