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Monodromy of Lauricella’s hypergeometric FA-system

KEIJI MATSUMOTO AND MASAAKI YOSHIDA

Abstract. We give a monodromy representation of Lauricella’s system of dif-
ferential equations annihilating the hypergeometric series FA(a, (b), (c); x) of
k-variables; its rank is 2k . Under some non-integral conditions for parameters a,
(b) = (b1, . . . , bk), (c) = (c1, . . . , ck), we find circuit matrices with respect to
solutions represented by integrals. We make use of the intersection numbers of
the domains of the integrals.

Mathematics Subject Classification (2010): 32S40 (primary); 33C65 (sec-
ondary).

1. Introduction

We give a monodromy representation of Lauricella’s system of differential equa-
tions annihilating the hypergeometric series FA(a, (b), (c); x) of k-variables; its
rank is 2k . Under some non-integral conditions for parameters a, (b)=(b1, . . . , bk),
(c) = (c1, . . . , ck), we find circuit matrices with respect to solutions represented by
integrals. We make use of the intersection numbers of the domains of the integrals
regarded as bases of a twisted homology group.

In general, we have the following principle: Suppose that a local solution space
of a system of hypergeometric differential equations can be identified with a twisted
homology group with intersection form I. If the Jordan normal form of the circuit
transformation m⇢ along a loop ⇢ is diagonal with two eigenvalues, say ↵ and �,
and either the eigenspace belonging to the eigenvalue ↵ or that to � is specified then
m⇢ is uniquely determined by the specified eigenspace and the intersection form I.

We apply this principle in this paper to Lauricella’s system of type A, and find
a set of generators of the monodromy group. When the number of variables is two,
this system is called Appell’s F2, of which monodromy group is studied by several
authors; refer to [4] and the references therein.

This principle is applied to finding generators of the monodromy group of Lau-
ricella’s system of type D in [8].

Received October 26, 2011; accepted in revised form August 1, 2012.
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2. Lauricella’s FA-system of hypergeometric differential equations

In this section, we collect some facts about Lauricella’s hypergeometric FA-system
of differential equations, for which we refer to [7] and [1]. The hypergeometric
series FA of complex variables x = (x1, . . . , xk) is defined by

FA(a, (b), (c); x) =

X
(n)2Nk

✓
a,

kP
i=1

ni
◆ kQ
i=1

(bi , ni )

kQ
i=1

(ci , ni )
kQ
i=1

(1, ni )

kY
i=1

xnii ,

where N = {0, 1, 2, . . . , }, a, (b) = (b1, . . . , bk) and (c) = (c1, . . . , ck) are com-
plex parameters satisfying c1, . . . , ck /2 �N = {0,�1,�2, . . . , }, and (a,m) =

a(a+1) · · · (a+m�1) = � (a+m)/� (a). This series converges in the domain

D =

(
x 2 Ck

��� kX
i=1

|xi | < 1

)

and admits the integral representation
"

kY
i=1

� (ci )
� (bi )� (ci�bi )

#Z
(0,1)k

u(a, (b), (c); x, t)dt, (2.1)

where dt = dt1 ^ · · · ^ dtk ,

u(x, t) = u(a, (b), (c); x, t) =

"
kY
i=1

tbi�1i (1�ti )ci�bi�1
#

(1�6k
i=1xi ti )

�a, (2.2)

and parameters (b) and (c) satisfy Re(ci ) > Re(bi ) > 0 (i = 1, . . . , k).
Differential operators

xi (1�xi )@2i �xi
j 6=iX

1 jk
x j@i@ j+[ci�(a+bi+1)xi ]@i�bi

j 6=iX
1 jk

x j@ j�abi (2.3)

for i = 1, . . . , k annihilate the series FA(a, (b), (c); x). We define Lauricella’s
hypergeometric FA-system EA(a, (b), (c)) by differential equations corresponding
to these operators.

We define the local solution space Sol(U) of the system EA(a, (b), (c)) on a
domain U in Ck by the C-vector space

{F(x) 2 O(U) | P(x, @) · F(x) = 0 for 8P(x, @) 2 EA(a, (b), (c))},

where O(U) is the C-algebra of single valued holomorphic functions on U . The
rank of EA(a,(b), (c)) is defined by supU dim(Sol(U)). If the rank of EA(a,(b), (c))
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is greater than dim(Sol(Ux )) for any neighborhoodUx of x 2 Cm then x is called a
singular point of EA(a, (b), (c)). The singular locus S of EA(a, (b), (c)) is defined
as the set of such points.

We show that the rank of EA(a, (b), (c)) is 2k . Denote by F the unknown,
and by Fi j ··· the derivatives (@i@ j · · · )F . Let L1 be the linear span of {F, Fi (i =

1, 2, . . . )} over the ring R1 = C[xi , 1/xi (i = 1, ..., k)], and L2 the linear span of

{F, Fi , Fi j (i < j)}

over the ring
R2 = R1[(xi � 1)�1 (i = 1, 2, . . . )],

and L3 the linear span of

{F, Fi , Fi j , Fi j` (i < j < `)}

over the ring
R3 = R2[(xi + x j � 1)�1 (i < j)],

and L4 the linear span of

{F, Fi , Fi j , Fi j`, Fi j`n (i < j < ` < n)}

over the ring

R4 = R3[(xi + x j + x` � 1)�1 (i < j < `)],

and so on. Note that this procedure becomes stable after k: Rk+1 = Rk+2 = · · · ,
Lk+1 = Lk+2 = · · · .

The operators (2.3) lead to the linear expressions

[i i] : (xi � 1)Fii +

X
j 6=i

x j Fi j 2 L1,

which shows Fii 2 L2.
Differentiating the expression [i i] by x` (` 6= i), we have

[i i`] : (xi � 1)Fii` + x`Fi`` +

X
j 6=i,`

x j Fi j` 2 L2.

Since we have
[i``] � [i i`] : Fii` � Fi`` 2 L2,

the expression [i i`] above can be written as

(xi + x` � 1)Fii` +

X
j 6=i,`

x j Fi j` 2 L2,



554 KEIJI MATSUMOTO AND MASAAKI YOSHIDA

which implies Fii` 2 L3. The expression

[i i i] : (xi � 1)Fiii +

X
j 6=i

x j Fii j 2 L2

leads to Fiii 2 L3.
Differentiating the expression [i i`] by xn (n 6= i, `), we have

[i i`n] : (xi � 1)Fii`n + x`Fi``n + xnFin`n +

X
j 6=i,`,n

x j Fi j`n 2 L3.

Since we have

[i i`n]� [i``n] : Fii`n � Fi``n 2 L3 and [i i`n]� [i`nn] : Fii`n � Fi`nn 2 L3,

the expression [i i`n] above can be written as

(xi + x` + xn � 1)Fii`n +

X
j 6=i,`n

x j Fi j`n 2 L3,

which implies Fii`n 2 L4.
Differentiating the expression [i i`] by xi and x`, we have

[i i`i] : (xi � 1)Fiii` + x`Fii`` +

X
j 6=i,`

x j Fii j` 2 L3

and
[i i``] : (xi � 1)Fii`` + x`Fi``` +

X
j 6=i,`

x j Fi j`` 2 L3.

Since we have
[``i`] � [i i``] : Fii`` � Fi``` 2 L3,

the expression [``i`] above can be written as

(xi + x` � 1)Fi``` +

X
j 6=i,`

x j Fi j`` 2 L3,

which implies Fi```, Fii`` 2 L4. The expression

[i i i i] : (xi � 1)Fiiii +

X
j 6=i

x j Fii j i 2 L3

leads to Fiiii 2 L4.
In this way, we can show that all the derivatives of F belongs to Lk+1. In par-

ticular, all the derivatives of F can be linearly expressed in terms of the derivatives
Fi j ..., with distinct indices i, j, . . . ; cardinality of these derivatives is 2k . Thus the
rank of the system EA(a, (b), (c)) is not greater than 2k . Moreover the argument
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above shows that the singular locus of the system is included in the variety defined
by Y

i
xi (xi � 1)

Y
i< j

(xi + x j � 1)
Y

i< j<`

(xi + x j + x` � 1) · · · .

An expression of the singular locus more suitable for this paper is given below in
Section 4.

We give two fundamental systems of solutions to EA(a, (b), (c)) in a small
neighborhood U̇ of the reference point

ẋ = (ẋ1, ẋ2, . . . , ẋk) = (2�1, 2�2, . . . , 2�k) 2 D. (2.4)

Since each system consists of 2k lineally independent solutions, we conclude that
the rank of the system is 2k . From now on, we assume that

a, b1, . . . , bk, c1 � b1, . . . , ck � bk, a �

X
i2I

ci /2 Z, (2.5)

where I runs over the subsets of {1, . . . , k}. This condition (2.5) coincides with
the condition that the intersection matrix H in Section 6 is well-defined and non-
degenerate (Proposition 6.2). Moreover this is equivalent also to the condition of
irreducibility of the system EA(a, (b), (c)), refer to [3]. (The authors thank to N.
Takayama for pointing out this fact.)
Fact 2.1 ([7]). Under the condition

c1, . . . , ck /2 Z,

the following 2k functions are linearly independent solutions of EA(a, (b), (c))
in U̇ :

1 FA(a, (b), (c); x)
x�1
1 FA(a + �1, (b) + �1e1, (c) + 2�1e1; x)

k
...

x�k
k FA(a + �k, (b) + �kek, (c) + 2�kek; x)

...
...
...

�k
r
� " Q

i2Ir
x�i
i

#
FA

 
a +

P
i2Ir

�i , (b) +

P
i2Ir

�i ei , (c) + 2
P
i2Ir

�i ei ; x

!

...
...

...

1
 kQ
i=1

x�i
i

�
FA

✓
a +

kP
i=1

�i , (b) +

kP
i=1

�i ei , (c) + 2
kP
i=1

�i ei ; x
◆

where Ir = {i1, . . . , ir } (1  i1 < · · · < ir  k), �i = 1� ci and ei is the i-th unit
row vector.
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We fix x 2 U̇ \Rk for a while and consider (2k+1) hyperplanes in the t-space
Rk defined by

t1 = 0, t1 = 1, . . . , tk = 0, tk = 1, x1t1 + · · · + xktk = 1;

the complement of these hyperplanes in Rk will be denoted by TR(x). There are
2k bounded chambers in TR(x). Note that if t = (t1, . . . , tk) belongs to a bounded
chamber then we necessarily have

t1, . . . , tk > 0, x1t1 + · · · + xktk < 1.

Let Z2 be the set {0, 1} ⇢ Z. Each element v = (v1, . . . , vk) 2 Zk
2 determines a

bounded chamber Dv = Dv(x)

Dv(x) : x1t1 + · · · + xktk < 1,
⇢
0 < ti < 1 if vi = 0,
1 < ti if vi = 1. (2.6)

For example, if v = (0, . . . , 0), Dv is the k-dimensional cube [0, 1]k , if v =

(1, . . . , 1), Dv is the k-dimensional simplex given by

t1 > 1, . . . , tk > 1, x1t1 + · · · + xktk < 1.

In general, for v = (v1, . . . , vk) 2 Zk
2 with |v| =

Pk
i=1 vi = r , Dv is a polytope

isomorphic to the direct product of the (k � r)-dimensional cube [0, 1]k�r and the
r-dimensional standard simplex

�r
= {s = (s1, . . . , sr ) 2 Rr

| s1 > 0, . . . , sr > 0, s1 + · · · + sr < 1}.

Fact 2.2 ([5]). Under the conditions (2.5) and

Re(ci ) > Re(bi ) > 0 (i = 1, . . . , k), Re(a) < 1, (2.7)

the integrals
Z
Dv

u(a, (b), (c); x, t)dt1 ^ · · · ^ dtk, (v 2 Zk
2)

are solutions of EA(a, (b), (c)) in U̇ \ Rk .
Remark 2.1. These can be extended to linearly independent solutions of
EA(a, (b), (c)) in U̇ by Fact 3.1 and Proposition 6.2.

We define a partial order � on Zk
2.

Definition 2.2. For v = (v1, . . . , vk), w = (w1, . . . , wk) 2 Zk
2,

(1) v ⌫ w if and only if wi = 1 ) vi = 1.
(2) v � w if and only if w ⌫ v and w 6= v.
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Note that the elements (0, . . . , 0) and (1, . . . , 1) are the minimum and the maxi-
mum, respectively.

Lemma 2.3.

(i) The cardinality of the set {v 2 Zk
2 | v ⌫ w} is 2k�|w|, where |w| =

Pk
i=1wi .

(ii) If v � w then the intersection Dv \ Dw is contained in the hyperplane ti = 1
for any index i satisfying vi > wi , where Dw and Dv are the closures of Dv

and Dw, respectively.
(iii) For x 2 Rk

� S, the interior of the union

[v⌫wDv

is the simplex �w = �w(x):

�w = {t 2 Rk
| t1 > w1, . . . , tk > wk, x1t1 + · · · + xktk < 1}

=

�
w + (1�

kX
i=1

wi xi )s/x
��s = (s1, . . . , sk) 2 �k , (2.8)

where s/x = (s1/x1, . . . , sk/xk).

Proof.

(i) If v ⌫ w then vi = 1 for an index i with wi = 1 and vi = 0, 1 for an index i
with wi = 0. Thus there are 2k�|w| v’s such that v ⌫ w.

(ii) If v � w and vi > wi then vi = 1 and wi = 0. By (2.6), the intersection of
the boundaries of Dv and Dw is contained in the hyperplane ti = 1.

(iii) For any v 2 Zk
2, if t belongs to Dv then 6k

i=1xi ti < 1 and ti > vi for i =

1, . . . , k. Thus if v ⌫ w then Dv ⇢ �w. If v 6⌫ w then there exists an index
i such that vi = 0 and wi = 1. Since the point t = v 2 Dv is not in �w,
Dv is not contained in �w for v 6⌫ w. We have only to note that �w can be
expressed as the interior of the union of some Dv’s.

3. Twisted homology group

Set

µa = exp(�⇡
p

�1a), µ0i = exp(⇡
p

�1bi ), µ1i = exp(⇡
p

�1(ci�bi )),
µ = (µa, µ01, . . . , µ0k, µ11, . . . , µ1k).

We consider the parameters a, b, c and µ as indeterminates. When we assign com-
plex values to them, we assume the condition (2.5), or equivalently

µ2a, µ201, . . . , µ
2
0k, µ211, . . . , µ

2
1k, µ2a

Y
i2I

(µ20iµ
2
1i ) 6= 1,

where I runs over the subsets of {1, . . . , k}.
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Let Q(µ) be the rational function field over Q generated by the entries of µ.
We fix x in the neighborhood U̇ of ẋ . The multi-valued holomorphic function
u = u(t) = u(a, (b), (c); x, t) on

T (x) = {t 2 Ck
| t1(1� t1) · · · tk(1� tk)(1� x1t1 � · · · � xktk) 6= 0}

defines the twisted homology groups Hi (T (x), u) and the locally finite ones
H lfi (T (x), u), where we regard the complexes of twisted chains as defined over
the field Q(µ). Elements of these homology groups are called twisted cycles or
loaded cycles. It is known [2] that they are purely k-dimensional, and the natural
map (regularization)

reg : H lfk (T (x), u) �! Hk(T (x), u)

is an isomorphism between 2k-dimensional vector spaces over Q(µ).
Now fix x 2 U̇ \ Rk , and load on Dv a (constant multiple of) branch of u:

uv =

"
kY
i=1

tbi�1i {(�1)vi (1�ti )}ci�bi�1
#

(1�6k
i=1xi ti )

�a.

Note that each linear form in uv is positive on Dv . Its argument is assigned to
be zero. This chamber Dv loaded with the branch of uv defines an element Du

v

of H lfk (T (x), u). This loading is called the standard loading. The loaded cycles
Du

v (v 2 Zk
2) form a basis of H

lf
k (T (x), u).

Thanks to the local triviality of the bundle[
x2Ck

�S
H lfk (T (x), u),

these Du
v are defined as elements of H lfk (T (x), u) for x 2 Ck

� S. By this extension
and Fact 2.2, we have the following identification.
Fact 3.1. For x 2 Ck

� S, the germ of the local solution space Sol(Ux ) at x can be
identified with H lfk (T (x), u) and Hk(T (x), u) as vector spaces over Q(µ).

4. Singular locus

Set

Sw =

(
x 2 Ck

| w · x :=

kX
i=1

wi xi = 1

)
, w 2

ˇZk
2,

Si0 = {x 2 Ck
| xi = 0}, i = 1, . . . , k,

where ˇZk
2 = Zk

2 � {(0, . . . , 0)}.
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By the expression (2.8), we have the following:

Lemma 4.1. The simplex �w(x) vanishes when x is in the set Sw.

Proposition 4.2. Under the assumption (2.5), the singular locus S of EA(a,(b),(c))
consists of the hyperplanes Sw (w 2

ˇZk
2) and S

i
0 (i = 1, . . . , k).

Proof. A point x 2 Ck satisfying

dim Hk(T (x), u) < rank of EA(a, (b), (c)) = 2k

is a singular point of EA(a, (b), (c)) by Fact 3.1. If x does not belong to

([
w2

ˇZk2
Sw) [ ([k

i=1S
i
0),

then there is a homotopy equivalence between T (x) and T (ẋ). Thus Hk(T (x), u)
is isomorphic to Hk(T (ẋ), u), which is of rank 2k .

Recall that Du
v (v 2 Zk

2) form a basis of Hk(T (x), u). By Lemma 4.1, if x
belongs to Sw (w 2

ˇZk
2), then �u

w with suitable loading of u degenerates. Thus
dim Hk(T (x), u) for x 2 Sw is less than 2k . The expression of local solutions (Fact
2.1) tells that any element x of Si0 is a singular point.

For an element w 2
ˇZk
2 with |w| = r , we define ẋw 2 D as follows: read the

array w from the left; at the first 1 we put 2�1, at the second 1 we put 2�2, . . . , and
at the last 1 we put 2�r , go back to the left-end and re-start: at the first 0 we put
2�(r+1), and at the second 0 we put 2�(r+2) and so on. For example,

ẋw =

⇣
2�2, 2�3, 2�1

⌘
, when w = (0, 0, 1).

Define a line Cw in Ck as the image of a map

⌘w : C 3 y 7! ẋw + yw 2 Ck .

We study the intersection Sv \ Cw for v 2
ˇZk
2. If v · w = 0, then Sv \ Cw = �. If

v · w 6= 0, then by solving
(ẋw + yw) · v = 1,

we find the intersection point Sv \ Cw as ⌘w(yv), where

yv = (1� ẋw · v)/(v · w) 2 R ⇢ C.

In particular, Sw \ Cw is given by ⌘w(yw), where

yw = (1� ẋw · w)/|w| 2 R ⇢ C.

For example, when w = (0, 0, 1), we show the intersection points Sv \ Cw on the
complex y-plane C for

v = (1, 1, 1), (1, 0, 1), (0, 1, 1), (0, 0, 1)
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in Figure 4.1. Here note that ẋ001 = (2�2, 2�3, 2�1), which corresponds to the
origin of the complex y-plane. The line Cw is parameterized as

⌘w : y 7�! (x1, x2, x3) =

⇣
2�2, 2�3, 2�1

⌘
+ (0, 0, y) 2 C3,

and the intersections of the line Cw with the lines

x1 + x2 + x3 = 1, x1 + x3 = 1, x2 + x3 = 1, x3 = 1

are given by

y111 = 1/8, y101 = 2/8, y011 = 3/8, y001 = 4/8,

respectively.

0 1/8 2/8 3/8 yw = 4/8
ẋ001 S111 S101 S011 S001

σ′
001

Re(y)

Im(y)

yw − ε

τ ′
001

Figure 4.1. The loop ⌧ 0

001 and the path � 0

001.

Lemma 4.3. Suppose that v · w 6= 0. If w � v then 0 < yv  yw, otherwise
yw < yv .

Proof. Recall that

yw = (1� ẋw · w)/|w|, yv = (1� ẋw · v)/(v · w).

Since 1� ẋw · v > 0, we have yv > 0 for any v 2
ˇZk
2 with v · w 6= 0. If w � v then

ẋw · v � ẋw · w, v · w = w · w = r.

Thus 0 < yv  yw. If w 6� v then v · w < r and

ẋw · v  (2�1
+ · · · + 21�r ) + (2�1�r

+ · · · + 2�k) < 2�1
+ · · · + 2�r

= ẋw · w.

Thus we have yw < yv .
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Let ⌧ 0

w be a positively oriented circle with center yw and terminal yw � " in
C, and let � 0

w be a path in C starting from 0, traveling in the upper half space, and
ending at yw � ", where " is a small positive number; see Figure 4.1. Define a
loop ⌧w and a path �w in Cw(⇢ Ck) as the images of ⌧ 0

w and � 0

w by the map ⌘w,
respectively. We define a loop ⇢w in X = Ck

� S by connecting the segment from
ẋ to ẋw, the path �w, the loop ⌧w, the path ��1

w , and the segment from ẋw to ẋ .
On the other hand, we define a loop ⇢i0 in X with base point ẋ by

(2�1, . . . , 2�i+1, �i (s), 2�i�1, . . . , 2�k),

where �i (s) is a path starting from s = 2�i , turning around the point s = 0 coun-
terclockwise, and coming back. The Lefschetz hyperplane theorem and the van
Kampen theorem imply the following.

Proposition 4.4. The fundamental group ⇡1(X, ẋ) is generated by ⇢w for w 2
ˇZk
2

and ⇢10 , . . . , ⇢
k
0 .

5. Local monodromy

A loop ⇢ with base point ẋ induces a linear transformation m⇢ of Hk(T (ẋ), u),
which is called the circuit transform (or monodromy) with respect to ⇢. By Fact
3.1, this transformation can be regarded as that of the local solution space Sol(U̇).
Proposition 5.1. Suppose that

↵w = µ2a · µ2w11 · · ·µ2wkk 6= 1.

Then the Jordan normal form of the circuit transform mw = m⇢w with respect to
the loop ⇢w (w 2

ˇZk
2) is given by

diag(↵w, 1, . . . , 1).

Proof. Take the end point x�w = ⌘w(yw � ") of the path �w for w 2
ˇZk
2, where

yw = (1 � ẋw · w)/|w|. Note that the simplex �w = �w(x�w) is contained in a
small neighborhood of the vertex w of the cube [0, 1]k . We deform �w along the
loop

⌧w : [�⇡,⇡] 3 ✓ 7! x✓ = ẋw + ("e
p

�1✓
+ yw)w 2 X.

Note that if wi = 0 then xi does not move, and that

1� x✓ · w = �"e
p

�1✓
|w|.

By using the expression (2.8) of �w, we express the deformation of �w along the
loop ⌧w as

�w(x✓ ) = {w � "e
p

�1✓
|w|(s1/x1, . . . , sk/xk) | s 2 �k, �⇡  ✓  ⇡},

where x✓ = (x1, . . . , xk).
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We trace the value of the function u = u(x, t) while x travels along the loop
⌧w. The argument of

ti � wi = �"e
p

�1✓
|w|si/xi

increases by 2⇡ by the continuation along the loop ⌧w. Since we have

1�

kX
i=1

xi ti = �"e
p

�1✓
|w|

 
1�

kX
i=1

si

!
,

its argument also increases by 2⇡ by the continuation. Hence the loaded cycle
�u

w(x�w) supported by�w(x�w) loaded with u = u(x, t) is multiplied by ↵w by the
continuation.

We have 2k chambers around the vertex (1, . . . , 1)�w of the cube [0, 1]k . We
give a basis of H lfk (T (x�w), u) as the simplex �w and the 2k � 1 chambers outside
of the cube [0, 1]k loaded with u. It is geometrically clear that the move ⌧w does not
affect the other 2k � 1 chambers. See Figure 5.1 for the case k = 2 and w = (1, 1).
Hence the circuit matrix is diagonal as stated.

t1

t2

Figure 5.1. Vanishing and invariant chambers

Proposition 5.2. Suppose that ci /2 Z. Then the Jordan normal form of the circuit
transformation mi

0 = m⇢i0
with respect to the loop ⇢i0 is given by

diag(
2k�1z }| {

1, . . . , 1,

2k�1z }| {
↵i0, . . . ,↵

i
0),

where
↵i0 = µ�2

0i µ�2
1i = exp(�2⇡

p

�1ci ) 6= 1.

Proof. We make use of the local solutions given in Fact 2.1. The analytic continua-
tion of the these solutions along the loop ⇢i0 is quite obvious: we have 2

k�1 invariant
solutions and 2k�1 solutions multiplied by exp(2⇡

p

�1�i ).
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6. Intersection form

Let z 7! z_ be the isomorphism of Q(µ) over Q induced by

µa 7! µ�1
a , µ0 j 7! µ�1

0 j , µ1 j 7! µ�1
1 j j = 1, . . . , k.

Note that if we assign real numbers to the entries of a, (b) and (c), then z_ is the
complex conjugate z of z 2 Q(µ) ⇢ C.

We define the intersection form I on Hk(T (x), u) ⇥ Hk(T (x), u) as follows.
Let Du and D́u be elements of Hk(T (x), u) given by

Du
=

X
i2I

di Dui
i , D́u

=

X
j2J

d́ j D́
u j
j , di , d́ j 2 Q(µ),

where Dui
i denotes a singular k-simplex Di loaded with a branch ui = ui (t) of u.

The intersection number I(Du, D́u) is given, by definition, as

I(Du, D́u) =

X
i2I, j2J

X
p2Di\D́ j

di d́_

j (Di · D́ j )p
ui (p)
u j (p)

,

where (Di · D́ j )p is the topological intersection number of k-chains Di and D́ j at
p. We have

I(D́u, Du) = (�1)kI(Du, D́u)_,

I(zDu, D́u) = zI(Du, D́u), I(Du, z D́u) = z_I(Du, D́u),

for z 2 Q(µ).

Proposition 6.1. For v 2 Zk
2, let D

u
v 2 H lfk (T (ẋ), u) be the chamber Dv standardly

loaded with u. We have

I(Du
v , Du

v0) =

2
4 vi 6=v0

iY
1ik

µ1i

µ21i � 1

3
5 ·

2
4vi=v0

i=0Y
1ik

(�1)
µ20iµ

2
1i � 1

(µ20i � 1)(µ21i � 1)

3
5

·(�1)
P

i min(vi ,v0

i )

2
66664

µ2a

vi=v0

i=1Q
1ik

µ21i � 1

(µ2a � 1)
vi=v0

i=1Q
1ik

(µ21i � 1)

3
77775 ,

where
v = (v1, . . . , vk), v0

= (v0

1, . . . , v
0

k) 2 Zk
2.

Proof. The intersection of the (closure of the) chambers Dv and Dv0 is the direct
product of
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• the point 1 on the ti -line if vi 6= v0

i , let I1 be the set of such indices i ,
• the interval [0, 1] on the ti -line if vi = v0

i = 0, let I2 be the set of such indices i ,
• the simplex in the remaining coordinate space (t j ) j2J , where J = {1, . . . , k} �

I1 � I2, bounded by the hyperplanes t j = 1 and
X
i2I1

xi +

X
i2I2

xi +

X
j2J

x j t j = 1.

Note that j 2 J if and only if v j = v0

j = 1, and the cardinality of J is given byP
i min(vi , v0

i ). The intersection number of D
u
v and Du

v0
is the product of the three

kinds of factors:

• the intersection number of the two intervals at the point 1 with exponent µ21i for
i 2 I1,

• the self-intersection numbers of the 1-dimensional cycles supported by the in-
terval [0, 1] with exponents µ20i at 0 and µ21i at 1 for i 2 I2,

• the self-intersection number of the cycle supported by the simplex with expo-
nents µ2j1( j 2 J ) and µ2a .

These self-intersection numbers can be found in [6]. Since we load u standardly,
the intersection number in the first factor is µ1i

µ21i�1
.

Note that the intersection number I(Du
v , Du

v0
) is complex valued whenever we

assign values to µ under the condition (2.5).
We array the basis {Du

v }v2Zk2
in a total order on v 2 Zk

2, say the total-lexicog-
raphic order: w = (w1, . . . , wk) < v = (v1, . . . , vk) if either (i) or (ii) is satisfied:

(i) |w| < |v|

(ii) |w| = |v| and w j < v j ,
where j = min{i 2 {1, . . . k} | wi 6= vi }.

Note that if w � v then w < v.
We define the intersection matrix with respect to this basis as

H = (I(Du
v , Du

v0))v,v0
2Zk2

, (6.1)

where v and v0 are arranged in the total-lexicographic order. The determinant of the
intersection matrix H is given as

da(1)
dad1

(k = 1),
da(12)da(1)d(2)

d3ad21d
2
2

(k = 2),

da(123)da(12)da(23)da(31)da(1)da(2)da(3)
d7ad41d

4
2d
4
3

(k = 3),
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where
⌫a = µ2a, ⌫0i = µ20i , µ1i = µ21i ,

da = ⌫a � 1, di = (⌫0i � 1)(⌫1i � 1),

da(i · · · j) = ⌫a(⌫0i⌫1i ) · · · (⌫0 j⌫1 j ) � 1.

In general, we have the following expression, wich will be proved in the appendix:

Proposition 6.2. We have

det(H) =

kQ
p=1

Q
1i1<···<i pk

da(i1 · · · i p)

d2k�1a
kQ
p=1

d2k�1i

.

In particular, the intersection form I is non-degenerate under the condition (2.5).

Lemma 6.3. Let m⇢ be the circuit transformation of Hk(T (ẋ), u) with respect to a
loop ⇢ in X .

(i)
I(m⇢(Du),m⇢(D́u)) = I(Du, D́u), Du, D́u

2 Hk(T (ẋ), u).

(ii)
M⇢H tM_

⇢ = H,

where H is the intersection matrix in (6.1) and M⇢ is the matrix representation
(circuit matrix) of m⇢ with respect to the basis {Du

v }v2Zk2
of Hk(T (ẋ), u).

(iii) Let Du be an eigenvector of m⇢ with eigenvalue ↵ 2 Q(µ) and let D́u be that
with eigenvalue ↵0

2 Q(µ). Then

I(Du, Du) 6= 0 ) ↵ · ↵_

= 1,
↵_

· ↵0

6= 1 ) I(Du, D́u) = 0.

Proof. Since the intersection form is stable under deformation of x as far as the
topology of T (x) does not change, we have (i). The statement (ii) is a matrix
representation of (i) for the basis {Du

v }v2Zk2
of Hk(T (ẋ), u). Let us show (iii). Note

that

I(Du, D́u) = I(m⇢(Du),m⇢(D́u)) = I(↵Du,↵0 D́u)

= ↵ · (↵0)_I(Du, D́u).

Thus if ↵0
· ↵_

6= 1 then I(Du, D́u) = 0. By putting D́u
= Du , we have

I(Du, Du) 6= 0 ) ↵ · ↵_
= 1.
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For i = 1, . . . , k, we set Zk
2(i) = {w 2 Zk

2 | wi = 0} and

Wi = hDu
w | w 2 Zk

2(i)i ⇢ Hk(T (ẋ), u),
W?

i = {D́u
2 Hk(T (ẋ), u) | I(D́u, Du) = 0 for any Du

2 Wi }.

Lemma 6.4. Suppose that ci /2 Z. Then the eigenspace of the circuit transform mi
0

with eigenvalue 1 is Wi and that with eigenvalue ↵i0 is W
?

i , and

Wi � W?

i = Hk(T (ẋ), u) (1  i  k).

Proof. Consider the circuit transformation mi
0. By Proposition 5.2, the space

Hk(T (ẋ), u) is decomposed into 2k�1-dimensional eigenspaces with eigenvalues
1 and ↵i0 6= 1. Note that any cycle Dw (w 2 Zk

2(i)) is invariant under the con-
tinuation along the loop ⇢i0. Thus it belongs to Wi . Lemma 6.3 implies that
any ↵i0-eigenvector belongs to W

?

i . Hence Wi is the eigenspace of the circuit
transform mi

0 with eigenvalue 1 and W
?

i includes that with eigenvalue ↵i0. Since
dim(W?

i ) = 2k�1 by Proposition 6.2, W?

i coincides with the eigenspace of the
circuit transform mi

0 with eigenvalue ↵i0, and Wi � W?

i = Hk(T (ẋ), u).

7. Monodromy representation

For w = (w1, . . . , wk) 2 Zk
2, we set

�u
w =

X
v⌫w

 
kY
i=1

µ
vi�wi
1i

!
Du

v 2 Hk(T (ẋ), u).

Theorem 7.1.

(i) For each w 2
ˇZk
2, the circuit transform mw for the loop ⇢w is

mw : Du
7! Du

� (1� ↵w)I(Du,�u
w)I(�u

w,�u
w)�1�u

w

= Du
� (1� µ2a)

"
kY
i=1

(1� µ2wi i )

#
I(Du,�u

w)�u
w.

If we assign complex values to µ with condition

↵w = µ2a · µ2w11 · · ·µ2wkk 6= 1

then it is the reflection of root �u
w and eigenvalue ↵w with respect to the inter-

section form I.



MONODROMY OF LAURICELLA’S HYPERGEOMETRIC FA-SYSTEM 567

(ii) For i = 1, . . . , k, the circuit transform mi
0 for the loop ⇢i0 is given by

mi
0 : Du

7! ↵i0D
u

� (↵i0 � 1)pri (Du),

where ↵i0 = µ�2
0i µ�2

1i and pri is the projection from Hk(T (ẋ), u) to Wi :

pri : Du
= D́u

+ D̀u
7! D́u, D́u

2 Wi , D̀u
2 W?

i .

We array the basis {Du
v }v2Zk2

as a column vector in the total-lexicographic order on
v 2 Zk

2. Let ew be the unit row vector such that

ew t (· · · , Du
v , . . . ) = Du

w.

We define row vectors

"w =

X
v⌫w

 
kY
i=1

µ
vi�wi
1i

!
ev 2 Q(µ)2

k
, w 2

ˇZk
2

and arrange them in the total-lexicographic order, and define (2k�1, 2k)-matrices as

Ei =

0
BB@

...
ew
...

1
CCA

w2Zk2(i)

, i = 1, . . . , k.

If a 2k-row-vector f is identified with f t (· · · , Du
v , . . . ), then mw and mi

0 are
expressed as 2k ⇥ 2k-matrices by the intersection matrix H in (6.1).

Corollary 7.2.

(i) The circuit transform mw is expressed by the matrix

Mw = I2k � (1� ↵w)H t"_

w("wH t"_

w)�1"w

= I2k � (1� µ2a)

"
kY
i=1

(1� µ2wi i )

#
H t"_

w"w.

(ii) The circuit transform mi
0 is expressed by the matrix

Mi
0 = ↵i0 I2k � (↵i0 � 1)H t E_

i (Ei H t E_

i )�1Ei .

These matrices act on 2k-row-vectors from the right.



568 KEIJI MATSUMOTO AND MASAAKI YOSHIDA

Proof.
(i) Suppose that ↵w 6= 1 for w 2

ˇZk
2. We show that �

u
w is the eigenvector of mw

with eigenvalue ↵w for any w 2
ˇZk
2. It is shown in the proof of Proposition 5.1

that the loaded cycle �u0

w(x�w) is an eigenvector belonging to the eigenvalue ↵w

of the transformation caused by the continuation along the loop ⌧w. Here x�w =

⌘w(yw � ") is the end point of the path �w and we load u0 on the small simplex
�w(x�w) by the assignments arg(ti ) = arg(1�

Pk
i=1 xi ti ) = 0 and

arg(1� ti ) =

⇢
0 if wi = 0,
⇡ if wi = 1.

We deform the simplex �w(x�w) along the path ��1
w from x�w to ẋw. Lemma 2.3

tells that the resulting simplex�w(ẋw) is (the closure of) the union of the chambers
Dv (v ⌫ w). At the same time, we trace the change of the function u0(x) along
the path ��1

w from x�w to ẋw; the resulting loaded cycle �u0

w(ẋw) would be a linear
combination X

v⌫w

dvDu
v .

We determine the coefficients. The key is the expression (2.8) of �w. For any
v ⌫ w, there exits sv 2 �k such that

w + (1� w · ẋw)sv/ẋw = tv 2 Dv.

By comparing the value of u(ẋw, tw) with that of loaded function on Du
w, we have

dw =

wi=1Y
1ik

µ1i .

For v � w, we follow the deformation of the i-th coordinates ti of

t = w + (1� w · x)sv/x

along the path ��1
w : x = ẋ + wy for y 2 (�v)

�1. If the index i satisfies vi = wi
then Re(1�ti ) > 0, otherwise 1�ti changes from positive to negative via the upper
half space. Thus arg(ti ) = arg(1�

Pk
i=1 xi ti ) = 0 and

arg(1� ti ) =

⇢
0 if vi = 0,
⇡ if vi = 1,

on Dv . Hence we have

dv =

vi=1Y
1ik

µ1i , and so
X
v⌫w

dvDu
v = dw�u

w.
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By Lemma 6.3, the eigenspace with eigenvalue 1 of mw is the orthogonal comple-
ment of �u

w. Therefore we have the first expression of mw. By following the proof
of Proposition 6.1, we have

I(�u
w,�u

w) =

1� ↵w

(1� µ2a)
kQ
i=1

(1� µ2wi i )

,

which implies the second expression of mw.
We consider the case ↵w = 1. Under our assumption (2.5), the intersection

form I on Hk(T (ẋ), u)⇥ Hk(T (ẋ), u) does not degenerate and {Du
v }v2Zk2

is a basis
even in this case. Since we can regard the second expression of mw as a limit of
parameters, it is valid as the circuit transform.

(ii) Suppose that ci /2 Z. Under the linear map

Du
7! ↵i0D

u
� (↵i0 � 1)pri (Du),

D́u
2 Wi is invariant and D̀u

2 W?

i is transformed into ↵i0 D̀
u . By Lemma 6.4, this

map coincides with mi
0. It is easy to see that m

i
0 is represented by the matrix M

i
0 for

the basis {Du
v }v2Zk2

.
We consider the case ci 2 Z. Under our assumption (2.5), the intersection

form I on Hk(T (ẋ), u)⇥ Hk(T (ẋ), u) does not degenerate and {Du
v }v2Zk2

is a basis
even in this case. Note that the map (↵i0 � 1)pri is represented by 2k ⇥ 2k-matrix

(↵i0 � 1)H t E_

i (Ei H t E_

i )�1Ei (7.1)

for the basis {Du
v }v2Zk2

. The 2k�1 ⇥ 2k�1-matrix Ei H t E_

i has the factor (↵i0 � 1)
by Propositions 6.1 and 6.2. Thus this factor in the expression (7.1) is canceled. If
we regard this case as a limit of parameters then (↵i0 � 1)pri converges to a linear
transformation satisfying

ker((↵i0 � 1)pri ) = Im((↵i0 � 1)pri ) = Wi ,

and the expression of mi
0 is valid as the circuit transform.

Remark 7.3.

(i) The eigenspace of the circuit transformmw with eigenvalue 1 is the orthogonal
complement

(�u
w)? = {Du

2 Hk(T (ẋ), u) | I(Du,�u
w) = 0}



570 KEIJI MATSUMOTO AND MASAAKI YOSHIDA

of �u
w. If ↵w = 1 then �u

w belongs to (�u
w)?, otherwise Hk(T (ẋ), u) is

spanned by �u
w and (�u

w)?. If ↵w = 1 then the Jordan normal form of mw is
given by 0

BB@
J1,2

1
. . .

1

1
CCA , J1,2 =

✓
1 1
0 1

◆
.

(ii) If ci 2 Z then the Jordan normal form of mi
0 is the direct sum of 2

k�1 copies
of J1,2: 0

B@
J1,2

. . .

J1,2

1
CA .

A. Sketch of a proof of Proposition 6.2

A.1. Determinant formula

Set
↵ = µ2a, �i = µ20i , �i = µ21i ,

p

�i = µ1i .

Then Proposition 6.2 reads that det(H) equals

↵�1�1 � 1
(↵ � 1)(�1 � 1)(�1 � 1)

(k = 1),

(↵�1�1�2�2 � 1)(↵�1�1 � 1)(↵�2�2 � 1)
(↵ � 1)3(�1 � 1)2(�1 � 1)2(�2 � 1)2(�2 � 1)2

(k = 2),

(↵�1�1�2�2�3�3�1)
Q

1i< j3
(↵�i�i� j� j�1)

3Q
i=1

(↵�i�i�1)

(↵ � 1)7
3Q
i=1

(�i � 1)4(�i � 1)4
(k = 3),

and in general,

det(H) =

Q
v2Zk2

"
↵

kQ
j=1

(� j� j )
v j

� 1

#

(↵ � 1)2k
kQ
j=1

[(� j � 1)(� j � 1)]2k�1
,

where v = (v1, . . . , vk) 2 Zk
2.
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A.2. Outline of the proof

We index the rows and the columns of the intersection matrix H by elements v 2

Zk
2, which are arranged in the lexicographic order:

(0, . . . , 0)<(0, . . . , 0, 1)<(0, . . . , 1, 0)<(0, . . . , 1, 1)< · · ·<(1, . . . , 1).

We apply the Laplace expansion to the determinant det(H) with respect to the 2k�1
rows:

(0, v̌), v̌ = (v2, . . . , vk) 2 Zk�1
2 .

We choose 2k�1 columns with indices v(1), v(2), . . . , v(2k�1)
2 Zk

2 and make the
minor. Let us write their entries as

v(i)
= (✏i , v̌

(i)), v̌(i)
= (v

(i)
2 , . . . , v

(i)
k ) 2 Zk�1

2 (1  i  2k�1).

Lemma A.1. The minor is zero unless v̌(i) are distinct, that is,

{v̌(i)
| 1  i  2k�1} = Zk�1

2 .

Proof. Note that if v̌(i)
= v̌( j) for i 6= j then the two columns of the minor are

proportional.

Let the chosen columns be indexed as

(1, . . . , 1) = v(1) > v(2) > · · · > v(2k�1)
= (0, . . . , 0).

We make the product of this minor and the complementary minor, the minor made
by complementary rows and the complementary columns, and denote this product
as

m(✏2k�1 · · · ✏1).

Set

f0,v̌(i) =

�1�1 � 1
�1 � 1

 
↵�1

kY
j=2

(� j� j )
v
(i)
j

� 1

!
,

f1,v̌(i) =

(�1 � 1)�1
�1 � 1

 
↵

kY
j=2

(� j� j )
v
(i)
j

� 1

!
.
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For example, we have

f0,0=
(↵�1�1)(�1�1�1)

�1�1
, f1,0=

(↵�1)(�1�1)�1
�1�1

,

f0,1=
(↵�1�2�2�1)(�1�1�1)

�1�1
, f1,1=

(↵�2�2�1)(�1�1)�1
�1�1

,

f0,00=
(↵�1�1)(�1�1�1)

�1�1
, f1,00=

(↵�1)(�1�1)�1
�1�1

,

f0,10=
(↵�1�2�2�1)(�1�1�1)

�1�1
, f1,10=

(↵�2�2�1)(�1�1)�1
�1�1

,

f0,01=
(↵�1�3�3�1)(�1�1�1)

�1�1
, f1,01=

(↵�3�3�1)(�1�1)�1
�1�1

,

f0,11=
(↵�1�2�2�3�3�1)(�1�1�1)

�1�1
, f1,11=

(↵�2�2�3�3�1)(�1�1)�1
�1�1

,

(A.1)

for k = 2 and k = 3. Note that

f0,v̌ = f0,(v̌,0,...,0), f1,v̌ = f1,(v̌,0,...,0),

f0,v̌(i) � f1,v̌(i) = ↵
kY
j=1

(� j� j )
v
(i)
j

� 1.
(A.2)

The products of the minors can be expressed in terms of these f ’s as follows:

Lemma A.2.

m(✏2k�1 · · · ✏1) =

2k�1Q
i=1

"
(�1)✏i

 
↵

kQ
j=2

(� j� j )
v
(i)
j

� 1

!
f✏i ,v̌(i)

#

(↵ � 1)2k�1
kQ
i=2

[(�i � 1)(�i � 1)]2k�1
.

Since we have the relations (A.2), we sum up m(✏2k�1 · · · ✏1) two by two: set

m(✏2k�1 · · · ✏2) := m(✏2k�1 · · · ✏2 0) + m(✏2k�1 · · · ✏2 1),

and then set

m(✏2k�1 · · · ✏3) := m(✏2k�1 · · · ✏3 0) + m(✏2k�1 · · · ✏3 1),
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and so on. We end up with

det(H) =

P
all
m(✏2k�1 · · · ✏1) = · · ·

= m(00) + m(01) + m(10) + m(11) = m(0) + m(1)

=

kQ
p=1

(↵
Q

1i1<···<i pk
�i1�i1 . . .�i p�i p � 1)

(↵ � 1)2k�1
kQ
i=1

(�i � 1)2k�1(�i � 1)2k�1

=

Q
v2Zk2

"
↵

kQ
j=1

(� j� j )
v j

� 1

#

(↵ � 1)2k
kQ
i=1

[(�i � 1)(�i � 1)]2k�1
.

Instead of giving proofs to the statements and Lemma A.2, we show the procedure
when k = 1, 2, 3. These will light up the way in general cases.

A.3. k = 1

���� D0 · D0 D0 · D1
D1 · D0 D1 · D1

���� =

��������
�

�1�1 � 1
(�1 � 1)(�1 � 1)

p

�1

�1 � 1
p

�1

�1 � 1
�

↵�1 � 1
(↵ � 1)(�1 � 1)

��������

=

1
(�1�1)(�1�1)(↵�1)

✓
(↵�1�1)(�1�1�1)

�1�1
�

(↵�1)(�1�1)�1
�1�1

◆

=

↵�1�1 � 1
(�1 � 1)(�1 � 1)(↵ � 1)

.

We use the identity

(CB � 1)(AB � 1)
B � 1

�

(C � 1)(A � 1)B
B � 1

= CAB � 1

often.

A.4. k = 2

Set
F2 :=

↵�2�2 � 1
(↵ � 1)3(�1 � 1)2(�1 � 1)2(�2 � 1)2(�2 � 1)2

;
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this is the factor with the expected denominator and the numerator which does not
contain �1 nor �1. Then we have

m(00) = F2 · f0,1 · f0,0, �m(01) = F2 · f0,1 · f1,0,

�m(10) = F2 · f1,1 · f0,0, m(11) = F2 · f1,1 · f1,0.

Write down the identities (A.2) as

f0,0 � f1,0 = ↵�1�1 � 1, f0,1 � f1,1 = ↵�1�1�2�2 � 1,

which imply

m(0) := m(00) + m(01) = F2 · f0,1 · (↵�1�1 � 1),

�m(1) := m(10) + m(11) = F2 · f1,1 · (↵�1�1 � 1);

m(0) + m(1) = F2 · (↵�1�1�2�2 � 1)(↵�1�1 � 1)

=

(↵�1�1�2�2 � 1)(↵�1�1 � 1)(↵�2�2 � 1)
(↵ � 1)3(�1 � 1)2(�1 � 1)2(�2 � 1)2(�2 � 1)2

.

Every 2⇥ 2-minor can be computed by the determinant formula when k = 1 estab-
lished in the previous subsection. For example, we compute m(00):

���� D00 · D00 D00 · D01
D01 · D00 D01 · D01

����

=

���������

�1�1�1
(�1�1)(�1�1)

�2�2�1
(�2�1)(�2�1)

�1�1�1
(�1�1)(�1�1)

p

�2

�2�1

�1�1�1
(�1�1)(�1�1)

p

�2

�2�1
�1�1�1

(�1�1)(�1�1)
↵�2�1

(↵�1)(�2�1)

���������

=

✓
�1�1�1

(�1�1)(�1�1)

◆2
���������

�2�2�1
(�2�1)(�2�1)

p

�2

�2�1
p

�2

�2�1
↵�2�1

(↵�1)(�2�1)

���������
.
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The second term of the last line is the intersection determinant appeared in the last
subsection with the substitution:

�1 ! �2, �1 ! �2.

���� D10 · D10 D10 · D11
D11 · D10 D11 · D11

����

=

���������

↵�1�1
(�1�1)(↵�1)

�2�2�1
(�2�1)(�2�1)

↵�1�1
(�1�1)(↵�1)

p

�2

�2�1

↵�1�1
(�1�1)(↵�1)

p

�2

�2�1
↵�1�2�1

(↵�1)(�1�1)(�2�1)

���������

=

✓
↵�1�1

(�1�1)(↵�1)

◆2
��������

�2�2�1
(�2�1)(�2�1)

p

�2

�2�1p

�2

�2�1
↵�1�2�1

(↵�1�1)(�2�1)

��������
.

The second term of the last line is the intersection determinant appeared in the last
subsection with the substitution:

�1 ! �2, �1 ! �2, and ↵ ! ↵�1.

(Geometrically, the last substitution corresponds to the blow up at the intersection
point of the lines labeled �1 and ↵; the exceptional curve corresponds to ↵�1.) At
any rate, the product of the two minors above give m(00).

A.5. k = 3

Set

F3 :=

(↵�2�2�1)(↵�3�3�1)(↵�2�2�3�3�1)
(↵�1)7(�1�1)4(�1�1)4(�3�1)4(�3�1)4(�3�1)4(�3�1)4

;

this is the factor with the expected denominator and the numerator which does not
contain �1 nor �1. See (A.1) for f0,v̌ and f1,v̌ (v̌ 2 Z22). The products of two minors
are given as

(�1)✏4+✏3+✏2+✏1m(✏4, ✏3, ✏2, ✏1) = F3 · f✏4,11 · f✏3,01 · f✏2,10 · f✏1,00.

By (A.2), we have

f0,00 � f1,00 = ↵�1�1 � 1, f0,10 � f1,10 = ↵�1�1�2�2 � 1,
f0,01 � f1,01 = ↵�1�1�3�3 � 1, f0,11 � f1,11 = ↵�1�1�2�2�3�3 � 1.
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These identities imply

(�1)✏4+✏3+✏2m(✏4, ✏3, ✏2) = F3 · f✏4,11 · f✏3,01 · f✏2,10 · (↵�1�1�1),

(�1)✏4+✏3m(✏4, ✏3) = F3 · f✏4,11 · f✏3,01 · (↵�1�1�2�2�1)(↵�1�1�1),

(�1)✏4m(✏4) = F3 · f✏4,11 · (↵�1�1�3�3�1)(↵�1�1�2�2�1)(↵�1�1�1),

m(0) + m(1)
= F3 · (↵�1�1�2�2�3�3�1)(↵�1�1�3�3�1)(↵�1�1�2�2�1)(↵�1�1�1).

The last identity is the expected expression.
Let us have a look at a typical minor:

det((DI · DJ )I,J={000,001,010,011});

this turns out to be the product of

✓
�1�1 � 1

(�1 � 1)(�1 � 1)

◆4

and the determinant of the intersection matrix when k = 2 with the substitution:

�1 ! �2, �1 ! �2, �2 ! �3, �2 ! �3;

and the complementary one

det((DI · DJ )I,J={100,101,110,111});

this turns out to be the product of

✓
↵�1 � 1

(↵ � 1)(�1 � 1)

◆4

and the determinant of the intersection matrix when k = 2 with the substitution:

�1 ! �2, �1 ! �2, �2 ! �3, �2 ! �3, and ↵ ! ↵�1.

Geometrically, the last substitution corresponds to the blow up along the intersec-
tion line of the planes labeled by �1 and ↵; the exceptional surface corresponds to
↵�1.
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