Monodromy of Lauricella's hypergeometric F_A -system

KEIJI MATSUMOTO AND MASAAKI YOSHIDA

Abstract. We give a monodromy representation of Lauricella's system of differential equations annihilating the hypergeometric series $F_A(a, (b), (c); x)$ of k-variables; its rank is 2^k . Under some non-integral conditions for parameters a, $(b) = (b_1, \ldots, b_k), (c) = (c_1, \ldots, c_k)$, we find circuit matrices with respect to solutions represented by integrals. We make use of the intersection numbers of the domains of the integrals.

Mathematics Subject Classification (2010): 32S40 (primary); 33C65 (secondary).

1. Introduction

We give a monodromy representation of Lauricella's system of differential equations annihilating the hypergeometric series $F_A(a, (b), (c); x)$ of k-variables; its rank is 2^k . Under some non-integral conditions for parameters $a, (b) = (b_1, \ldots, b_k)$, $(c) = (c_1, \ldots, c_k)$, we find circuit matrices with respect to solutions represented by integrals. We make use of the intersection numbers of the domains of the integrals regarded as bases of a twisted homology group.

In general, we have the following principle: Suppose that a local solution space of a system of hypergeometric differential equations can be identified with a twisted homology group with intersection form \mathcal{I} . If the Jordan normal form of the circuit transformation m_{ρ} along a loop ρ is diagonal with two eigenvalues, say α and β , and either the eigenspace belonging to the eigenvalue α or that to β is specified then m_{ρ} is uniquely determined by the specified eigenspace and the intersection form \mathcal{I} .

We apply this principle in this paper to Lauricella's system of type A, and find a set of generators of the monodromy group. When the number of variables is two, this system is called Appell's F_2 , of which monodromy group is studied by several authors; refer to [4] and the references therein.

This principle is applied to finding generators of the monodromy group of Lauricella's system of type D in [8].

Received October 26, 2011; accepted in revised form August 1, 2012.

2. Lauricella's F_A-system of hypergeometric differential equations

In this section, we collect some facts about Lauricella's hypergeometric F_A -system of differential equations, for which we refer to [7] and [1]. The hypergeometric series F_A of complex variables $x = (x_1, \ldots, x_k)$ is defined by

$$F_A(a, (b), (c); x) = \sum_{(n) \in \mathbb{N}^k} \frac{\left(a, \sum_{i=1}^k n_i\right) \prod_{i=1}^k (b_i, n_i)}{\prod_{i=1}^k (c_i, n_i) \prod_{i=1}^k (1, n_i)} \prod_{i=1}^k x_i^{n_i},$$

where $\mathbb{N} = \{0, 1, 2, \dots, \}, a, (b) = (b_1, \dots, b_k)$ and $(c) = (c_1, \dots, c_k)$ are complex parameters satisfying $c_1, \dots, c_k \notin -\mathbb{N} = \{0, -1, -2, \dots, \}$, and $(a, m) = a(a+1)\cdots(a+m-1) = \Gamma(a+m)/\Gamma(a)$. This series converges in the domain

$$\mathbb{D} = \left\{ x \in \mathbb{C}^k \Big| \sum_{i=1}^k |x_i| < 1 \right\}$$

and admits the integral representation

$$\left[\prod_{i=1}^{k} \frac{\Gamma(c_i)}{\Gamma(b_i)\Gamma(c_i-b_i)}\right] \int_{(0,1)^k} u(a,(b),(c);x,t)dt,$$
(2.1)

where $dt = dt_1 \wedge \cdots \wedge dt_k$,

$$u(x,t) = u(a,(b),(c);x,t) = \left[\prod_{i=1}^{k} t_i^{b_i - 1} (1 - t_i)^{c_i - b_i - 1}\right] (1 - \sum_{i=1}^{k} x_i t_i)^{-a}, \quad (2.2)$$

and parameters (b) and (c) satisfy $\operatorname{Re}(c_i) > \operatorname{Re}(b_i) > 0$ (i = 1, ..., k).

Differential operators

$$x_i(1-x_i)\partial_i^2 - x_i \sum_{1 \le j \le k}^{j \ne i} x_j \partial_i \partial_j + [c_i - (a+b_i+1)x_i]\partial_i - b_i \sum_{1 \le j \le k}^{j \ne i} x_j \partial_j - ab_i \quad (2.3)$$

for i = 1, ..., k annihilate the series $F_A(a, (b), (c); x)$. We define Lauricella's hypergeometric F_A -system $E_A(a, (b), (c))$ by differential equations corresponding to these operators.

We define the local solution space Sol(U) of the system $E_A(a, (b), (c))$ on a domain U in \mathbb{C}^k by the \mathbb{C} -vector space

$$\{F(x) \in \mathcal{O}(U) \mid P(x, \partial) \cdot F(x) = 0 \text{ for } {}^{\forall} P(x, \partial) \in E_A(a, (b), (c))\},\$$

where $\mathcal{O}(U)$ is the \mathbb{C} -algebra of single valued holomorphic functions on U. The rank of $E_A(a, (b), (c))$ is defined by $\sup_U \dim(Sol(U))$. If the rank of $E_A(a, (b), (c))$

is greater than dim($Sol(U_x)$) for any neighborhood U_x of $x \in \mathbb{C}^m$ then x is called a singular point of $E_A(a, (b), (c))$. The singular locus S of $E_A(a, (b), (c))$ is defined as the set of such points.

We show that the rank of $E_A(a, (b), (c))$ is 2^k . Denote by F the unknown, and by $F_{ij\ldots}$ the derivatives $(\partial_i \partial_j \cdots) F$. Let L_1 be the linear span of $\{F, F_i \ (i = 1, 2, \ldots)\}$ over the ring $R_1 = \mathbb{C}[x_i, 1/x_i \ (i = 1, \ldots, k)]$, and L_2 the linear span of

$$\{F, F_i, F_{ii} (i < j)\}$$

over the ring

$$R_2 = R_1[(x_i - 1)^{-1} (i = 1, 2, ...)]$$

and L_3 the linear span of

$$\{F, F_i, F_{ij}, F_{ij\ell} \ (i < j < \ell)\}$$

over the ring

$$R_3 = R_2[(x_i + x_j - 1)^{-1} \quad (i < j)],$$

and L_4 the linear span of

$$\{F, F_i, F_{ij}, F_{ij\ell}, F_{ij\ell n} \ (i < j < \ell < n)\}$$

over the ring

$$R_4 = R_3[(x_i + x_j + x_\ell - 1)^{-1} \quad (i < j < \ell)],$$

and so on. Note that this procedure becomes stable after k: $R_{k+1} = R_{k+2} = \cdots$, $L_{k+1} = L_{k+2} = \cdots$.

The operators (2.3) lead to the linear expressions

$$[ii]: (x_i - 1)F_{ii} + \sum_{j \neq i} x_j F_{ij} \in L_1,$$

which shows $F_{ii} \in L_2$.

Differentiating the expression [*ii*] by x_{ℓ} ($\ell \neq i$), we have

$$[ii\ell]: (x_i - 1)F_{ii\ell} + x_\ell F_{i\ell\ell} + \sum_{j \neq i,\ell} x_j F_{ij\ell} \in L_2.$$

Since we have

$$[i\ell\ell] - [ii\ell]: F_{ii\ell} - F_{i\ell\ell} \in L_2$$

the expression $[ii\ell]$ above can be written as

$$(x_i + x_\ell - 1)F_{ii\ell} + \sum_{j \neq i,\ell} x_j F_{ij\ell} \in L_2,$$

which implies $F_{ii\ell} \in L_3$. The expression

$$[iii]: (x_i - 1)F_{iii} + \sum_{j \neq i} x_j F_{iij} \in L_2$$

leads to $F_{iii} \in L_3$.

Differentiating the expression $[ii\ell]$ by $x_n \ (n \neq i, \ell)$, we have

$$[ii\ell n]: (x_i - 1)F_{ii\ell n} + x_\ell F_{i\ell\ell n} + x_n F_{in\ell n} + \sum_{j \neq i,\ell,n} x_j F_{ij\ell n} \in L_3.$$

Since we have

$$[ii\ell n] - [i\ell\ell n]: F_{ii\ell n} - F_{i\ell\ell n} \in L_3$$
 and $[ii\ell n] - [i\ell nn]: F_{ii\ell n} - F_{i\ell nn} \in L_3$,

the expression $[ii\ell n]$ above can be written as

$$(x_i + x_\ell + x_n - 1)F_{ii\ell n} + \sum_{j \neq i, \ell n} x_j F_{ij\ell n} \in L_3,$$

which implies $F_{ii\ell n} \in L_4$.

Differentiating the expression $[ii\ell]$ by x_i and x_ℓ , we have

$$[ii\ell i]: (x_i - 1)F_{iii\ell} + x_\ell F_{ii\ell\ell} + \sum_{j \neq i,\ell} x_j F_{iij\ell} \in L_3$$

and

$$[ii\ell\ell]: (x_i - 1)F_{ii\ell\ell} + x_\ell F_{i\ell\ell\ell} + \sum_{j \neq i,\ell} x_j F_{ij\ell\ell} \in L_3.$$

Since we have

$$[\ell \ell i \ell] - [ii \ell \ell] : F_{ii \ell \ell} - F_{i \ell \ell \ell} \in L_3,$$

the expression $[\ell \ell i \ell]$ above can be written as

$$(x_i + x_\ell - 1)F_{i\ell\ell\ell} + \sum_{j \neq i,\ell} x_j F_{ij\ell\ell} \in L_3,$$

which implies $F_{i\ell\ell\ell}$, $F_{ii\ell\ell} \in L_4$. The expression

$$[iiii]: (x_i - 1)F_{iiii} + \sum_{j \neq i} x_j F_{iiji} \in L_3$$

leads to $F_{iiii} \in L_4$.

In this way, we can show that all the derivatives of F belongs to L_{k+1} . In particular, all the derivatives of F can be linearly expressed in terms of the derivatives $F_{ij...}$, with distinct indices i, j, ...; cardinality of these derivatives is 2^k . Thus the rank of the system $E_A(a, (b), (c))$ is not greater than 2^k . Moreover the argument

above shows that the singular locus of the system is included in the variety defined by

$$\prod_{i} x_{i}(x_{i}-1) \prod_{i < j} (x_{i}+x_{j}-1) \prod_{i < j < \ell} (x_{i}+x_{j}+x_{\ell}-1) \cdots$$

An expression of the singular locus more suitable for this paper is given below in Section 4.

We give two fundamental systems of solutions to $E_A(a, (b), (c))$ in a small neighborhood \dot{U} of the reference point

$$\dot{x} = (\dot{x}_1, \dot{x}_2, \dots, \dot{x}_k) = (2^{-1}, 2^{-2}, \dots, 2^{-k}) \in \mathbb{D}.$$
 (2.4)

Since each system consists of 2^k lineally independent solutions, we conclude that the rank of the system is 2^k . From now on, we assume that

$$a, b_1, \dots, b_k, c_1 - b_1, \dots, c_k - b_k, a - \sum_{i \in I} c_i \notin \mathbb{Z},$$
 (2.5)

where *I* runs over the subsets of $\{1, \ldots, k\}$. This condition (2.5) coincides with the condition that the intersection matrix *H* in Section 6 is well-defined and nondegenerate (Proposition 6.2). Moreover this is equivalent also to the condition of irreducibility of the system $E_A(a, (b), (c))$, refer to [3]. (The authors thank to N. Takayama for pointing out this fact.)

Fact 2.1 ([7]). Under the condition

$$c_1,\ldots,c_k\notin\mathbb{Z},$$

the following 2^k functions are linearly independent solutions of $E_A(a, (b), (c))$ in \dot{U} :

where $I_r = \{i_1, \ldots, i_r\}$ $(1 \le i_1 < \cdots < i_r \le k), \lambda_i = 1 - c_i$ and e_i is the *i*-th unit row vector.

We fix $x \in \dot{U} \cap \mathbb{R}^k$ for a while and consider (2k+1) hyperplanes in the *t*-space \mathbb{R}^k defined by

$$t_1 = 0, t_1 = 1, \ldots, t_k = 0, t_k = 1, x_1t_1 + \cdots + x_kt_k = 1;$$

the complement of these hyperplanes in \mathbb{R}^k will be denoted by $T_{\mathbb{R}}(x)$. There are 2^k bounded chambers in $T_{\mathbb{R}}(x)$. Note that if $t = (t_1, \ldots, t_k)$ belongs to a bounded chamber then we necessarily have

$$t_1, \ldots, t_k > 0, \quad x_1 t_1 + \cdots + x_k t_k < 1.$$

Let \mathbb{Z}_2 be the set $\{0, 1\} \subset \mathbb{Z}$. Each element $v = (v_1, \ldots, v_k) \in \mathbb{Z}_2^k$ determines a bounded chamber $D_v = D_v(x)$

$$D_{v}(x): x_{1}t_{1} + \dots + x_{k}t_{k} < 1, \qquad \begin{cases} 0 < t_{i} < 1 \text{ if } v_{i} = 0, \\ 1 < t_{i} & \text{if } v_{i} = 1. \end{cases}$$
(2.6)

For example, if v = (0, ..., 0), D_v is the k-dimensional cube $[0, 1]^k$, if v = (1, ..., 1), D_v is the k-dimensional simplex given by

$$t_1 > 1, \ldots, t_k > 1, \quad x_1 t_1 + \cdots + x_k t_k < 1.$$

In general, for $v = (v_1, ..., v_k) \in \mathbb{Z}_2^k$ with $|v| = \sum_{i=1}^k v_i = r$, D_v is a polytope isomorphic to the direct product of the (k - r)-dimensional cube $[0, 1]^{k-r}$ and the *r*-dimensional standard simplex

$$\Delta^r = \{s = (s_1, \dots, s_r) \in \mathbb{R}^r \mid s_1 > 0, \dots, s_r > 0, \ s_1 + \dots + s_r < 1\}.$$

Fact 2.2 ([5]). Under the conditions (2.5) and

$$\operatorname{Re}(c_i) > \operatorname{Re}(b_i) > 0 \ (i = 1, \dots, k), \quad \operatorname{Re}(a) < 1,$$
 (2.7)

the integrals

$$\int_{D_v} u(a, (b), (c); x, t) dt_1 \wedge \dots \wedge dt_k, \quad (v \in \mathbb{Z}_2^k)$$

are solutions of $E_A(a, (b), (c))$ in $\dot{U} \cap \mathbb{R}^k$.

Remark 2.1. These can be extended to linearly independent solutions of $E_A(a, (b), (c))$ in \dot{U} by Fact 3.1 and Proposition 6.2.

We define a partial order \succ on \mathbb{Z}_2^k .

Definition 2.2. For $v = (v_1, ..., v_k), w = (w_1, ..., w_k) \in \mathbb{Z}_2^k$,

(1) $v \succeq w$ if and only if $w_i = 1 \Rightarrow v_i = 1$.

(2) $v \succ w$ if and only if $w \succeq v$ and $w \neq v$.

Note that the elements $(0, \ldots, 0)$ and $(1, \ldots, 1)$ are the minimum and the maximum, respectively.

Lemma 2.3.

- (i) The cardinality of the set $\{v \in \mathbb{Z}_2^k \mid v \succeq w\}$ is $2^{k-|w|}$, where $|w| = \sum_{i=1}^k w_i$.
- (ii) If $v \succ w$ then the intersection $\overline{D_v} \cap \overline{D_w}$ is contained in the hyperplane $t_i = 1$ for any index *i* satisfying $v_i \succ w_i$, where $\overline{D_w}$ and $\overline{D_v}$ are the closures of D_v and D_w , respectively.
- (iii) For $x \in \mathbb{R}^k S$, the interior of the union

$$\cup_{v \succeq w} \overline{D_v}$$

is the simplex $\Delta_w = \Delta_w(x)$:

$$\Delta_{w} = \{t \in \mathbb{R}^{k} \mid t_{1} > w_{1}, \dots, t_{k} > w_{k}, x_{1}t_{1} + \dots + x_{k}t_{k} < 1\}$$

= $\{w + (1 - \sum_{i=1}^{k} w_{i}x_{i})s/x \mid s = (s_{1}, \dots, s_{k}) \in \Delta^{k}\},$ (2.8)

where $s/x = (s_1/x_1, ..., s_k/x_k)$.

Proof.

- (i) If $v \succeq w$ then $v_i = 1$ for an index *i* with $w_i = 1$ and $v_i = 0, 1$ for an index *i* with $w_i = 0$. Thus there are $2^{k-|w|} v$'s such that $v \succeq w$.
- (ii) If $v \succ w$ and $v_i \succ w_i$ then $v_i = 1$ and $w_i = 0$. By (2.6), the intersection of the boundaries of D_v and D_w is contained in the hyperplane $t_i = 1$.
- (iii) For any $v \in \mathbb{Z}_2^k$, if t belongs to D_v then $\sum_{i=1}^k x_i t_i < 1$ and $t_i > v_i$ for $i = 1, \ldots, k$. Thus if $v \succeq w$ then $D_v \subset \Delta_w$. If $v \nvDash w$ then there exists an index i such that $v_i = 0$ and $w_i = 1$. Since the point $t = v \in \overline{D_v}$ is not in $\overline{\Delta_w}$, D_v is not contained in Δ_w for $v \nvDash w$. We have only to note that Δ_w can be expressed as the interior of the union of some $\overline{D_v}$'s.

3. Twisted homology group

Set

$$\mu_a = \exp(-\pi\sqrt{-1}a), \ \mu_{0i} = \exp(\pi\sqrt{-1}b_i), \ \mu_{1i} = \exp(\pi\sqrt{-1}(c_i - b_i)), \mu = (\mu_a, \mu_{01}, \dots, \mu_{0k}, \mu_{11}, \dots, \mu_{1k}).$$

We consider the parameters a, b, c and μ as indeterminates. When we assign complex values to them, we assume the condition (2.5), or equivalently

$$\mu_a^2, \ \mu_{01}^2, \ldots, \mu_{0k}^2, \ \mu_{11}^2, \ldots, \mu_{1k}^2, \ \mu_a^2 \prod_{i \in I} (\mu_{0i}^2 \mu_{1i}^2) \neq 1,$$

where I runs over the subsets of $\{1, \ldots, k\}$.

Let $\mathbb{Q}(\mu)$ be the rational function field over \mathbb{Q} generated by the entries of μ . We fix x in the neighborhood \dot{U} of \dot{x} . The multi-valued holomorphic function u = u(t) = u(a, (b), (c); x, t) on

$$T(x) = \{t \in \mathbb{C}^k \mid t_1(1-t_1)\cdots t_k(1-t_k)(1-x_1t_1-\cdots-x_kt_k) \neq 0\}$$

defines the twisted homology groups $H_i(T(x), u)$ and the locally finite ones $H_i^{\text{lf}}(T(x), u)$, where we regard the complexes of twisted chains as defined over the field $\mathbb{Q}(\mu)$. Elements of these homology groups are called twisted cycles or loaded cycles. It is known [2] that they are purely *k*-dimensional, and the natural map (regularization)

$$\operatorname{reg}: H_k^{\operatorname{lf}}(T(x), u) \longrightarrow H_k(T(x), u)$$

is an isomorphism between 2^k -dimensional vector spaces over $\mathbb{Q}(\mu)$.

Now fix $x \in \dot{U} \cap \mathbb{R}^k$, and *load* on D_v a (constant multiple of) branch of u:

$$u_{v} = \left[\prod_{i=1}^{k} t_{i}^{b_{i}-1} \{(-1)^{v_{i}} (1-t_{i})\}^{c_{i}-b_{i}-1}\right] (1-\Sigma_{i=1}^{k} x_{i} t_{i})^{-a}.$$

Note that each linear form in u_v is positive on D_v . Its argument is assigned to be zero. This chamber D_v loaded with the branch of u_v defines an element D_v^u of $H_k^{\text{lf}}(T(x), u)$. This loading is called the *standard loading*. The loaded cycles $D_v^u(v \in \mathbb{Z}_2^k)$ form a basis of $H_k^{\text{lf}}(T(x), u)$.

Thanks to the local triviality of the bundle

$$\bigcup_{x\in\mathbb{C}^k-S}H_k^{\mathrm{lf}}(T(x),u),$$

these D_v^u are defined as elements of $H_k^{\text{lf}}(T(x), u)$ for $x \in \mathbb{C}^k - S$. By this extension and Fact 2.2, we have the following identification.

Fact 3.1. For $x \in \mathbb{C}^k - S$, the germ of the local solution space $Sol(U_x)$ at x can be identified with $H_k^{\text{lf}}(T(x), u)$ and $H_k(T(x), u)$ as vector spaces over $\mathbb{Q}(\mu)$.

4. Singular locus

Set

$$S_{w} = \left\{ x \in \mathbb{C}^{k} \mid w \cdot x := \sum_{i=1}^{k} w_{i} x_{i} = 1 \right\}, \quad w \in \check{\mathbb{Z}}_{2}^{k},$$
$$S_{0}^{i} = \{ x \in \mathbb{C}^{k} \mid x_{i} = 0 \}, \qquad i = 1, \dots, k \}$$

where $\check{\mathbb{Z}}_{2}^{k} = \mathbb{Z}_{2}^{k} - \{(0, \dots, 0)\}.$

By the expression (2.8), we have the following:

Lemma 4.1. The simplex $\Delta_w(x)$ vanishes when x is in the set S_w .

Proposition 4.2. Under the assumption (2.5), the singular locus S of $E_A(a,(b),(c))$ consists of the hyperplanes S_w ($w \in \mathbb{Z}_2^k$) and S_0^i (i = 1, ..., k).

Proof. A point $x \in \mathbb{C}^k$ satisfying

dim
$$H_k(T(x), u)$$
 < rank of $E_A(a, (b), (c)) = 2^k$

is a singular point of $E_A(a, (b), (c))$ by Fact 3.1. If x does not belong to

$$(\cup_{w\in\mathbb{Z}_2^k}S_w)\cup(\cup_{i=1}^kS_0^i),$$

then there is a homotopy equivalence between T(x) and $T(\dot{x})$. Thus $H_k(T(x), u)$ is isomorphic to $H_k(T(\dot{x}), u)$, which is of rank 2^k .

Recall that $D_v^u(v \in \mathbb{Z}_2^k)$ form a basis of $H_k(T(x), u)$. By Lemma 4.1, if x belongs to S_w ($w \in \mathbb{Z}_2^k$), then Δ_w^u with suitable loading of u degenerates. Thus dim $H_k(T(x), u)$ for $x \in S_w$ is less than 2^k . The expression of local solutions (Fact 2.1) tells that any element x of S_0^i is a singular point.

For an element $w \in \mathbb{Z}_2^k$ with |w| = r, we define $\dot{x}_w \in \mathbb{D}$ as follows: read the array w from the left; at the first 1 we put 2^{-1} , at the second 1 we put 2^{-2} , ..., and at the last 1 we put 2^{-r} , go back to the left-end and re-start: at the first 0 we put $2^{-(r+1)}$, and at the second 0 we put $2^{-(r+2)}$ and so on. For example,

$$\dot{x}_w = \left(2^{-2}, 2^{-3}, 2^{-1}\right), \text{ when } w = (0, 0, 1).$$

Define a line \mathbb{C}_w in \mathbb{C}^k as the image of a map

$$\eta_w: \mathbb{C} \ni y \mapsto \dot{x}_w + yw \in \mathbb{C}^k.$$

We study the intersection $S_v \cap \mathbb{C}_w$ for $v \in \mathbb{Z}_2^k$. If $v \cdot w = 0$, then $S_v \cap \mathbb{C}_w = \phi$. If $v \cdot w \neq 0$, then by solving

$$(\dot{x}_w + yw) \cdot v = 1,$$

we find the intersection point $S_v \cap \mathbb{C}_w$ as $\eta_w(y_v)$, where

 $y_v = (1 - \dot{x}_w \cdot v) / (v \cdot w) \in \mathbb{R} \subset \mathbb{C}.$

In particular, $S_w \cap \mathbb{C}_w$ is given by $\eta_w(y_w)$, where

$$y_w = (1 - \dot{x}_w \cdot w) / |w| \in \mathbb{R} \subset \mathbb{C}.$$

For example, when w = (0, 0, 1), we show the intersection points $S_v \cap \mathbb{C}_w$ on the complex y-plane \mathbb{C} for

$$v = (1, 1, 1), (1, 0, 1), (0, 1, 1), (0, 0, 1)$$

in Figure 4.1. Here note that $\dot{x}_{001} = (2^{-2}, 2^{-3}, 2^{-1})$, which corresponds to the origin of the complex *y*-plane. The line \mathbb{C}_w is parameterized as

$$\eta_w : y \longmapsto (x_1, x_2, x_3) = (2^{-2}, 2^{-3}, 2^{-1}) + (0, 0, y) \in \mathbb{C}^3,$$

and the intersections of the line \mathbb{C}_w with the lines

$$x_1 + x_2 + x_3 = 1$$
, $x_1 + x_3 = 1$, $x_2 + x_3 = 1$, $x_3 = 1$

are given by

$$y_{111} = 1/8$$
, $y_{101} = 2/8$, $y_{011} = 3/8$, $y_{001} = 4/8$,

respectively.

Figure 4.1. The loop τ'_{001} and the path σ'_{001} .

Lemma 4.3. Suppose that $v \cdot w \neq 0$. If $w \leq v$ then $0 < y_v \leq y_w$, otherwise $y_w < y_v$.

Proof. Recall that

$$y_w = (1 - \dot{x}_w \cdot w) / |w|, \quad y_v = (1 - \dot{x}_w \cdot v) / (v \cdot w).$$

Since $1 - \dot{x}_w \cdot v > 0$, we have $y_v > 0$ for any $v \in \check{\mathbb{Z}}_2^k$ with $v \cdot w \neq 0$. If $w \leq v$ then

$$\dot{x}_w \cdot v \ge \dot{x}_w \cdot w, \quad v \cdot w = w \cdot w = r.$$

Thus $0 < y_v \le y_w$. If $w \not\le v$ then $v \cdot w < r$ and

$$\dot{x}_w \cdot v \le (2^{-1} + \dots + 2^{1-r}) + (2^{-1-r} + \dots + 2^{-k}) < 2^{-1} + \dots + 2^{-r} = \dot{x}_w \cdot w.$$

Thus we have $y_w < y_v$.

Let τ'_w be a positively oriented circle with center y_w and terminal $y_w - \varepsilon$ in \mathbb{C} , and let σ'_w be a path in \mathbb{C} starting from 0, traveling in the upper half space, and ending at $y_w - \varepsilon$, where ε is a small positive number; see Figure 4.1. Define a loop τ_w and a path σ_w in $\mathbb{C}_w (\subset \mathbb{C}^k)$ as the images of τ'_w and σ'_w by the map η_w , respectively. We define a loop ρ_w in $X = \mathbb{C}^k - S$ by connecting the segment from \dot{x} to \dot{x}_w , the path σ_w , the loop τ_w , the path σ_w^{-1} , and the segment from \dot{x}_w to \dot{x} .

On the other hand, we define a loop ρ_0^i in X with base point \dot{x} by

$$(2^{-1},\ldots,2^{-i+1},\sigma_i(s),2^{-i-1},\ldots,2^{-k}),$$

where $\sigma_i(s)$ is a path starting from $s = 2^{-i}$, turning around the point s = 0 counterclockwise, and coming back. The Lefschetz hyperplane theorem and the van Kampen theorem imply the following.

Proposition 4.4. The fundamental group $\pi_1(X, \dot{x})$ is generated by ρ_w for $w \in \mathbb{Z}_2^k$ and $\rho_0^1, \ldots, \rho_0^k$.

5. Local monodromy

A loop ρ with base point \dot{x} induces a linear transformation m_{ρ} of $H_k(T(\dot{x}), u)$, which is called the circuit transform (or monodromy) with respect to ρ . By Fact 3.1, this transformation can be regarded as that of the local solution space $Sol(\dot{U})$.

Proposition 5.1. Suppose that

$$\alpha_w = \mu_a^2 \cdot \mu_{w_1 1}^2 \cdots \mu_{w_k k}^2 \neq 1$$

Then the Jordan normal form of the circuit transform $m_w = m_{\rho_w}$ with respect to the loop ρ_w ($w \in \mathbb{Z}_2^k$) is given by

$$diag(\alpha_w, 1, ..., 1).$$

Proof. Take the end point $x_{\sigma_w} = \eta_w(y_w - \varepsilon)$ of the path σ_w for $w \in \mathbb{Z}_2^k$, where $y_w = (1 - \dot{x}_w \cdot w)/|w|$. Note that the simplex $\Delta_w = \Delta_w(x_{\sigma_w})$ is contained in a small neighborhood of the vertex w of the cube $[0, 1]^k$. We deform Δ_w along the loop

$$\tau_w : [-\pi, \pi] \ni \theta \mapsto x_\theta = \dot{x}_w + (\varepsilon e^{\sqrt{-1\theta}} + y_w)w \in X.$$

Note that if $w_i = 0$ then x_i does not move, and that

$$1 - x_{\theta} \cdot w = -\varepsilon e^{\sqrt{-1}\theta} |w|.$$

By using the expression (2.8) of Δ_w , we express the deformation of Δ_w along the loop τ_w as

$$\Delta_w(x_\theta) = \{ w - \varepsilon e^{\sqrt{-1}\theta} | w | (s_1/x_1, \dots, s_k/x_k) \mid s \in \Delta^k, \ -\pi \le \theta \le \pi \},\$$

where $x_{\theta} = (x_1, ..., x_k)$.

We trace the value of the function u = u(x, t) while x travels along the loop τ_w . The argument of

$$t_i - w_i = -\varepsilon e^{\sqrt{-1\theta}} |w| s_i / x_i$$

increases by 2π by the continuation along the loop τ_w . Since we have

$$1 - \sum_{i=1}^{k} x_i t_i = -\varepsilon e^{\sqrt{-1}\theta} |w| \left(1 - \sum_{i=1}^{k} s_i\right),$$

its argument also increases by 2π by the continuation. Hence the loaded cycle $\Delta_w^u(x_{\sigma_w})$ supported by $\Delta_w(x_{\sigma_w})$ loaded with u = u(x, t) is multiplied by α_w by the continuation.

We have 2^k chambers around the vertex (1, ..., 1) - w of the cube $[0, 1]^k$. We give a basis of $H_k^{\text{lf}}(T(x_{\sigma_w}), u)$ as the simplex Δ_w and the $2^k - 1$ chambers outside of the cube $[0, 1]^k$ loaded with u. It is geometrically clear that the move τ_w does not affect the other $2^k - 1$ chambers. See Figure 5.1 for the case k = 2 and w = (1, 1). Hence the circuit matrix is diagonal as stated.

Figure 5.1. Vanishing and invariant chambers

Proposition 5.2. Suppose that $c_i \notin \mathbb{Z}$. Then the Jordan normal form of the circuit transformation $m_0^i = m_{\rho_0^i}$ with respect to the loop ρ_0^i is given by

$$\operatorname{diag}(\underbrace{2^{k-1}}_{0,\ldots,1},\underbrace{\alpha_0^{i},\ldots,\alpha_0^{i}}_{0,\ldots,\alpha_0^{i}}),$$

where

$$\alpha_0^i = \mu_{0i}^{-2} \mu_{1i}^{-2} = \exp(-2\pi\sqrt{-1}c_i) \neq 1.$$

Proof. We make use of the local solutions given in Fact 2.1. The analytic continuation of the these solutions along the loop ρ_0^i is quite obvious: we have 2^{k-1} invariant solutions and 2^{k-1} solutions multiplied by $\exp(2\pi\sqrt{-1}\lambda_i)$.

6. Intersection form

Let $z \mapsto z^{\vee}$ be the isomorphism of $\mathbb{Q}(\mu)$ over \mathbb{Q} induced by

$$\mu_a \mapsto \mu_a^{-1}, \quad \mu_{0j} \mapsto \mu_{0j}^{-1}, \quad \mu_{1j} \mapsto \mu_{1j}^{-1} \qquad j = 1, \dots, k.$$

Note that if we assign real numbers to the entries of a, (b) and (c), then z^{\vee} is the complex conjugate \overline{z} of $z \in \mathbb{Q}(\mu) \subset \mathbb{C}$.

We define the intersection form \mathcal{I} on $H_k(T(x), u) \times H_k(T(x), u)$ as follows. Let D^u and D^u be elements of $H_k(T(x), u)$ given by

$$D^{u} = \sum_{i \in I} d_i D_i^{u_i}, \quad \acute{D}^{u} = \sum_{j \in J} \acute{d}_j \acute{D}_j^{u_j}, \qquad d_i, \acute{d}_j \in \mathbb{Q}(\mu),$$

where $D_i^{u_i}$ denotes a singular k-simplex D_i loaded with a branch $u_i = u_i(t)$ of u. The intersection number $\mathcal{I}(D^u, \hat{D}^u)$ is given, by definition, as

$$\mathcal{I}(D^u, \acute{D}^u) = \sum_{i \in I, j \in J} \sum_{p \in D_i \cap \acute{D}_j} d_i \acute{d}_j^{\vee} (D_i \cdot \acute{D}_j)_p \frac{u_i(p)}{u_j(p)},$$

where $(D_i \cdot \hat{D}_j)_p$ is the topological intersection number of k-chains D_i and \hat{D}_j at p. We have

$$\mathcal{I}(\acute{D}^{u}, D^{u}) = (-1)^{k} \mathcal{I}(D^{u}, \acute{D}^{u})^{\vee},$$

$$\mathcal{I}(zD^{u}, \acute{D}^{u}) = z \mathcal{I}(D^{u}, \acute{D}^{u}), \quad \mathcal{I}(D^{u}, z\acute{D}^{u}) = z^{\vee} \mathcal{I}(D^{u}, \acute{D}^{u}),$$

for $z \in \mathbb{Q}(\mu)$.

Proposition 6.1. For $v \in \mathbb{Z}_2^k$, let $D_v^u \in H_k^{\text{lf}}(T(\dot{x}), u)$ be the chamber D_v standardly loaded with u. We have

$$\begin{aligned} \mathcal{I}(D_{v}^{u}, D_{v'}^{u}) &= \left[\prod_{1 \leq i \leq k}^{v_{i} \neq v_{i}'} \frac{\mu_{1i}}{\mu_{1i}^{2} - 1}\right] \cdot \left[\prod_{1 \leq i \leq k}^{v_{i} = v_{i}' = 0} (-1) \frac{\mu_{0i}^{2} \mu_{1i}^{2} - 1}{(\mu_{0i}^{2} - 1)(\mu_{1i}^{2} - 1)}\right] \\ \cdot (-1)^{\sum_{i} \min(v_{i}, v_{i}')} \left[\frac{\mu_{a}^{2} \prod_{1 \leq i \leq k}^{v_{i} = v_{i}' = 1} \mu_{1i}^{2} - 1}{(\mu_{a}^{2} - 1) \prod_{1 \leq i \leq k}^{v_{i} = v_{i}' = 1} (\mu_{1i}^{2} - 1)}\right], \end{aligned}$$

where

 $v = (v_1, \ldots, v_k), \quad v' = (v'_1, \ldots, v'_k) \in \mathbb{Z}_2^k.$

Proof. The intersection of the (closure of the) chambers D_v and $D_{v'}$ is the direct product of

- the point 1 on the t_i -line if $v_i \neq v'_i$, let I_1 be the set of such indices i,
- the interval [0, 1] on the t_i -line if $v_i = v'_i = 0$, let I_2 be the set of such indices i,
- the simplex in the remaining coordinate space $(t_j)_{j \in J}$, where $J = \{1, ..., k\} I_1 I_2$, bounded by the hyperplanes $t_j = 1$ and

$$\sum_{i \in I_1} x_i + \sum_{i \in I_2} x_i + \sum_{j \in J} x_j t_j = 1.$$

Note that $j \in J$ if and only if $v_j = v'_j = 1$, and the cardinality of J is given by $\sum_i \min(v_i, v'_i)$. The intersection number of D_v^u and $D_{v'}^u$ is the product of the three kinds of factors:

- the intersection number of the two intervals at the point 1 with exponent μ_{1i}^2 for $i \in I_1$,
- the self-intersection numbers of the 1-dimensional cycles supported by the interval [0, 1] with exponents μ²_{0i} at 0 and μ²_{1i} at 1 for i ∈ I₂,
 the self-intersection number of the cycle supported by the simplex with expo-
- the self-intersection number of the cycle supported by the simplex with exponents μ²_{i1}(j ∈ J) and μ²_a.

These self-intersection numbers can be found in [6]. Since we load u standardly, the intersection number in the first factor is $\frac{\mu_{1i}}{\mu_{1i}^2 - 1}$.

Note that the intersection number $\mathcal{I}(D_v^u, D_{v'}^u)$ is complex valued whenever we assign values to μ under the condition (2.5).

We array the basis $\{D_v^u\}_{v \in \mathbb{Z}_2^k}$ in a total order on $v \in \mathbb{Z}_2^k$, say the total-lexicographic order: $w = (w_1, \ldots, w_k) < v = (v_1, \ldots, v_k)$ if either (i) or (ii) is satisfied:

(i) |w| < |v|(ii) |w| = |v| and $w_j < v_j$, where $j = \min\{i \in \{1, ..., k\} \mid w_i \neq v_i\}$.

Note that if $w \prec v$ then w < v.

We define the intersection matrix with respect to this basis as

$$H = (\mathcal{I}(D_{v}^{u}, D_{v'}^{u}))_{v,v' \in \mathbb{Z}_{2}^{k}},$$
(6.1)

where v and v' are arranged in the total-lexicographic order. The determinant of the intersection matrix H is given as

$$\frac{d_a(1)}{d_a d_1} \quad (k=1), \qquad \frac{d_a(12)d_a(1)d_(2)}{d_a^3 d_1^2 d_2^2} \quad (k=2),$$

$$\frac{d_a(123)d_a(12)d_a(23)d_a(31)d_a(1)d_a(2)d_a(3)}{d_a^7 d_1^4 d_2^4 d_3^4} \quad (k=3),$$

where

$$v_a = \mu_a^2, \quad v_{0i} = \mu_{0i}^2, \quad \mu_{1i} = \mu_{1i}^2,$$

$$d_a = v_a - 1, \quad d_i = (v_{0i} - 1)(v_{1i} - 1),$$

$$d_a(i \cdots j) = v_a(v_{0i}v_{1i}) \cdots (v_{0j}v_{1j}) - 1.$$

In general, we have the following expression, wich will be proved in the appendix:

Proposition 6.2. We have

$$\det(H) = \frac{\prod_{p=1}^{k} \prod_{1 \le i_1 < \dots < i_p \le k} d_a(i_1 \cdots i_p)}{d_a^{2^k - 1} \prod_{p=1}^{k} d_i^{2^{k-1}}}.$$

In particular, the intersection form \mathcal{I} is non-degenerate under the condition (2.5).

Lemma 6.3. Let m_{ρ} be the circuit transformation of $H_k(T(\dot{x}), u)$ with respect to a loop ρ in X.

(i)

$$\mathcal{I}(m_{\rho}(D^{u}), m_{\rho}(\acute{D}^{u})) = \mathcal{I}(D^{u}, \acute{D}^{u}), \quad D^{u}, \acute{D}^{u} \in H_{k}(T(\dot{x}), u)$$

(ii)

$$M_{\rho}H^{t}M_{\rho}^{\vee}=H,$$

where *H* is the intersection matrix in (6.1) and M_{ρ} is the matrix representation (circuit matrix) of m_{ρ} with respect to the basis $\{D_{v}^{u}\}_{v \in \mathbb{Z}_{2}^{k}}$ of $H_{k}(T(\dot{x}), u)$.

(iii) Let D^u be an eigenvector of m_ρ with eigenvalue $\alpha \in \mathbb{Q}(\mu)$ and let \hat{D}^u be that with eigenvalue $\alpha' \in \mathbb{Q}(\mu)$. Then

$$\mathcal{I}(D^{u}, D^{u}) \neq 0 \Rightarrow \alpha \cdot \alpha^{\vee} = 1,$$

$$\alpha^{\vee} \cdot \alpha' \neq 1 \Rightarrow \mathcal{I}(D^{u}, \acute{D}^{u}) = 0.$$

Proof. Since the intersection form is stable under deformation of x as far as the topology of T(x) does not change, we have (i). The statement (ii) is a matrix representation of (i) for the basis $\{D_v^u\}_{v \in \mathbb{Z}_2^k}$ of $H_k(T(\dot{x}), u)$. Let us show (iii). Note that

$$\mathcal{I}(D^{u}, \acute{D}^{u}) = \mathcal{I}(m_{\rho}(D^{u}), m_{\rho}(\acute{D}^{u})) = \mathcal{I}(\alpha D^{u}, \alpha' \acute{D}^{u})$$
$$= \alpha \cdot (\alpha')^{\vee} \mathcal{I}(D^{u}, \acute{D}^{u}).$$

Thus if $\alpha' \cdot \alpha^{\vee} \neq 1$ then $\mathcal{I}(D^u, \acute{D}^u) = 0$. By putting $\acute{D}^u = D^u$, we have $\mathcal{I}(D^u, D^u) \neq 0 \Rightarrow \alpha \cdot \alpha^{\vee} = 1$.

For
$$i = 1, ..., k$$
, we set $\mathbb{Z}_2^k(i) = \{w \in \mathbb{Z}_2^k \mid w_i = 0\}$ and
 $W_i = \langle D_w^u \mid w \in \mathbb{Z}_2^k(i) \rangle \subset H_k(T(\dot{x}), u),$
 $W_i^{\perp} = \{ \hat{D}^u \in H_k(T(\dot{x}), u) \mid \mathcal{I}(\hat{D}^u, D^u) = 0 \text{ for any } D^u \in W_i \}.$

Lemma 6.4. Suppose that $c_i \notin \mathbb{Z}$. Then the eigenspace of the circuit transform m_0^i with eigenvalue 1 is W_i and that with eigenvalue α_0^i is W_i^{\perp} , and

$$W_i \oplus W_i^{\perp} = H_k(T(\dot{x}), u) \quad (1 \le i \le k).$$

Proof. Consider the circuit transformation m_0^i . By Proposition 5.2, the space $H_k(T(\dot{x}), u)$ is decomposed into 2^{k-1} -dimensional eigenspaces with eigenvalues 1 and $\alpha_0^i \neq 1$. Note that any cycle D_w ($w \in \mathbb{Z}_2^k(i)$) is invariant under the continuation along the loop ρ_0^i . Thus it belongs to W_i . Lemma 6.3 implies that any α_0^i -eigenvector belongs to W_i^{\perp} . Hence W_i is the eigenspace of the circuit transform m_0^i with eigenvalue 1 and W_i^{\perp} includes that with eigenvalue α_0^i . Since dim $(W_i^{\perp}) = 2^{k-1}$ by Proposition 6.2, W_i^{\perp} coincides with the eigenspace of the circuit transform m_0^i with eigenvalue α_0^i , and $W_i \oplus W_i^{\perp} = H_k(T(\dot{x}), u)$.

7. Monodromy representation

For $w = (w_1, \ldots, w_k) \in \mathbb{Z}_2^k$, we set

$$\Delta_w^u = \sum_{v \geq w} \left(\prod_{i=1}^k \mu_{1i}^{v_i - w_i} \right) D_v^u \in H_k(T(\dot{x}), u).$$

Theorem 7.1.

(i) For each $w \in \check{\mathbb{Z}}_2^k$, the circuit transform m_w for the loop ρ_w is

$$m_w : D^u \mapsto D^u - (1 - \alpha_w) \mathcal{I}(D^u, \Delta^u_w) \mathcal{I}(\Delta^u_w, \Delta^u_w)^{-1} \Delta^u_w$$
$$= D^u - (1 - \mu_a^2) \left[\prod_{i=1}^k (1 - \mu_{w_i i}^2) \right] \mathcal{I}(D^u, \Delta^u_w) \Delta^u_w.$$

If we assign complex values to μ with condition

$$\alpha_w = \mu_a^2 \cdot \mu_{w_1 1}^2 \cdots \mu_{w_k k}^2 \neq 1$$

then it is the reflection of root Δ_w^u and eigenvalue α_w with respect to the intersection form \mathcal{I} .

566

(ii) For i = 1, ..., k, the circuit transform m_0^i for the loop ρ_0^i is given by

$$m_0^i: D^u \mapsto \alpha_0^i D^u - (\alpha_0^i - 1) \operatorname{pr}_i(D^u),$$

where $\alpha_0^i = \mu_{0i}^{-2} \mu_{1i}^{-2}$ and pr_i is the projection from $H_k(T(\dot{x}), u)$ to W_i :

$$\mathrm{pr}_i: D^u = \acute{D}^u + \grave{D}^u \mapsto \acute{D}^u, \quad \acute{D}^u \in W_i, \ \grave{D}^u \in W_i^{\perp}$$

We array the basis $\{D_v^u\}_{v \in \mathbb{Z}_2^k}$ as a column vector in the total-lexicographic order on $v \in \mathbb{Z}_2^k$. Let e_w be the unit row vector such that

$$e_w^t(\cdots, D_v^u, \dots) = D_w^u.$$

We define row vectors

$$\varepsilon_w = \sum_{v \ge w} \left(\prod_{i=1}^k \mu_{1i}^{v_i - w_i} \right) e_v \in \mathbb{Q}(\mu)^{2^k}, \qquad w \in \check{\mathbb{Z}}_2^k$$

and arrange them in the total-lexicographic order, and define $(2^{k-1}, 2^k)$ -matrices as

$$E_i = \begin{pmatrix} \vdots \\ e_w \\ \vdots \end{pmatrix}_{w \in \mathbb{Z}_2^k(i)}, \qquad i = 1, \dots, k.$$

If a 2^k -row-vector f is identified with $f^{-t}(\dots, D_v^u, \dots)$, then m_w and m_0^i are expressed as $2^k \times 2^k$ -matrices by the intersection matrix H in (6.1).

Corollary 7.2.

(i) The circuit transform m_w is expressed by the matrix

$$M_{w} = I_{2^{k}} - (1 - \alpha_{w})H^{t}\varepsilon_{w}^{\vee}(\varepsilon_{w}H^{t}\varepsilon_{w}^{\vee})^{-1}\varepsilon_{w}$$
$$= I_{2^{k}} - (1 - \mu_{a}^{2})\left[\prod_{i=1}^{k}(1 - \mu_{w_{i}i}^{2})\right]H^{t}\varepsilon_{w}^{\vee}\varepsilon_{w}$$

(ii) The circuit transform m_0^i is expressed by the matrix

$$M_0^i = \alpha_0^i I_{2^k} - (\alpha_0^i - 1) H^{t} E_i^{\vee} (E_i H^{t} E_i^{\vee})^{-1} E_i.$$

These matrices act on 2^k -row-vectors from the right.

Proof.

(i) Suppose that $\alpha_w \neq 1$ for $w \in \mathbb{Z}_2^k$. We show that Δ_w^u is the eigenvector of m_w with eigenvalue α_w for any $w \in \mathbb{Z}_2^k$. It is shown in the proof of Proposition 5.1 that the loaded cycle $\Delta_w^{u'}(x_{\sigma_w})$ is an eigenvector belonging to the eigenvalue α_w of the transformation caused by the continuation along the loop τ_w . Here $x_{\sigma_w} = \eta_w(y_w - \varepsilon)$ is the end point of the path σ_w and we load u' on the small simplex $\Delta_w(x_{\sigma_w})$ by the assignments $\arg(t_i) = \arg(1 - \sum_{i=1}^k x_i t_i) = 0$ and

$$\arg(1 - t_i) = \begin{cases} 0 & \text{if } w_i = 0, \\ \pi & \text{if } w_i = 1. \end{cases}$$

We deform the simplex $\Delta_w(x_{\sigma_w})$ along the path σ_w^{-1} from x_{σ_w} to \dot{x}_w . Lemma 2.3 tells that the resulting simplex $\Delta_w(\dot{x}_w)$ is (the closure of) the union of the chambers D_v ($v \succeq w$). At the same time, we trace the change of the function u'(x) along the path σ_w^{-1} from x_{σ_w} to \dot{x}_w ; the resulting loaded cycle $\Delta_w^{u'}(\dot{x}_w)$ would be a linear combination

$$\sum_{v \succeq w} d_v D_v^u$$

We determine the coefficients. The key is the expression (2.8) of Δ_w . For any $v \succeq w$, there exits $s_v \in \Delta^k$ such that

$$w + (1 - w \cdot \dot{x}_w) s_v / \dot{x}_w = t_v \in D_v.$$

By comparing the value of $u(\dot{x}_w, t_w)$ with that of loaded function on D_w^u , we have

$$d_w = \prod_{1 \le i \le k}^{w_i = 1} \mu_{1i}$$

For $v \succ w$, we follow the deformation of the *i*-th coordinates t_i of

$$t = w + (1 - w \cdot x)s_v/x$$

along the path σ_w^{-1} : $x = \dot{x} + wy$ for $y \in (\sigma_v)^{-1}$. If the index *i* satisfies $v_i = w_i$ then $\text{Re}(1-t_i) > 0$, otherwise $1-t_i$ changes from positive to negative via the upper half space. Thus $\arg(t_i) = \arg(1 - \sum_{i=1}^k x_i t_i) = 0$ and

$$\arg(1 - t_i) = \begin{cases} 0 & \text{if } v_i = 0, \\ \pi & \text{if } v_i = 1, \end{cases}$$

on D_v . Hence we have

$$d_v = \prod_{1 \le i \le k}^{v_i=1} \mu_{1i}$$
, and so $\sum_{v \ge w} d_v D_v^u = d_w \Delta_w^u$.

By Lemma 6.3, the eigenspace with eigenvalue 1 of m_w is the orthogonal complement of Δ_w^u . Therefore we have the first expression of m_w . By following the proof of Proposition 6.1, we have

$$\mathcal{I}(\Delta_{w}^{u}, \Delta_{w}^{u}) = \frac{1 - \alpha_{w}}{(1 - \mu_{a}^{2}) \prod_{i=1}^{k} (1 - \mu_{w_{i}i}^{2})},$$

which implies the second expression of m_w .

We consider the case $\alpha_w = 1$. Under our assumption (2.5), the intersection form \mathcal{I} on $H_k(T(\dot{x}), u) \times H_k(T(\dot{x}), u)$ does not degenerate and $\{D_v^u\}_{v \in \mathbb{Z}_2^k}$ is a basis even in this case. Since we can regard the second expression of m_w as a limit of parameters, it is valid as the circuit transform.

(ii) Suppose that $c_i \notin \mathbb{Z}$. Under the linear map

$$D^{u} \mapsto \alpha_{0}^{i} D^{u} - (\alpha_{0}^{i} - 1) \operatorname{pr}_{i}(D^{u}),$$

 $\dot{D}^u \in W_i$ is invariant and $\dot{D}^u \in W_i^{\perp}$ is transformed into $\alpha_0^i \dot{D}^u$. By Lemma 6.4, this map coincides with m_0^i . It is easy to see that m_0^i is represented by the matrix M_0^i for the basis $\{D_v^u\}_{v \in \mathbb{Z}_2^h}$.

We consider the case $c_i \in \mathbb{Z}$. Under our assumption (2.5), the intersection form \mathcal{I} on $H_k(T(\dot{x}), u) \times H_k(T(\dot{x}), u)$ does not degenerate and $\{D_v^u\}_{v \in \mathbb{Z}_2^k}$ is a basis even in this case. Note that the map $(\alpha_0^i - 1) \operatorname{pr}_i$ is represented by $2^k \times 2^k$ -matrix

$$(\alpha_0^i - 1)H^{t}E_i^{\vee}(E_iH^{t}E_i^{\vee})^{-1}E_i$$
(7.1)

for the basis $\{D_v^u\}_{v \in \mathbb{Z}_2^k}$. The $2^{k-1} \times 2^{k-1}$ -matrix $E_i H^{t} E_i^{\vee}$ has the factor $(\alpha_0^i - 1)$ by Propositions 6.1 and 6.2. Thus this factor in the expression (7.1) is canceled. If we regard this case as a limit of parameters then $(\alpha_0^i - 1) \operatorname{pr}_i$ converges to a linear transformation satisfying

$$\operatorname{ker}((\alpha_0^i - 1)\operatorname{pr}_i) = \operatorname{Im}((\alpha_0^i - 1)\operatorname{pr}_i) = W_i,$$

and the expression of m_0^i is valid as the circuit transform.

Remark 7.3.

(i) The eigenspace of the circuit transform m_w with eigenvalue 1 is the orthogonal complement

$$(\Delta_w^u)^{\perp} = \{ D^u \in H_k(T(\dot{x}), u) \mid \mathcal{I}(D^u, \Delta_w^u) = 0 \}$$

of Δ_w^u . If $\alpha_w = 1$ then Δ_w^u belongs to $(\Delta_w^u)^{\perp}$, otherwise $H_k(T(\dot{x}), u)$ is spanned by Δ_w^u and $(\Delta_w^u)^{\perp}$. If $\alpha_w = 1$ then the Jordan normal form of m_w is given by

$$\begin{pmatrix} J_{1,2} & & \\ & 1 & \\ & \ddots & \\ & & & 1 \end{pmatrix}, \quad J_{1,2} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

(ii) If $c_i \in \mathbb{Z}$ then the Jordan normal form of m_0^i is the direct sum of 2^{k-1} copies of $J_{1,2}$:

$\int J_{1,2}$			
	۰.		
		$J_{1,2}$	

A. Sketch of a proof of Proposition 6.2

A.1. Determinant formula

Set

$$\alpha = \mu_a^2, \quad \beta_i = \mu_{0i}^2, \quad \gamma_i = \mu_{1i}^2, \quad \sqrt{\gamma_i} = \mu_{1i}.$$

Then Proposition 6.2 reads that det(H) equals

$$\begin{aligned} \frac{\alpha\beta_{1}\gamma_{1}-1}{(\alpha-1)(\beta_{1}-1)(\gamma_{1}-1)} & (k=1), \\ \frac{(\alpha\beta_{1}\gamma_{1}\beta_{2}\gamma_{2}-1)(\alpha\beta_{1}\gamma_{1}-1)(\alpha\beta_{2}\gamma_{2}-1)}{(\alpha-1)^{3}(\beta_{1}-1)^{2}(\gamma_{1}-1)^{2}(\beta_{2}-1)^{2}(\gamma_{2}-1)^{2}} & (k=2), \\ \frac{(\alpha\beta_{1}\gamma_{1}\beta_{2}\gamma_{2}\beta_{3}\gamma_{3}-1)\prod_{1\leq i< j\leq 3}(\alpha\beta_{i}\gamma_{i}\beta_{j}\gamma_{j}-1)\prod_{i=1}^{3}(\alpha\beta_{i}\gamma_{i}-1)}{(\alpha-1)^{7}\prod_{i=1}^{3}(\beta_{i}-1)^{4}(\gamma_{i}-1)^{4}} & (k=3), \end{aligned}$$

and in general,

$$\det(H) = \frac{\prod_{v \in \mathbb{Z}_2^k} \left[\alpha \prod_{j=1}^k (\beta_j \gamma_j)^{\nu_j} - 1 \right]}{(\alpha - 1)^{2^k} \prod_{j=1}^k [(\beta_j - 1)(\gamma_j - 1)]^{2^{k-1}}}$$

where $v = (v_1, \ldots, v_k) \in \mathbb{Z}_2^k$.

A.2. Outline of the proof

We index the rows and the columns of the intersection matrix H by elements $v \in \mathbb{Z}_2^k$, which are arranged in the lexicographic order:

$$(0, \ldots, 0) < (0, \ldots, 0, 1) < (0, \ldots, 1, 0) < (0, \ldots, 1, 1) < \cdots < (1, \ldots, 1).$$

We apply the Laplace expansion to the determinant det(H) with respect to the 2^{k-1} rows:

$$(0, \check{v}), \quad \check{v} = (v_2, \ldots, v_k) \in \mathbb{Z}_2^{k-1}.$$

We choose 2^{k-1} columns with indices $v^{(1)}, v^{(2)}, \ldots, v^{(2^{k-1})} \in \mathbb{Z}_2^k$ and make the minor. Let us write their entries as

$$v^{(i)} = (\epsilon_i, \check{v}^{(i)}), \quad \check{v}^{(i)} = (v_2^{(i)}, \dots, v_k^{(i)}) \in \mathbb{Z}_2^{k-1} \quad (1 \le i \le 2^{k-1}).$$

Lemma A.1. The minor is zero unless $\check{v}^{(i)}$ are distinct, that is,

$$\{\check{v}^{(i)} \mid 1 \le i \le 2^{k-1}\} = \mathbb{Z}_2^{k-1}.$$

Proof. Note that if $\check{v}^{(i)} = \check{v}^{(j)}$ for $i \neq j$ then the two columns of the minor are proportional.

Let the chosen columns be indexed as

$$(1, \ldots, 1) = v^{(1)} > v^{(2)} > \cdots > v^{(2^{k-1})} = (0, \ldots, 0).$$

We make the product of this minor and the complementary minor, the minor made by complementary rows and the complementary columns, and denote this product as

$$m(\epsilon_{2^{k-1}} \cdots \epsilon_1).$$

Set

$$\begin{split} f_{0,\check{v}^{(i)}} &= \frac{\beta_1 \gamma_1 - 1}{\gamma_1 - 1} \left(\alpha \gamma_1 \prod_{j=2}^k (\beta_j \gamma_j)^{v_j^{(i)}} - 1 \right), \\ f_{1,\check{v}^{(i)}} &= \frac{(\beta_1 - 1)\gamma_1}{\gamma_1 - 1} \left(\alpha \prod_{j=2}^k (\beta_j \gamma_j)^{v_j^{(i)}} - 1 \right). \end{split}$$

For example, we have

$$f_{0,0} = \frac{(\alpha\gamma_1 - 1)(\beta_1\gamma_1 - 1)}{\gamma_1 - 1}, \qquad f_{1,0} = \frac{(\alpha - 1)(\beta_1 - 1)\gamma_1}{\gamma_1 - 1}, \\f_{0,1} = \frac{(\alpha\gamma_1\beta_2\gamma_2 - 1)(\beta_1\gamma_1 - 1)}{\gamma_1 - 1}, \qquad f_{1,1} = \frac{(\alpha\beta_2\gamma_2 - 1)(\beta_1 - 1)\gamma_1}{\gamma_1 - 1}, \\f_{0,00} = \frac{(\alpha\gamma_1 - 1)(\beta_1\gamma_1 - 1)}{\gamma_1 - 1}, \qquad f_{1,00} = \frac{(\alpha - 1)(\beta_1 - 1)\gamma_1}{\gamma_1 - 1}, \\f_{0,10} = \frac{(\alpha\gamma_1\beta_2\gamma_2 - 1)(\beta_1\gamma_1 - 1)}{\gamma_1 - 1}, \qquad f_{1,10} = \frac{(\alpha\beta_2\gamma_2 - 1)(\beta_1 - 1)\gamma_1}{\gamma_1 - 1}, \\f_{0,01} = \frac{(\alpha\gamma_1\beta_2\gamma_2 - 1)(\beta_1\gamma_1 - 1)}{\gamma_1 - 1}, \qquad f_{1,01} = \frac{(\alpha\beta_3\gamma_3 - 1)(\beta_1 - 1)\gamma_1}{\gamma_1 - 1}, \\f_{0,11} = \frac{(\alpha\gamma_1\beta_2\gamma_2\beta_3\gamma_3 - 1)(\beta_1\gamma_1 - 1)}{\gamma_1 - 1}, \qquad f_{1,11} = \frac{(\alpha\beta_2\gamma_2\beta_3\gamma_3 - 1)(\beta_1 - 1)\gamma_1}{\gamma_1 - 1},$$

for k = 2 and k = 3. Note that

$$f_{0,\check{v}} = f_{0,(\check{v},0,\dots,0)}, \quad f_{1,\check{v}} = f_{1,(\check{v},0,\dots,0)},$$

$$f_{0,\check{v}^{(i)}} - f_{1,\check{v}^{(i)}} = \alpha \prod_{j=1}^{k} (\beta_j \gamma_j)^{v_j^{(i)}} - 1.$$
 (A.2)

The products of the minors can be expressed in terms of these f's as follows:

Lemma A.2.

$$m(\epsilon_{2^{k-1}}\cdots\epsilon_{1}) = \frac{\prod_{i=1}^{2^{k-1}} \left[(-1)^{\epsilon_{i}} \left(\alpha \prod_{j=2}^{k} (\beta_{j} \gamma_{j})^{v_{j}^{(i)}} - 1 \right) f_{\epsilon_{i},\check{v}^{(i)}} \right]}{(\alpha-1)^{2^{k-1}} \prod_{i=2}^{k} [(\beta_{i}-1)(\gamma_{i}-1)]^{2^{k-1}}}.$$

Since we have the relations (A.2), we sum up $m(\epsilon_{2^{k-1}} \cdots \epsilon_1)$ two by two: set

$$m(\epsilon_{2^{k-1}}\cdots \epsilon_2):=m(\epsilon_{2^{k-1}}\cdots \epsilon_2 0)+m(\epsilon_{2^{k-1}}\cdots \epsilon_2 1),$$

and then set

$$m(\epsilon_{2^{k-1}}\cdots\epsilon_3):=m(\epsilon_{2^{k-1}}\cdots\epsilon_3 0)+m(\epsilon_{2^{k-1}}\cdots\epsilon_3 1),$$

and so on. We end up with

$$\det(H) = \sum_{\text{all}} m(\epsilon_{2^{k-1}} \cdots \epsilon_1) = \cdots$$

= $m(00) + m(01) + m(10) + m(11) = m(0) + m(1)$
= $\frac{\prod_{p=1}^{k} (\alpha \prod_{1 \le i_1 < \dots < i_p \le k} \beta_{i_1} \gamma_{i_1} \dots \beta_{i_p} \gamma_{i_p} - 1)}{(\alpha - 1)^{2^{k-1}} \prod_{i=1}^{k} (\beta_i - 1)^{2^{k-1}} (\gamma_i - 1)^{2^{k-1}}}$
= $\frac{\prod_{v \in \mathbb{Z}_2^k} \left[\alpha \prod_{j=1}^{k} (\beta_j \gamma_j)^{v_j} - 1 \right]}{(\alpha - 1)^{2^k} \prod_{i=1}^{k} [(\beta_i - 1)(\gamma_i - 1)]^{2^{k-1}}}.$

Instead of giving proofs to the statements and Lemma A.2, we show the procedure when k = 1, 2, 3. These will light up the way in general cases.

A.3. *k* = 1

$$\begin{vmatrix} D_0 \cdot D_0 & D_0 \cdot D_1 \\ D_1 \cdot D_0 & D_1 \cdot D_1 \end{vmatrix} = \begin{vmatrix} -\frac{\beta_1 \gamma_1 - 1}{(\beta_1 - 1)(\gamma_1 - 1)} & \frac{\sqrt{\gamma_1}}{\gamma_1 - 1} \\ \frac{\sqrt{\gamma_1}}{\gamma_1 - 1} & -\frac{\alpha \gamma_1 - 1}{(\alpha - 1)(\gamma_1 - 1)} \end{vmatrix}$$
$$= \frac{1}{(\beta_1 - 1)(\gamma_1 - 1)(\alpha - 1)} \left(\frac{(\alpha \gamma_1 - 1)(\beta_1 \gamma_1 - 1)}{\gamma_1 - 1} - \frac{(\alpha - 1)(\beta_1 - 1)\gamma_1}{\gamma_1 - 1} \right)$$
$$= \frac{\alpha \beta_1 \gamma_1 - 1}{(\beta_1 - 1)(\gamma_1 - 1)(\alpha - 1)}.$$

We use the identity

$$\frac{(CB-1)(AB-1)}{B-1} - \frac{(C-1)(A-1)B}{B-1} = CAB - 1$$

often.

A.4. *k* = 2

Set

$$F_2 := \frac{\alpha \beta_2 \gamma_2 - 1}{(\alpha - 1)^3 (\beta_1 - 1)^2 (\gamma_1 - 1)^2 (\beta_2 - 1)^2 (\gamma_2 - 1)^2};$$

this is the factor with the expected denominator and the numerator which does not contain β_1 nor γ_1 . Then we have

$$m(00) = F_2 \cdot f_{0,1} \cdot f_{0,0}, \quad -m(01) = F_2 \cdot f_{0,1} \cdot f_{1,0},$$
$$-m(10) = F_2 \cdot f_{1,1} \cdot f_{0,0}, \quad m(11) = F_2 \cdot f_{1,1} \cdot f_{1,0}.$$

Write down the identities (A.2) as

$$f_{0,0} - f_{1,0} = \alpha \beta_1 \gamma_1 - 1, \quad f_{0,1} - f_{1,1} = \alpha \beta_1 \gamma_1 \beta_2 \gamma_2 - 1,$$

which imply

$$m(0) := m(00) + m(01) = F_2 \cdot f_{0,1} \cdot (\alpha \beta_1 \gamma_1 - 1),$$

$$-m(1) := m(10) + m(11) = F_2 \cdot f_{1,1} \cdot (\alpha \beta_1 \gamma_1 - 1);$$

$$m(0) + m(1) = F_2 \cdot (\alpha \beta_1 \gamma_1 \beta_2 \gamma_2 - 1)(\alpha \beta_1 \gamma_1 - 1)$$

=
$$\frac{(\alpha \beta_1 \gamma_1 \beta_2 \gamma_2 - 1)(\alpha \beta_1 \gamma_1 - 1)(\alpha \beta_2 \gamma_2 - 1)}{(\alpha - 1)^3 (\beta_1 - 1)^2 (\gamma_1 - 1)^2 (\beta_2 - 1)^2 (\gamma_2 - 1)^2}.$$

Every 2×2 -minor can be computed by the determinant formula when k = 1 established in the previous subsection. For example, we compute m(00):

$$\begin{vmatrix} D_{00} \cdot D_{00} & D_{01} \cdot D_{01} \\ D_{01} \cdot D_{00} & D_{01} \cdot D_{01} \end{vmatrix}$$

$$= \begin{vmatrix} \frac{\beta_1 \gamma_1 - 1}{(\beta_1 - 1)(\gamma_1 - 1)} \frac{\beta_2 \gamma_2 - 1}{(\beta_2 - 1)(\gamma_2 - 1)} & \frac{\beta_1 \gamma_1 - 1}{(\beta_1 - 1)(\gamma_1 - 1)} \frac{\sqrt{\gamma_2}}{\gamma_2 - 1} \\ \frac{\beta_1 \gamma_1 - 1}{(\beta_1 - 1)(\gamma_1 - 1)} \frac{\sqrt{\gamma_2}}{\gamma_2 - 1} & \frac{\beta_1 \gamma_1 - 1}{(\beta_1 - 1)(\gamma_1 - 1)} \frac{\alpha \gamma_2 - 1}{(\alpha - 1)(\gamma_2 - 1)} \end{vmatrix}$$

$$= \left(\frac{\beta_{1}\gamma_{1}-1}{(\beta_{1}-1)(\gamma_{1}-1)}\right)^{2} \begin{vmatrix} \frac{\beta_{2}\gamma_{2}-1}{(\beta_{2}-1)(\gamma_{2}-1)} & \frac{\sqrt{\gamma_{2}}}{\gamma_{2}-1} \\ \frac{\sqrt{\gamma_{2}}}{\gamma_{2}-1} & \frac{\alpha\gamma_{2}-1}{(\alpha-1)(\gamma_{2}-1)} \end{vmatrix}$$

The second term of the last line is the intersection determinant appeared in the last subsection with the substitution:

$$\beta_1 \rightarrow \beta_2, \quad \gamma_1 \rightarrow \gamma_2.$$

$$\begin{vmatrix} D_{10} \cdot D_{10} & D_{10} \cdot D_{11} \\ D_{11} \cdot D_{10} & D_{11} \cdot D_{11} \end{vmatrix}$$

$$= \begin{vmatrix} \frac{\alpha \gamma_1 - 1}{(\gamma_1 - 1)(\alpha - 1)} \frac{\beta_2 \gamma_2 - 1}{(\beta_2 - 1)(\gamma_2 - 1)} & \frac{\alpha \gamma_1 - 1}{(\gamma_1 - 1)(\alpha - 1)} \frac{\sqrt{\gamma_2}}{\gamma_2 - 1} \\ \frac{\alpha \gamma_1 - 1}{(\gamma_1 - 1)(\alpha - 1)} \frac{\sqrt{\gamma_2}}{\gamma_2 - 1} & \frac{\alpha \gamma_1 \gamma_2 - 1}{(\alpha - 1)(\gamma_1 - 1)(\gamma_2 - 1)} \end{vmatrix}$$

$$= \left(\frac{\alpha \gamma_1 - 1}{(\gamma_1 - 1)(\alpha - 1)} \right)^2 \begin{vmatrix} \frac{\beta_2 \gamma_2 - 1}{(\beta_2 - 1)(\gamma_2 - 1)} & \frac{\sqrt{\gamma_2}}{\gamma_2 - 1} \\ \frac{\sqrt{\gamma_2}}{\gamma_2 - 1} & \frac{\alpha \gamma_1 \gamma_2 - 1}{(\alpha \gamma_1 - 1)(\gamma_2 - 1)} \end{vmatrix} .$$

The second term of the last line is the intersection determinant appeared in the last subsection with the substitution:

$$\beta_1 \to \beta_2, \quad \gamma_1 \to \gamma_2, \quad \text{and} \quad \alpha \to \alpha \gamma_1.$$

(Geometrically, the last substitution corresponds to the blow up at the intersection point of the lines labeled γ_1 and α ; the exceptional curve corresponds to $\alpha \gamma_1$.) At any rate, the product of the two minors above give m(00).

A.5. *k* = 3

Set

$$F_3 := \frac{(\alpha\beta_2\gamma_2 - 1)(\alpha\beta_3\gamma_3 - 1)(\alpha\beta_2\gamma_2\beta_3\gamma_3 - 1)}{(\alpha - 1)^7(\beta_1 - 1)^4(\gamma_1 - 1)^4(\beta_3 - 1)^4(\gamma_3 - 1)^4(\beta_3 - 1)^4(\beta_3 - 1)^4(\gamma_3 - 1)^4};$$

this is the factor with the expected denominator and the numerator which does not contain β_1 nor γ_1 . See (A.1) for $f_{0,\check{v}}$ and $f_{1,\check{v}}$ ($\check{v} \in \mathbb{Z}_2^2$). The products of two minors are given as

$$(-1)^{\epsilon_4 + \epsilon_3 + \epsilon_2 + \epsilon_1} m(\epsilon_4, \epsilon_3, \epsilon_2, \epsilon_1) = F_3 \cdot f_{\epsilon_4, 11} \cdot f_{\epsilon_3, 01} \cdot f_{\epsilon_2, 10} \cdot f_{\epsilon_1, 00}.$$

By (A.2), we have

$$f_{0,00} - f_{1,00} = \alpha \beta_1 \gamma_1 - 1, \qquad f_{0,10} - f_{1,10} = \alpha \beta_1 \gamma_1 \beta_2 \gamma_2 - 1,$$

$$f_{0,01} - f_{1,01} = \alpha \beta_1 \gamma_1 \beta_3 \gamma_3 - 1, \quad f_{0,11} - f_{1,11} = \alpha \beta_1 \gamma_1 \beta_2 \gamma_2 \beta_3 \gamma_3 - 1.$$

These identities imply

$$\begin{split} &(-1)^{\epsilon_4 + \epsilon_3 + \epsilon_2} m(\epsilon_4, \epsilon_3, \epsilon_2) = F_3 \cdot f_{\epsilon_4, 11} \cdot f_{\epsilon_3, 01} \cdot f_{\epsilon_2, 10} \cdot (\alpha \beta_1 \gamma_1 - 1), \\ &(-1)^{\epsilon_4 + \epsilon_3} m(\epsilon_4, \epsilon_3) = F_3 \cdot f_{\epsilon_4, 11} \cdot f_{\epsilon_3, 01} \cdot (\alpha \beta_1 \gamma_1 \beta_2 \gamma_2 - 1)(\alpha \beta_1 \gamma_1 - 1), \\ &(-1)^{\epsilon_4} m(\epsilon_4) = F_3 \cdot f_{\epsilon_4, 11} \cdot (\alpha \beta_1 \gamma_1 \beta_3 \gamma_3 - 1)(\alpha \beta_1 \gamma_1 \beta_2 \gamma_2 - 1)(\alpha \beta_1 \gamma_1 - 1), \\ &m(0) + m(1) \\ &= F_3 \cdot (\alpha \beta_1 \gamma_1 \beta_2 \gamma_2 \beta_3 \gamma_3 - 1)(\alpha \beta_1 \gamma_1 \beta_3 \gamma_3 - 1)(\alpha \beta_1 \gamma_1 \beta_2 \gamma_2 - 1)(\alpha \beta_1 \gamma_1 - 1). \end{split}$$

The last identity is the expected expression.

Let us have a look at a typical minor:

$$\det((D_I \cdot D_J)_{I,J=\{000,001,010,011\}});$$

this turns out to be the product of

$$\left(\frac{\beta_1\gamma_1-1}{(\beta_1-1)(\gamma_1-1)}\right)^4$$

and the determinant of the intersection matrix when k = 2 with the substitution:

$$\beta_1 \rightarrow \beta_2, \ \gamma_1 \rightarrow \gamma_2, \ \beta_2 \rightarrow \beta_3, \ \gamma_2 \rightarrow \gamma_3;$$

and the complementary one

$$\det((D_I \cdot D_J)_{I,J=\{100,101,110,111\}});$$

this turns out to be the product of

$$\left(\frac{\alpha\gamma_1-1}{(\alpha-1)(\gamma_1-1)}\right)^4$$

and the determinant of the intersection matrix when k = 2 with the substitution:

$$\beta_1 \rightarrow \beta_2, \ \gamma_1 \rightarrow \gamma_2, \ \beta_2 \rightarrow \beta_3, \ \gamma_2 \rightarrow \gamma_3, \text{ and } \alpha \rightarrow \alpha \gamma_1.$$

Geometrically, the last substitution corresponds to the blow up along the intersection line of the planes labeled by γ_1 and α ; the exceptional surface corresponds to $\alpha \gamma_1$.

References

- P. APPELL and J. KAMPÉ DE FÉRIET, "Fonctions Hypergéométriques et Hypersphériques: Polynomes d'Hermite", Gauthier-Villars, Paris, 1926.
- [2] K. AOMOTO and M. KITA, "Theory of Hypergeometric Functions", translated by K. Iohara, Springer Monographs in Mathematics, Springer-Verlag, Tokyo, 2011.
- [3] F. BEUKERS, Algebraic A-hypergeometric functions, Invent. Math. 180 (2010), 589–610.
- [4] M. KATO, Connection formulas and irreducibility conditions for Appell's F₂, Kyushu J. Math. 66 (2012), 325–363.
- [5] M. KITA and M. NOUMI, On the structure of cohomology groups attached to the integral of certain many-valued analytic functions, Japan. J. Math. 9 (1983), 113–157.
- [6] M. KITA and M. YOSHIDA, Intersection theory for twisted cycles, Math. Nachr. 166 (1994), 287–304.
- [7] G. LAURICELLA, Sulle funzioni ipergeometriche a più variabili, Rend. Circ. Mat. Palermo 7 (1893), 111–158.
- [8] K. MATSUMOTO, Monodromy and Pfaffian of Lauricella's F_D in terms of the intersection forms of twisted (co)homology groups, Kyushu J. Math. 67 (2013), 367–387.
- [9] K. MATSUMOTO, T. SASAKI, N. TAKAYAMA and M. YOSHIDA, *Monodromy of the hypergeometric differential equation of type* (3, 6) *I*, Duke Math. J. **71** (1993), 403–426.
- [10] M. YOSHIDA, "Hypergeometric functions, my love, –Modular interpretations of configuration spaces–", Aspects of Mathematics E32., Vieweg & Sohn, Braunschweig, 1997.

Department of Mathematics Hokkaido University Sapporo 060-0810, Japan matsu@math.sci.hokudai.ac.jp

Kyushu University Fukuoka 819-0395, Japan myoshida@math.kyushu-u.ac.jp