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The Barth quintic surface has Picard number 41

SLAWOMIR RAMS AND MATTHIAS SCHÜTT

Dedicated to Wolf Barth

Abstract. This paper investigates a specific smooth quintic surface suggested by
Barth for it contains the current record of 75 lines over the complex numbers. Our
main incentive is to prove that the complex quintic has Picard number 41, and to
compute the Néron-Severi group up to a 2-power index. We also compute Picard
numbers for reductions to positive characteristic and verify the Tate conjecture.

Mathematics Subject Classification (2010): 14J29 (primary); 11G25, 14C22,
14G15, 14J27, 14J28 (secondary).

1. Introduction

Quintic surfaces in P3 have been studied extensively by Barth and others, for in-
stance with a view towards configurations of singularities or lines contained in them.
This paper investigates a specific smooth quintic surface suggested by Barth for it
contains the current record of 75 lines over C (see also [17]). In what follows the
surface will be denoted by Sa . Our main incentive is to prove that overC the quintic
Sa has Picard number 41 (Theorem 2.2). To the best of our knowledge this is the
record Picard number for smooth quintics. In fact the surfaces with Picard num-
ber 43 or 45 exhibited in [11] involved several rational double point singularities.
The previous record of 37 was attained by the Fermat quintic surface which also
contains 75 lines (Remark 2.3).

This note is organised as follows. Section 2 reviews the surface Sa inside a
pencil of quintics with an action of the symmetric group S5. Sections 3 and 4
derive lower and upper bounds for the Picard number by exhibiting certain quotient
surfaces (Godeaux and K3). As a by-product we prove the Tate conjecture for any
irreducible member of the pencil of quintics (cf. Proposition 4.7). Throughout we
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keep the exposition as characteristic free as possible. This enables us to apply the
supersingular reduction technique from [13] to calculate the Néron-Severi group of
Sa up to index 2i for some i  4 in Section 5. We also work out an explicit non-
classical Godeaux surface (Proposition 3.1) compared to Miranda’s implicit results
in [8].

ACKNOWLEDGEMENTS. S. Rams would like to thank Prof. W. P. Barth for in-
spiring discussions on quintics in autumn 2000. We are grateful to the referee for
his corrections and helpful comments. This project was started during the second
author’s visit to Jagiellonian University in March 2011. Thanks for the great hospi-
tality, especially to S. Cynk.

2. A pencil of S5-invariant quintics in P3

In this note we consider certain surfaces that belong to the pencil of quintics

S� :

⇢
s1 =

5
6
�s2 · s3 + s5 = 0

�
⇢ P4, � 2 K , (2.1)

where sk stands for the symmetric polynomial

sk := xk0 + xk1 + xk2 + xk3 + xk4 (k 2 N)

and K denotes an algebraically closed field of any characteristic. Mostly we will
be concerned with the case K = C, but our methods to investigate these surfaces
will use reduction modulo different primes, and in fact we will also derive results
exclusive to positive characteristic. The factor of 5/6 in front of � might seem
unnatural at first, but in fact it allows us to derive proper pencils in characteristics
2, 3, 5 by substituting s1 in the quintic polynomial and eliminating common factors.
It should be understood that we always work with such a proper model of the pencil
in the sequel.

The above pencil (albeit without the extra factor) was studied by Barth in order
to find a quintic with 15 three-divisible cusps [4] and smooth quintics with many
lines [5]. For the convenience of the reader we list below the facts from [4,5] that we
will use in the sequel. All of them can be verified by straightforward computation
(possibly with help of a computer program); related properties also appear in [17]
(see Remark 2.4).

Observe that if we denote by B10 (respectively B15) the curve in P4 given by
s1 = s5 = s2 = 0 (respectively s1 = s5 = s3 = 0), then the base locus of the pencil
in question is the curve B10 [ B15. One can check by direct computation that the
curve B15 consists of the 15 lines

xi1 = xi2 + xi3 = xi4 + xi5 = 0, (2.2)
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where i1, i2, i3, i4, i5 are pairwise different, i.e. {i1, i2, i3, i4, i5} = {0, 1, 2, 3, 4}.
Similarly, the curve B10 is the union of the five conics Ci1 (smooth outside charac-
teristic 2)

xi1 = x2i2 + x2i3 + x2i4 + xi2xi3 + xi2xi4 + xi3xi4 = s1 = 0. (2.3)

Therefore, the plane xi1 = s1 = 0 meets the base locus along the three lines (2.2)
and the conic (2.3). In particular, the four curves are the only components of inter-
section of the plane xi1 = s1 = 0 with an irreducible quintic S that belongs to the
pencil. The general member of the pencil {S�} is smooth. Outside characteristics
3, 13, 17 this can be checked with the Jacobi criterion aplied to the special member
at � = 0. Below we work out all singular values of � following [5,17] independent
of the characteristic.

Lemma 2.1. S� is non-smooth exactly for � 2

n
�1,�3

2 ,�
51
50 ,�

13
25 ,�

1
2 ,1

o
.

Proof. OverC the lemma has been proved in [17, Section 3]. Using this it is easy to
check that S� is singular at the given values for � independent of the characteristic.
Thus it remains to prove that for neither p there are other singular parameters �
modulo p. For this purpose, we follow the argument in [17] fairly closely and
switch to the representation of our pencil as hypersurface {s1 = 0} in the Dwork
pencil:

Ft = s5 � 5t x0 · · · x4.

Intersected with {s1 = 0}, this reduces to 5
6s2 · s3 = 0 at t = 1, so the parameters

�, t are related by
� =

t
1� t

, t =

�

� + 1
.

The corresponding singular values for t are
n
�1, 1, 3, 51,�13

12 ,1
o
. By the Jacobi

criterion S� is singular if all partial derivatives of Ft are equal. Independent of the
characteristic, it suffices to consider the partials of s1 and

x4i � t
Y
j 6=i

x j = @xi

 
s5 � s51 � 5t x0 · · · x4

5

!
|s1=0 (i = 0, . . . , 4).

In case of vanishing partial derivatives, one easily rules out xi = 0 for all i =

0, . . . , 4. In the affine chart x0 = 1 the partials then return

1 = t x1 · · · x4, x4i = t
Y
j 6=i

x j (i = 1, . . . , 4)

which readily implies x5i = 1 for each index i . Over C, the hypersurface condition
s1 = 0 then requires that the xi run through the full set of fifth roots of unity, so
that in particular t = 1, one of the singular parameters. In characteristic p ⌘ 2, 3
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mod 5 the same argument goes through without modification. For p ⌘ 4 mod 5,
one uses the fact that for a primitive fifth root of unity ⇣ 2 Fp2 we have ⇣ + ⇣�1

2

Fp. Hence the condition s1 = 0 breaks down into 4 cases which can be shown to
give no solution for any p except for the above ones. Finally for p ⌘ 1 mod 5,
a case-by-case analysis using the norm of Q(⇣ )/Q reveals three possibilities of
additional singularities: they occur at t = 3, 9 for p = 11 and at t = 10 for
p = 41. By inspection, each value arises from some singular parameter over Q via
reduction, so there are no additional singular parameters modulo p. This settles the
case of all partial derivatives vanishing.

The case of equal non-zero partial derivatives can be treated completely analo-
gously to [17]. For shortness we omit the details, but it is easily checked that there
are no further singular parameters.

For the special quintic with 75 lines we introduce the following notation:

a := �

2
b + 2

, where b4 � b3 + 1 = 0. (2.4)

Throughout the paper Sa stands for the surface given by (2.1) with � = a (over C
unless specified otherwise). In the sequel we shall often write S instead of S� when
there is no ambiguity from the context. By Lemma 2.1, the surface Sa is smooth
over C (for positive characteristic see Corollary 4.4). One directly verifies that Sa
contains the line

span({(1 : �1 : b : �b : 0), ((b � 1) : 1 : �(b � 1) : 0 : �1)}), (2.5)

with b given by (2.4). In fact, theS5-action endows Sa with 60 lines obtained from
(2.5) by virtue of the symmetries. With the 75 complex lines at hand, we already
have a good portion of divisors on Sa . Our main result for this paper is:

Theorem 2.2. Over C, the quintic Sa has Picard number 41.
Remark 2.3. To the best of our knowledge, the Picard number 41 of Sa gives a
new record among smooth complex quintics. In comparison, Picard numbers 43
and 45 have so far only been realised by desingularisations of quintics with rational
double point singularities in [11]. The previous record of 37 was attained by the
Fermat quintic, so Theorem 2.2 also gives an alternative way to see that Sa and
the Fermat quintic surface cannot be isomorphic over C. In fact the surfaces differ
also in another respect: the Fermat quintic has NS generated by lines (even over Z
by [13]) while any basis of NS(Sa) includes some other divisor class that will be
made visible in the proof of Lemma 3.2.

The proof of Theorem 2.2 proceeds in two steps. First we derive the lower
bound ⇢(Sa) � 41 by exhibiting a suitable quotient surface Q of S by a cyclic
group of order 5 (a Godeaux surface studied in section 3). Then we establish the
upper bound ⇢(Sa)  41 through a quotient surface X that is K3 in section 4.
Here we use reduction modulo different primes and the Artin-Tate conjecture in a
technique following van Luijk [16] and Kloosterman [6].
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Remark 2.4. For K = C the pencil {S�} has also been studied in [17]. By [17,
Thm 1.2] the pencil in question contains (up to Galois conjugation) exactly three
smooth surfaces that carry a line other than those from B15 given by (2.5). More-
over, no quintic in the pencil (2.1) contains more than 75 lines and the surface Sa
is the unique (up to Galois conjugation) element of the pencil which carries the
maximal number of lines. We will not use that result in the sequel, but it certainly
motivates our interest in the quintic Sa .

3. Lower bound – Godeaux quotient

In this section we derive the lower bound ⇢(Sa) � 41 (Lemma 3.2). At first we
exhibit a Godeaux surface Q that arises from S as a quotient by a cyclic group of
order 5 acting without fixed points. Then a close examination of the 75 lines on Sa
and their images under the quotient map implies the inequality in question.

Consider the automorphism R : P4 ! P4 defined as

R(x0 : x1 : x2 : x3 : x4) := (x4 : x0 : x1 : x2 : x3).

Outside characteristic 5, R has five fixed points: (1 : "k5 : "2k5 : "3k5 : "4k5 ) where
k 2 {0, 1, 2, 3, 4} and "5 6= 1 is a root of unity of order five. Clearly each member
of the pencil {S�} is invariant under R, so we can restrict R to S� and compute the
fixed points. One directly sees that sl(1, . . . , "4k5 ) = 0 for all k 6= 0 and 5 - l,
whereas s5l(1, . . . , "4k5 ) = sl(1, . . . , 1) = 5 for each k and l. In conclusion none of
the fixed points of R belong to S� for any � 2 K . In characteristic 5, there is only
one fixed point (1 : 1 : 1 : 1 : 1) which is easily verified to lie outside any quintic
S�: upon subsituting s1 for x4, the relevant polynomial modulo 5 is

x50 + . . . + x53 � (x0 + . . . + x3)5

5
which evaluates as �4 · 51 6⌘ 0 mod 5.

The automorphism R generates a subgroup C5 ⇢ S5 ⇢ Aut(S). Assume
that the quintic S is smooth (or replace it by the minimal desingularisation if it is
non-degenerate, i.e. it has only rational double points as singularities), then

the quotient surface Q := S/C5 is smooth. (3.1)

We thus obtain a Godeaux surface. If char(K ) 6= 5, we can almost verbatim repeat
the considerations of [3, Example 9.6.2] to show that Q is a minimal surface of
general type with Pic⌧ (Q) ⇠

= Z/5Z and the following invariants:

h1(OQ) = h2(OQ) = 0, and K2Q = 1. (3.2)

In characteristic 5, however, the invariants differ as Q is a non-classical Godeaux
surface with Pic⌧ (Q) ⇠

= µ5. Namely, because C5 ⇠
= Z/5Z, one finds as in [8]

h1(OQ) = h2(OQ) = K2Q = 1.
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Remember that S0 has a smooth model in characteristic 5. As opposed to the im-
plicit result of [8], this yields an explicit non-classical Godeaux surface in charac-
teristic 5:

Proposition 3.1. In characteristic five, Q0 is a non-classical Godeaux surface.
We shall now turn to the Picard group of the special quintic Sa . Our previous

considerations put us in the position to derive a geometric lower bound for the
Picard number. We state the result here only over C. The argument goes through
without essential modifications in positive characteristic as well, but there we will
derive better bounds in conjunction with the Tate conjecture (see Remark 3.3 and
Corollary 4.9).

Lemma 3.2. Over C the following inequality holds

⇢(Sa) � 41.

Proof. The surface Sa carries the 15 lines (2.2). Moreover, it contains the 60 lines
obtained by the action of symmetries on the line (2.5). Let M be the Gram matrix
of the 75 lines in question. By direct computation we obtain

rank(M) = 40 and hence ⇢(Sa) � 40.

Observe that both OSa (3) and the divisors 3Ci , where i = 0, . . . , 4, lie in the span
of the 75 lines (see section 2), so there are no other obvious independent curves on
Sa .

In order to prove that actually ⇢(Sa) � 41, we consider the Godeaux surface
Qa and the quotient map

⇡ : Sa ! Qa.

By (3.2) and Noether’s formula, we compute the topological Euler number (or
Euler-Poincaré characteristic) e(Qa) = 11. Since we work over C, equality (3.2)
implies in terms of the Hodge decomposition

b2(Qa) = h1,1(Qa) = 9.

Then Lefschetz’ theorem on (1, 1)-classes yields

⇢(Qa) = b2(Qa) = 9.

Pulling back divisors to Sa via ⇡⇤, we find that

rank
⇣
NS(Sa)R

⇤
=1
⌘

= 9. (3.3)

We shall now compare with the contribution from the lines which come in 15 R-
orbits. Let L , L 0 be two of the 75 lines on Sa . Then intersection numbers on Qa are
given by

⇡(L).⇡(L 0) =

1
5

 
4X
i=0

Ri (L)

!
.

 
4X
i=0

Ri (L 0)

!
= L .

 
4X
i=0

Ri (L 0)

!
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Thus we can compute the Gram matrix N of the 15 divisors on Qa that are the
images of the 75 lines on Sa under the quotient map ⇡ . A direct computation gives

rank(N ) = 8, disc(N ) = �2. (3.4)

Comparing with (3.3) we deduce that there is an R⇤-invariant divisor class D 2

NS(Sa) which is not contained in the Q-span of the 75 lines. This implies that
⇢(Sa) � 41 as claimed.

Remark 3.3. a) In positive characteristics where Sa is smooth, exactly the same ar-
gument goes through after liftingQa toCwhich implies the analogous (in)equalities
(or use reduction modulo p). Those characteristics where Sa attains singularities re-
quire some extra care.
b) K3 quotients and the Tate conjecture will allow us to derive better, and in fact
precise estimates for the Picard numbers ⇢(Sa ⌦

¯Fp) regardless of the (rational
double point) singularities (Corollary 4.9, Remark 4.10).
Remark 3.4. Alternatively, one could argue with the induced action of R on the
holomorphic 2-form over C. As we will infer in (4.3), this implies that the tran-
scendental lattice T (S) generally has 4-divisible rank. Consequently ⇢(S) ⌘ 1
mod 4, so that for Sa our lower bound ⇢ � 40 coming from the lines on Sa auto-
matically improves to the bound of Lemma 3.2. In our eyes, the given proof has
two advantages: relative independence of the characteristic (as sketched in Remark
3.3.a)) and a constructive nature which we will exploit in some detail in Section 5
in order to compute NS(Sa) up to index 2i , i  4.

4. Upper bound – quotient K3 surface

4.1. In order to complete the proof of Theorem 2.2 it remains to establish the upper
bound ⇢(Sa)  41 overC. Here we shall crucially use theS5 action on the complex
surface S = S�. Consider the transcendental part T (S) of H2(S) obtained as the
orthogonal complement of NS(S) with respect to the intersection pairing given by
cup product. This can be understood as a lattice, as a Hodge structure or as a Galois
representation. The Hodge structure is directly related to the regular 2-forms on
S, hence we study the action of S5 on H2,0(S). Using the isomorphism (over any
field k)

H2,0(S) ⇠
= H0(KS) = H0(OS(1)) ⇠

= k[x0, . . . , x3](1) ⇠
= k[x0, . . . , x4](1)/ks1,

one easily finds the irreducible representation ofS5 on H2,0(S) given by

S5 3 � : k[x0, . . . , x4](1)/ks1 ! k[x0, . . . , x4](1)/ks1 (4.1)
f 7! sgn(� ) � ⇤ f. (4.2)

Since the action ofS5 is defined over Q, we infer the splitting

T (S) = V 4 (4.3)
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for some irreducible Hodge structure V . Here V can be found as +1-eigenspace in
T (S) for any element � 2 S5 such that dim H2,0(S)� ⇤

=1
= 1. For instance, using

any involution of sign �1 in S5, V will appear on a K3 quotient X of S that we
exhibit below.

4.2. Recall the special member Sa . Since a quintic S has b2(S) = 53, we know by
Lemma 3.2 that T (Sa) has rank at most 12. On the other hand,

rank(T (Sa)) � 2pg(Sa) = 8

by Lefschetz’ theorem. The splitting T (Sa) = V 4a implies that T (Sa) has rank
4-divisible. Hence there are only two possibilities remaining:

rank(T (Sa)) = 8 or 12. (4.4)

Our goal is to prove that the latter alternative holds:

Lemma 4.1. On Sa over C, the Hodge structure T (Sa) has rank 12.

We shall prove the lemma by constructing a suitable K3 quotient Xa of Sa .
Before going into the details, we comment briefly on other possible approaches.
In a similar situation of a surface with S5 action in [14], the authors alluded to
modularity in order to rule out the analogous small rank alternative. This line of
argument does not apply here since Sa is not defined over Q. Instead one can use
the Artin-Tate conjecture to compare square classes of discriminants of reductions
modulo different primes. For Sa , however, this approach would always result in
perfect 4th powers due to the splitting (4.3). This is the main reason to switch to
a quotient surface of Sa that is a K3 surface (or any other surface of geometric
genus 1).

In order to prove Lemma 4.1 our first aim is to construct a quotient surface of
S that has geometric genus 1. As indicated above, the easiest way to achieve this
builds on an involution interchanging exactly two homogeneous coordinates, say

ı : S ! S
[x0, . . . , x4] 7! [x1, x0, x2, x3, x4].

Since ı⇤ fixes exactly one holomorphic 2-form on S up to scaling, we find

T (S)ı
⇤
=1

= V

for the Hodge structure V alluded to in (4.3).
The involution fixes the degree 5 curve {x0 = x1} on S and the isolated point

[1,�1, 0, 0, 0], yielding an A1 singularity on the quotient surface S/ ı . We intro-
duce the invariant coordinates

u = x0x1, v = x0 + x1.
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Then S/ ı is birationally given by the resulting equation in weighted projective space
P[1, 1, 1, 1, 2] with weighted homogeneous coordinates x2, x3, x4, v, u. Express-
ing x4 through s1 and setting affinely v = 1, we obtain the affine equation

S/ ı : (x3 + 1)(x2 + 1)(x2 + x3)(x22 + x2x3 + x2 + x3 + 1+ x23)(� + 1)
= (�x2x3 � � + �x22x3 + �x2x23 � 1)u + (� + 1)u2.

This realises S/ ı as a double sextic with rational double point singularities over the
affine x2, x3-plane. Hence its minimal projective resolution X is a K3 surface. By
construction, X carries the Hodge structure

T (X) = V, (4.5)

and the corresponding equality holds for Galois representations.
We can also interpret X as an elliptic surface over the affine x3 line, say. This

fibration has eight obvious sections induced by the lines on Sa; these are given by
the two roots of u at x2 = 0,�1,�x3,�1�x3. Converting to Weierstrass form, we
directly find a 2-torsion section; translation to (0, 0) yields the following equation
in the standard coordinates x = x2, t = x3:

X : u2 = x(x2 + A(t)x + B(t)) (4.6)

A = �2t4 � (4+ 8� + 2�2)t3 � (24� + 12+ 11�2)t2

�4(2� + 3)(1+ �)t � 4(1+ �)2

B = 16t (t + 1)(1+ �)2[(2� + 1)(t4 + t3) + (3� + 2)t2 + (2� + 2)t + 1+ �].

The discriminant reveals generally 6 singular fibres of type I2 in Kodaira’s notation
at the zeroes of B and a split-multiplicative fibre of type I4 at1.

4.3. Special K3 surface Xa

We shall now specialise to the quintic Sa and its K3 quotient Xa where a is given
by (2.4) as before. By (4.4) we know that the irreducible Hodge structure Va has
rank 2 or 3, so Xa has Picard number 19 or 20 over C by (4.5).
Proposition 4.2. The complex K3 surface Xa has Picard number 19.

In order to prove the proposition, we assume on the contrary that ⇢(Xa) =

20 and establish a contradiction by reducing modulo different good primes and
comparing the square classes of the discriminants of the Néron-Severi lattices by
virtue of the Artin-Tate conjecture. This method was pioneered in [16], refined
in [6] and applied in a similar context in [10].

To be on the safe side when applying the reduction method, we compute the
primes of bad reduction for Xa directly. This is easily achieved thanks to the elliptic
fibration which specialises from the pencil X�. On Xa it attains 8 singular fibres of
type I2, each of them defined over the ground field k(a) (in addition to the I4 fibre
at1). For the bad primes it suffices to study the degeneration of this fibration upon
reduction mod p, i.e. whether the types of singular fibers change upon reduction.
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Lemma 4.3. Xa has good reduction outside characteristics {2, 3, 5, 11, 17, 433}.

Proof. It is an easy exercise using the discriminant to verify that the types of singu-
lar fibres of the given elliptic fibration do not change outside the above character-
istics and 83, 151. In the latter two characteristics (and exactly for a 2 Fp coming
from the Fp-rational value of b from (2.4)), the fibration degenerates by merging
fibres of type I1 and I2 to a fibre of type I I I . In other words, the two nodes of the
I2 fibre come together without reduction causing a singularity. Thus Xa has good
reduction at all primes dividing 83 and 151, and the lemma follows.

On the quintic Sa , the above characteristics (except for 2) are visible directly
in terms of Lemma 2.1: the value of a coming from the Fp-rational root of (2.4)
equals some exceptional parameter for � from the lemma. This is all there is:

Corollary 4.4. Sa has good reduction outside characteristics {3, 5, 11, 17, 433}.

Proof. By Lemma 2.1 it suffices to check when a reduces to some singular param-
eter for �. That is, for each of these parameters over Q, we substitute the resulting
value of b in the equation (2.4) and compute the corresponding primes as claimed.
At the primes p | 2, we should note that any a from (2.4) reduces to zero modulo
p. Since S0 is smooth outside characteristics 3, 13, 17 by the Jacobi criterion, this
suffices to conclude the proof.

4.4. Proof of Proposition 4.2

As a preparation we recall the Lefschetz fixed point formula for Xa . Over some
finite field Fq (q = pe, p prime) containing a root a from (2.4), it returns with
some auxiliary prime `

#Xa(Fq) = 1+ tr Frob⇤

q(H
2
ét(Xa ⌦

¯Fp, Q`)) + q2.

On divisors, Frob⇤

q has eigenvalues ⇣ for roots of unity ⇣ . In particular, the trace
on the algebraic subspace inside H2ét(Xa ⌦

¯Fp, Q`(1)) spanned by NS(Xa ⌦
¯Fp)

via the cycle class map equals an integer. Presently ⇢(Xa ⌦
¯Fp) = 20 or 22 by

assumption, since ⇢ = 21 is ruled out by [1]. By the above considerations, any
non-congruence

#Xa(Fq) 6⌘ 1 mod q (4.7)

implies ⇢(Xa⌦ ¯Fq)  20. This non-congruence is easily verified at specific primes;
for instance, Table 4.1 shows ⇢(Xa ⌦

¯Fp)  20 for p = 19, 23 and the respective
choice of solution to (2.4) in Fp. Thus our assumption implies the equality ⇢(Xa ⌦

¯Fp) = 20, and in fact the validity of the Tate conjecture for Xa over any finite
extension of F19 and F23 (alternatively one can use the elliptic fibration with section
on Xa and appeal to [2]).
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Consider now some prime p such as p = 19, 23 where we can prove by the
above elementary means that ⇢(Xa⌦

¯Fp) = 20. Then the characteristic polynomial
of Frob⇤

q on H2ét(Xa ⌦
¯Fp, Q`) factors into a product of cyclotomic polynomials

(shifted by q) and a single quadratic factor

µq(T ) = T 2 � aqT + q2. (4.8)
where aq ⌘ #Xa(Fp) � 1 6⌘ 0 mod q. Moreover aq 2 {�2q, . . . , 2q} by the
Weil conjectures. Thus the parity of #Xa(Fq) modulo q predicts four possibilities
for the trace aq without any further knowledge about the Galois action on divisors.
(In fact the Galois action cannot be overly complicated since Sa contains numerous
non-trivial divisor classes over Fq , such as all components of the 8 I2 fibres and the
I4 fibre at1 and the infinite section inherited from the generic member.)

Eventually, we want to apply the Artin-Tate conjecture [15] to Xa; it is equiv-
alent to the Tate conjecture by [7], so it holds in the present situation. There is a
little complication in mimicing the technique from [16]: the Artin-Tate conjecture
for Xa/Fq allows us to read off the square class of the discriminant of NS(Xa⌦

¯Fp)

from the characteristic polynomial µq(T ) a priori only if NS(Xa ⌦
¯Fp) is actually

defined over Fq , i.e. generated by divisors defined over Fq . Presently this need not
hold over Fp. However, as µq(T ) is quadratic, there is a simple way to circum-
vent this problem and avoid computing explicitly the minimal extension Fq where
NS(Xa) is defined. For this purpose we introduce the following auxiliary general
result.
Lemma 4.5. Let X/Fq be a K3 surface with geometric Picard number 20. Con-
sider the characteristic polynomial µq(T ) as above. Let d 2 Z such that µq(T )

splits in Q(
p

d). Then the square class of the discriminant of NS(X ⌦
¯Fq) is given

by d.
Proof. Denote the roots of µq(T ) by ↵, ↵̄. We will need that ↵ does not equal q
times a root of unity. Equivalently the Tate conjecture holds for X , as checked for
Xa in conjunction with (4.7). For arbitrary X , assume to the contrary that ↵ takes
the shape q times a root of unity. Then X has infinite height, so it is supersingular
in Artin’s sense. On the other hand, X admits an elliptic fibration, induced by a
divisor class with square zero (this holds for any K3 surface with ⇢ � 5 since
then NS represents 0). But then ⇢ = 22 by [1, Thm. 1.7], giving the required
contradiction.

Next we claim that the splitting field of µq(T ) is stable under extension. To
see this, we compute µqe(T ) = (T � ↵e)(T � ↵̄e) for any e 2 N. Then we use that
↵e 62 Q by the above considerations.

As a consequence we can assume that q is chosen in such a way that NS(X ⌦

¯Fq) is already defined over Fq2 , so that D = disc(NS(X ⌦
¯Fq)) = disc(NS(X ⌦

Fq2)). Note that D < 0 by the Hodge index theorem. The Artin-Tate conjecture
[15] then predicts that the square class of �D is given by µq2(T ) evaluated at
T = q2 up to a factor of q:

2q2 � aq2 = �M2D. (4.9)
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Here M2 is the size of the Brauer group of X over Fq2 . Generally we have aq2 =

a2q � 2q2, so (4.9) simplifies as

4q2 � a2q = �M2D. (4.10)

But this is equivalent to the splitting field of µq(T ) being exactly Q(
p

D).

Remark 4.6. As in [10] one can also deduce that q splits into two principal ideals
in Q(

p

D). In other words, if q = pe, then the prime factors of p have order
dividing e in the class group Cl(Q(

p

D)) which gives a severe restriction on e.

Now let us return to our specific K3 surface Xa . Counting points over Fp for
p = 19, 23 we infer from Table 4.1 that ⇢(Xa ⌦

¯Fp) = 20 at both primes by the
congruence argument from (4.7).

p #Xa(Fp) ap D
19 676 29 �67

10 �21
�9 �29 · 47
�28 �3 · 5 · 11

23 924 26 �10
3 �43

�20 �3 · 11 · 13
�43 �3 · 89

Table 4.1. Possible discriminants of NS(Xa ⌦
¯Fp).

Recall the original assumption ⇢(Xa ⌦
¯Q) = 20 and consider the isometric special-

isation embedding induced by reduction modulo some good prime p:

NS(Xa ⌦
¯Q) ,! NS(Xa ⌦

¯Fp). (4.11)

Presently our assumption implies that at p = 19, 23 the embedding (4.11) has finite
cokernel. In consequence, the square classes of all three Néron-Severi lattices under
consideration coincide. But then by Table 4.1 this is impossible for p = 19 and 23
thanks to Lemma 4.5 since no two possibilities for D match. Hence we reach the
desired contradiction. This concludes the proof of Proposition 4.2.

4.5. Proof of Lemma 4.1 and Theorem 2.2

From Proposition 4.2 together with the splitting (4.3) we directly deduce Lem-
ma 4.1. Theorem 2.2 follows immediately in conjunction with Lemma 3.2.
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4.6. Remark on the Tate conjecture for the pencil {S�}

It is common to infer the Tate conjecture for a surface from its validity for some
cover (cf. [7]). Here we reverse this argument and verify the Tate conjecture for
the quintics S through K3 quotients. A similar technique was applied in [12], but
the situation here is more complicated since the surfaces in question have different
geometric genus.

Proposition 4.7. The Tate conjecture holds true for any smooth quintic S in the
pencil {S�} over any finite field.

Proof. Let k denote some finite field such that S ⌦ k is smooth. We shall make use
of the Galois-equivariant comparison isomorphism

H2ét(S ⌦
¯Q, Q`) ⇠

= H2ét(S ⌦ k̄, Q`). (4.12)

In view of the decomposition of Galois representations

H2ét(S ⌦
¯Q, Q`) = (T (S) ⌦ Q`) � (NS(S) ⌦ Q`(�1)), (4.13)

the Tate conjecture is valid on the image of NS(S) ⌦ Q`(�1). By (4.13) it remains
to study the image of T (S) ⌦ Q` inside H2ét(S ⌦ k̄, Q`). The main idea here is that
this possibly non-algebraic part is governed by K3 surfaces as follows.

By (4.1), there is no non-zero 2-form in H2,0(S) anti-invariant under each
involution in S5 of sign �1. In detail, it suffices to consider the involutions inter-
changing x0, xi for i = 1, . . . , 4. It follows that the invariant Galois representations
V ⌦ Q` for these 4 involutions cover all of T (S) ⌦ Q` = (V ⌦ Q`)

4. In conse-
quence, all of T (S) ⌦ Q` can be realised via pull-back from the corresponding K3
quotients which are all isomorphic to X . As this K3 surface admits an elliptic fibra-
tion with section (4.6), the Tate conjecture holds for X by [2]. Pulling back divisors
from X to S via the various quotient maps, we infer that the Tate conjecture holds
for S.

Remark 4.8. The same argument works for the desingularisation of any singular ir-
reducible member of the pencil which lifts to a quintic over ¯Qwith the same config-
uration of singularities. The only quintics where this fails ((�, p) = (0, 3), (4, 11),
(6, 13)) can be covered by hand. Subsequently the Tate conjecture can also be
verified for the singular members of the pencil themselves where we compare the
Picard number with the number of poles of the zeta function in its original definition
as exponential sum involving numbers of points

We can use the Tate conjecture to compute the Picard number of Sa in any
characteristic. In general, there are two alternatives for the Picard number as we
indicate below. Here we only have to rule out that Sa becomes reducible mod p
(for the singular case see Remark 4.10). This happens exactly in characteristic 5 for
the F5-rational root of (2.4). Characteristic 2 also plays a special role, as we shall
exploit in Section 5.
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Corollary 4.9. Let p 6= 2 be a prime and a 2 Fq ⇢
¯Fp given by a root of (2.4)

such that Sa ⌦
¯Fp is smooth. Then

⇢(Sa ⌦
¯Fp) =

(
45, if #Sa(Fq) 6⌘ 1 mod q,

53, if #Sa(Fq) ⌘ 1 mod q.

Proof. Since the Tate conjecture holds for Sa/Fq , it suffices to compute the charac-
teristic polynomial �q(T ) of Frobq on H2ét(Sa ⌦

¯Fp, Q`). Presently we have

�q(T ) = (T � q)40(T ⌥ q)� 0

q(T )4

where the first two factors come from the lines and the extra generator of NS(Sa ⌦

¯Q) and the last corresponds to T (Sa). That is, the degree 3 polynomial � 0

q(T )
comes from the motive V of the K3 surface Xa . Thus it takes the shape

� 0

q(T ) = (T ⌥ q)(T 2 � aqT ± q2)

where the sign alternative �q2 may only persist if aq = 0. In particular,

⇢(Xa ⌦
¯Fp) =

(
20, if aq 6⌘ 0 mod q,

22, if aq ⌘ 0 mod q.
(4.14)

By Proposition 4.7 the corresponding statement for Sa reads

⇢(Sa ⌦
¯Fp) =

(
45, if aq 6⌘ 0 mod q,

53, if aq ⌘ 0 mod q.

In order to translate to the number of points, we apply the Lefschetz fixed point
formula to find

#Sa(Fq) = 1+ 40q ± q + 4(aq ± q) + q2. (4.15)

Outside characteristic 2, the congruence for aq is equivalent to that for #Sa(Fq)
from the corollary.

Remark 4.10. With minor modifications the same arguments apply to the desingu-
larisations of the singular irreducible quintics Sa/Fp at p 2 {3, 11, 17, 433}.

In practice it is often easier to use the condition (4.14) involving the quotient
K3 surface. For instance, it follows directly from Table 4.1 that

⇢(Sa ⌦
¯Fp) = 45 for p = 19, 23.

In fact, the condition on the K3 quotient can also be used in characteristic 2 where
(4.15) does not prove useful because of the extra factor of aq . Alternatively we
can pursue a different approach in characteristic 2 based on the fact that Sa reduces
to S0 modulo 2. In consequence there are additional lines on the reduction. This
approach will feature in the next section as it proves very useful for the computation
of the actual lattice NS(Sa) up to small index.
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5. NS(Sa) up to index 16

We conclude the paper by computing NS(Sa) up to finite index (actually a 2-power
at most 16). To this end we are concerned with the R⇤-invariant divisor class D
from Section 3 which complements the 75 lines to generate NS(Sa) over Q by the
proof of Lemma 3.2. In fact, though we will not exhibit this divisor class on Sa
over C, we will still pursue an explicit approach suggested by Reid in [9], albeit in
a highly degenerate situation in positive characteristic.

Following [9], the main idea to find D is to consider elliptic curves of degree
5 on Sa (or generically on S�) which are invariant under the order 5 automorphism
R. These elliptic curves are given as suitable intersection of the cubics on which
R⇤ acts by the fifth roots of unity (cf. [9, page 362]). Presently, the computations
become too involved not only on the generic surface S�, but also on Sa itself. We
remedy this by considering the reduction of Sa mod 2 which is S0 ⌦ F2. Here the
system of equations simplifies enough to solve them directly. However, the degree
5 divisors D thus obtained are reducible as they decompose into 5 lines on S0 ⌦ F4
which separately only lift to S�2 over C.

Indeed in characteristic 2, the quintic Sa ⌦ F4 contains 60 additional lines.
Following [17] these can be given asS5-orbits of

x0 + x1 = x2 + !x3 = 0

and

`2 : x0 + x1 � !2x4 = x0 + x2 � !x3 = 0 (5.1)

where ! denotes a primitive third root of unity. With a machine it is easily verified
that the Gram matrix of the 135 lines in total has rank 53. Thus Sa is supersingular
in characteristic 2, and in fact ⇢(Sa ⌦ F16) = 53.

Letting R denote a permutation of order 5 in S5 ⇢ Aut(Sa) as before, we
define an R-invariant divisor on S0 ⌦ F4 by

D2 =

4X
i=0

Ri`2.

Lemma 5.1. The divisor class of D2 inNS(S0⌦ ¯F2) lifts to Sa to generateNS(Sa)⌦
Q together with the 75 lines.

Proof. Essentially the lemma amounts to a computation on the Godeaux surface
Xa ⌦ F16. Consider the subgroup N 0

⇢ NS(Xa ⌦ F16) generated by ⇡(D2) and
the 15 images of the 75 lines on Sa ⌦ F16 specialised from characteristic zero. An
easy computation reveals that the Gram matrix of N 0 has rank 9 and determinant 1.
Hence N 0 equals NS(Xa ⌦

¯F2) up to torsion, and in particular D2 is independent of
the 75 lines in NS(Sa ⌦

¯F2).
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For the lifting, consider the commutative diagram

NS(Xa) ,! NS(Xa ⌦
¯F2)

# #

NS(Sa) ,! NS(Sa ⌦
¯F2)

where the horizontal embeddings are induced by reduction mod 2 and the vertical
maps are given by pull-back. By Poincare duality, the lattice

Num(Xa) = NS(Xa)/(torsion)

is unimodular. Since N 0 induces a unimodular sublattice of Num(Xa ⌦
¯F2), we

deduce that the top line embedding is in fact an isomorphism (a priori up to torsion).
But then the divisor class D2 2 NS(Sa ⌦

¯F2) lifts to Sa the long way around
the diagram: via its image ⇡(D2) in Xa ⌦ F4, the above isomorphism and pull-
back.

Denote the lift of D2 in NS(Sa) by D. Together with the 75 lines D generates
a sublattice M 0

⇢ NS(Sa) of finite index by Lemma 5.1. We claim that this is at
most a small 2-power away from the full Néron-Severi lattice:

Proposition 5.2. [NS(Sa) : M 0
] = 2i for some i 2 {0, . . . , 4}.

Proof. One easily verifies (on Sa ⌦ F16 !) that M 0 has rank 41 and discriminant

disc(M 0) = 28 · 34 · 5 · 114.

Hence there could only be 2, 3 or 11-divisibility in M 0. To rule out the latter two
alternatives, we apply the supersingular reduction technique developed in [13] at
p = 2. In the sequel we give a brief sketch of the argument.

We start with a Z-basis B of M 0, considered on Sa ⌦
¯F2 by reduction. Then we

supplement B by 12 additional lines on Sa ⌦ F4 for a Q-basis B2 of NS(Sa ⌦
¯F2).

This furnishes us with a sublattice M2 ⇢ NS(Sa ⌦
¯F2) of rank 53 and discriminant

216 · 52. Immediately this shows that there cannot be any elements in M 0 which be-
come 3 or 11-divisible in NS(Sa) since then these primes would necessarily appear
in the discriminant of M2 as well. Hence [NS(Sa) : M 0

] = 2i for some i  4.
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[11] M. SCHÜTT, Quintic surfaces with maximum and other Picard numbers, J. Math. Soc.

Japan 63 (2011), 1187–1201.
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