Monodromy of Lauricella's hypergeometric \boldsymbol{F}_{A}-system

Keiji Matsumoto and Masaaki Yoshida

Abstract

We give a monodromy representation of Lauricella's system of differential equations annihilating the hypergeometric series $F_{A}(a,(b),(c) ; x)$ of k-variables; its rank is 2^{k}. Under some non-integral conditions for parameters a, (b) $=\left(b_{1}, \ldots, b_{k}\right),(c)=\left(c_{1}, \ldots, c_{k}\right)$, we find circuit matrices with respect to solutions represented by integrals. We make use of the intersection numbers of the domains of the integrals.

Mathematics Subject Classification (2010): 32S40 (primary); 33C65 (secondary).

1. Introduction

We give a monodromy representation of Lauricella's system of differential equations annihilating the hypergeometric series $F_{A}(a,(b),(c) ; x)$ of k-variables; its rank is 2^{k}. Under some non-integral conditions for parameters $a,(b)=\left(b_{1}, \ldots, b_{k}\right)$, $(c)=\left(c_{1}, \ldots, c_{k}\right)$, we find circuit matrices with respect to solutions represented by integrals. We make use of the intersection numbers of the domains of the integrals regarded as bases of a twisted homology group.

In general, we have the following principle: Suppose that a local solution space of a system of hypergeometric differential equations can be identified with a twisted homology group with intersection form \mathcal{I}. If the Jordan normal form of the circuit transformation m_{ρ} along a loop ρ is diagonal with two eigenvalues, say α and β, and either the eigenspace belonging to the eigenvalue α or that to β is specified then m_{ρ} is uniquely determined by the specified eigenspace and the intersection form \mathcal{I}.

We apply this principle in this paper to Lauricella's system of type A, and find a set of generators of the monodromy group. When the number of variables is two, this system is called Appell's F_{2}, of which monodromy group is studied by several authors; refer to [4] and the references therein.

This principle is applied to finding generators of the monodromy group of Lauricella's system of type D in [8].

Received October 26, 2011; accepted in revised form August 1, 2012.

2. Lauricella's F_{A}-system of hypergeometric differential equations

In this section, we collect some facts about Lauricella's hypergeometric F_{A}-system of differential equations, for which we refer to [7] and [1]. The hypergeometric series F_{A} of complex variables $x=\left(x_{1}, \ldots, x_{k}\right)$ is defined by

$$
F_{A}(a,(b),(c) ; x)=\sum_{(n) \in \mathbb{N}^{k}} \frac{\left(a, \sum_{i=1}^{k} n_{i}\right) \prod_{i=1}^{k}\left(b_{i}, n_{i}\right)}{\prod_{i=1}^{k}\left(c_{i}, n_{i}\right) \prod_{i=1}^{k}\left(1, n_{i}\right)} \prod_{i=1}^{k} x_{i}^{n_{i}},
$$

where $\mathbb{N}=\{0,1,2, \ldots\}, a,,(b)=\left(b_{1}, \ldots, b_{k}\right)$ and $(c)=\left(c_{1}, \ldots, c_{k}\right)$ are complex parameters satisfying $c_{1}, \ldots, c_{k} \notin-\mathbb{N}=\{0,-1,-2, \ldots$,$\} , and (a, m)=$ $a(a+1) \cdots(a+m-1)=\Gamma(a+m) / \Gamma(a)$. This series converges in the domain

$$
\mathbb{D}=\left\{x \in \mathbb{C}^{k}\left|\sum_{i=1}^{k}\right| x_{i} \mid<1\right\}
$$

and admits the integral representation

$$
\begin{equation*}
\left[\prod_{i=1}^{k} \frac{\Gamma\left(c_{i}\right)}{\Gamma\left(b_{i}\right) \Gamma\left(c_{i}-b_{i}\right)}\right] \int_{(0,1)^{k}} u(a,(b),(c) ; x, t) d t \tag{2.1}
\end{equation*}
$$

where $d t=d t_{1} \wedge \cdots \wedge d t_{k}$,

$$
\begin{equation*}
u(x, t)=u(a,(b),(c) ; x, t)=\left[\prod_{i=1}^{k} t_{i}^{b_{i}-1}\left(1-t_{i}\right)^{c_{i}-b_{i}-1}\right]\left(1-\Sigma_{i=1}^{k} x_{i} t_{i}\right)^{-a} \tag{2.2}
\end{equation*}
$$

and parameters (b) and (c) satisfy $\operatorname{Re}\left(c_{i}\right)>\operatorname{Re}\left(b_{i}\right)>0(i=1, \ldots, k)$.
Differential operators

$$
\begin{equation*}
x_{i}\left(1-x_{i}\right) \partial_{i}^{2}-x_{i} \sum_{1 \leq j \leq k}^{j \neq i} x_{j} \partial_{i} \partial_{j}+\left[c_{i}-\left(a+b_{i}+1\right) x_{i}\right] \partial_{i}-b_{i} \sum_{1 \leq j \leq k}^{j \neq i} x_{j} \partial_{j}-a b_{i} \tag{2.3}
\end{equation*}
$$

for $i=1, \ldots, k$ annihilate the series $F_{A}(a,(b),(c) ; x)$. We define Lauricella's hypergeometric F_{A}-system $E_{A}(a,(b),(c))$ by differential equations corresponding to these operators.

We define the local solution space $\operatorname{Sol}(U)$ of the system $E_{A}(a,(b),(c))$ on a domain U in \mathbb{C}^{k} by the \mathbb{C}-vector space

$$
\left\{F(x) \in \mathcal{O}(U) \mid P(x, \partial) \cdot F(x)=0 \text { for }{ }^{\forall} P(x, \partial) \in E_{A}(a,(b),(c))\right\}
$$

where $\mathcal{O}(U)$ is the \mathbb{C}-algebra of single valued holomorphic functions on U. The rank of $E_{A}(a,(b),(c))$ is defined by $\sup _{U} \operatorname{dim}(\operatorname{Sol}(U))$. If the rank of $E_{A}(a,(b),(c))$
is greater than $\operatorname{dim}\left(\operatorname{Sol}\left(U_{x}\right)\right)$ for any neighborhood U_{x} of $x \in \mathbb{C}^{m}$ then x is called a singular point of $E_{A}(a,(b),(c))$. The singular locus S of $E_{A}(a,(b),(c))$ is defined as the set of such points.

We show that the rank of $E_{A}(a,(b),(c))$ is 2^{k}. Denote by F the unknown, and by $F_{i j \ldots}$ the derivatives $\left(\partial_{i} \partial_{j} \ldots\right) F$. Let L_{1} be the linear span of $\left\{F, F_{i}(i=\right.$ $1,2, \ldots)\}$ over the ring $R_{1}=\mathbb{C}\left[x_{i}, 1 / x_{i}(i=1, \ldots, k)\right]$, and L_{2} the linear span of

$$
\left\{F, F_{i}, F_{i j}(i<j)\right\}
$$

over the ring

$$
R_{2}=R_{1}\left[\left(x_{i}-1\right)^{-1}(i=1,2, \ldots)\right]
$$

and L_{3} the linear span of

$$
\left\{F, F_{i}, F_{i j}, F_{i j \ell} \quad(i<j<\ell)\right\}
$$

over the ring

$$
R_{3}=R_{2}\left[\left(x_{i}+x_{j}-1\right)^{-1} \quad(i<j)\right]
$$

and L_{4} the linear span of

$$
\left\{F, F_{i}, F_{i j}, F_{i j \ell}, F_{i j \ell n} \quad(i<j<\ell<n)\right\}
$$

over the ring

$$
R_{4}=R_{3}\left[\left(x_{i}+x_{j}+x_{\ell}-1\right)^{-1} \quad(i<j<\ell)\right]
$$

and so on. Note that this procedure becomes stable after $k: R_{k+1}=R_{k+2}=\cdots$, $L_{k+1}=L_{k+2}=\cdots$.

The operators (2.3) lead to the linear expressions

$$
[i i]:\left(x_{i}-1\right) F_{i i}+\sum_{j \neq i} x_{j} F_{i j} \in L_{1}
$$

which shows $F_{i i} \in L_{2}$.
Differentiating the expression [ii] by $x_{\ell}(\ell \neq i)$, we have

$$
[i i \ell]:\left(x_{i}-1\right) F_{i i \ell}+x_{\ell} F_{i \ell \ell}+\sum_{j \neq i, \ell} x_{j} F_{i j \ell} \in L_{2}
$$

Since we have

$$
[i \ell \ell]-[i i \ell]: F_{i i \ell}-F_{i \ell \ell} \in L_{2},
$$

the expression [iil] above can be written as

$$
\left(x_{i}+x_{\ell}-1\right) F_{i i \ell}+\sum_{j \neq i, \ell} x_{j} F_{i j \ell} \in L_{2}
$$

which implies $F_{i i \ell} \in L_{3}$. The expression

$$
[i i i]:\left(x_{i}-1\right) F_{i i i}+\sum_{j \neq i} x_{j} F_{i i j} \in L_{2}
$$

leads to $F_{i i i} \in L_{3}$.
Differentiating the expression $[i i \ell]$ by $x_{n}(n \neq i, \ell)$, we have

$$
[i i \ell n]:\left(x_{i}-1\right) F_{i i \ell n}+x_{\ell} F_{i \ell \ell n}+x_{n} F_{i n \ell n}+\sum_{j \neq i, \ell, n} x_{j} F_{i j \ell n} \in L_{3}
$$

Since we have
$[i i \ell n]-[i \ell \ell n]: F_{i i \ell n}-F_{i \ell \ell n} \in L_{3}$ and $[i i \ell n]-[i \ell n n]: F_{i i \ell n}-F_{i \ell n n} \in L_{3}$, the expression $[i i \ell n]$ above can be written as

$$
\left(x_{i}+x_{\ell}+x_{n}-1\right) F_{i i \ell n}+\sum_{j \neq i, \ell n} x_{j} F_{i j \ell n} \in L_{3},
$$

which implies $F_{i i \ell n} \in L_{4}$.
Differentiating the expression [ii $]$ by x_{i} and x_{ℓ}, we have

$$
[i i \ell i]:\left(x_{i}-1\right) F_{i i i \ell}+x_{\ell} F_{i i \ell \ell}+\sum_{j \neq i, \ell} x_{j} F_{i i j \ell} \in L_{3}
$$

and

$$
[i i \ell \ell]:\left(x_{i}-1\right) F_{i i \ell \ell}+x_{\ell} F_{i \ell \ell \ell}+\sum_{j \neq i, \ell} x_{j} F_{i j \ell \ell} \in L_{3}
$$

Since we have

$$
[\ell \ell i \ell]-[\text { iil } \ell]: F_{i i \ell \ell}-F_{i \ell \ell \ell} \in L_{3},
$$

the expression [$\ell \ell i \ell]$ above can be written as

$$
\left(x_{i}+x_{\ell}-1\right) F_{i \ell \ell \ell}+\sum_{j \neq i, \ell} x_{j} F_{i j \ell \ell} \in L_{3},
$$

which implies $F_{i \ell \ell \ell}, F_{\text {iil८ }} \in L_{4}$. The expression

$$
[i i i i]:\left(x_{i}-1\right) F_{i i i i}+\sum_{j \neq i} x_{j} F_{i i j i} \in L_{3}
$$

leads to $F_{i i i i} \in L_{4}$.
In this way, we can show that all the derivatives of F belongs to L_{k+1}. In particular, all the derivatives of F can be linearly expressed in terms of the derivatives $F_{i j \ldots}$, with distinct indices i, j, \ldots; cardinality of these derivatives is 2^{k}. Thus the rank of the system $E_{A}(a,(b),(c))$ is not greater than 2^{k}. Moreover the argument
above shows that the singular locus of the system is included in the variety defined by

$$
\prod_{i} x_{i}\left(x_{i}-1\right) \prod_{i<j}\left(x_{i}+x_{j}-1\right) \prod_{i<j<\ell}\left(x_{i}+x_{j}+x_{\ell}-1\right) \cdots
$$

An expression of the singular locus more suitable for this paper is given below in Section 4.

We give two fundamental systems of solutions to $E_{A}(a,(b),(c))$ in a small neighborhood \dot{U} of the reference point

$$
\begin{equation*}
\dot{x}=\left(\dot{x}_{1}, \dot{x}_{2}, \ldots, \dot{x}_{k}\right)=\left(2^{-1}, 2^{-2}, \ldots, 2^{-k}\right) \in \mathbb{D} \tag{2.4}
\end{equation*}
$$

Since each system consists of 2^{k} lineally independent solutions, we conclude that the rank of the system is 2^{k}. From now on, we assume that

$$
\begin{equation*}
a, b_{1}, \ldots, b_{k}, c_{1}-b_{1}, \ldots, c_{k}-b_{k}, a-\sum_{i \in I} c_{i} \notin \mathbb{Z} \tag{2.5}
\end{equation*}
$$

where I runs over the subsets of $\{1, \ldots, k\}$. This condition (2.5) coincides with the condition that the intersection matrix H in Section 6 is well-defined and nondegenerate (Proposition 6.2). Moreover this is equivalent also to the condition of irreducibility of the system $E_{A}(a,(b),(c))$, refer to [3]. (The authors thank to N . Takayama for pointing out this fact.)
Fact 2.1 ([7]). Under the condition

$$
c_{1}, \ldots, c_{k} \notin \mathbb{Z}
$$

the following 2^{k} functions are linearly independent solutions of $E_{A}(a,(b),(c))$ in \dot{U} :

1	$F_{A}(a,(b),(c) ; x)$
k	$x_{1}^{\lambda_{1}} F_{A}\left(a+\lambda_{1},(b)+\lambda_{1} e_{1},(c)+2 \lambda_{1} e_{1} ; x\right)$
\vdots	
\vdots	$x_{k}^{\lambda_{k}} F_{A}\left(a+\lambda_{k},(b)+\lambda_{k} e_{k},(c)+2 \lambda_{k} e_{k} ; x\right)$
	\vdots
$\binom{k}{r}$	$\left[\prod_{i \in I_{r}} x_{i}^{\lambda_{i}}\right] F_{A}\left(a+\sum_{i \in I_{r}} \lambda_{i},(b)+\sum_{i \in I_{r}} \lambda_{i} e_{i},(c)+2 \sum_{i \in I_{r}} \lambda_{i} e_{i} ; x\right)$
	\vdots
\vdots	\vdots
1	$\left[\prod_{i=1}^{k} x_{i}^{\lambda_{i}}\right] F_{A}\left(a+\sum_{i=1}^{k} \lambda_{i},(b)+\sum_{i=1}^{k} \lambda_{i} e_{i},(c)+2 \sum_{i=1}^{k} \lambda_{i} e_{i} ; x\right)$

where $I_{r}=\left\{i_{1}, \ldots, i_{r}\right\}\left(1 \leq i_{1}<\cdots<i_{r} \leq k\right), \lambda_{i}=1-c_{i}$ and e_{i} is the i-th unit row vector.

We fix $x \in \dot{U} \cap \mathbb{R}^{k}$ for a while and consider $(2 k+1)$ hyperplanes in the t-space \mathbb{R}^{k} defined by

$$
t_{1}=0, t_{1}=1, \ldots, t_{k}=0, t_{k}=1, x_{1} t_{1}+\cdots+x_{k} t_{k}=1
$$

the complement of these hyperplanes in \mathbb{R}^{k} will be denoted by $T_{\mathbb{R}}(x)$. There are 2^{k} bounded chambers in $T_{\mathbb{R}}(x)$. Note that if $t=\left(t_{1}, \ldots, t_{k}\right)$ belongs to a bounded chamber then we necessarily have

$$
t_{1}, \ldots, t_{k}>0, \quad x_{1} t_{1}+\cdots+x_{k} t_{k}<1
$$

Let \mathbb{Z}_{2} be the set $\{0,1\} \subset \mathbb{Z}$. Each element $v=\left(v_{1}, \ldots, v_{k}\right) \in \mathbb{Z}_{2}^{k}$ determines a bounded chamber $D_{v}=D_{v}(x)$

$$
D_{v}(x): x_{1} t_{1}+\cdots+x_{k} t_{k}<1, \quad \begin{cases}0<t_{i}<1 & \text { if } v_{i}=0 \tag{2.6}\\ 1<t_{i} & \text { if } v_{i}=1\end{cases}
$$

For example, if $v=(0, \ldots, 0), D_{v}$ is the k-dimensional cube $[0,1]^{k}$, if $v=$ $(1, \ldots, 1), D_{v}$ is the k-dimensional simplex given by

$$
t_{1}>1, \ldots, t_{k}>1, \quad x_{1} t_{1}+\cdots+x_{k} t_{k}<1
$$

In general, for $v=\left(v_{1}, \ldots, v_{k}\right) \in \mathbb{Z}_{2}^{k}$ with $|v|=\sum_{i=1}^{k} v_{i}=r, D_{v}$ is a polytope isomorphic to the direct product of the $(k-r)$-dimensional cube $[0,1]^{k-r}$ and the r-dimensional standard simplex

$$
\Delta^{r}=\left\{s=\left(s_{1}, \ldots, s_{r}\right) \in \mathbb{R}^{r} \mid s_{1}>0, \ldots, s_{r}>0, s_{1}+\cdots+s_{r}<1\right\} .
$$

Fact 2.2 ([5]). Under the conditions (2.5) and

$$
\begin{equation*}
\operatorname{Re}\left(c_{i}\right)>\operatorname{Re}\left(b_{i}\right)>0(i=1, \ldots, k), \quad \operatorname{Re}(a)<1 \tag{2.7}
\end{equation*}
$$

the integrals

$$
\int_{D_{v}} u(a,(b),(c) ; x, t) d t_{1} \wedge \cdots \wedge d t_{k}, \quad\left(v \in \mathbb{Z}_{2}^{k}\right)
$$

are solutions of $E_{A}(a,(b),(c))$ in $\dot{U} \cap \mathbb{R}^{k}$.
Remark 2.1. These can be extended to linearly independent solutions of $E_{A}(a,(b),(c))$ in \dot{U} by Fact 3.1 and Proposition 6.2.

We define a partial order \succ on \mathbb{Z}_{2}^{k}.
Definition 2.2. For $v=\left(v_{1}, \ldots, v_{k}\right), w=\left(w_{1}, \ldots, w_{k}\right) \in \mathbb{Z}_{2}^{k}$,
(1) $v \succeq w$ if and only if $w_{i}=1 \Rightarrow v_{i}=1$.
(2) $v \succ w$ if and only if $w \succeq v$ and $w \neq v$.

Note that the elements $(0, \ldots, 0)$ and $(1, \ldots, 1)$ are the minimum and the maximum, respectively.

Lemma 2.3.

(i) The cardinality of the set $\left\{v \in \mathbb{Z}_{2}^{k} \mid v \succeq w\right\}$ is $2^{k-|w|}$, where $|w|=\sum_{i=1}^{k} w_{i}$.
(ii) If $v \succ w$ then the intersection $\overline{D_{v}} \cap \overline{D_{w}}$ is contained in the hyperplane $t_{i}=1$ for any index i satisfying $v_{i}>w_{i}$, where $\overline{D_{w}}$ and $\overline{D_{v}}$ are the closures of D_{v} and D_{w}, respectively.
(iii) For $x \in \mathbb{R}^{k}-S$, the interior of the union

$$
\cup_{v \succeq w} \overline{D_{v}}
$$

is the simplex $\Delta_{w}=\Delta_{w}(x)$:

$$
\begin{align*}
\Delta_{w} & =\left\{t \in \mathbb{R}^{k} \mid t_{1}>w_{1}, \ldots, t_{k}>w_{k}, x_{1} t_{1}+\cdots+x_{k} t_{k}<1\right\} \\
& =\left\{w+\left(1-\sum_{i=1}^{k} w_{i} x_{i}\right) s / x \mid s=\left(s_{1}, \ldots, s_{k}\right) \in \Delta^{k}\right\} \tag{2.8}
\end{align*}
$$

where $s / x=\left(s_{1} / x_{1}, \ldots, s_{k} / x_{k}\right)$.
Proof.
(i) If $v \succeq w$ then $v_{i}=1$ for an index i with $w_{i}=1$ and $v_{i}=0,1$ for an index i with $w_{i}=0$. Thus there are $2^{k-|w|} v$'s such that $v \succeq w$.
(ii) If $v \succ w$ and $v_{i}>w_{i}$ then $v_{i}=1$ and $w_{i}=0$. By (2.6), the intersection of the boundaries of D_{v} and D_{w} is contained in the hyperplane $t_{i}=1$.
(iii) For any $v \in \mathbb{Z}_{2}^{k}$, if t belongs to D_{v} then $\Sigma_{i=1}^{k} x_{i} t_{i}<1$ and $t_{i}>v_{i}$ for $i=$ $1, \ldots, k$. Thus if $v \succeq w$ then $D_{v} \subset \Delta_{w}$. If $v \nsucceq w$ then there exists an index i such that $v_{i}=0$ and $w_{i}=1$. Since the point $t=v \in \overline{D_{v}}$ is not in $\overline{\Delta_{w}}$, D_{v} is not contained in Δ_{w} for $v \nsucceq w$. We have only to note that Δ_{w} can be expressed as the interior of the union of some $\overline{D_{v}}$,s.

3. Twisted homology group

Set

$$
\begin{gathered}
\mu_{a}=\exp (-\pi \sqrt{-1} a), \mu_{0 i}=\exp \left(\pi \sqrt{-1} b_{i}\right), \mu_{1 i}=\exp \left(\pi \sqrt{-1}\left(c_{i}-b_{i}\right)\right) \\
\mu=\left(\mu_{a}, \mu_{01}, \ldots, \mu_{0 k}, \mu_{11}, \ldots, \mu_{1 k}\right)
\end{gathered}
$$

We consider the parameters a, b, c and μ as indeterminates. When we assign complex values to them, we assume the condition (2.5), or equivalently

$$
\mu_{a}^{2}, \mu_{01}^{2}, \ldots, \mu_{0 k}^{2}, \mu_{11}^{2}, \ldots, \mu_{1 k}^{2}, \mu_{a}^{2} \prod_{i \in I}\left(\mu_{0 i}^{2} \mu_{1 i}^{2}\right) \neq 1,
$$

where I runs over the subsets of $\{1, \ldots, k\}$.

Let $\mathbb{Q}(\mu)$ be the rational function field over \mathbb{Q} generated by the entries of μ. We fix x in the neighborhood \dot{U} of \dot{x}. The multi-valued holomorphic function $u=u(t)=u(a,(b),(c) ; x, t)$ on

$$
T(x)=\left\{t \in \mathbb{C}^{k} \mid t_{1}\left(1-t_{1}\right) \cdots t_{k}\left(1-t_{k}\right)\left(1-x_{1} t_{1}-\cdots-x_{k} t_{k}\right) \neq 0\right\}
$$

defines the twisted homology groups $H_{i}(T(x), u)$ and the locally finite ones $H_{i}^{\mathrm{lf}}(T(x), u)$, where we regard the complexes of twisted chains as defined over the field $\mathbb{Q}(\mu)$. Elements of these homology groups are called twisted cycles or loaded cycles. It is known [2] that they are purely k-dimensional, and the natural map (regularization)

$$
\operatorname{reg}: H_{k}^{\mathrm{lf}}(T(x), u) \longrightarrow H_{k}(T(x), u)
$$

is an isomorphism between 2^{k}-dimensional vector spaces over $\mathbb{Q}(\mu)$.
Now fix $x \in \dot{U} \cap \mathbb{R}^{k}$, and load on D_{v} a (constant multiple of) branch of u :

$$
u_{v}=\left[\prod_{i=1}^{k} t_{i}^{b_{i}-1}\left\{(-1)^{v_{i}}\left(1-t_{i}\right)\right\}^{c_{i}-b_{i}-1}\right]\left(1-\Sigma_{i=1}^{k} x_{i} t_{i}\right)^{-a} .
$$

Note that each linear form in u_{v} is positive on D_{v}. Its argument is assigned to be zero. This chamber D_{v} loaded with the branch of u_{v} defines an element D_{v}^{u} of $H_{k}^{\mathrm{lf}}(T(x), u)$. This loading is called the standard loading. The loaded cycles $D_{v}^{u}\left(v \in \mathbb{Z}_{2}^{k}\right)$ form a basis of $H_{k}^{\mathrm{lf}}(T(x), u)$.

Thanks to the local triviality of the bundle

$$
\bigcup_{x \in \mathbb{C}^{k}-S} H_{k}^{\mathrm{lf}}(T(x), u)
$$

these D_{v}^{u} are defined as elements of $H_{k}^{\mathrm{lf}}(T(x), u)$ for $x \in \mathbb{C}^{k}-S$. By this extension and Fact 2.2, we have the following identification.
Fact 3.1. For $x \in \mathbb{C}^{k}-S$, the germ of the local solution space $\operatorname{Sol}\left(U_{x}\right)$ at x can be identified with $H_{k}^{\mathrm{lf}}(T(x), u)$ and $H_{k}(T(x), u)$ as vector spaces over $\mathbb{Q}(\mu)$.

4. Singular locus

Set

$$
\begin{array}{ll}
S_{w}=\left\{x \in \mathbb{C}^{k} \mid w \cdot x:=\sum_{i=1}^{k} w_{i} x_{i}=1\right\}, & w \in \check{\mathbb{Z}}_{2}^{k} \\
S_{0}^{i}=\left\{x \in \mathbb{C}^{k} \mid x_{i}=0\right\}, & i=1, \ldots, k
\end{array}
$$

where $\check{\mathbb{Z}}_{2}^{k}=\mathbb{Z}_{2}^{k}-\{(0, \ldots, 0)\}$.

By the expression (2.8), we have the following:
Lemma 4.1. The simplex $\Delta_{w}(x)$ vanishes when x is in the set S_{w}.
Proposition 4.2. Under the assumption (2.5), the singular locus S of $E_{A}(a,(b),(c))$ consists of the hyperplanes $S_{w}\left(w \in \check{\mathbb{Z}}_{2}^{k}\right)$ and $S_{0}^{i}(i=1, \ldots, k)$.

Proof. A point $x \in \mathbb{C}^{k}$ satisfying

$$
\operatorname{dim} H_{k}(T(x), u)<\operatorname{rank} \text { of } E_{A}(a,(b),(c))=2^{k}
$$

is a singular point of $E_{A}(a,(b),(c))$ by Fact 3.1. If x does not belong to

$$
\left(\cup_{w \in \check{Z}_{2}^{k}} S_{w}\right) \cup\left(\cup_{i=1}^{k} S_{0}^{i}\right)
$$

then there is a homotopy equivalence between $T(x)$ and $T(\dot{x})$. Thus $H_{k}(T(x), u)$ is isomorphic to $H_{k}(T(\dot{x}), u)$, which is of rank 2^{k}.

Recall that $D_{v}^{u}\left(v \in \mathbb{Z}_{2}^{k}\right)$ form a basis of $H_{k}(T(x), u)$. By Lemma 4.1, if x belongs to $S_{w}\left(w \in \check{Z}_{2}^{k}\right)$, then Δ_{w}^{u} with suitable loading of u degenerates. Thus $\operatorname{dim} H_{k}(T(x), u)$ for $x \in S_{w}$ is less than 2^{k}. The expression of local solutions (Fact 2.1) tells that any element x of S_{0}^{i} is a singular point.

For an element $w \in \check{\mathbb{Z}}_{2}^{k}$ with $|w|=r$, we define $\dot{x}_{w} \in \mathbb{D}$ as follows: read the array w from the left; at the first 1 we put 2^{-1}, at the second 1 we put $2^{-2}, \ldots$, and at the last 1 we put 2^{-r}, go back to the left-end and re-start: at the first 0 we put $2^{-(r+1)}$, and at the second 0 we put $2^{-(r+2)}$ and so on. For example,

$$
\dot{x}_{w}=\left(2^{-2}, 2^{-3}, 2^{-1}\right), \quad \text { when } \quad w=(0,0,1)
$$

Define a line \mathbb{C}_{w} in \mathbb{C}^{k} as the image of a map

$$
\eta_{w}: \mathbb{C} \ni y \mapsto \dot{x}_{w}+y w \in \mathbb{C}^{k}
$$

We study the intersection $S_{v} \cap \mathbb{C}_{w}$ for $v \in \check{\mathbb{Z}}_{2}^{k}$. If $v \cdot w=0$, then $S_{v} \cap \mathbb{C}_{w}=\phi$. If $v \cdot w \neq 0$, then by solving

$$
\left(\dot{x}_{w}+y w\right) \cdot v=1
$$

we find the intersection point $S_{v} \cap \mathbb{C}_{w}$ as $\eta_{w}\left(y_{v}\right)$, where

$$
y_{v}=\left(1-\dot{x}_{w} \cdot v\right) /(v \cdot w) \in \mathbb{R} \subset \mathbb{C}
$$

In particular, $S_{w} \cap \mathbb{C}_{w}$ is given by $\eta_{w}\left(y_{w}\right)$, where

$$
y_{w}=\left(1-\dot{x}_{w} \cdot w\right) /|w| \in \mathbb{R} \subset \mathbb{C}
$$

For example, when $w=(0,0,1)$, we show the intersection points $S_{v} \cap \mathbb{C}_{w}$ on the complex y-plane \mathbb{C} for

$$
v=(1,1,1), \quad(1,0,1), \quad(0,1,1), \quad(0,0,1)
$$

in Figure 4.1. Here note that $\dot{x}_{001}=\left(2^{-2}, 2^{-3}, 2^{-1}\right)$, which corresponds to the origin of the complex y-plane. The line \mathbb{C}_{w} is parameterized as

$$
\eta_{w}: y \longmapsto\left(x_{1}, x_{2}, x_{3}\right)=\left(2^{-2}, 2^{-3}, 2^{-1}\right)+(0,0, y) \in \mathbb{C}^{3}
$$

and the intersections of the line \mathbb{C}_{w} with the lines

$$
x_{1}+x_{2}+x_{3}=1, \quad x_{1}+x_{3}=1, \quad x_{2}+x_{3}=1, \quad x_{3}=1
$$

are given by

$$
y_{111}=1 / 8, \quad y_{101}=2 / 8, \quad y_{011}=3 / 8, \quad y_{001}=4 / 8
$$

respectively.

Figure 4.1. The loop τ_{001}^{\prime} and the path σ_{001}^{\prime}.

Lemma 4.3. Suppose that $v \cdot w \neq 0$. If $w \preceq v$ then $0<y_{v} \leq y_{w}$, otherwise $y_{w}<y_{v}$.

Proof. Recall that

$$
y_{w}=\left(1-\dot{x}_{w} \cdot w\right) /|w|, \quad y_{v}=\left(1-\dot{x}_{w} \cdot v\right) /(v \cdot w) .
$$

Since $1-\dot{x}_{w} \cdot v>0$, we have $y_{v}>0$ for any $v \in \check{\mathbb{Z}}_{2}^{k}$ with $v \cdot w \neq 0$. If $w \preceq v$ then

$$
\dot{x}_{w} \cdot v \geq \dot{x}_{w} \cdot w, \quad v \cdot w=w \cdot w=r .
$$

Thus $0<y_{v} \leq y_{w}$. If $w \npreceq v$ then $v \cdot w<r$ and
$\dot{x}_{w} \cdot v \leq\left(2^{-1}+\cdots+2^{1-r}\right)+\left(2^{-1-r}+\cdots+2^{-k}\right)<2^{-1}+\cdots+2^{-r}=\dot{x}_{w} \cdot w$.
Thus we have $y_{w}<y_{v}$.

Let τ_{w}^{\prime} be a positively oriented circle with center y_{w} and terminal $y_{w}-\varepsilon$ in \mathbb{C}, and let σ_{w}^{\prime} be a path in \mathbb{C} starting from 0 , traveling in the upper half space, and ending at $y_{w}-\varepsilon$, where ε is a small positive number; see Figure 4.1. Define a loop τ_{w} and a path σ_{w} in $\mathbb{C}_{w}\left(\subset \mathbb{C}^{k}\right)$ as the images of τ_{w}^{\prime} and σ_{w}^{\prime} by the map η_{w}, respectively. We define a loop ρ_{w} in $X=\mathbb{C}^{k}-S$ by connecting the segment from \dot{x} to \dot{x}_{w}, the path σ_{w}, the loop τ_{w}, the path σ_{w}^{-1}, and the segment from \dot{x}_{w} to \dot{x}.

On the other hand, we define a loop ρ_{0}^{i} in X with base point \dot{x} by

$$
\left(2^{-1}, \ldots, 2^{-i+1}, \sigma_{i}(s), 2^{-i-1}, \ldots, 2^{-k}\right)
$$

where $\sigma_{i}(s)$ is a path starting from $s=2^{-i}$, turning around the point $s=0$ counterclockwise, and coming back. The Lefschetz hyperplane theorem and the van Kampen theorem imply the following.
Proposition 4.4. The fundamental group $\pi_{1}(X, \dot{x})$ is generated by ρ_{w} for $w \in \check{\mathbb{Z}}_{2}^{k}$ and $\rho_{0}^{1}, \ldots, \rho_{0}^{k}$.

5. Local monodromy

A loop ρ with base point \dot{x} induces a linear transformation m_{ρ} of $H_{k}(T(\dot{x}), u)$, which is called the circuit transform (or monodromy) with respect to ρ. By Fact 3.1, this transformation can be regarded as that of the local solution space $\operatorname{Sol}(\dot{U})$.

Proposition 5.1. Suppose that

$$
\alpha_{w}=\mu_{a}^{2} \cdot \mu_{w_{1} 1}^{2} \cdots \mu_{w_{k} k}^{2} \neq 1
$$

Then the Jordan normal form of the circuit transform $m_{w}=m_{\rho_{w}}$ with respect to the loop $\rho_{w}\left(w \in \breve{Z}_{2}^{k}\right)$ is given by

$$
\operatorname{diag}\left(\alpha_{w}, 1, \ldots, 1\right)
$$

Proof. Take the end point $x_{\sigma_{w}}=\eta_{w}\left(y_{w}-\varepsilon\right)$ of the path σ_{w} for $w \in \mathscr{Z}_{2}^{k}$, where $y_{w}=\left(1-\dot{x}_{w} \cdot w\right) /|w|$. Note that the simplex $\Delta_{w}=\Delta_{w}\left(x_{\sigma_{w}}\right)$ is contained in a small neighborhood of the vertex w of the cube $[0,1]^{k}$. We deform Δ_{w} along the loop

$$
\tau_{w}:[-\pi, \pi] \ni \theta \mapsto x_{\theta}=\dot{x}_{w}+\left(\varepsilon e^{\sqrt{-1} \theta}+y_{w}\right) w \in X
$$

Note that if $w_{i}=0$ then x_{i} does not move, and that

$$
1-x_{\theta} \cdot w=-\varepsilon e^{\sqrt{-1} \theta}|w|
$$

By using the expression (2.8) of Δ_{w}, we express the deformation of Δ_{w} along the loop τ_{w} as

$$
\Delta_{w}\left(x_{\theta}\right)=\left\{w-\varepsilon e^{\sqrt{-1} \theta}|w|\left(s_{1} / x_{1}, \ldots, s_{k} / x_{k}\right) \mid s \in \Delta^{k},-\pi \leq \theta \leq \pi\right\}
$$

where $x_{\theta}=\left(x_{1}, \ldots, x_{k}\right)$.

We trace the value of the function $u=u(x, t)$ while x travels along the loop τ_{w}. The argument of

$$
t_{i}-w_{i}=-\varepsilon e^{\sqrt{-1} \theta}|w| s_{i} / x_{i}
$$

increases by 2π by the continuation along the loop τ_{w}. Since we have

$$
1-\sum_{i=1}^{k} x_{i} t_{i}=-\varepsilon e^{\sqrt{-1} \theta}|w|\left(1-\sum_{i=1}^{k} s_{i}\right)
$$

its argument also increases by 2π by the continuation. Hence the loaded cycle $\Delta_{w}^{u}\left(x_{\sigma_{w}}\right)$ supported by $\Delta_{w}\left(x_{\sigma_{w}}\right)$ loaded with $u=u(x, t)$ is multiplied by α_{w} by the continuation.

We have 2^{k} chambers around the vertex $(1, \ldots, 1)-w$ of the cube $[0,1]^{k}$. We give a basis of $H_{k}^{\mathrm{lf}}\left(T\left(x_{\sigma_{w}}\right), u\right)$ as the simplex Δ_{w} and the $2^{k}-1$ chambers outside of the cube $[0,1]^{k}$ loaded with u. It is geometrically clear that the move τ_{w} does not affect the other $2^{k}-1$ chambers. See Figure 5.1 for the case $k=2$ and $w=(1,1)$. Hence the circuit matrix is diagonal as stated.

Figure 5.1. Vanishing and invariant chambers

Proposition 5.2. Suppose that $c_{i} \notin \mathbb{Z}$. Then the Jordan normal form of the circuit transformation $m_{0}^{i}=m_{\rho_{0}^{i}}$ with respect to the loop ρ_{0}^{i} is given by

$$
\operatorname{diag}(\overbrace{1, \ldots, 1}^{2^{k-1}}, \overbrace{\alpha_{0}^{i}, \ldots, \alpha_{0}^{i}}^{2^{k-1}}),
$$

where

$$
\alpha_{0}^{i}=\mu_{0 i}^{-2} \mu_{1 i}^{-2}=\exp \left(-2 \pi \sqrt{-1} c_{i}\right) \neq 1
$$

Proof. We make use of the local solutions given in Fact 2.1. The analytic continuation of the these solutions along the loop ρ_{0}^{i} is quite obvious: we have 2^{k-1} invariant solutions and 2^{k-1} solutions multiplied by $\exp \left(2 \pi \sqrt{-1} \lambda_{i}\right)$.

6. Intersection form

Let $z \mapsto z^{\vee}$ be the isomorphism of $\mathbb{Q}(\mu)$ over \mathbb{Q} induced by

$$
\mu_{a} \mapsto \mu_{a}^{-1}, \quad \mu_{0 j} \mapsto \mu_{0 j}^{-1}, \quad \mu_{1 j} \mapsto \mu_{1 j}^{-1} \quad j=1, \ldots, k
$$

Note that if we assign real numbers to the entries of $a,(b)$ and (c), then z^{\vee} is the complex conjugate \bar{z} of $z \in \mathbb{Q}(\mu) \subset \mathbb{C}$.

We define the intersection form \mathcal{I} on $H_{k}(T(x), u) \times H_{k}(T(x), u)$ as follows. Let D^{u} and D^{u} be elements of $H_{k}(T(x), u)$ given by

$$
D^{u}=\sum_{i \in I} d_{i} D_{i}^{u_{i}}, \quad \dot{D}^{u}=\sum_{j \in J} \dot{d}_{j} \dot{D}_{j}^{u_{j}}, \quad d_{i}, \dot{d}_{j} \in \mathbb{Q}(\mu),
$$

where $D_{i}^{u_{i}}$ denotes a singular k-simplex D_{i} loaded with a branch $u_{i}=u_{i}(t)$ of u. The intersection number $\mathcal{I}\left(D^{u}, \dot{D}^{u}\right)$ is given, by definition, as

$$
\mathcal{I}\left(D^{u}, \dot{D}^{u}\right)=\sum_{i \in I, j \in J} \sum_{p \in D_{i} \cap \dot{D}_{j}} d_{i} \hat{d}_{j}^{\vee}\left(D_{i} \cdot \dot{D}_{j}\right)_{p} \frac{u_{i}(p)}{u_{j}(p)},
$$

where $\left(D_{i} \cdot \dot{D}_{j}\right)_{p}$ is the topological intersection number of k-chains D_{i} and \dot{D}_{j} at p. We have

$$
\begin{aligned}
\mathcal{I}\left(\dot{D}^{u}, D^{u}\right) & =(-1)^{k} \mathcal{I}\left(D^{u}, \dot{D}^{u}\right)^{\vee}, \\
\mathcal{I}\left(z D^{u}, \dot{D}^{u}\right) & =z \mathcal{I}\left(D^{u}, \dot{D}^{u}\right), \quad \mathcal{I}\left(D^{u}, z \dot{D}^{u}\right)=z^{\vee} \mathcal{I}\left(D^{u}, \dot{D}^{u}\right),
\end{aligned}
$$

for $z \in \mathbb{Q}(\mu)$.
Proposition 6.1. For $v \in \mathbb{Z}_{2}^{k}$, let $D_{v}^{u} \in H_{k}^{\mathrm{lf}}(T(\dot{x}), u)$ be the chamber D_{v} standardly loaded with u. We have

$$
\left.\begin{array}{rl}
\mathcal{I}\left(D_{v}^{u}, D_{v^{\prime}}^{u}\right)= & {\left[\prod_{1 \leq i \leq k}^{v_{i} \neq v_{i}^{\prime}} \frac{\mu_{1 i}}{\mu_{1 i}^{2}-1}\right] \cdot\left[\prod_{1 \leq i \leq k}^{v_{i}=v_{i}^{\prime}=0}(-1) \frac{\mu_{0 i}^{2} \mu_{1 i}^{2}-1}{\left(\mu_{0 i}^{2}-1\right)\left(\mu_{1 i}^{2}-1\right)}\right]} \\
& \cdot(-1)^{\sum_{i} \min \left(v_{i}, v_{i}^{\prime}\right)}\left[\frac{\mu_{a}^{2} \prod_{1 \leq i \leq k}^{v_{i}=v_{i}^{\prime}=1}}{\left.v_{1 i}^{2}-1\right)} \mu_{1 \leq i \leq k}^{v_{i}=v_{i}^{\prime}=1}\left(\mu_{1 i}^{2}-1\right)\right.
\end{array}\right],
$$

where

$$
v=\left(v_{1}, \ldots, v_{k}\right), \quad v^{\prime}=\left(v_{1}^{\prime}, \ldots, v_{k}^{\prime}\right) \in \mathbb{Z}_{2}^{k} .
$$

Proof. The intersection of the (closure of the) chambers D_{v} and $D_{v^{\prime}}$ is the direct product of

- the point 1 on the t_{i}-line if $v_{i} \neq v_{i}^{\prime}$, let I_{1} be the set of such indices i,
- the interval $[0,1]$ on the t_{i}-line if $v_{i}=v_{i}^{\prime}=0$, let I_{2} be the set of such indices i,
- the simplex in the remaining coordinate space $\left(t_{j}\right)_{j \in J}$, where $J=\{1, \ldots, k\}-$ $I_{1}-I_{2}$, bounded by the hyperplanes $t_{j}=1$ and

$$
\sum_{i \in I_{1}} x_{i}+\sum_{i \in I_{2}} x_{i}+\sum_{j \in J} x_{j} t_{j}=1
$$

Note that $j \in J$ if and only if $v_{j}=v_{j}^{\prime}=1$, and the cardinality of J is given by $\sum_{i} \min \left(v_{i}, v_{i}^{\prime}\right)$. The intersection number of D_{v}^{u} and $D_{v^{\prime}}^{u}$ is the product of the three kinds of factors:

- the intersection number of the two intervals at the point 1 with exponent $\mu_{1 i}^{2}$ for $i \in I_{1}$,
- the self-intersection numbers of the 1 -dimensional cycles supported by the interval $[0,1]$ with exponents $\mu_{0 i}^{2}$ at 0 and $\mu_{1 i}^{2}$ at 1 for $i \in I_{2}$,
- the self-intersection number of the cycle supported by the simplex with exponents $\mu_{j 1}^{2}(j \in J)$ and μ_{a}^{2}.

These self-intersection numbers can be found in [6]. Since we load u standardly, the intersection number in the first factor is $\frac{\mu_{1 i}}{\mu_{1 i}^{2}-1}$.

Note that the intersection number $\mathcal{I}\left(D_{v}^{u}, D_{v^{\prime}}^{u}\right)$ is complex valued whenever we assign values to μ under the condition (2.5).

We array the basis $\left\{D_{v}^{u}\right\}_{v \in \mathbb{Z}_{2}^{k}}$ in a total order on $v \in \mathbb{Z}_{2}^{k}$, say the total-lexicographic order: $w=\left(w_{1}, \ldots, w_{k}\right)<v=\left(v_{1}, \ldots, v_{k}\right)$ if either (i) or (ii) is satisfied:
(i) $|w|<|v|$
(ii) $|w|=|v|$ and $w_{j}<v_{j}$,
where $j=\min \left\{i \in\{1, \ldots k\} \mid w_{i} \neq v_{i}\right\}$.
Note that if $w \prec v$ then $w<v$.
We define the intersection matrix with respect to this basis as

$$
\begin{equation*}
H=\left(\mathcal{I}\left(D_{v}^{u}, D_{v^{\prime}}^{u}\right)\right)_{v, v^{\prime} \in \mathbb{Z}_{2}^{k}}, \tag{6.1}
\end{equation*}
$$

where v and v^{\prime} are arranged in the total-lexicographic order. The determinant of the intersection matrix H is given as

$$
\begin{gathered}
\frac{d_{a}(1)}{d_{a} d_{1}} \quad(k=1), \quad \frac{d_{a}(12) d_{a}(1) d_{(}(2)}{d_{a}^{3} d_{1}^{2} d_{2}^{2}} \quad(k=2), \\
\frac{d_{a}(123) d_{a}(12) d_{a}(23) d_{a}(31) d_{a}(1) d_{a}(2) d_{a}(3)}{d_{a}^{7} d_{1}^{4} d_{2}^{4} d_{3}^{4}} \quad(k=3),
\end{gathered}
$$

where

$$
\begin{gathered}
v_{a}=\mu_{a}^{2}, \quad v_{0 i}=\mu_{0 i}^{2}, \quad \mu_{1 i}=\mu_{1 i}^{2}, \\
d_{a}=v_{a}-1, \quad d_{i}=\left(v_{0 i}-1\right)\left(v_{1 i}-1\right), \\
d_{a}(i \cdots j)=v_{a}\left(v_{0 i} v_{1 i}\right) \cdots\left(v_{0 j} v_{1 j}\right)-1 .
\end{gathered}
$$

In general, we have the following expression, wich will be proved in the appendix:
Proposition 6.2. We have

$$
\operatorname{det}(H)=\frac{\prod_{p=1}^{k} \prod_{1 \leq i_{1}<\cdots<i_{p} \leq k} d_{a}\left(i_{1} \cdots i_{p}\right)}{d_{a}^{2^{k}-1} \prod_{p=1}^{k} d_{i}^{2^{k-1}}}
$$

In particular, the intersection form \mathcal{I} is non-degenerate under the condition (2.5).
Lemma 6.3. Let m_{ρ} be the circuit transformation of $H_{k}(T(\dot{x}), u)$ with respect to a loop ρ in X.
(i)

$$
\mathcal{I}\left(m_{\rho}\left(D^{u}\right), m_{\rho}\left(\dot{D}^{u}\right)\right)=\mathcal{I}\left(D^{u}, \dot{D}^{u}\right), \quad D^{u}, \dot{D}^{u} \in H_{k}(T(\dot{x}), u)
$$

(ii)

$$
M_{\rho} H^{t} M_{\rho}^{\vee}=H
$$

where H is the intersection matrix in (6.1) and M_{ρ} is the matrix representation (circuit matrix) of m_{ρ} with respect to the basis $\left\{D_{v}^{u}\right\}_{v \in \mathbb{Z}_{2}^{k}}$ of $H_{k}(T(\dot{x}), u)$.
(iii) Let D^{u} be an eigenvector of m_{ρ} with eigenvalue $\alpha \in \mathbb{Q}(\mu)$ and let \dot{D}^{u} be that with eigenvalue $\alpha^{\prime} \in \mathbb{Q}(\mu)$. Then

$$
\begin{aligned}
\mathcal{I}\left(D^{u}, D^{u}\right) & \neq 0 \\
\alpha^{\vee} \cdot \alpha^{\prime} & \neq 1
\end{aligned} \Rightarrow \mathcal{I}\left(\alpha^{\vee}=1, \dot{D}^{u}\right)=0 . ~ \$
$$

Proof. Since the intersection form is stable under deformation of x as far as the topology of $T(x)$ does not change, we have (i). The statement (ii) is a matrix representation of (i) for the basis $\left\{D_{v}^{u}\right\}_{v \in \mathbb{Z}_{2}^{k}}$ of $H_{k}(T(\dot{x}), u)$. Let us show (iii). Note that

$$
\begin{aligned}
\mathcal{I}\left(D^{u}, \dot{D}^{u}\right) & =\mathcal{I}\left(m_{\rho}\left(D^{u}\right), m_{\rho}\left(\dot{D}^{u}\right)\right)=\mathcal{I}\left(\alpha D^{u}, \alpha^{\prime} \dot{D}^{u}\right) \\
& =\alpha \cdot\left(\alpha^{\prime}\right)^{\vee} \mathcal{I}\left(D^{u}, \dot{D}^{u}\right)
\end{aligned}
$$

Thus if $\alpha^{\prime} \cdot \alpha^{\vee} \neq 1$ then $\mathcal{I}\left(D^{u}, D^{u}\right)=0$. By putting $D^{u}=D^{u}$, we have $\mathcal{I}\left(D^{u}, D^{u}\right) \neq 0 \Rightarrow \alpha \cdot \alpha^{\vee}=1$.

For $i=1, \ldots, k$, we set $\mathbb{Z}_{2}^{k}(i)=\left\{w \in \mathbb{Z}_{2}^{k} \mid w_{i}=0\right\}$ and

$$
\begin{aligned}
W_{i} & =\left\langle D_{w}^{u} \mid w \in \mathbb{Z}_{2}^{k}(i)\right\rangle \subset H_{k}(T(\dot{x}), u), \\
W_{i}^{\perp} & =\left\{\dot{D}^{u} \in H_{k}(T(\dot{x}), u) \mid \mathcal{I}\left(\dot{D}^{u}, D^{u}\right)=0 \text { for any } D^{u} \in W_{i}\right\}
\end{aligned}
$$

Lemma 6.4. Suppose that $c_{i} \notin \mathbb{Z}$. Then the eigenspace of the circuit transform m_{0}^{i} with eigenvalue 1 is W_{i} and that with eigenvalue α_{0}^{i} is W_{i}^{\perp}, and

$$
W_{i} \oplus W_{i}^{\perp}=H_{k}(T(\dot{x}), u) \quad(1 \leq i \leq k) .
$$

Proof. Consider the circuit transformation m_{0}^{i}. By Proposition 5.2, the space $H_{k}(T(\dot{x}), u)$ is decomposed into 2^{k-1}-dimensional eigenspaces with eigenvalues 1 and $\alpha_{0}^{i} \neq 1$. Note that any cycle $D_{w}\left(w \in \mathbb{Z}_{2}^{k}(i)\right)$ is invariant under the continuation along the loop ρ_{0}^{i}. Thus it belongs to W_{i}. Lemma 6.3 implies that any α_{0}^{i}-eigenvector belongs to W_{i}^{\perp}. Hence W_{i} is the eigenspace of the circuit transform m_{0}^{i} with eigenvalue 1 and W_{i}^{\perp} includes that with eigenvalue α_{0}^{i}. Since $\operatorname{dim}\left(W_{i}^{\perp}\right)=2^{k-1}$ by Proposition $6.2, W_{i}^{\perp}$ coincides with the eigenspace of the circuit transform m_{0}^{i} with eigenvalue α_{0}^{i}, and $W_{i} \oplus W_{i}^{\perp}=H_{k}(T(\dot{x}), u)$.

7. Monodromy representation

For $w=\left(w_{1}, \ldots, w_{k}\right) \in \mathbb{Z}_{2}^{k}$, we set

$$
\Delta_{w}^{u}=\sum_{v \succeq w}\left(\prod_{i=1}^{k} \mu_{1 i}^{v_{i}-w_{i}}\right) D_{v}^{u} \in H_{k}(T(\dot{x}), u)
$$

Theorem 7.1.

(i) For each $w \in \check{\mathbb{Z}}_{2}^{k}$, the circuit transform m_{w} for the loop ρ_{w} is

$$
\begin{aligned}
m_{w}: D^{u} & \mapsto D^{u}-\left(1-\alpha_{w}\right) \mathcal{I}\left(D^{u}, \Delta_{w}^{u}\right) \mathcal{I}\left(\Delta_{w}^{u}, \Delta_{w}^{u}\right)^{-1} \Delta_{w}^{u} \\
& =D^{u}-\left(1-\mu_{a}^{2}\right)\left[\prod_{i=1}^{k}\left(1-\mu_{w_{i} i}^{2}\right)\right] \mathcal{I}\left(D^{u}, \Delta_{w}^{u}\right) \Delta_{w}^{u}
\end{aligned}
$$

If we assign complex values to μ with condition

$$
\alpha_{w}=\mu_{a}^{2} \cdot \mu_{w_{1} 1}^{2} \cdots \mu_{w_{k} k}^{2} \neq 1
$$

then it is the reflection of root Δ_{w}^{u} and eigenvalue α_{w} with respect to the intersection form \mathcal{I}.
(ii) For $i=1, \ldots, k$, the circuit transform m_{0}^{i} for the loop ρ_{0}^{i} is given by

$$
m_{0}^{i}: D^{u} \mapsto \alpha_{0}^{i} D^{u}-\left(\alpha_{0}^{i}-1\right) \operatorname{pr}_{i}\left(D^{u}\right)
$$

where $\alpha_{0}^{i}=\mu_{0 i}^{-2} \mu_{1 i}^{-2}$ and pr_{i} is the projection from $H_{k}(T(\dot{x}), u)$ to W_{i} :

$$
\operatorname{pr}_{i}: D^{u}=\dot{D}^{u}+\grave{D}^{u} \mapsto \dot{D}^{u}, \quad \dot{D}^{u} \in W_{i}, \grave{D}^{u} \in W_{i}^{\perp}
$$

We array the basis $\left\{D_{v}^{u}\right\}_{v \in \mathbb{Z}_{2}^{k}}$ as a column vector in the total-lexicographic order on $v \in \mathbb{Z}_{2}^{k}$. Let e_{w} be the unit row vector such that

$$
e_{w}{ }^{t}\left(\cdots, D_{v}^{u}, \ldots\right)=D_{w}^{u}
$$

We define row vectors

$$
\varepsilon_{w}=\sum_{v \succeq w}\left(\prod_{i=1}^{k} \mu_{1 i}^{v_{i}-w_{i}}\right) e_{v} \in \mathbb{Q}(\mu)^{2^{k}}, \quad w \in \check{\mathbb{Z}}_{2}^{k}
$$

and arrange them in the total-lexicographic order, and define $\left(2^{k-1}, 2^{k}\right)$-matrices as

$$
E_{i}=\left(\begin{array}{c}
\vdots \\
e_{w} \\
\vdots
\end{array}\right)_{w \in \mathbb{Z}_{2}^{k}(i)}, \quad i=1, \ldots, k
$$

If a 2^{k}-row-vector f is identified with $f^{t}\left(\cdots, D_{v}^{u}, \ldots\right)$, then m_{w} and m_{0}^{i} are expressed as $2^{k} \times 2^{k}$-matrices by the intersection matrix H in (6.1).

Corollary 7.2.

(i) The circuit transform m_{w} is expressed by the matrix

$$
\begin{aligned}
M_{w} & =I_{2^{k}}-\left(1-\alpha_{w}\right) H^{t} \varepsilon_{w}^{\vee}\left(\varepsilon_{w} H^{t} \varepsilon_{w}^{\vee}\right)^{-1} \varepsilon_{w} \\
& =I_{2^{k}}-\left(1-\mu_{a}^{2}\right)\left[\prod_{i=1}^{k}\left(1-\mu_{w_{i}}^{2}\right)\right] H^{t} \varepsilon_{w}^{\vee} \varepsilon_{w}
\end{aligned}
$$

(ii) The circuit transform m_{0}^{i} is expressed by the matrix

$$
M_{0}^{i}=\alpha_{0}^{i} I_{2^{k}}-\left(\alpha_{0}^{i}-1\right) H^{t} E_{i}^{\vee}\left(E_{i} H^{t} E_{i}^{\vee}\right)^{-1} E_{i}
$$

These matrices act on 2^{k}-row-vectors from the right.

Proof.

(i) Suppose that $\alpha_{w} \neq 1$ for $w \in \check{\mathbb{Z}}_{2}^{k}$. We show that Δ_{w}^{u} is the eigenvector of m_{w} with eigenvalue α_{w} for any $w \in \check{\mathbb{Z}}_{2}^{k}$. It is shown in the proof of Proposition 5.1 that the loaded cycle $\Delta_{w}^{u^{\prime}}\left(x_{\sigma_{w}}\right)$ is an eigenvector belonging to the eigenvalue α_{w} of the transformation caused by the continuation along the loop τ_{w}. Here $x_{\sigma_{w}}=$ $\eta_{w}\left(y_{w}-\varepsilon\right)$ is the end point of the path σ_{w} and we load u^{\prime} on the small simplex $\Delta_{w}\left(x_{\sigma_{w}}\right)$ by the assignments $\arg \left(t_{i}\right)=\arg \left(1-\sum_{i=1}^{k} x_{i} t_{i}\right)=0$ and

$$
\arg \left(1-t_{i}\right)= \begin{cases}0 & \text { if } w_{i}=0 \\ \pi & \text { if } w_{i}=1\end{cases}
$$

We deform the simplex $\Delta_{w}\left(x_{\sigma_{w}}\right)$ along the path σ_{w}^{-1} from $x_{\sigma_{w}}$ to \dot{x}_{w}. Lemma 2.3 tells that the resulting simplex $\Delta_{w}\left(\dot{x}_{w}\right)$ is (the closure of) the union of the chambers $D_{v}(v \succeq w)$. At the same time, we trace the change of the function $u^{\prime}(x)$ along the path σ_{w}^{-1} from $x_{\sigma_{w}}$ to \dot{x}_{w}; the resulting loaded cycle $\Delta_{w}^{u^{\prime}}\left(\dot{x}_{w}\right)$ would be a linear combination

$$
\sum_{v \succeq w} d_{v} D_{v}^{u}
$$

We determine the coefficients. The key is the expression (2.8) of Δ_{w}. For any $v \succeq w$, there exits $s_{v} \in \Delta^{k}$ such that

$$
w+\left(1-w \cdot \dot{x}_{w}\right) s_{v} / \dot{x}_{w}=t_{v} \in D_{v}
$$

By comparing the value of $u\left(\dot{x}_{w}, t_{w}\right)$ with that of loaded function on D_{w}^{u}, we have

$$
d_{w}=\prod_{1 \leq i \leq k}^{w_{i}=1} \mu_{1 i}
$$

For $v \succ w$, we follow the deformation of the i-th coordinates t_{i} of

$$
t=w+(1-w \cdot x) s_{v} / x
$$

along the path $\sigma_{w}^{-1}: x=\dot{x}+w y$ for $y \in\left(\sigma_{v}\right)^{-1}$. If the index i satisfies $v_{i}=w_{i}$ then $\operatorname{Re}\left(1-t_{i}\right)>0$, otherwise $1-t_{i}$ changes from positive to negative via the upper half space. Thus $\arg \left(t_{i}\right)=\arg \left(1-\sum_{i=1}^{k} x_{i} t_{i}\right)=0$ and

$$
\arg \left(1-t_{i}\right)= \begin{cases}0 & \text { if } v_{i}=0 \\ \pi & \text { if } v_{i}=1\end{cases}
$$

on D_{v}. Hence we have

$$
d_{v}=\prod_{1 \leq i \leq k}^{v_{i}=1} \mu_{1 i}, \quad \text { and so } \quad \sum_{v \succeq w} d_{v} D_{v}^{u}=d_{w} \Delta_{w}^{u}
$$

By Lemma 6.3, the eigenspace with eigenvalue 1 of m_{w} is the orthogonal complement of Δ_{w}^{u}. Therefore we have the first expression of m_{w}. By following the proof of Proposition 6.1, we have

$$
\mathcal{I}\left(\Delta_{w}^{u}, \Delta_{w}^{u}\right)=\frac{1-\alpha_{w}}{\left(1-\mu_{a}^{2}\right) \prod_{i=1}^{k}\left(1-\mu_{w_{i} i}^{2}\right)}
$$

which implies the second expression of m_{w}.
We consider the case $\alpha_{w}=1$. Under our assumption (2.5), the intersection form \mathcal{I} on $H_{k}(T(\dot{x}), u) \times H_{k}(T(\dot{x}), u)$ does not degenerate and $\left\{D_{v}^{u}\right\}_{v \in \mathbb{Z}_{2}^{k}}$ is a basis even in this case. Since we can regard the second expression of m_{w} as a limit of parameters, it is valid as the circuit transform.
(ii) Suppose that $c_{i} \notin \mathbb{Z}$. Under the linear map

$$
D^{u} \mapsto \alpha_{0}^{i} D^{u}-\left(\alpha_{0}^{i}-1\right) \operatorname{pr}_{i}\left(D^{u}\right)
$$

$D^{u} \in W_{i}$ is invariant and $\grave{D}^{u} \in W_{i}^{\perp}$ is transformed into $\alpha_{0}^{i} \grave{D}^{u}$. By Lemma 6.4, this map coincides with m_{0}^{i}. It is easy to see that m_{0}^{i} is represented by the matrix M_{0}^{i} for the basis $\left\{D_{v}^{u}\right\}_{v \in \mathbb{Z}_{2}^{k}}$.

We consider the case $c_{i} \in \mathbb{Z}$. Under our assumption (2.5), the intersection form \mathcal{I} on $H_{k}(T(\dot{x}), u) \times H_{k}(T(\dot{x}), u)$ does not degenerate and $\left\{D_{v}^{u}\right\}_{v \in \mathbb{Z}_{2}^{k}}$ is a basis even in this case. Note that the map $\left(\alpha_{0}^{i}-1\right) \operatorname{pr}_{i}$ is represented by $2^{k} \times 2^{k}$-matrix

$$
\begin{equation*}
\left(\alpha_{0}^{i}-1\right) H^{t} E_{i}^{\vee}\left(E_{i} H^{t} E_{i}^{\vee}\right)^{-1} E_{i} \tag{7.1}
\end{equation*}
$$

for the basis $\left\{D_{v}^{u}\right\}_{v \in \mathbb{Z}_{2}^{k}}$. The $2^{k-1} \times 2^{k-1}$-matrix $E_{i} H^{t} E_{i}^{\vee}$ has the factor $\left(\alpha_{0}^{i}-1\right)$ by Propositions 6.1 and 6.2. Thus this factor in the expression (7.1) is canceled. If we regard this case as a limit of parameters then $\left(\alpha_{0}^{i}-1\right) \operatorname{pr}_{i}$ converges to a linear transformation satisfying

$$
\operatorname{ker}\left(\left(\alpha_{0}^{i}-1\right) \operatorname{pr}_{i}\right)=\operatorname{Im}\left(\left(\alpha_{0}^{i}-1\right) \operatorname{pr}_{i}\right)=W_{i}
$$

and the expression of m_{0}^{i} is valid as the circuit transform.

Remark 7.3.

(i) The eigenspace of the circuit transform m_{w} with eigenvalue 1 is the orthogonal complement

$$
\left(\Delta_{w}^{u}\right)^{\perp}=\left\{D^{u} \in H_{k}(T(\dot{x}), u) \mid \mathcal{I}\left(D^{u}, \Delta_{w}^{u}\right)=0\right\}
$$

of Δ_{w}^{u}. If $\alpha_{w}=1$ then Δ_{w}^{u} belongs to $\left(\Delta_{w}^{u}\right)^{\perp}$, otherwise $H_{k}(T(\dot{x}), u)$ is spanned by Δ_{w}^{u} and $\left(\Delta_{w}^{u}\right)^{\perp}$. If $\alpha_{w}=1$ then the Jordan normal form of m_{w} is given by

$$
\left(\begin{array}{cccc}
J_{1,2} & & & \\
& 1 & & \\
& & \ddots & \\
& & & 1
\end{array}\right), \quad J_{1,2}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

(ii) If $c_{i} \in \mathbb{Z}$ then the Jordan normal form of m_{0}^{i} is the direct sum of 2^{k-1} copies of $J_{1,2}$:

$$
\left(\begin{array}{lll}
J_{1,2} & & \\
& \ddots & \\
& & J_{1,2}
\end{array}\right)
$$

A. Sketch of a proof of Proposition 6.2

A.1. Determinant formula

Set

$$
\alpha=\mu_{a}^{2}, \quad \beta_{i}=\mu_{0 i}^{2}, \quad \gamma_{i}=\mu_{1 i}^{2}, \quad \sqrt{\gamma_{i}}=\mu_{1 i}
$$

Then Proposition 6.2 reads that $\operatorname{det}(H)$ equals

$$
\begin{array}{cl}
\frac{\alpha \beta_{1} \gamma_{1}-1}{(\alpha-1)\left(\beta_{1}-1\right)\left(\gamma_{1}-1\right)} & (k=1) \\
\frac{\left(\alpha \beta_{1} \gamma_{1} \beta_{2} \gamma_{2}-1\right)\left(\alpha \beta_{1} \gamma_{1}-1\right)\left(\alpha \beta_{2} \gamma_{2}-1\right)}{(\alpha-1)^{3}\left(\beta_{1}-1\right)^{2}\left(\gamma_{1}-1\right)^{2}\left(\beta_{2}-1\right)^{2}\left(\gamma_{2}-1\right)^{2}} & (k=2) \\
\frac{\left(\alpha \beta_{1} \gamma_{1} \beta_{2} \gamma_{2} \beta_{3} \gamma_{3}-1\right) \prod_{1 \leq i<j \leq 3}\left(\alpha \beta_{i} \gamma_{i} \beta_{j} \gamma_{j}-1\right) \prod_{i=1}^{3}\left(\alpha \beta_{i} \gamma_{i}-1\right)}{(\alpha-1)^{7} \prod_{i=1}^{3}\left(\beta_{i}-1\right)^{4}\left(\gamma_{i}-1\right)^{4}} & (k=3)
\end{array}
$$

and in general,

$$
\operatorname{det}(H)=\frac{\prod_{v \in \mathbb{Z}_{2}^{k}}\left[\alpha \prod_{j=1}^{k}\left(\beta_{j} \gamma_{j}\right)^{v_{j}}-1\right]}{(\alpha-1)^{2^{k}} \prod_{j=1}^{k}\left[\left(\beta_{j}-1\right)\left(\gamma_{j}-1\right)\right]^{2^{k-1}}}
$$

where $v=\left(v_{1}, \ldots, v_{k}\right) \in \mathbb{Z}_{2}^{k}$.

A.2. Outline of the proof

We index the rows and the columns of the intersection matrix H by elements $v \in$ \mathbb{Z}_{2}^{k}, which are arranged in the lexicographic order:

$$
(0, \ldots, 0)<(0, \ldots, 0,1)<(0, \ldots, 1,0)<(0, \ldots, 1,1)<\cdots<(1, \ldots, 1)
$$

We apply the Laplace expansion to the determinant $\operatorname{det}(H)$ with respect to the 2^{k-1} rows:

$$
(0, \check{v}), \quad \check{v}=\left(v_{2}, \ldots, v_{k}\right) \in \mathbb{Z}_{2}^{k-1}
$$

We choose 2^{k-1} columns with indices $v^{(1)}, v^{(2)}, \ldots, v^{\left(2^{k-1}\right)} \in \mathbb{Z}_{2}^{k}$ and make the minor. Let us write their entries as

$$
v^{(i)}=\left(\epsilon_{i}, \check{v}^{(i)}\right), \quad \check{v}^{(i)}=\left(v_{2}^{(i)}, \ldots, v_{k}^{(i)}\right) \in \mathbb{Z}_{2}^{k-1} \quad\left(1 \leq i \leq 2^{k-1}\right)
$$

Lemma A.1. The minor is zero unless $\check{v}^{(i)}$ are distinct, that is,

$$
\left\{\check{v}^{(i)} \mid 1 \leq i \leq 2^{k-1}\right\}=\mathbb{Z}_{2}^{k-1}
$$

Proof. Note that if $\check{v}^{(i)}=\check{v}^{(j)}$ for $i \neq j$ then the two columns of the minor are proportional.

Let the chosen columns be indexed as

$$
(1, \ldots, 1)=v^{(1)}>v^{(2)}>\cdots>v^{\left(2^{k-1}\right)}=(0, \ldots, 0)
$$

We make the product of this minor and the complementary minor, the minor made by complementary rows and the complementary columns, and denote this product as

$$
m\left(\epsilon_{2^{k-1}} \cdots \epsilon_{1}\right)
$$

Set

$$
\begin{aligned}
& f_{0, \breve{v}^{(i)}}=\frac{\beta_{1} \gamma_{1}-1}{\gamma_{1}-1}\left(\alpha \gamma_{1} \prod_{j=2}^{k}\left(\beta_{j} \gamma_{j}\right)^{v_{j}^{(i)}}-1\right) \\
& f_{1, \check{v}^{(i)}}=\frac{\left(\beta_{1}-1\right) \gamma_{1}}{\gamma_{1}-1}\left(\alpha \prod_{j=2}^{k}\left(\beta_{j} \gamma_{j}\right)^{v_{j}^{(i)}}-1\right) .
\end{aligned}
$$

For example, we have

$$
\begin{array}{ll}
f_{0,0}=\frac{\left(\alpha \gamma_{1}-1\right)\left(\beta_{1} \gamma_{1}-1\right)}{\gamma_{1}-1}, & f_{1,0}=\frac{(\alpha-1)\left(\beta_{1}-1\right) \gamma_{1}}{\gamma_{1}-1}, \\
f_{0,1}=\frac{\left(\alpha \gamma_{1} \beta_{2} \gamma_{2}-1\right)\left(\beta_{1} \gamma_{1}-1\right)}{\gamma_{1}-1}, & f_{1,1}=\frac{\left(\alpha \beta_{2} \gamma_{2}-1\right)\left(\beta_{1}-1\right) \gamma_{1}}{\gamma_{1}-1}, \\
f_{0,00}=\frac{\left(\alpha \gamma_{1}-1\right)\left(\beta_{1} \gamma_{1}-1\right)}{\gamma_{1}-1}, & f_{1,00}=\frac{(\alpha-1)\left(\beta_{1}-1\right) \gamma_{1}}{\gamma_{1}-1}, \\
f_{0,10}=\frac{\left(\alpha \gamma_{1} \beta_{2} \gamma_{2}-1\right)\left(\beta_{1} \gamma_{1}-1\right)}{\gamma_{1}-1}, & f_{1,10}=\frac{\left(\alpha \beta_{2} \gamma_{2}-1\right)\left(\beta_{1}-1\right) \gamma_{1}}{\gamma_{1}-1}, \tag{A.1}\\
f_{0,01}=\frac{\left(\alpha \gamma_{1} \beta_{3} \gamma_{3}-1\right)\left(\beta_{1} \gamma_{1}-1\right)}{\gamma_{1}-1}, & f_{1,01}=\frac{\left(\alpha \beta_{3} \gamma_{3}-1\right)\left(\beta_{1}-1\right) \gamma_{1}}{\gamma_{1}-1}, \\
f_{0,11}=\frac{\left(\alpha \gamma_{1} \beta_{2} \gamma_{2} \beta_{3} \gamma_{3}-1\right)\left(\beta_{1} \gamma_{1}-1\right)}{\gamma_{1}-1}, & f_{1,11}=\frac{\left(\alpha \beta_{2} \gamma_{2} \beta_{3} \gamma_{3}-1\right)\left(\beta_{1}-1\right) \gamma_{1}}{\gamma_{1}-1},
\end{array}
$$

for $k=2$ and $k=3$. Note that

$$
\begin{align*}
& f_{0, \check{v}}=f_{0,(\check{v}, 0, \ldots, 0)}, \quad f_{1, \check{v}}=f_{1,(\check{v}, 0, \ldots, 0)}, \\
& f_{0, \check{v}^{(i)}}-f_{1, \check{v}^{(i)}}=\alpha \prod_{j=1}^{k}\left(\beta_{j} \gamma_{j}\right)^{v_{j}^{(i)}}-1 . \tag{A.2}
\end{align*}
$$

The products of the minors can be expressed in terms of these f 's as follows:

Lemma A.2.

$$
m\left(\epsilon_{2^{k-1}} \cdots \epsilon_{1}\right)=\frac{\prod_{i=1}^{2^{k-1}}\left[(-1)^{\epsilon_{i}}\left(\alpha \prod_{j=2}^{k}\left(\beta_{j} \gamma_{j}\right)^{v_{j}^{(i)}}-1\right) f_{\epsilon_{i}, \check{v}^{(i)}}\right]}{(\alpha-1)^{2^{k}-1} \prod_{i=2}^{k}\left[\left(\beta_{i}-1\right)\left(\gamma_{i}-1\right)\right]^{2^{k-1}}}
$$

Since we have the relations (A.2), we sum up $m\left(\epsilon_{2^{k-1}} \cdots \epsilon_{1}\right)$ two by two: set

$$
m\left(\epsilon_{2^{k-1}} \cdots \epsilon_{2}\right):=m\left(\epsilon_{2^{k-1}} \cdots \epsilon_{2} 0\right)+m\left(\epsilon_{2^{k-1}} \cdots \epsilon_{2} 1\right)
$$

and then set

$$
m\left(\epsilon_{2^{k-1}} \cdots \epsilon_{3}\right):=m\left(\epsilon_{2^{k-1}} \cdots \epsilon_{3} 0\right)+m\left(\epsilon_{2^{k-1}} \cdots \epsilon_{3} 1\right)
$$

and so on. We end up with

$$
\begin{aligned}
\operatorname{det}(H) & =\sum_{\text {all }} m\left(\epsilon_{2^{k-1}} \cdots \epsilon_{1}\right)=\cdots \\
= & m(00)+m(01)+m(10)+m(11)=m(0)+m(1) \\
& =\frac{\prod_{p=1}^{k}\left(\alpha \prod_{1 \leq i_{1}<\cdots<i_{p} \leq k} \beta_{i_{1}} \gamma_{i_{1}} \ldots \beta_{i_{p}} \gamma_{i_{p}}-1\right)}{(\alpha-1)^{2^{k}-1} \prod_{i=1}^{k}\left(\beta_{i}-1\right)^{2^{k-1}\left(\gamma_{i}-1\right)^{2^{k-1}}}} \\
= & \frac{\prod_{v \in \mathbb{Z}_{2}^{k}}\left[\alpha \prod_{j=1}^{k}\left(\beta_{j} \gamma_{j}\right)^{v_{j}}-1\right]}{(\alpha-1)^{2^{k}} \prod_{i=1}^{k}\left[\left(\beta_{i}-1\right)\left(\gamma_{i}-1\right)\right]^{2^{k-1}}} .
\end{aligned}
$$

Instead of giving proofs to the statements and Lemma A.2, we show the procedure when $k=1,2,3$. These will light up the way in general cases.
A.3. $k=1$

$$
\begin{aligned}
& \left|\begin{array}{ll}
D_{0} \cdot D_{0} & D_{0} \cdot D_{1} \\
D_{1} \cdot D_{0} & D_{1} \cdot D_{1}
\end{array}\right|=\left|\begin{array}{cc}
-\frac{\beta_{1} \gamma_{1}-1}{\left(\beta_{1}-1\right)\left(\gamma_{1}-1\right)} & \frac{\sqrt{\gamma_{1}}}{\gamma_{1}-1} \\
\frac{\sqrt{\gamma_{1}}}{\gamma_{1}-1} & -\frac{\alpha \gamma_{1}-1}{(\alpha-1)\left(\gamma_{1}-1\right)}
\end{array}\right| \\
& =\frac{1}{\left(\beta_{1}-1\right)\left(\gamma_{1}-1\right)(\alpha-1)}\left(\frac{\left(\alpha \gamma_{1}-1\right)\left(\beta_{1} \gamma_{1}-1\right)}{\gamma_{1}-1}-\frac{(\alpha-1)\left(\beta_{1}-1\right) \gamma_{1}}{\gamma_{1}-1}\right) \\
& =\frac{\alpha \beta_{1} \gamma_{1}-1}{\left(\beta_{1}-1\right)\left(\gamma_{1}-1\right)(\alpha-1)} .
\end{aligned}
$$

We use the identity

$$
\frac{(C B-1)(A B-1)}{B-1}-\frac{(C-1)(A-1) B}{B-1}=C A B-1
$$

often.
A.4. $k=2$

Set

$$
F_{2}:=\frac{\alpha \beta_{2} \gamma_{2}-1}{(\alpha-1)^{3}\left(\beta_{1}-1\right)^{2}\left(\gamma_{1}-1\right)^{2}\left(\beta_{2}-1\right)^{2}\left(\gamma_{2}-1\right)^{2}}
$$

this is the factor with the expected denominator and the numerator which does not contain β_{1} nor γ_{1}. Then we have

$$
\begin{array}{r}
m(00)=F_{2} \cdot f_{0,1} \cdot f_{0,0},-m(01)=F_{2} \cdot f_{0,1} \cdot f_{1,0} \\
-m(10)=F_{2} \cdot f_{1,1} \cdot f_{0,0}, \quad m(11)=F_{2} \cdot f_{1,1} \cdot f_{1,0}
\end{array}
$$

Write down the identities (A.2) as

$$
f_{0,0}-f_{1,0}=\alpha \beta_{1} \gamma_{1}-1, \quad f_{0,1}-f_{1,1}=\alpha \beta_{1} \gamma_{1} \beta_{2} \gamma_{2}-1
$$

which imply

$$
\begin{aligned}
m(0) & :=m(00)+m(01)=F_{2} \cdot f_{0,1} \cdot\left(\alpha \beta_{1} \gamma_{1}-1\right) \\
-m(1) & :=m(10)+m(11)=F_{2} \cdot f_{1,1} \cdot\left(\alpha \beta_{1} \gamma_{1}-1\right) \\
m(0)+m(1) & =F_{2} \cdot\left(\alpha \beta_{1} \gamma_{1} \beta_{2} \gamma_{2}-1\right)\left(\alpha \beta_{1} \gamma_{1}-1\right) \\
& =\frac{\left(\alpha \beta_{1} \gamma_{1} \beta_{2} \gamma_{2}-1\right)\left(\alpha \beta_{1} \gamma_{1}-1\right)\left(\alpha \beta_{2} \gamma_{2}-1\right)}{(\alpha-1)^{3}\left(\beta_{1}-1\right)^{2}\left(\gamma_{1}-1\right)^{2}\left(\beta_{2}-1\right)^{2}\left(\gamma_{2}-1\right)^{2}}
\end{aligned}
$$

Every 2×2-minor can be computed by the determinant formula when $k=1$ established in the previous subsection. For example, we compute $m(00)$:

$$
\begin{aligned}
& \left|\begin{array}{c}
D_{00} \cdot D_{00} D_{00} \cdot D_{01} \\
D_{01} \cdot D_{00} D_{01} \cdot D_{01}
\end{array}\right| \\
= & \left|\begin{array}{cc}
\frac{\beta_{1} \gamma_{1}-1}{\left(\beta_{1}-1\right)\left(\gamma_{1}-1\right)} \frac{\beta_{2} \gamma_{2}-1}{\left(\beta_{2}-1\right)\left(\gamma_{2}-1\right)} & \frac{\beta_{1} \gamma_{1}-1}{\left(\beta_{1}-1\right)\left(\gamma_{1}-1\right)} \frac{\sqrt{\gamma_{2}}}{\gamma_{2}-1} \\
\frac{\beta_{1} \gamma_{1}-1}{\left(\beta_{1}-1\right)\left(\gamma_{1}-1\right)} \frac{\sqrt{\gamma_{2}}}{\gamma_{2}-1} & \frac{\beta_{1} \gamma_{1}-1}{\left(\beta_{1}-1\right)\left(\gamma_{1}-1\right)} \frac{\alpha \gamma_{2}-1}{(\alpha-1)\left(\gamma_{2}-1\right)}
\end{array}\right| \\
= & \left(\frac{\beta_{1} \gamma_{1}-1}{\left(\beta_{1}-1\right)\left(\gamma_{1}-1\right)}\right)^{2}\left|\begin{array}{cc}
\frac{\beta_{2} \gamma_{2}-1}{\left(\beta_{2}-1\right)\left(\gamma_{2}-1\right)} & \frac{\sqrt{\gamma_{2}}}{\gamma_{2}-1} \\
\frac{\sqrt{\gamma_{2}}}{\gamma_{2}-1} & \frac{\alpha \gamma_{2}-1}{(\alpha-1)\left(\gamma_{2}-1\right)}
\end{array}\right|
\end{aligned}
$$

The second term of the last line is the intersection determinant appeared in the last subsection with the substitution:

$$
\begin{gathered}
\beta_{1} \rightarrow \beta_{2}, \quad \gamma_{1} \rightarrow \gamma_{2} . \\
=\left|\begin{array}{l}
D_{10} \cdot D_{10} D_{10} \cdot D_{11} \\
D_{11} \cdot D_{10} \quad D_{11} \cdot D_{11}
\end{array}\right| \\
=\left|\begin{array}{cc}
\frac{\alpha \gamma_{1}-1}{\left(\gamma_{1}-1\right)(\alpha-1)} \frac{\beta_{2} \gamma_{2}-1}{\left(\beta_{2}-1\right)\left(\gamma_{2}-1\right)} & \frac{\alpha \gamma_{1}-1}{\left(\gamma_{1}-1\right)(\alpha-1)} \frac{\sqrt{\gamma_{2}}}{\gamma_{2}-1} \\
\frac{\alpha \gamma_{1}-1}{\left(\gamma_{1}-1\right)(\alpha-1)} \frac{\sqrt{\gamma_{2}}}{\gamma_{2}-1} & \frac{\alpha \gamma_{1} \gamma_{2}-1}{(\alpha-1)\left(\gamma_{1}-1\right)\left(\gamma_{2}-1\right)}
\end{array}\right| \\
=\left(\frac{\alpha \gamma_{1}-1}{\left(\gamma_{1}-1\right)(\alpha-1)}\right)^{2}\left|\begin{array}{cc}
\frac{\beta_{2} \gamma_{2}-1}{\left(\beta_{2}-1\right)\left(\gamma_{2}-1\right)} & \frac{\sqrt{\gamma_{2}}}{\gamma_{2}-1} \\
\frac{\sqrt{\gamma_{2}}}{\gamma_{2}-1} & \frac{\alpha \gamma_{1} \gamma_{2}-1}{\left(\alpha \gamma_{1}-1\right)\left(\gamma_{2}-1\right)}
\end{array}\right| .
\end{gathered}
$$

The second term of the last line is the intersection determinant appeared in the last subsection with the substitution:

$$
\beta_{1} \rightarrow \beta_{2}, \quad \gamma_{1} \rightarrow \gamma_{2}, \quad \text { and } \quad \alpha \rightarrow \alpha \gamma_{1} .
$$

(Geometrically, the last substitution corresponds to the blow up at the intersection point of the lines labeled γ_{1} and α; the exceptional curve corresponds to $\alpha \gamma_{1}$.) At any rate, the product of the two minors above give $m(00)$.
A.5. $k=3$

Set

$$
F_{3}:=\frac{\left(\alpha \beta_{2} \gamma_{2}-1\right)\left(\alpha \beta_{3} \gamma_{3}-1\right)\left(\alpha \beta_{2} \gamma_{2} \beta_{3} \gamma_{3}-1\right)}{(\alpha-1)^{7}\left(\beta_{1}-1\right)^{4}\left(\gamma_{1}-1\right)^{4}\left(\beta_{3}-1\right)^{4}\left(\gamma_{3}-1\right)^{4}\left(\beta_{3}-1\right)^{4}\left(\gamma_{3}-1\right)^{4}}
$$

this is the factor with the expected denominator and the numerator which does not contain β_{1} nor γ_{1}. See (A.1) for $f_{0, \check{v}}$ and $f_{1, \check{v}}\left(\check{v} \in \mathbb{Z}_{2}^{2}\right)$. The products of two minors are given as

$$
(-1)^{\epsilon_{4}+\epsilon_{3}+\epsilon_{2}+\epsilon_{1}} m\left(\epsilon_{4}, \epsilon_{3}, \epsilon_{2}, \epsilon_{1}\right)=F_{3} \cdot f_{\epsilon_{4}, 11} \cdot f_{\epsilon_{3}, 01} \cdot f_{\epsilon_{2}, 10} \cdot f_{\epsilon_{1}, 00}
$$

By (A.2), we have

$$
\begin{aligned}
& f_{0,00}-f_{1,00}=\alpha \beta_{1} \gamma_{1}-1, \quad f_{0,10}-f_{1,10}=\alpha \beta_{1} \gamma_{1} \beta_{2} \gamma_{2}-1 \\
& f_{0,01}-f_{1,01}=\alpha \beta_{1} \gamma_{1} \beta_{3} \gamma_{3}-1, \quad f_{0,11}-f_{1,11}=\alpha \beta_{1} \gamma_{1} \beta_{2} \gamma_{2} \beta_{3} \gamma_{3}-1
\end{aligned}
$$

These identities imply

$$
\begin{aligned}
& (-1)^{\epsilon_{4}+\epsilon_{3}+\epsilon_{2}} m\left(\epsilon_{4}, \epsilon_{3}, \epsilon_{2}\right)=F_{3} \cdot f_{\epsilon_{4}, 11} \cdot f_{\epsilon_{3}, 01} \cdot f_{\epsilon_{2}, 10} \cdot\left(\alpha \beta_{1} \gamma_{1}-1\right), \\
& (-1)^{\epsilon_{4}+\epsilon_{3}} m\left(\epsilon_{4}, \epsilon_{3}\right)=F_{3} \cdot f_{\epsilon_{4}, 11} \cdot f_{\epsilon_{3}, 01} \cdot\left(\alpha \beta_{1} \gamma_{1} \beta_{2} \gamma_{2}-1\right)\left(\alpha \beta_{1} \gamma_{1}-1\right), \\
& (-1)^{\epsilon_{4}} m\left(\epsilon_{4}\right)=F_{3} \cdot f_{\epsilon_{4}, 11} \cdot\left(\alpha \beta_{1} \gamma_{1} \beta_{3} \gamma_{3}-1\right)\left(\alpha \beta_{1} \gamma_{1} \beta_{2} \gamma_{2}-1\right)\left(\alpha \beta_{1} \gamma_{1}-1\right), \\
& m(0)+m(1) \\
& =F_{3} \cdot\left(\alpha \beta_{1} \gamma_{1} \beta_{2} \gamma_{2} \beta_{3} \gamma_{3}-1\right)\left(\alpha \beta_{1} \gamma_{1} \beta_{3} \gamma_{3}-1\right)\left(\alpha \beta_{1} \gamma_{1} \beta_{2} \gamma_{2}-1\right)\left(\alpha \beta_{1} \gamma_{1}-1\right) .
\end{aligned}
$$

The last identity is the expected expression.
Let us have a look at a typical minor:

$$
\operatorname{det}\left(\left(D_{I} \cdot D_{J}\right)_{I, J=\{000,001,010,011\}}\right)
$$

this turns out to be the product of

$$
\left(\frac{\beta_{1} \gamma_{1}-1}{\left(\beta_{1}-1\right)\left(\gamma_{1}-1\right)}\right)^{4}
$$

and the determinant of the intersection matrix when $k=2$ with the substitution:

$$
\beta_{1} \rightarrow \beta_{2}, \gamma_{1} \rightarrow \gamma_{2}, \beta_{2} \rightarrow \beta_{3}, \gamma_{2} \rightarrow \gamma_{3}
$$

and the complementary one

$$
\operatorname{det}\left(\left(D_{I} \cdot D_{J}\right)_{I, J=\{100,101,110,111\}}\right)
$$

this turns out to be the product of

$$
\left(\frac{\alpha \gamma_{1}-1}{(\alpha-1)\left(\gamma_{1}-1\right)}\right)^{4}
$$

and the determinant of the intersection matrix when $k=2$ with the substitution:

$$
\beta_{1} \rightarrow \beta_{2}, \gamma_{1} \rightarrow \gamma_{2}, \beta_{2} \rightarrow \beta_{3}, \gamma_{2} \rightarrow \gamma_{3}, \quad \text { and } \quad \alpha \rightarrow \alpha \gamma_{1}
$$

Geometrically, the last substitution corresponds to the blow up along the intersection line of the planes labeled by γ_{1} and α; the exceptional surface corresponds to $\alpha \gamma_{1}$.

References

[1] P. Appell and J. Kampé de Fériet, "Fonctions Hypergéométriques et Hypersphériques: Polynomes d'Hermite", Gauthier-Villars, Paris, 1926.
[2] K. Аомото and M. Kita, "Theory of Hypergeometric Functions", translated by K. Iohara, Springer Monographs in Mathematics, Springer-Verlag, Tokyo, 2011.
[3] F. Beukers, Algebraic A-hypergeometric functions, Invent. Math. 180 (2010), 589-610.
[4] M. Kato, Connection formulas and irreducibility conditions for Appell's F_{2}, Kyushu J. Math. 66 (2012), 325-363.
[5] M. Kita and M. Noumi, On the structure of cohomology groups attached to the integral of certain many-valued analytic functions, Japan. J. Math. 9 (1983), 113-157.
[6] M. Kita and M. Yoshida, Intersection theory for twisted cycles, Math. Nachr. 166 (1994), 287-304.
[7] G. LaURICELLA, Sulle funzioni ipergeometriche a più variabili, Rend. Circ. Mat. Palermo 7 (1893), 111-158.
[8] K. Matsumoto, Monodromy and Pfaffian of Lauricella's F_{D} in terms of the intersection forms of twisted (co)homology groups, Kyushu J. Math. 67 (2013), 367-387.
[9] K. Matsumoto, T. Sasaki, N. Takayama and M. Yoshida, Monodromy of the hypergeometric differential equation of type $(3,6) I$, Duke Math. J. 71 (1993), 403-426.
[10] M. Yoshida, "Hypergeometric functions, my love, -Modular interpretations of configuration spaces-", Aspects of Mathematics E32., Vieweg \& Sohn, Braunschweig, 1997.

Department of Mathematics
Hokkaido University
Sapporo 060-0810, Japan matsu@math.sci.hokudai.ac.jp

Kyushu University Fukuoka 819-0395, Japan myoshida@math.kyushu-u.ac.jp

