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The integrability of negative powers of the solution
of the Saint Venant problem

ANTHONY CARBERY, VLADIMIR MAZ’YA, MARIUS MITREA

AND DAVID RULE

Abstract. We initiate the study of the finiteness condition
Z
�
u(x)�� dx  C(�,�) < +1

where � ✓ Rn is an open set and u is the solution of the Saint Venant problem
1u = �1 in�, u = 0 on @�. The central issue which we address is that of deter-
mining the range of values of the parameter � > 0 for which the aforementioned
condition holds under various hypotheses on the smoothness of � and demands
on the nature of the constant C(�,�). Classes of domains for which our anal-
ysis applies include bounded piecewise C1 domains in Rn , n � 2, with conical
singularities (in particular polygonal domains in the plane), polyhedra in R3, and
bounded domains which are locally of class C2 and which have (finitely many)
outwardly pointing cusps. For example, we show that if uN is the solution of
the Saint Venant problem in the regular polygon �N with N sides circumscribed
by the unit disc in the plane, then for each � 2 (0, 1) the following asymptotic
formula holds:

Z
�N

uN (x)�� dx =

4�⇡
1� �

+O(N��1) as N ! 1.

One of the original motivations for addressing the aforementioned issues was the
study of sublevel set estimates for functions v satisfying v(0) = 0, rv(0) = 0
and 1v � c > 0.
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1. Introduction

1.1. Background

Suppose that u is a positive superharmonic function defined in an open, bounded
subset � of Rn , i.e.

1u  0 and u > 0 in �. (1.1)

Two issues which have received a considerable amount of attention in the literature
are:

(i) proving lower pointwise bounds for u in terms of powers of the distance func-
tion to the boundary, and

(ii) establishing the membership of u to the Lebesgue scale L p(�), 0 < p  1.

See, for example, [2, 3, 6, 7, 28–30, 32, 37] and the references therein. We wish to
highlight two aspects of the philosophy that has emerged from these studies. First,
granted a certain degree of reasonableness of the underlying domain, for superhar-
monic functions, positivity always entails a quantitative version of itself, in the form
of the estimate

u(x) � C(�, u) ��(x)↵, for all x 2 �, (1.2)

where C(�, u) > 0 is a constant depending on u and �, for some exponent ↵ =

↵(�) � 1 independent of u. Here and elsewhere, for an arbitrary set � ✓ Rn , we
have denoted by �� the (Euclidean) distance to its boundary, i.e.,

��(x) := dist (x, @�), 8 x 2 Rn. (1.3)

The second aspect alluded to above is that there is a common integrability threshold
for the entire class of positive superharmonic functions in the sense that

Z
�
u(x)p dx < +1, (1.4)

for some integrability exponent p = p(�) > 0 independent of the positive super-
harmonic function u in �.

The specific nature of the exponents ↵(�) and p(�) is dictated by the degree
of regularity exhibited by �. For example, (1.2) has been proved for ↵ = 1 in a
suitable subclass of the class of domains satisfying a uniform interior ball condition
which, in turn, contains the class of bounded C2 domains, by Kuran in [28], and
for bounded planar Jordan domains with a Dini-continuous boundary by Kuran
and Schiff in [29]. On the other hand, the lower bounds for the Green function
established in [30] for Lipschitz domains also lead to estimates of the type (1.2),
typically for exponents larger than one.
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As far as (1.4) is concerned, in the case when � ✓ Rn is a bounded C1 do-
main, Armitage [2, 3] has proved that (1.4) holds for any positive superharmonic
function u in �, granted that 0 < p < n/(n � 1). This result has been subse-
quently extended by Maeda and Suzuki in [30] to the class of bounded Lipschitz
domains for a range of p’s which depends on the Lipschitz constant of the domain
in question, in such a way that p % n/(n�1) as the domain is progressively closer
and closer to being of class C1 (i.e., as the Lipschitz constant approaches zero).
Further refinements of this result, in the class of John domains and Hölder domains
(in which scenario p is typically small), have been studied, respectively by Aikawa
in [6] and by Stegenga and Ullrich in [37].

1.2. Overview and motivation

In this paper we are concerned with the validity of (1.4) for negative values of the
integrability exponents, in the case when u is a positive function with1u < 0 in�.
A case in point is the solution of the Saint Venant problem1 (cf., e.g., [8, 13, 14])

(
1u = �1 in �,

u = 0 on @�,
(1.5)

and the question which makes the object of our study is that of determining the
range of values of the parameter � > 0 for which an estimate of the form

Z
�
u(x)�� dx  C(�,�) < +1 (1.6)

holds, under various conditions on � and demands on the nature of the constant
C(�,�). Cases of special interest include the class of nontangentially accessi-
ble domains satisfying an inner cone condition (which includes the class of Lip-
schitz domain) in Rn , polygonal domains in R2, polyhedral domains in R3, as
well as piecewise smooth domains with conical and cuspidal singularities. SinceR
� u(x)

�� dx is entirely determined by the domain � and the parameter �, we
shall occasionally refer to this number as the “�-integral of �.”

Aside from its relevance in potential theory, the problem (1.5) plays a signif-
icant role in elasticity theory. For example, the torsional rigidity coefficient of �,
originally defined as

P(�) := sup
06=w2C1

0 (�)

⇣Z
�

|w| dx
⌘2⇣Z

�
|rw|

2 dx
⌘

�1
(1.7)

1 For definiteness, a unique solution will exist, say, in W1,2
0 (�) when � is a bounded open set

(see §2). Much of our analysis will apply in the more general setting where we assume that
1u  �Cn in �, with Cn being a positive dimensional constant.



468 ANTHONY CARBERY, VLADIMIR MAZ’YA, MARIUS MITREA AND DAVID RULE

turns out to be

P(�) =

Z
�
u dx =

Z
�

|ru|2 dx, (1.8)

where u is the solution of (1.5) (cf. the discussion in [8, 12, 24]).
Our interest in the estimate (1.6) was originally motivated by problems in har-

monic analysis concerning sublevel set estimates for a real-valued, strictly convex
function of class C2 defined in an open, convex set � ✓ Rn . (It is thus also related
to the behaviour of oscillatory integrals; cf. [9,10,39].) It this vein, we recall that it
has been shown in [9] that there exists a finite dimensional constant C = Cn > 0
with the property that, with |E | denoting the Lebesgue measure2 of a Lebesgue
measurable set E ,

|�|  Ckvk
n/2
L1(�), (1.9)

provided that, in addition to the already mentioned properties, the Hessian of the
function v satisfies

det
h⇣ @2v

@xi@x j

⌘
1i, jn

i
� 1 on �. (1.10)

As noted in [9], if v is also nonnegative, then by applying (1.9) with {x 2 � :

v(x) < t}, t > 0, in place of � we obtain the sublevel set estimate
��
{x 2 � : v(x) < t}

��
 C tn/2, t > 0. (1.11)

On the other hand, granted (1.10), the arithmetic-geometric mean inequality gives

1v/n �

�
det((@i jv)1i, jn)

�1/n
� 1. (1.12)

Hence, it is natural to ask, what happens with (1.9) if we only knew 1v � n? Is it
reasonable to expect to still have such an estimate which, by the same procedure as
above, would then lead to a sub-level set estimate similar to (1.11)? If so, what is
the nature of the constant C in (1.11) in this more general situation?

We wish to elaborate on this point and, in particular, make it more transpar-
ent how condition (1.6) for the solution of (1.5) comes into play. To set the stage,
assume that v is a real-valued, strictly convex function v of class C2 in a neighbour-
hood of the origin in Rn and which is normalised so that

v(0) = 0, rv(0) = 0. (1.13)

Next, fix a (small) threshold t > 0, define

� := {x : v(x) < t} ✓ Rn, (1.14)

2 Later on, we shall also occasionally use the notation Ln(E) in place of |E |.



NEGATIVE INTEGRABILITY AND THE SAINT VENANT PROBLEM 469

and, from now on, restrict v to the open convex set�. To continue, denote by G the
region of space in Rn+1 lying directly above the graph of the function v and below
the n-dimensional horizontal plane xn+1 = t , i.e.,

G := {(x, xn+1) 2 Rn
⇥ R : x 2 � and v(x) < xn+1 < t}. (1.15)

In order to estimate |G|, the (n+1)-dimensional Lebesgue measure of G, let u solve
the auxiliary problem (1.5). We then have

|G| =

Z
�
(t � v(x)) dx =

Z
�
(v(x) � t)(1u)(x) dx =

Z
�
(1v)(x)u(x) dx,(1.16)

after integrating by parts and using the fact that both u and v � t vanish on @�.
Using this formula, for given � 2 (0, 1/2) we may then compute (making use of
the obvious inequality |G|  t |�|)

Z
�
(1v)� dx =

Z
�

�
(1v)u

�� u�� dx



⇣Z
�
(1v)u dx

⌘� ⇣Z
�
u�� /(1�� ) dx

⌘1��
(1.17)

= |G|
�
⇣Z
�
u�� /(1�� ) dx

⌘1��

 t� |�|
�
⇣Z
�
u�� /(1�� ) dx

⌘1��
,

hence Z
�
(1v)� dx  kvk

�
L1(�)|�|

�
⇣Z
�
u�� dx

⌘1��
, (1.18)

where have set � :=
�
1�� 2 (0, 1). Note that in the case in which
Z
�
u(x)�� dx  C� |�|

1�2�/n, (1.19)

this analysis gives
Z
�
(1v)�  C� kvk

�
L1(�) |�|

1� 2�
n . (1.20)

The upshot of this analysis is that by using the weaker condition 1v � n (in place
of the quantitative non-degeneracy of the Hessian matrix for v, as in (1.10)), one
deduces from (1.20) that

n� |�|  C� t� |�|
1�2� /n, (1.21)
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which leads to

|{x : v(x) < t}|  D tn/2, t > 0, (1.22)

with D depending only on the dimension n. This is of course contingent upon
(1.20) holding for some � 2 (0, 1/2) (possibly depending on n) with the constant
C� (which is related to C� from (1.19) via C� = (C�)1�� ) being independent of
the parameter t .

However, we cannot expect an inequality such as (1.22) to hold for an arbi-
trary strictly convex v, defined on a convex domain containing 0, which satisfies
(1.13). For example consider, for small ✏, the function v✏(x) = x21 + ✏x22 defined
on R2, for which (1.22) is easily seen to fail. Upon reflection, this is related to the
fact that inequality (1.20), considered for arbitrary convex domains � and strictly
convex v defined on �, is dilation invariant, but, unlike its counterpart for the Hes-
sian problem, is not affine invariant. Thus we cannot expect inequality (1.19) to
hold uniformly over all convex domains �, and indeed at the end of Section 3 we
demonstrate this explicitly. On the other hand, Proposition 2.15 below shows that
for convex sets � containing the unit ball and contained in some dimensional mul-
tiple of the unit ball, (1.19) does hold for � < 1/2. While it is not clear whether
(1.19) holds for such sets � for all � < 1 with a constant depending only on � and
n, related results (in the two-dimensional setting) are obtained in Theorem 4.7 and
Proposition 4.9 below.

1.3. Description of results and layout of the paper

The discussion in Section 1.1–Section 1.2 highlights the significance of the problem
(1.5) as well as the relevance of the finiteness condition (1.6). Note that the solution
u of (1.5) satisfies 1/u 2 L1

loc(�), so the finiteness condition in (1.6) is related to
the rate at which u vanishes on the boundary. While, from this point of view, a
pointwise lower bound such as (1.2) provides, in principle, a venue for deducing an
estimate of the form (1.6), the range of negative integrability exponents obtained by
such a method is typically far from optimal, so a number of new ideas are required.
A succinct summary of our main results is as follows:

Theorem 1.1. The �-integral associated with a bounded domain � ✓ Rn is finite
in any of the following situations:

(i) � 2 (0, 1) and � is a bounded piecewise C1 domain in Rn , n � 2, with
conical singularities;

(ii) � 2 (0, 1) and � is a polyhedron in R3;
(iii) � 2 (0, 1) and � ✓ Rn , n � 2, is a bounded domain, locally of class C2 and

which has an outwardly pointing cusp at 0 2 @�. Specifically, it is assumed
that there exists a small number " > 0 and a function F 2 C2([0, 1]) with
F(0) = 0, F > 0 on (0, 1] and F 0(0) = 0, for which {x 2 � : xn  1}
coincides with the cuspidal set {x = (x 0, xn) : 0 < xn  1, |x 0

| < "F(xn)}.
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In the case when n = 2 and � 2 (1/2, 1), the following (necessary) finiteness
condition is also assumed:Z 1

0
F(⌧ )1�2� d⌧ < +1. (1.23)

Of course, in part (iii) of Theorem 1.1, the same type of result holds for any bounded
piecewise C2 domain with (finitely many) exterior cusps. We also wish to empha-
sise that part (i) of Theorem 1.1 covers, in particular, the case of polygons in the
plane. One special case is treated in Proposition 4.9 where it is shown that, for
each fixed � 2 (0, 1), the �-integral of a regular polygon with N sides which is
circumscribed by the unit disc has following asymptotic

4�⇡
1� �

+O(N��1) as N ! 1. (1.24)

In the case of a bounded piecewise C1 domain � with conical singularities, our
approach is to estimate the contribution from individual conical points by carefully
devising appropriate barrier functions which compare favourably with the solution
of (1.5). The contribution from the region � away from the boundary singulari-
ties is then estimated separately, by relying on results valid on smooth domains.
See Theorem 4.3 and Theorem 4.7 which are the main results phrased in the two-
dimensional setting, as well as Theorem 5.2 which contains an extension to the
higher dimensional case.

Let us now review the content of the various sections of this paper. In Sec-
tion 2 we derive estimates for the solution of the Saint Venant problem in rather
general domains, satisfying weak regularity properties, described in terms of basic
geometric measure theoretic conditions. This portion of our analysis points to the
value � = 1/2 as the natural critical exponent for the condition (1.6) in this de-
gree of generality for the underlying domain �. Improvements of this result in the
case when � satisfies an inner cone condition (cf. Definition 3.4) are subsequently
discussed in Section 3. As a preamble, here we briefly review the construction and
properties of classical barrier functions in cones. We then derive a lower pointwise
bound for the Green function (akin to work in [30]) which is then used to prove
Theorem 3.7, the main result in this section. A consequence of this theorem is that
(1.6) holds for any � 2 (0, 1) in the case when � is a bounded C1 domain.

Sections 4-5 are devoted to studying the class of bounded piecewise C1 do-
mains with conical singularities, and the main results here are Theorem 4.3 and
Theorem 5.2. The new phenomenon which we discover is that, much as for bounded
C1 domains, (1.6) continues to hold for every � 2 (0, 1) in the aforementioned class
of piecewise C1 domains with conical singularities in Rn . Our approach is based
on the realisation that, for the type of domains considered in these sections, the size
(smallness, in fact) of the solution of the Saint Venant problem (1.5) is, in the pro-
cess of taking an integral average, better controlled than pointwise estimates from
below in terms of powers of the distance function to the boundary might originally
seem to indicate.
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Finally, in Section 6, we study the veracity of (1.6) for other classes of domains
with isolated singularities, such as polyhedra and piecewise C1 domains with out-
wardly pointing cuspidal singularities.

Throughout, we employ the customary convention of using the same letter
for denoting constants whose values may change from line to line. Whenever the
dependence of the constants in question on certain parameters is important, we
indicate this as such. Also, F ⇡ G means that there exist C1,C2 > 0 which
are independent of the relevant parameters entering the expressions F,G with the
property that C1F  G  C2F .

ACKNOWLEDGEMENTS. Last, though not least, the authors are grateful to the
anonymous referees for their diligent reading of the manuscript and for making a
number of insightful comments which have led to the current version.

2. Estimates for the Saint Venant problem in rough domains

Let � be a bounded, open subset in Rn , and denote by W 1,p(�) the classical L p-
based Sobolev space of order one in �, where 1  p  1. Furthermore, we shall
use W 1,p

0 (�) to denote the closure of C1

0 (�) in W 1,p(�). A standard application
of the Lax-Milgram lemma shows that the Saint Venant problem (1.5) has a unique
solution in the energy space W 1,2

0 (�), i.e.,

u 2 W 1,2
0 (�), 1u = �1 in �, (2.1)

is always well-posed. In fact, the solution u of (2.1) can be expressed as

u(x) =

Z
�
G(x, y) dy, x 2 �, (2.2)

where G(·, ·) is the Green function for the Dirichlet Laplacian in �. The latter is
the unique function G : �⇥� ! [0,+1] satisfying

G(·, y) 2 W 1,2(� \ B(y, r)) \ W 1,1
0 (�), 8 y 2 �, 8 r > 0, (2.3)

and
Z
�
hrxG(x, y),r'(x)i dx = '(y), 8' 2 C1

0 (�). (2.4)

See, e.g., [20] and [25] for the proof of the existence and uniqueness of the Green
function; a number of other useful properties of the Green function can be found in
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these works, such as the fact that the Green function is symmetric (i.e., G(x, y) =

G(y, x) for all x, y 2 �) and satisfies the estimates (valid for n � 3)

G(x, y)  Cn|x � y|2�n for all x, y 2 �, (2.5)

G(x, y) � Cn|x � y|2�n for x, y 2 � with |x � y| 
1
2 ��(x), (2.6)

where the constants depend only on the dimension. The replacement for |x � y|2�n
in the case when n = 2 is log(diam (�)/|x � y|). Hence, as a consequence of (2.2)
and (2.5),

0 < u(x)  Cn [diam (�)]2, for each x 2 �. (2.7)

Remark 2.1. Let � ✓ Rn be an arbitrary open set. Then for every � > 0 the
solution of (2.1) satisfies the bound from below

C(n,�)|�| [diam (�)]�2� 

Z
�
u(x)�� dx . (2.8)

Indeed, |�| =

R
� u(x)

�u(x)�� dx  C�n [diam (�)]2�
R
� u(x)

�� dx , by (2.7). In
particular, if� has the property that B(0, 1) ✓ � ✓ B(0,Cn), then for every � > 0
there holds

C(n,�) 

Z
�
u(x)�� dx . (2.9)

We wish to point out that in the case when � is regular for the Dirichlet prob-
lem (i.e., the classical Dirichlet problem is well-posed in the class of continuous
functions), one actually has u 2 C0(�). Necessary and sufficient criteria for reg-
ularity are well-known. For example, any bounded open set � ✓ Rn is regular
for the Dirichlet problem if it satisfies an exterior corkscrew condition [25, Lemma
1.2.4]. The latter piece of terminology is clarified in the definition below.
Definition 2.2. We say that � ⇢ Rn satisfies an interior corkscrew condition if
there are constants M > 1 and R > 0 such that for each x 2 @� and r 2 (0, R)
there exists

Ar (x) 2 �, called corkscrew point relative to x,
so that |x � Ar (x)| < r and dist(Ar (x), @�) > M�1r .

(2.10)

Also,� ⇢ Rn satisfies the an exterior corkscrew condition if�c
:= Rn

\� satisfies
an interior corkscrew condition.

As explained in Section 1, the central issue in this paper is that of determining
the “largest” value of the parameter � > 0 for which an estimate of the form (1.6)
holds, under various geometrical conditions on �. Elucidating the nature of the
constant C(�,�) appearing in (1.6) is also of interest. A basic tool systematically
employed throughout the paper is the Maximum Principle. In order to state a ver-
sion of this result valid for functions in the Sobolev space W 1,2(�) we first recall
the following definitions.
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Definition 2.3. Let � ✓ Rn be a bounded open set. Given u 2 W 1,2(�), we say
that u is subharmonic ifZ

�
hru(x),r'(x)i dx  0 for all nonnegative ' 2 C1

0 (�).

We say that u is superharmonic if �u is subharmonic.
Definition 2.4. Let � ✓ Rn be a bounded open set and assume that E ✓ �. Given
u 2 W 1,2(�), we say that u � 0 on E in the sense of W 1,2(�) if there exists a
sequence u j 2 C1(�) \ W 1,2(�), j 2 N, which converges to u in W 1,2(�) and
such that, for each j 2 N, there exists an open neighbourhood Uj of E in Rn with
the property that u j > 0 in Uj \�.

As is well-known, if E ✓ � and u � 0 on E in the sense of W 1,2(�) then
u � 0 a.e. on E . Furthermore, if u 2 W 1,2(�) satisfies u � 0 a.e. in � then u � 0
in� in the sense ofW 1,2(�). Let us also point out here that if u 2 W 1,2(�)\C0(�)
satisfies u|@� � 0 then u � 0 on @� in the sense of W 1,2(�) (cf. [25]).

Analogously to Definition 2.4, one can define u  0 and u = 0 on E ✓ �
in the sense of W 1,2(�). In particular, this allows one to compare any two func-
tions u, v 2 W 1,2(�) on E ✓ � in the sense of W 1,2(�), and also to define the
supremum and infimum of a function u 2 W 1,2(�) on E ✓ � in the sense of
W 1,2(�). In this context, the following version of the Maximum Principle then
holds (cf. [25, Lemma 1.1.17]):

Proposition 2.5. Let� ✓ Rn be a bounded open set and assume that u 2 W 1,2(�)
is a subharmonic function in �. Then

sup
�
u  sup

@�
u in the sense of W 1,2(�). (2.11)

Returning to the main topic of interest for us here, we continue by making a
series of simple yet significant remarks.
Remark 2.6. The case of a ball in Rn , i.e., when � = B(0, R), R > 0, in which
scenario (2.1) has the explicit solution

u(x) =

1
2n

(R2 � |x |2), x 2 B(0, R), (2.12)

shows that we must necessarily have � < 1 and that the critical value � = 1 is
unattainable. Indeed, the function in (2.12) satisfies

R
2n
�B(0,R)(x)  u(x) 

R
n
�B(0,R)(x), 8 x 2 B(0, R), (2.13)

Hence, in this case, Z
B(0,R)

u(x)�1 dx = +1. (2.14)
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In fact, it can be seen that this is typical of any sufficiently smooth domain (in fact,
Theorem 3.7, stated later, shows that any domain of class C1 will do), namely any
� < 1 will work in (1.6).
Remark 2.7. Regarding the issue whether the �-integral diverges when � = 1,
we shall show that this is always the case when the underlying domain satisfies
the following condition: Given � ✓ Rn and x⇤ 2 @�, we say that � satisfies an
enveloping ball condition of radius R > 0 near x⇤ if there exists ⇢ > 0 with the
property that for every x 2 B(x⇤, ⇢) \ @� there exists a ball of radius R which
contains � and whose boundary contains x .

The relevance of this piece of terminology is apparent from the following re-
sult: Let� ✓ Rn be a bounded open set which satisfies an enveloping ball condition
of radius R > 0 near a point x⇤ 2 @�. Then, if u denotes the solution of the Saint
Venant boundary value problem (2.1),

u(x)  n�1R ��(x) for every x 2 � near x⇤, (2.15)

so that, in particular, Z
�
u(x)�1 dx = +1. (2.16)

To prove the above bound on u in terms of the distance to the boundary, consider
an arbitrary point x0 2 B(x⇤, ⇢/2) \ � and denote by x1 2 @� a point for which
r := ��(x0) = |x1 � x0|. Then, necessarily, x1 2 B(x⇤, ⇢) \ @�. Consider
now a ball B = B(x2, R) which contains � and such that x1 2 @B. Note that
B(x0, r) ✓ � ✓ B, so that the balls B(x0, r) and B(x2, R) are tangent at x1. This
implies that the points x1, x0, x2 are collinear hence, further, R � r = |x0 � x2|.
Next, use the Maximum Principle to deduce that

u(x)  (2n)�1(R2 � |x � x2|2) for every x 2 �, (2.17)

which, when specialised to x = x0, gives

u(x0)  n�1R(R � |x0 � x2|) = n�1Rr = n�1R ��(x0). (2.18)

Since x0 2 B(x⇤, ⇢/2) \ � was arbitrary, (2.15) follows. As far as (2.16) is con-
cerned, we first note that B(x⇤, ⇢/2) \ � is convex, hence Lipschitz (a formal
definition is given later, in (3.3)). In turn, this and (2.15) give thatZ

�
u(x)�1 dx �

Z
B(x⇤,⇢/2)\�

u(x)�1 dx

� nR�1
Z
B(x⇤,⇢/2)\�

��(x)�1 dx = +1,

(2.19)

where the last step is a simple consequence of the fact that B(x⇤, ⇢/2) \� is Lips-
chitz (a more general result of this nature is discussed later, in Remark 2.12).
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Remark 2.8. It is useful to note that, given any bounded open set � ✓ Rn , the
solution of the problem (2.1) is bounded from below by a multiple (depending only
on the dimension n) of the square of the distance function to the boundary. This
property can be established in a variety of ways. One such approach involves ��,reg,
the regularised distance function to @� (in the sense of Theorem 2, p. 171 in [38]).
Recall that this is a C1 function in Rn satisfying ��,reg ⇡ �� and which has the
property that for each multi-index ↵ there exists C↵ > 0 such that

|@↵��,reg(x)|  C↵ ��(x)1�|↵|, 8 x 2 �. (2.20)

In particular, there exists a finite dimensional constant C > 0 with the property that
|1(�2�,reg)(x)|  C for all x 2 �. This implies that u�C�1�2�,reg is superharmonic
in �, continuous on �, and vanishes on @�. Hence, by the Maximum Principle,
u(x) � Cn ��(x)2 for all x 2 �. However, the sharp version of this estimate is

u(x) � (2n)�1��(x)2, for every x 2 �, (2.21)

and this is established as follows. Fix an arbitrary point x0 2 � and abbreviate
r := ��(x0). Then for every " 2 (0, r) we have that B(x0, r � ") ✓ � and u 2

C1(B(x0, r � ")). Next, consider the standard barrier

v(x) := (2n)�1
�
(r � ")2 � |x � x0|2

�
, x 2 B(x0, r � "), (2.22)

and note that, by the Maximum Principle and the properties of u, we have u � v
in B(x0, r � "). In particular, u(x0) � v(x0) which gives u(x0) � (2n)�1(r � ")2.
Hence, after sending " to zero we obtain u(x0) � (2n)�1r2 = (2n)�1��(x0)2.
Given that x0 2 � has been chosen arbitrarily, (2.21) is proved.

A more refined analysis proves Proposition 2.15, stated below. As a preamble,
we first recall some definitions, as well as several results of independent interest.

Definition 2.9. Given an open set � ✓ Rn , the upper and lower � -dimensional
Minkowski contents of @� with respect to � are defined as

M⇤

� (@�) := lim sup
r!0+

!n�� (r), M⇤,� (@�) := lim inf
r!0+

!n�� (r), (2.23)

where, for every ↵ 2 R, we have set

!↵(r) :=

|{x 2 � : ��(x) < r}|
r↵

. (2.24)

The upper and lower Minkowski dimensions of @� with respect to� are then given
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by

dim⇤

Minkowski(@�) := inf{� � 0 : M⇤

� (@�) < +1}

= sup{� � 0 : M⇤

� (@�) = +1}

(2.25)
= inf{� � 0 : M⇤

� (@�) = 0}
= sup{� � 0 : M⇤

� (@�) > 0},

dim⇤,Minkowski(@�) := sup{� � 0 : M⇤,� (@�) > 0}
= inf{� � 0 : M⇤,� (@�) = 0}

(2.26)
= inf{� � 0 : M⇤,� (@�) < +1}

= sup{� � 0 : M⇤,� (@�) = +1},

convening that inf; := +1 and sup; := �1. When dim⇤

Minkowski(@�) =

dim⇤,Minkowski(@�), the common value is referred to as the Minkowski dimension
of @� with respect to �, and is denoted by dimMinkowski(@�).

Next, we recall the Coarea Formula (see, e.g., [17], [16, Theorem 2, p. 117]).
Given a fixed number n 2 N, denote by Ln the n-dimensional Lebesgue measure
in Rn (occasionally we shall use the notation Ln(E) in place of |E |) and, for each
k 2 N, k  n, letHk stand for the k-dimensional Hausdorff measure in Rn .

Proposition 2.10. Assume that n � m and that f : Rn
! Rm is a given Lipschitz

function. Then, for any A ✓ Rn which is Ln-measurable and g 2 L1(A),

g
���
A\ f �1({y})

isHn�m-summable for Lm-a.e. y 2 Rm (2.27)

and it holds thatZ
A
g(x)|(J f )(x)| dLn(x) =

Z
Rm

⇣Z
A\ f �1({y})

g dHn�m
⌘
dLm(y), (2.28)

where J f =

p
det [(Df )(Df )>] is the Jacobian of f .

Recall the definition of !↵ from (2.24).

Lemma 2.11. Let� ✓ Rn be a bounded open set which is Jordan measurable (i.e.,
a bounded open set whose boundary has Lebesgue measure zero) and set �t :=

{x 2 � : ��(x) � t}. Suppose that ↵ > 0 is such that !↵ vanishes at the origin
and satisfies a Dini integrability condition, i.e.,

lim
r!0+

!↵(r) = 0 and
Z
0

!↵(r)
r

dr < +1. (2.29)

Then for every t > 0 one hasZ
�\�t

��(x)�↵ dx = !↵(t) + ↵

Z t

0

!↵(r)
r

dr. (2.30)
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In particular, for every t > 0 there holds
Z
�
��(x)�↵ dx  t�↵Ln(�) + ↵

Z t

0

!↵(r)
r

dr < +1. (2.31)

Proof. Given that we are assuming that the bounded open set � ✓ Rn is Jordan
measurable it follows that

Ln(@�) = 0 (2.32)

For each t > 0, apply the coarea formula (2.28) with A := � \�t , g 2 L1(� \�t )
arbitrary, and f : Rn

! R given by f (x) := ��(x) for each x 2 Rn . Then
@�t = � \ ��1� ({t}) for every t > 0 and

J f (x) =

(
1 for Ln-a.e. x 2 �,

0 for Ln-a.e. x 2 Rn
\�,

(2.33)

hence for every t > 0 we have (making use of (2.32))
Z
�\�t

g(x) dx =

Z t

0

⇣Z
@�r

g dHn�1
⌘
dr. (2.34)

In particular,

d
dt

⇣Z
�\�t

g(x) dx
⌘

=

Z
@�t

g dHn�1 forH1-a.e. t > 0, (2.35)

which, in the case when g = 1 yields

Hn�1(@�t ) =

d
dt

⇣
Ln(� \�t )

⌘
forH1-a.e. t > 0. (2.36)

Specialise now (2.34) to the case when, for some fixed ↵ > 0 and M > 0, we take

g(x) := min
n
��(x)�↵ , M

o
, 8 x 2 � \�t . (2.37)

Then g 2 L1(� \�t ) so this choice yields
Z
�\�t

min
n
��(x)�↵ , M

o
dx =

Z t

0
min

n
r�↵ , M

o
Hn�1(@�r ) dr, (2.38)

hence, ultimately,
Z
�\�t

��(x)�↵ dx =

Z t

0
r�↵Hn�1(@�r ) dr, (2.39)
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after letting M % +1 and invoking Lebesgue’s Monotone Convergence Theorem.
Thus, from (2.36) and (2.39) we obtainZ

�\�t

��(x)�↵ dx =

Z t

0
r�↵ d

dr

⇣
Ln(� \�r )

⌘
dr. (2.40)

Integrating by parts in the right-hand side of (2.40) then givesZ
�\�t

��(x)�↵ dx = t�↵ Ln(� \�t ) � lim
r!0+

⇣
r�↵ Ln(� \�r )

⌘

+ ↵

Z t

0
r�↵�1Ln(� \�r ) dr,

(2.41)

so that Z
�\�t

��(x)�↵ dx = !↵(t) � lim
r!0+

!↵(r) + ↵

Z t

0

!↵(r)
r

dr. (2.42)

Now (2.30) readily follows from this, granted (2.29). Finally, (2.31) is an immediate
consequence of (2.30), the crude estimate

R
�t
��(x)�↵ dx  t�↵Ln(�t ), and the

fact that t�↵Ln(�t ) + !↵(t) = t�↵Ln(�).

Remark 2.12. Assume that � ✓ Rn is a Jordan measurable, bounded open set.
Then an inspection of the proof of Lemma 2.11 reveals thatZ

�
��(x)�↵ dx < +1 whenever dim⇤

Minkowski(@�) < n � ↵, (2.43)

and Z
�
��(x)�↵ dx = +1 if

(2.44)
sup{� � 0 : M⇤

� (@�) < +1, M⇤,� (@�) > 0} > n � ↵.

Definition 2.13. The set 6 ✓ Rn is said to be Ahlfors regular if there exist finite
constants C0,C1 > 0 as well as a number R > 0 such that

C0 rn�1  Hn�1(B(x, r) \6)  C1 rn�1, 8x 2 6, 8 r 2 (0, R), (2.45)

The triplet C0,C1, R makes up what will henceforth be referred to as the Ahlfors
character of 6.

Lemma 2.14. Let � ✓ Rn be a bounded open set whose boundary is Ahlfors reg-
ular. Then, for any exponent ↵ 2 [0, 1) there exists a finite constant C > 0, which
depends only n, ↵ and the Ahlfors character of @�, such thatZ

�
��(x)�↵ dx  C

⇥
Ln(�)

⇤1�↵⇥Hn�1(@�)
⇤↵

. (2.46)
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This implies that the following generalised isoperimetric inequality holds:
Z
�
��(x)�↵ dx  C

⇥
Hn�1(@�)

⇤ n�↵
n�1 . (2.47)

In particular, under the same hypotheses,
Z
�
��(x)�↵ dx  C diam (�)n�↵. (2.48)

Proof. The version of the isoperimetric inequality proved by H. Federer (cf. 3.2.43-
3.2.44 on p. 278 of [17]) reads

E⇢Rn with Ln(E)<+1 =) Ln(E)
1

n(!n�1)1/(n�1)
⇥
Hn�1(@E)

⇤ n
n�1, (2.49)

where !n�1 denotes the surface area of Sn�1. Of course, (2.49) covers the case
↵ = 0 of (2.46), so we will assume in what follows that 0 < ↵ < 1.

To proceed, we note two consequences of the assumption that that � ✓ Rn is
a bounded open set whose boundary is Ahlfors regular. First, it is clear that (2.32)
holds and, hence, � is Jordan measurable. Second, it has been proved in [22] that

Ln(� \�r )  Cr Hn�1(@�), 8r > 0, (2.50)

where C > 0 depends only on the Ahlfors character of @� and, as before, for each
r > 0 we have set �r = {x 2 � : ��(x) � r}. (Parenthetically, we wish to point
out that this estimate implies that dim⇤

Minkowski(@�)  n � 1 whenever � ✓ Rn is
a bounded open set whose boundary is Ahlfors regular.) In particular, (2.50) entails

!↵(r)  Cr1�↵Hn�1(@�), 8r > 0, (2.51)

and, given that ↵ 2 (0, 1), it follows that the conditions in (2.29) are satisfied. On
the basis of this discussion, (2.31) then gives

Z
�
��(x)�↵ dx  t�↵Ln(�) + C ↵

⇣Z t

0
r�↵ dr

⌘
Hn�1(@�)

= t�↵Ln(�) +

C ↵
1� ↵

t1�↵Hn�1(@�),

(2.52)

for every t > 0. Choosing t := Ln(�)
�
Hn�1(@�) then readily yields (2.46).

Having justified (2.46), then (2.47) follows from this after observing that (2.49)
implies

⇥
Ln(�)

⇤1�↵
 Cn,↵

⇥
Hn�1(@�)

⇤ n(1�↵)
n�1 . (2.53)
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As regards (2.48), this is going to be a consequence of (2.47) and the fact that for
any set E ✓ Rn whose boundary is Ahlfors regular there holds

Hn�1(@E)  C
⇥
diam (E)

⇤n�1
, (2.54)

whereC > 0 depends only on the Ahlfors character of @E (in fact only the upper es-
timate in the Ahlfors regularity condition is really needed for this purpose). At this
stage there remains to prove (2.54) and, given the dilation and translation invariant
nature of this estimate, there is no loss of generality in assuming that diam (E) = 1
and that, in fact, E ✓ (�1, 1)n . Partition the cube (�1, 1)n into a grid of congruent
subcubes, call them {Q}Q2J , of side-length R/(2

p

n), where R 2 (0, 1) is such
that there exists C > 0 for which

Hn�1(B(x, r) \ @E)  C rn�1, 8x 2 @E, 8 r 2 (0, R). (2.55)

ConsiderJ⇤ := {Q 2 J : Q\@E 6= ;} and, for each Q 2 J⇤, select xQ 2 Q\@E .
Then, clearly,

@E ✓

[
Q2J⇤

B(xQ, R/2) (2.56)

which, when used in conjunction with (2.55) and the fact that Hn�1 is an outer
measure, gives

Hn�1(@E) 

X
Q2J⇤

Hn�1(@E \ B(xQ, R/2))

 C(R/2)n�1 · #J⇤  2C nn/2R�1.

(2.57)

This, of course, suits our purposes, so the proof of (2.54) is complete.

Here is the proposition alluded to a while ago:

Proposition 2.15. (i) If � ✓ Rn is a bounded domain whose boundary has a finite
upper � -dimensional Minkowski content, where � < n, then (1.6) holds for any
� 2 (0, (n � � )/2).

(ii) If � ✓ Rn is a bounded domain whose boundary is Ahlfors regular, then (1.6)
holds for any � 2 (0, 1/2) and moreover
Z
�
u(x)��dxC

⇥
Ln(�)

⇤1�2�⇥Hn�1(@�)
⇤2�

Cdiam (�)n�2� if �<1/2, (2.58)

where C depends only on the Ahlfors character of @�, n and �.

(iii) As far as (2.58) is concerned, the critical value � = 1/2 is in the nature of
best possible in the sense that for every � 2 (1/2, 1) there exists a bounded domain
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�� ✓ R2 which is regular for the Dirichlet problem and has an Ahlfors regular
boundary and with the property that if u solves (2.1) thenZ

��

u(x)�� dx = +1. (2.59)

Proof. The claims in (i)-(ii) follow from Lemma 2.11 and Lemma 2.14, respec-
tively, with the help of (2.21) (satisfied by the solution u of problem (2.1)). Con-
cerning (iii), the task is to construct a counterexample to the statement (1.6) in
the case when � 2 (1/2, 1) in the class of bounded domains which are regular
for the Dirichlet problem and have Ahlfors regular boundaries. To this end, fix
� 2 (1/2, 1) and consider the curvilinear triangle �� in R2 given by

�� :=

�
(x, y) 2 R2 : 0 < x < 1 and 0 < y < " x1/(2��1) , (2.60)

where " = "(�) is a sufficiently small positive constant, to be specified momentar-
ily. Clearly, the function

v(x, y) := y
�
"x1/(2��1)

� y
�
, 8 (x, y) 2 ��, (2.61)

is positive in the domain �� and is nonnegative on its boundary. In addition, for all
(x, y) 2 �� we have

�(1v)(x, y) = 2�

2"(1� �)

(2� � 1)2
x (3�4�)/(2��1) y

� 2�

2"2(1� �)

(2� � 1)2
x (4�4�)/(2��1) (2.62)

� 2� 2"2(1� �)(2� � 1)�2,

where the last step makes essential use of the fact that � 2 (1/2, 1). At this stage,
pick " > 0 sufficiently small so that the last expression in (2.62) is � 1. Such a
choice forces u�v to be subharmonic in�� , if u is the solution of the Saint Venant
problem in�� (cf. (2.1)). In addition, u�v  0 on @�� by design. The Maximum
Principle then gives that u  v in �� . Consequently, we may estimateZ
��

u(x, y)�� dxdy �

Z
��

v(x, y)�� dxdy

=

Z 1

0

⇣Z "x1/(2��1)

0
y��

�
"x1/(2��1)

� y
�
�� dy

⌘
dx (2.63)

= "1�2�
⇣Z 1

0
x�1 dx

⌘⇣Z 1

0
t��(1� t)�� dt

⌘
= +1,

after making the change of variables y = "x1/(2��1) t in the inner integral in the
second line. This completes the proof of the proposition.
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3. Barrier functions and domains satisfying a cone condition

Here and elsewhere Sn�1 stands for the unit sphere in Rn . We denote by 0R✓ (x0, ⌘)
the open, one-component circular cone in Rn with vertex at x0 2 Rn , half-aperture
✓ 2 (0,⇡), axis along ⌘ 2 Sn�1, and (roundly) truncated at R > 0, i.e.,

0R✓ (x0, ⌘) :=

�
x 2 Rn

: (x � x0) · ⌘ > |x � x0| cos ✓ and |x � x0| < R
 
, (3.1)

When R = +1 (that is, the cone is infinite) we agree to simply write 0✓ (x0, ⌘).
Furthermore, we use the abbreviation 0R✓ (respectively, 0✓ , when R = +1) when-
ever x0 = 0 2 Rn and ⌘ = en := (0, ..., 0, 1) 2 Sn�1.

Of course, 0✓ \ Sn�1 is the spherical cap with centre at the north pole and
(spherical) radius ✓ . More generally, given an open, connected subset G of Sn�1,
we denote by 0G the open cone in Rn with vertex at the origin and shape G, i.e.,

0G := {⇢ ! : ⇢ > 0 and ! 2 G}. (3.2)

Going further, we let1Sn�1 stand for the Laplace-Beltrami operator on Sn�1 and fix
an open, connected subset G of Sn�1 with the property that @Sn�1G, the boundary
of G relative to Sn�1, is sufficiently regular. In this setting, we let 3G > 0 be the
first positive eigenvalue of the nonnegative operator �1Sn�1 equipped with (homo-
geneous) Dirichlet boundary condition on G and denote by �G an eigenfunction
corresponding to the eigenvalue 3G. Hence,

�1Sn�1�G = 3G�G in G, and �G = 0 on @Sn�1G. (3.3)

Recall that any eigenfunction corresponding to3G does not change sign inG (see,
e.g., the discussion on [11, page 42-43] in the case of a spherical cap). Since �G is
uniquely determined only up to a re-normalisation, it follows that there is no loss of
generality in assuming that

�G > 0 in G, and sup
G
�G = 1. (3.4)

For further reference let us also record here that, granted sufficient regularity for
@Sn�1G, the function �G behaves essentially like the distance to the boundary ofG.
More precisely, if @Sn�1G is of class C1,↵ , for some ↵ 2 (0, 1), then the following
estimate (which is going to be useful in § 3 and § 5) holds

�G(!) ⇡ distSn�1
�
!, @Sn�1G

�
, uniformly for ! 2 G, (3.5)

where distSn�1(!,!0) := arccos (! · !0), for !,!0
2 Sn�1, denotes the geodesic

distance on Sn�1. This property is proved later (in the Appendix), as to avoid
disrupting the flow of the presentation3.

3 We are grateful to a referee for questioning an inaccurate claim we made in an earlier version.
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Corresponding to the case when G is a spherical cap, say G = Sn�1 \ 0✓ for
some ✓ 2 (0,⇡), we agree to write �✓ and 3✓ in place of �Sn�1\0✓ and 3Sn�1\0✓ ,
respectively. Hence, in particular,

�1Sn�1�✓ = 3✓ �✓ in Sn�1 \ 0✓ and �✓ = 0 on Sn�1 \ @0✓ .

�✓ > 0 in Sn�1 \ 0✓ and supSn�1\0✓ �✓ = 1 for each ✓ 2 (0,⇡).
(3.6)

Definition 3.1. Given an open, connected subset G of Sn�1, with a sufficiently
regular boundary (relative to Sn�1), we associate the index ↵G defined by

↵G := �
n�2
2 +

q
(n�2)2
4 +3G, (3.7)

that is, the unique positive root of the equation

↵G(↵G + n � 2) = 3G. (3.8)

(Note that since 3G > 0, these considerations are meaningful.) Finally, for each
✓ 2 (0,⇡), we abbreviate ↵Sn�1\0✓ by ↵✓ . Hence, in this notation,

↵✓ = �
n�2
2 +

q
(n�2)2
4 +3✓ and 3✓ = ↵✓ (↵✓ + n � 2). (3.9)

for any ✓ 2 (0,⇡).
The index ↵G has been studied by many authors; see in particular [18]. The

format of (3.8) is suggested by the formula for the Euclidean Laplacian in spherical
polar coordinates x = ⇢ ! 2 Rn

\ {0}, with ⇢ := |x | > 0 and ! := x/|x | 2 Sn�1,
i.e.,

1 f = ⇢1�n@⇢
�
⇢n�1@⇢ f

�
+ ⇢�21Sn�1 f

= @2⇢ f + (n � 1)⇢�1@⇢ f + ⇢�21Sn�1 f.
(3.10)

Indeed, introducing the barrier function vG : 0G ! R by setting

vG(x) :=⇢↵G�(!)=|x |↵G�G

⇣
x
|x |

⌘
for !=

x
|x |

2G✓ Sn�1 and ⇢=|x |>0,(3.11)

it follows that, for each ! 2 G and ⇢ > 0,

(1vG)(⇢ !) = [↵G(↵G + n � 2) �3G]⇢↵G�2�G(!) = 0 (3.12)

precisely for the choice (3.8). This ensures that the function vG is harmonic in the
cone 0G. In summary, taking ↵G as in (3.7) ensures that

1vG = 0 in 0G, vG = 0 on @0G, v✓ > 0 in 0G. (3.13)

In the axially symmetric case, i.e., whenG = Sn�1\0✓ for some ✓ 2 (0,⇡), a good
deal is known about the properties enjoyed by the exponent ↵✓ introduced in (3.9)
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(see, e.g., [11, Theorem 3 on page 44, Theorem 6 on page 50] and the discussion
on [4, page 112]). Specifically, for each n � 2 one has

(0,⇡) 3 ✓ 7! ↵✓ 2 (0,+1) is strictly decreasing and continuous, (3.14)

↵⇡/2 = 1 and lim
✓&0

↵✓ = +1, (3.15)

lim
✓%⇡

↵✓ = 0 if n � 3, (3.16)

↵✓ =

⇡

2✓
if n = 2, and ↵✓ =

⇡

✓
� 1 if n = 4, (3.17)

↵✓ 2

�1
2 ,+1

�
and lim

✓%⇡
↵✓ =

1
2 if n = 2, (3.18)

↵✓ = 2 () ✓ = arccos (1/
p

n). (3.19)

The computations in the case n= 2 are particularly simple. Indeed, the eigenvalue
problem for the Dirichlet-Laplacian on the one-dimensional arc {ei! : �✓<!<
✓} in the unit circle becomes (with ‘prime’ denoting the angular derivative d/d!)
�00(!) + 3�(!) = 0 for �✓ < ! < ✓ , �(�✓) = �(✓) = 0. The smallest
positive eigenvalue is then 3 = 3✓ =

⇡2

(2✓)2 which, in light of (3.9), gives the first
formula in (3.17). In the higher dimensional setting, the eigenvalue problem on a
spherical cap leads to a less transparent equation. To describe this, recall that the so-
called Gegenbauer functions, C⌫↵(z), are the solutions of Gegenbauer’s differential
equation

(z2 � 1)
d2g
dz2

+ (2⌫ + 1)z
dg
dz

� ↵(↵ + 2⌫)g = 0, z, ⌫,↵ 2 C. (3.20)

When considered with the variable z restricted to the interval (�1, 1) on the real
axis, the above second-order ODE is endowed with the initial conditions

g(�1) = 1 and
dg
dz

(�1) = �

↵(↵ + 2⌫)
2⌫ + 1

. (3.21)

For more details on this subject see, e.g., [31]. In the present context, the key feature
of the Gegenbauer functions is that the exponent ↵✓ from (3.9) coincides with the
first positive zero of the mapping ↵ 7! C

n�2
2

↵ (� cos ✓); compare with Lemma 6.6.3
in [27]. For example, the continuity of (3.14) follows from this representation and
classical results on the dependence of the solution of ODE’s on parameters. For
related material see also [36] (especially Theorem 2, p. 308), and [30] (where, in
lieu of (3.20), the authors work with an ODE for fn,↵(✓) := C

n�2
2

↵ (� cos ✓)).
We continue by recording the definition of the class of nontangentially acces-

sible domains (introduced by Jerison and Kenig in [23]), and by making a couple
of remarks.
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Definition 3.2. A nonempty, proper open subset � of Rn is called an NTA domain
provided� satisfies both an interior and an exterior corkscrew condition (with con-
stants M , r⇤ as in Definition 2.2) and� satisfies a Harnack chain condition, defined
as follows (with reference to M as above).

If x1, x2 2 � and k 2 N are such that ��(xi ) � " for i = 1, 2, and |x1 � x2| 

2k", for some " > 0, then there exist Mk balls Bj ✓ �, 1  j  Mk, such that

(i) x1 2 B1, x2 2 BMk and Bj \ Bj+1 6= ; for 1  j  Mk � 1;
(ii) each ball Bj has a radius r j satisfying

M�1r j  dist(Bj , @�)  Mr j and r j � M�1 min
�
��(x1), ��(x2)

 
. (3.22)

Two comments are going to be of importance for us later on. First, the relevance of
the Harnack chain condition is that, thanks to Harnack’s inequality, ifw is a positive
harmonic function in � then, in the context of the second part of Definition 3.2,

M�kw(x1)  w(x2)  Mkw(x1). (3.23)

Second, any bounded NTA domain is regular for the Dirichlet problem (it suffices
to recall that any such domain satisfies an exterior corkscrew condition).

Moving on, a bounded domain � in Rn is called a Lipschitz domain provided
� and its boundary @� locally coincide with, respectively, the upper-graph and the
graph of a Lipschitz function. In this vein, recall that a function f : D ! R
where, say, D ✓ Rn�1, is called Lipschitz provided there exists M > 0 so that
| f (x) � f (y)|  M|x � y| for any x, y 2 D. A formal definition is given below.

Definition 3.3. A bounded domain � ⇢ Rn is called Lipschitz if for any x0 2 @�
there exist r, h > 0 and a coordinate system {x1, . . . , xn} in Rn (isometric to the
canonical one) with origin at x0 along with a function ' : Rn�1

! R which is
Lipschitz and for which the following property holds. If C(r, h) denotes the open
cylinder {x = (x 0, xn) : |x 0

| < r and � h < xn < h} ⇢ Rn , then

@� \ C(r, h) = {x = (x 0, xn) : |x 0
| < r and xn = '(x1, . . . , xn�1)},

� \ C(r, h) = {x = (x 0, xn) : |x 0
| < r and '(x1, . . . , xn�1) < xn < h}.

(3.24)

Fix an atlas for @�, i.e. a finite collection of cylinders {Ck(rk, hk)}1kN (with
associated Lipschitz maps {'k}1kN ) covering @�. The Lipschitz constant of �,
denoted in what follows by �, is defined as the infimum of max {kr'kkL1 : 1 

k  N } taken over all possible atlases of @�.
Finally, domains of class Ck for some k 2 N [ {0} (or Ck,↵ domains for

k 2 N [ {0} and ↵ 2 (0, 1], respectively) are defined analogously, by requiring
that all functions ' : Rn�1

! R considered above are of class Ck (or class Ck,↵ ,
respectively).
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Clearly, any bounded Lipschitz domain is NTA (hence regular for the Dirichlet
problem), and has an Ahlfors regular boundary. For further reference, let us also
remark here that

� ✓ Rn bounded C1 domain =) � = 0. (3.25)

For an open set � ✓ Rn and a number R > 0, define �R as the collection of points
in � at distance at least R from the boundary, i.e.,

�R :=

�
x 2 � : ��(x) > R

 
. (3.26)

Definition 3.4. We say that an open set � ✓ Rn satisfies an (axially symmetric)
inner cone condition with half-aperture ✓ 2 (0,⇡/2) provided there exists R 2

(0, diam (�)) with the property that

8 x 2 � \�R 9 ⌘ 2 Sn�1 such that 0R✓ (x, ⌘) ✓ �. (3.27)

More generally, given an open connected C1,↵ subdomain G of Sn�1, with ↵ 2

(0, 1), we say that � ✓ Rn satisfies an inner cone condition with smooth profile G
provided there exists R 2 (0, diam (�)) so that

8 x 2 � \�R 9U isometry of Rn for which
U(0) = x and U(0G \ B(0, R)) ✓ �.

(3.28)

Definition 3.5. Given a bounded Lipschitz domain � ✓ Rn , with Lipschitz con-
stant � 2 [0,+1), define ↵� to be the index associated as in Definition 3.1 for
the angle

✓ = ✓� := arctan
⇣ 1
�

⌘
2 (0, ⇡2 ), (3.29)

that is, ↵� = ↵✓� .
In the context of the above definitions, it is illuminating to point out that, in the

class of bounded Lipschitz domains,

↵� � 1 and, in fact, ↵� & 1 as � & 0. (3.30)

Indeed, this follows readily from (3.14) and (the first formula in) (3.15). On the
other hand, by the second formula in (3.15),

↵� % +1 as � % +1. (3.31)

It is also straightforward to check that

every bounded Lipschitz domain � ✓ Rn satisfies an
inner cone condition with half-aperture ✓ , for any ✓ 2 (0, ✓�).

(3.32)
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In the opposite direction we note that there exist bounded NTA domains which
satisfy an inner cone condition but which are not necessarily Lipschitz (take, for
example, the set-theoretic difference of an open truncated circular cone and a closed
truncated circular subcone with smaller aperture which have a common vertex).

We now proceed to discuss a useful bound from below for the Green func-
tion associated with the Dirichlet Laplacian in bounded NTA domains satisfying
an inner cone condition. It should be noted that in the class of bounded Lipschitz
domains and for a more restrictive concept of cone condition, [30, Proposition 2,
page 272] contains such an estimate. Similar estimates have also been proved in [5]
in the setting of a uniform domain, which is a more general notion than that of an
NTA domain. However, the estimates in [5] and [30] are given in a form which
is not sufficiently explicit for our purposes. Here, we largely follow the approach
in [40] with the goal of monitoring how the geometrical characteristics of � enter
the final estimate.

Proposition 3.6. Assume that� ✓ Rn is a bounded NTA domain which satisfies an
inner cone condition with smooth profileG ✓ Sn�1. Let ↵G be the index associated
with the subdomain G of Sn�1 as in Definition 3.1, and fix R 2 (0, diam (�)/4)
such that (3.28) holds.

Then, if n � 3, there exists a finite constant c = c(n,G) > 0 with the property
that the Green function G(·, ·) for the Dirichlet Laplacian in� satisfies the dilation
invariant estimate

G(x, y) � c(n,G)
⇣ ��(x)
diam (�)

⌘↵G
⇣ R
diam (�)

⌘m
R2�n, (3.33)

for every x 2� and y2�R,

where m > 0 depends only on the NTA constants of �. Furthermore, a similar
conclusion holds in the case when n = 2 provided the factor R2�n in the right-
hand side of (3.33) is replaced by log

�
diam (�)/R

�
.

Proof. We shall only consider the case n � 3, since the two-dimensional case is
treated analogously. The proof is divided into several steps, starting with
Step 1. Assume thatG is a connected, subdomain of classC1,↵ , for some ↵ 2 (0, 1),
of Sn�1 and recall the barrier function vG from (3.11). Also, fix z 2 G. Then there
exists a finite constant C(G, z) > 0 with the property that for every r > 0 one has

w(r z) vG(x)  C(G, z) r↵Gw(x), 8 x 2 0G \ B(0, r), (3.34)

for every function

w2C0(0G \ B(0, 2r)) satisfying w>0 and 1w=0 in 0G \ B(0, 2r). (3.35)

It suffices to establish the above claim in the case when r = 1, since then (3.34)
follows by rescaling. If this is the case, by considering x 7! w(x)/w(z) in place of
w(x), there is also no loss of generality in assuming thatw(z) = 1. In this scenario,
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the desired conclusion follows from the Maximum Principle as soon as we show
that there exists some finite constant C(G, z) > 0 such that

vG(x)  C(G, z)w(x), 8 x 2 0G \ @B(0, 1), (3.36)

for every positive function w 2 C0(0G \ B(0, 2)) which is harmonic in 0G \

B(0, 2) and satisfies w(z) = 1. With this goal in mind, we then observe that, by
Harnack’s inequality and the smoothness of G, there exists C = C(G, z) > 0 with
the property that

w(!) � C distSn�1
�
!, @Sn�1G

�
, 8! 2 G, (3.37)

whereas, by virtue of (3.5),

vG(!) ⇡ distSn�1
�
!, @Sn�1G

�
, uniformly for ! 2 G. (3.38)

In concert, (3.37) and (3.38) establish estimate (3.36), thus concluding the proof of
the claim in Step 1.
Step 2. Suppose that � ✓ Rn is a bounded NTA domain. Then there exists a
dimensional constant Cn > 0 and some m > 0 which depends only on the NTA
constants of�with the property that for each R 2 (0, diam (�)) the Green function
associated with the Dirichlet Laplacian in � satisfies

G(x, y) � Cn
⇣ R
diam (�)

⌘m
R2�n, for every x, y 2 �R . (3.39)

To justify this claim, recall the constant M from Definition 3.2 and pickm > 0 such
that M = 2m . Going further, fix x, y 2 �R and select a point yo 2 B(y, R/2) \

B(y, R/4). Consider now a Harnack chain of balls joining x and yo in �. More
specifically, pick a natural number k ⇠ log2(|x � y|/R) and suppose Bj ✓ �,
1  j  Mk, is a family of balls such that x is the centre of B1, yo is the centre of
BMk , Bj \ Bj+1 6= ; for 1  j  Mk � 1, each ball Bj has a radius r j satisfying
M�1r j  dist(Bj , @�)  Mr j , as well as r j � M�1 min

�
��(x), ��(yo)

 
. Then,

by repeated applications of Harnack’s inequality (compare with (3.23)), we obtain

G(x, y) � CnM�kG(yo, y) � Cn
⇣ R
|x � yo|

⌘m
R2�n, (3.40)

by the choice ofm, k, and yo, and thanks to (2.5). Since |x� yo|  diam (�), (3.39)
follows.

A moment’s reflection shows that (3.39) implies (3.33) in the case when x, y 2

�R . We continue with:
Step 3. Here we prove the inequality stated in (3.33) in the case when 0 < R <
diam (�)/4 and when y 2 �4R and x 2 � \ (�R [ B(y, 2R)). Assuming that
two such points have been fixed, pick x⇤ 2 @� such that ��(x) = |x � x⇤|, and
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introduce x0 :=
1
2 (x + x⇤). Also, choose an isometry U of Rn with U(0) = x0 and

U(0G \ B(0, 2R)) ✓ �. It follows that if z 2 G is fixed, then there exists a finite
constant C = C(G, z) � 1 such that RU(z) 2 �R/C . For the reader’s convenience,
the special case when G is a spherical cap on Sn�1 with half-angle ✓ 2 (0,⇡/2)
and when U(0G \ B(0, 2R)) = 02R✓ (x0, ⌘) for some ⌘ 2 Sn�1 is sketched in the
picture below:

To continue, introduce x1 := U(��(x)z/4) which, given that ��(x)  R, belongs
to the cone U(0G \ B(0, 2R)). Then, on the one hand, Harnack’s inequality gives

G(x, y) ⇡ G(x0, y) ⇡ G(x1, y), (3.41)

with universal comparability constants, while on the other hand, (3.34) applied to
the function w := G(·, y) yields

G(x1, y) � C(n,G)R�↵G
|x1 � x0|↵GG(RU(z), y)

� C(n,G)R�↵G��(x)↵G

⇣ R
diam (�)

⌘m
R2�n,

(3.42)

where the last inequality utilises (3.39) and the fact that RU(z) 2 �R/C . Now
(3.33) follows in the case we are currently considering from (3.41) and (3.42) (here
we also use the fact that 0 < R/diam (�) < 1 and that ↵G > 0).

The final arguments in the proof of (3.33) are contained in:
Step 4. When y 2 �4R and x 2 (� \ �R) \ B(y, 2R) we have ��(y)/2 � 2R �

|x � y|, so (2.5) gives G(x, y) � Cn|x � y|2�n � CnR2�n . This is good enough to
justify (3.33) in this case. Granted this and the cases treated in Steps 2-3, it follows
that (3.33) has been proved whenever y 2 �4R and x 2 �. After relabeling, we
may therefore conclude that (3.33) holds as stated.
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The estimate in Proposition 3.6 plays a basic role in our next theorem, which
is the main result in this section.

Theorem 3.7. Assume that � ✓ Rn is a bounded NTA domain, with an Ahlfors
regular boundary, and which satisfies an inner cone condition with smooth profile
G ✓ Sn�1. As usual, we denote by ↵G the index associated with the subdomain G
of Sn�1 as in Definition 3.1.

Next, let R 2 (0, diam (�)/4) be such that (3.28) holds and suppose that 0 <
� < 1/↵G. Also, recall that �R has been introduced in (3.26). Then, if n � 3, the
solution u of (2.1) satisfies the dilation invariant estimate
Z
�
u(x)��dx  C�(n,G,�)

⇣diam (�)

R

⌘(m+↵G)�⇣Hn�1(@�)

Rn�1
⌘↵G�

⇥

⇣
|�|

Rn
⌘2�/n�↵G�⇣ Rn

|�R|

⌘�
|�|

1�2�/n (3.43)

 C�(n,G,�)
⇣diam (�)

R

⌘n+m�⇣ Rn

|�R|

⌘1+(n�2)�/n
|�|

1�2�/n

where m > 0 depends only on the NTA constants of �, and C�(n,G,�) > 0 is a
finite constant which depends only on the Ahlfors character of @�, the dimension
n, the profile G and the parameter �.

Corresponding to n = 2, assume that � ✓ R2 is a bounded NTA domain with
an Ahlfors regular boundary, satisfies the inner cone condition (3.27) with half-
aperture ✓ 2 (0,⇡/2) and height R 2 (0, diam (�)/4). Then if 0 < � < 2✓/⇡ , the
solution u of (2.1) satisfies the version of (3.43) written for n = 2, i.e., the dilation
invariant estimate

Z
�
u(x)�� dx  C�(✓,�)

⇣diam (�)

R

⌘(m+↵G)�⇣H1(@�)

R

⌘↵G�

(3.44)
⇥

⇣
|�|

R2
⌘��↵G�⇣ R2

|�R|

⌘�
|�|

1��

where, as before,m > 0 depends only on the NTA constants of�, andC�(✓,�) > 0
is a finite constant which depends only on the Ahlfors character of @�, the angle ✓ ,
and the parameter �.

Proof. Suppose that n � 3. The representation in (2.2), together with the nonnega-
tivity of the Green function and estimate (3.33) give

u(x) =

Z
�
G(x, y) dy �

Z
�R

G(x, y) dy

(3.45)
� c(n,G)

⇣ ��(x)
diam (�)

⌘↵G
⇣ R
diam (�)

⌘m
R2�n|�R|, 8 x 2 �.
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With (3.45) in hand, (3.43) follows from Lemma 2.14 (recall that 0 < � < 1/↵G),
after some simple algebra (and using the fact that |�R|  |�|). The case n = 2 is
similar. More specifically, the same type of argument as above yields the bound

Z
�
u(x)�� dx  C(✓,�)

⇣diam (�)

R

⌘(m+↵G)�⇣H1(@�)

R

⌘↵G�
⇥

(3.46)
⇥

⇣
|�|

R2
⌘��↵G�⇣ R2

|�R|

⌘�
|�|

1��
⇣
log
⇣diam (�)

R

⌘⌘
��

and, given that diam(�)/R>4, the logarithmic factor can be bounded by (log 4)��.
This gives (3.44).

We continue by recording the following corollary:

Corollary 3.8. If � ✓ Rn , n � 2, is a bounded Lipschitz domain and if ↵� is the
critical exponent associated with� as in Definition 3.5, then the finiteness condition
(1.6) holds granted that

0 < � <
1
↵�

. (3.47)

In particular, (1.6) holds for any � 2 (0, 1) in the case when � is a bounded C1
domain.

Proof. The claim in the first part of the statement is an immediate consequence
of our previous theorem, whereas (3.43) and (3.30) readily yield the claim in the
second part of the statement.

The principle emerging from Theorem 3.7 is that, for a bounded NTA domain
� ✓ Rn with an Ahlfors regular boundary, the ratio

⇣Z
�
u(x)�� dx

⌘.
|�|

1�2�/n (3.48)

can be controlled in terms of the proportion of the size of the cone (involved in cone
condition (3.28)) relative to the size of the domain� itself (assuming that � 2 (0, 1)
relates favourably to the spherical profile of the cone).

An example of this principle at work in a concrete case of interest is as follows.
For each  2 (0, 1) and N � 3, denote byP(, N ) the set of polygons with N sides
inscribed in the unit circle S1 and having the property that the ratio of any two sides
belongs to the interval (, �1). Theorem 3.7 then gives that, once  2 (0, 1) and
� 2 (0, 1) have been fixed, there exist N�, 2 N and C�, > 0 with the property
that Z

�
u(x)�� dx  C�, , whenever � 2 P(, N ) with N � N�, . (3.49)
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In particular, if �N denotes the regular polygon with N sides (N 2 N, N � 3)
inscribed in S1 and uN is the solution of (2.1) for � = �N , then (3.49) gives that
for every fixed � 2 (0, 1) we have

Z
�N

uN (x)�� dx = O(1), as N ! 1. (3.50)

Improvements of (3.49)-(3.50) (vis-à-vis the range of �’s, the shape of the polygon
and the nature of the estimate for the �-integral) are presented in § 4. For the time
being, we wish to point out that (for any 0 < � < 1)

sup
�

⇣Z
�
u(x)�� dx

⌘.
|�|

1�2�/n
= +1, (3.51)

when the supremum is taken over all bounded convex sets in Rn . With this goal in
mind, for a fixed, small " > 0, consider the thin rectangular domain

� :=

�
x = (x 0, xn) 2 Rn�1

⇥ R : x 0

2 (0, 1)n�1, |xn| < "
 

✓ Rn, (3.52)

and set

v(x 0, xn) :=
1
2 ("

2
� x2n), 8 x = (x 0, xn) 2 �. (3.53)

Then v 2 C0(�),�1v = 1 on�, and v � 0 on @�. Therefore, if u solves (1.5) for
� as in (3.52), we have u(x)  v(x) for every x 2 �, on account of the Maximum
Principle. As a result, for every � 2 (0, 1) we may estimate

Z
�
u(x)�� dx �

Z
�

v(x)�� dx = 2�
Z "

�"
("2 � x2n)

�� dxn

= 21+�
⇣Z 1

0
(1� t2)�� dt

⌘
"1�2� = C� "1�2�, (3.54)

= C� "�2�(n�1)/n
|�|

1�2�/n,

from which (3.51) readily follows.
A natural end-point version of the estimate (1.6) is the ‘weak-type’ inequality

|{x 2 � | u(x) < �}|  C(�, �̃)��̃ < +1 for all � > 0. (3.55)

The two conditions (1.6) and (3.55) are closely related, in that if (1.6) holds for some
� > 0 then (3.55) holds for 0 < �̃  �, and if (3.55) holds for some �̃ > 0 then
(1.6) holds for 0 < � < �̃. These two statements follow easily from Chebyshev’s
inequality and the equality

Z
�
u(x)��dx = �

Z
1

0
��(�+1)

|{x 2 � | u(x) < �}|d�, (3.56)
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respectively.
In the case of a ball, the calculation in Remark 2.6 shows that (3.55) holds if

and only if �̃  1 and so, while (1.6) fails when � = 1 (see (2.14)), (3.55) holds
when �̃ = 1.

More general examples may be established via the same methods we have
employed above. For example, an immediate consequence of (2.50) is

|{x 2 � | ��(x)�̃ < �}|  C�1/�̃ Hn�1(@�), (3.57)

for each �̃ � 0 and all � > 0. This can be used to prove the following theorem.

Theorem 3.9. (i) If � ✓ Rn is a bounded domain whose boundary is Ahlfors reg-
ular, then (3.55) holds provided that 0 < �̃  1/2.
(ii) If � ✓ Rn , n � 2, is a bounded Lipschitz domain and if ↵� is the critical
exponent associated with � as in Definition 3.5, then (3.55) holds provided that

0 < � 

1
↵�

. (3.58)

Part (i) of Theorem 3.9 contains the appropriate end-point version of Propo-
sition 2.15 (ii) corresponding to � = 1/2 and is proved using (3.57) and (2.21).
Proposition 2.15 (iii) and the above discussion show this is sharp. Part (ii) corre-
sponds to the end-point � = 1/↵� of Corollary 3.8 and is proved again using (3.57)
and, this time, (3.45).

We end the current section by recording a special case of Theorem 3.7 of inde-
pendent interest. This requires that we first make the following definition.
Definition 3.10. We say that an open set � ✓ Rn satisfies an inner ball condition
with radius r0 2 (0,+1) provided

8 x 2 � 9 y 2 � such that x 2 B(y, r0) ✓ �. (3.59)

In other words, an open set � ✓ Rn satisfies an inner ball condition with radius r0
provided � can be written as the union of all balls of radius r0 contained in �.

Obviously, an open set � ✓ Rn satisfying an inner ball condition with radius
r0 also satisfies an axially symmetric inner cone condition with any half-aperture
✓ 2 (0,⇡/2) and any height  2r0 cos ✓ . This observation and Theorem 3.7 then
readily yield the following corollary.

Corollary 3.11. Assume that � ✓ R2 is a bounded NTA domain with an Ahlfors
regular boundary, which satisfies an inner ball condition with radius r0. Fix � 2

(0, 1) and select ✓ 2 (�⇡/2,⇡/2). Then the solution u of (2.1) satisfies
Z
�
u(x)�� dx  C�(✓,�)

⇣diam (�)

r0

⌘m�⇣diam (�)2

|�r0 |

⌘
|�|

1��

(3.60)
 C�(✓,�)

⇣diam (�)

r0

⌘m�+2
|�|

1��,
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where m > 0 depends only on the NTA constants of�, and C�(✓,�) > 0 is a finite
constant which depends only on the Ahlfors character of @�, the angle ✓ , and the
parameter �.

In fact, a result similar in spirit holds in the case when � ✓ Rn with n � 3 as
well.

4. The case of a polygon in the plane

In this section we focus on the finiteness of the �-integral (cf. (1.6)) in the situation
when � is a polygonal domain in R2. Some preparations are necessary. Given
✓ 2 (0,⇡), consider the infinite sector

S✓ := {z 2 C = R2 : |arg (z)| < ✓} (4.1)

and, for each r > 0, consider its truncated version

S✓,r = {z 2 S✓ : |z| < r}. (4.2)

Hence, in polar coordinates x = (⇢ cos!, ⇢ sin!) 2 R2 with (⇢,!) 2 (0,1) ⇥

(�⇡,⇡),

S✓,r = {(⇢,!) : 0 < ⇢ < r and � ✓ < ! < ✓}. (4.3)

One basic technical result in this section is contained in the next proposition below.
To be able to formulate it, we will need the Gamma and Beta functions which, for
the convenience of the reader, we now briefly recall. As is well-known, they are
respectively given by

0(z) :=

Z
1

0
t z�1e�t dt, z 2 C, Re z > 0, (4.4)

and

B(z1; z2) :=

Z 1

0
t z1�1(1� t)z2�1 dt, z j 2 C, Re z j > 0, j = 1, 2. (4.5)

with both integrals convergent under the specified conditions. It will also be useful
to recall that an alternative formula for the Beta function is

B(z1; z2)=2
Z ⇡/2

0
(sin↵)2z1�1(cos↵)2z2�1 d↵, z j 2C, Re z j >0, j=1, 2. (4.6)

Here is the proposition alluded to above.
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Proposition 4.1. Suppose that � is a bounded domain in R2 for which there exist
r > 0 and ✓ 2 (0,⇡) such that

� \ B(0, r) = S✓,r . (4.7)

Also, let u be the function defined by (2.1). Then for every � 2 (0, 1) there holdsZ
S✓,r

u(x)�� dx  C(✓,�) r2(1��), (4.8)

where C(✓,�) > 0 is the finite constant described as

C(✓,�) :=

8>>>>>>><
>>>>>>>:

⇣⇣
⇡
2✓

⌘2
�4
⌘�

(2✓)2
⇡(⇡�4✓)B

⇣
✓(1��)
⇡/4�✓ ; 1��

⌘
B
⇣
1
2 ;

1��
2

⌘
if ✓ 2

�
0, ⇡4

�
,

23��2
⇣

1
1��

⌘1��
0(1� �)B

⇣
1
2 ;

1��
2

⌘
if ✓ =

⇡
4 ,

⇣
4�
⇣
⇡
2✓

⌘2⌘�
(2✓)2

⇡(4✓�⇡)B
⇣
✓��⇡/2
✓�⇡/4 ; 1��

⌘
B
⇣
1
2 ;

1��
2

⌘
if ✓ 2

�
⇡
4 ,⇡

⇤
.

(4.9)

As a consequence, for every � 2 (0, 1),Z
S✓,r

u(x)�� dx  C� ✓1�2� r2(1��). (4.10)

The bound in (4.10) is in the nature of best possible, in the sense that if � := S✓,r
for some ✓ 2 (0,⇡) and r > 0, and if u is the solution of (2.1) for this domain then,
in fact, for every � 2 (0, 1),Z

S✓,r
u(x)�� dx ⇡ ✓1�2� r2(1��), uniformly for ✓ 2 (0,⇡) and r > 0, (4.11)

with comparability constants which depend exclusively on �.

To get a better feel for the constant defined in (4.9), a few comments are in
order. Since, as is well-known, we have the following asymptotic formula

B(x, y) ⇠ 0(y) x�y when x > 0 is large, for each fixed y > 0, (4.12)

we deduce from this and (4.9) that, for each � 2 (0, 1) fixed,

C(✓,�)⇠⇡�1(1��)��1✓1��(⇡+4✓)� 0(1��)B
⇣1
2
;

1��
2

⌘
(4.13)

for ✓ close to ⇡
4 .

In particular, this shows that the functions ✓ 7! C(✓,�) from (4.9) are continuous
at ⇡/4. In this vein, let us also remark here that since

lim
x!0+

⇣
xB(x, y)

⌘
= 1 for each fixed y > 0, (4.14)
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it follows from (4.9) that, for each � 2 (0, 1) fixed,

C(✓,�) ⇠ ✓1�2�, for ✓ close to zero. (4.15)

Altogether, the above analysis shows that for each fixed � 2 (0, 1), the quantity
C(✓,�) depends continuously on ✓ 2 (0,⇡] and satisfies

C(✓,�) ⇡ ✓1�2�, uniformly for ✓ 2 (0,⇡]. (4.16)

The proof of the above proposition requires further preparation. For each ✓ 2 (0,⇡)
and r > 0 consider the barrier function v✓,r : S✓,r ! R which, in polar coordinates
(⇢,!), is given by

v✓,r (⇢,!) :=

8>><
>>:

⇣⇣
⇡
2✓

⌘2
� 4
⌘
�1
r2
h⇣
⇢
r

⌘2
�

⇣
⇢
r

⌘⇡/(2✓)i
cos
⇣
⇡!
2✓

⌘
if ✓ 2

�
0,⇡

�
\

�
⇡
4
 
,

⇢2

4 log
⇣
r
⇢

⌘
cos (2!) if ✓=

⇡
4 .

(4.17)

It is reassuring to observe that, because of the differentiation quotient present in
(4.17), which can be highlighted by writing

v✓,r (⇢,!) =

⇣⇣ ⇡
2✓

⌘2
� 4

⌘
�1
r2
h⇣⇢
r

⌘2
�

⇣⇢
r

⌘⇡/(2✓)i
cos

⇣⇡!
2✓

⌘
(4.18)

= �r2
⇣ ⇡
2✓

+ 2
⌘

�1

⇣
⇢
r

⌘2
�

⇣
⇢
r

⌘⇡/(2✓)

2�
⇡
2✓

cos
⇣⇡!
2✓

⌘
,

the formula for v✓,r corresponding to the special value ✓ = ⇡/4 (i.e., second line of
(4.17)) is the natural limit case of the formula for v✓,r in the first line of (4.17) as
✓ ! ⇡/4.

The above barrier function has been designed precisely as to satisfy, for any
✓ 2 (0,⇡) and any r > 0

v✓,r = 0 on @S✓,r , v✓,r > 0 in S✓,r , and

�(1v✓,r )(⇢,!) = cos (⇡!/(2✓)) in S✓,r .
(4.19)

The last property is verified by means of an elementary calculation based on the
fact that, in polar coordinates in the plane, the Laplacian can be written as 1 =

d2/d⇢2+⇢�1d/d⇢+⇢�2d2/d!2. The normalisation constants in (4.17) have been
selected so that the right-hand side in the second line of (4.19) is precisely a cosine
(this will be of relevance shortly; cf. (4.30) below). While checking the last formula
in (4.19) it also helps to notice that the function

ev✓ (⇢,!) := ⇢⇡/(2✓) cos
⇣⇡!
2✓

⌘
= Im [z⇡/(2✓)

], z = ⇢ ei!, (4.20)
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is harmonic for every ✓ 2 (0,⇡) and every r > 0. It is instructive to note thatev✓ from (4.17) is the first singular function arising from the Mellin symbol of the
Dirichlet-Laplacian on the interval (�✓, ✓), while the function v✓,r from (4.20) is
closely related to the term of degree 2 in the corner asymptotics of u (note that
this asymptotics contains a log term only if ✓ =

⇡
4 ). The preference of v✓,r overev✓ is then justified by observing that, for small values of ✓ (more precisely, for

✓ 2 (0,⇡/4)), the corner asymptotics of u is dominated by its term of degree 2,
and not by its term of degree ⇡

2✓ . This aspect
4 plays a crucial role in our subsequent

analysis.
With the above notation and conventions we have:

Lemma 4.2. For any � 2 (0, 1), any r > 0 and any ✓ 2 (0,⇡), we have
Z
S✓,r

v✓,r (x)�� dx = C(✓,�) r2(1��) (4.21)

where C(✓,�) > 0 is the finite constant given in (4.9).

Proof. Fix � 2 (0, 1), let r > 0 be arbitrary and first assume that ✓ 2 (0,⇡/4). We
have
Z
S✓,r

v✓,r (x)�� dx

=

⇣⇣ ⇡
2✓

⌘2
� 4

⌘�
r�2�

Z
S✓,r

h⇣⇢
r

⌘2
�

⇣⇢
r

⌘⇡/(2✓)i��h
cos

⇣⇡!
2✓

⌘i
��
dx (4.22)

=

⇣⇣ ⇡
2✓

⌘2
� 4

⌘�
r�2� I · I I,

where

I :=

Z r

0

h⇣⇢
r

⌘2
�

⇣⇢
r

⌘⇡/(2✓)i��
⇢ d⇢ and I I :=

Z ✓

�✓

h
cos

⇣⇡!
2✓

⌘i
��
d!. (4.23)

Making two changes of variables, first introducing t := ⇢/r , then substituting s for
t", where " := ⇡/(2✓) � 2 > 0, yields

I = "�1r2
Z 1

0
s2(1��)/"�1(1� s)�� ds =

r2

"
B
⇣2(1� �)

"
; 1� �

⌘
(4.24)

= r2
⇣ ⇡
2✓

� 2
⌘

�1
B
⇣✓(1� �)

⇡/4� ✓
; 1� �

⌘
,

4 We owe this insight to one of the referees.
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after unravelling notation. On the other hand, making the change of variables ↵ :=

⇡!/(2✓) and using the parity of the cosine function permits one to write (after a
reference to (4.6))

I I =

4✓
⇡

Z ⇡/2

0
(cos↵)�� d↵ =

2✓
⇡

B
⇣1
2
;

1� �

2

⌘
. (4.25)

Collectively, (4.22)-(4.25) establish the validity of (4.21) in the case when ✓ 2

(0,⇡/4) and with a constant C(✓,�) as in the first line in the right-hand side of
(4.9). The case when ✓ 2 (⇡/4,⇡) is treated in a most analogous manner and we
omit it.

Finally, corresponding to ✓ = ⇡/4, we have
Z
S⇡/4,r

v⇡/4,r (x)�� dx = 4�
Z
S⇡/4,r

⇢�2�
h
log
⇣ r
⇢

⌘i
��h

cos (2!)
i
��
dx

(4.26)
= 4�r2�2� I I I · I I V,

where, after the changes of variables t = ⇢/r and ↵ = 2!,

I I I :=

Z 1

0
t1�2�

h
log
⇣1
t

⌘i
��

dt and I V := 2�1
Z ⇡/2

�⇡/2
(cos ↵)��d↵. (4.27)

One more change of variables, substituting exp(�s/(2 � 2�)) for t in I I I , trans-
forms this term into

I I I =

⇣ 1
2� 2�

⌘1�� Z 1

0
e�ss�� ds = 2��1

⇣ 1
1� �

⌘1��
0(1� �), (4.28)

whereas, much as before,

I V = 2�1B
⇣1
2
;

1� �

2

⌘
. (4.29)

In concert, (4.26)-(4.29) justify (4.21) in the case when ✓ = ⇡/4, with a constant
C(✓,�) as in the middle line in the right-hand side of (4.9). This completes the
proof of the lemma.

After this preamble, here is the end-game in the following proof:

Proof of Proposition 4.1. Let r > 0, ✓ 2 (0,⇡) be as in the statement of the propo-
sition. With v✓,r as in (4.17), it follows that the function w := u � v✓,r : S✓,r ! R
satisfies (recall that we are assuming that 1u = �1 in � ◆ S✓,r )

(1w)(⇢,!) = �1+ cos (⇡!/(2✓))  0 for each ⇢ ei! 2 S✓,r , (4.30)
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i.e., w is superharmonic in S✓,r . In addition, w is continuous in S✓,r and

w
��
@S✓,r= u

��
@S✓,r� 0 (4.31)

given that, by design, u is nonnegative in�. Hence, the Maximum Principle applies
and yields w � 0 in S✓,r or, in other words,

u � v✓,r in S✓,r . (4.32)

The estimate (4.8) now readily follows by combining (4.32) with the result proved
in Lemma 4.2. With this in hand, (4.10) is a direct consequence of (4.8) and (4.15)
(cf. also the claim following this last equation).

Finally, there remains to prove the equivalence in (4.11). Of course, the left-
pointing inequality is contained in (4.10), so we only need to check the right-
pointing inequality in (4.11). To this end, suppose in what follows that� = S✓,r for
some ✓ 2 (0,⇡), r > 0, and that u = u✓,r solves (2.1) for this particular domain.
To continue, fix ✓0 2 (0,⇡/2) and assume first that ✓ 2 (✓0,⇡). Then

Z
S✓,r

u✓,r (x)�� dx = r2(1��)

Z
S✓,1

u✓,1(x)�� dx � C� ✓0 r2(1��), (4.33)

because the way the first integral scales in the parameter r , and (2.7). Since in the
situation we are currently considering ✓1�2� behaves like a constant, the desired
conclusion follows in this case. We are left with considering the case when ✓ 2

(0, ✓0). In such a scenario, set

eS✓,r := {(x, y) 2 R2 : 0 < y < x tan ✓ and 0 < x < r}. (4.34)

and note that

eS✓,r cos ✓ ✓ S✓,r ✓
eS✓,r . (4.35)

Next, consider the following barrier function, designed to befit the triangular regioneS✓,r :
ev✓,r : eS✓,r !R, ev✓,r (x,y) := 1

2 y
�
x tan ✓�y

�
, for all (x,y)= x+iy2

eS✓,r . (4.36)
Hence,ev✓,r is continuous ineS✓,r and satisfies1ev✓,r = �1 ineS✓,r as well asev✓,r � 0
on @eS✓,r . Consequently, the functionev✓,r � u is harmonic in S✓,r (= �), continu-
ous on its closure, and ev✓,r � u = ev✓,r � 0 on @S✓,r (= @�). Therefore, by the
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Maximum Principle, u ev✓,r in S✓,r which, in turn, gives that
Z
S✓,r
u(x)��dx �

Z
S✓,r
ev✓,r (x)�� dx �

Z
eS✓,r cos ✓

ev✓,r (x)��dx

= 2��

Z r cos ✓

0

⇣Z x tan ✓

0
y��(x tan ✓ � y)�� dy

⌘
dx

= 2��(tan ✓)1�2�
⇣Z r cos ✓

0
x1�2� dx

⌘⇣Z 1

0
t��(1� t)�� dt

⌘
,

(4.37)
= C� (tan ✓)1�2�(cos ✓)2�2�r2�2�

= C� (cos ✓)(sin ✓)1�2�r2�2�

⇡ ✓1�2�r2�2�, uniformly for ✓ 2 (0, ✓0),

(taking into account (4.35) in the second inequality and after making the change of
variables y = t x tan ✓ in the inner integral in the second line). This concludes the
justification of (4.11) and finishes the proof of the proposition.

We are now in a position to formulate the first main result in this section.
This shows that, whenever � is a polygon, (4.8) holds for every � < 1 which is
remarkable since, as opposed to the situation discussed in Corollary 3.8, this time
@� is far from being regular.

Theorem 4.3. Assume that� is a polygon in R2 and that u is the solution of (2.1).
Then, for every � 2 (0, 1),

Z
�
u(x)�� dx  C(�,�) < +1. (4.38)

Proof. Let {P1, ..., PN } be the vertices of the polygon� and, for each i 2{1, ..., N },
denote by ✓i 2 (0,⇡) the half-measure of the angle corresponding to Pi , and by
L 0

i and L
00

i the lengths of the two sides of � emerging from Pi . Also, for each
i 2 {1, ..., N }, introduce

ri :=min
n
L 0

i , L
00

i , (L
0

i )
1/(2�2�)✓

(2��1)/(2�2�)
i , (L 00

i )
1/(2�2�)✓

(2��1)/(2�2�)
i

o
. (4.39)

Parenthetically, we wish to note that

� = 1/2 =) ri = min
�
L 0

i , L
00

i
 
. (4.40)

Writing a formula similar to (4.10) at each vertex (note that the problem (2.1) trans-
forms naturally under rigid motions of the plane) and summing up all contributions
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obtained from integrating u�� near each vertex gives
NX
i=1

Z
�\B(Pi ,ri )

u(x)�� dx  C�
NX
i=1

✓
1�2�
i r2(1��)

i

(4.41)

 C�
NX
i=1

min {L 0

i , L
00

i }  C� H1(@�),

with a finite constant C� > 0 which depends only on �.
Having estimated the contribution from the vertices, construct now a C1 do-

main �⇤ ✓ � by rounding off each vertex Pi with a suitably small circular arc
contained within B(Pi , ri/2). This ensures that �� has the property that

�⇤ [

⇣ [
1iN

�
� \ B(Pi , ri )

�⌘
= �. (4.42)

Next, consider u⇤ such that8>><
>>:
1u⇤ = �1 in �⇤,

u⇤ = 0 on @�⇤,

u⇤ 2 C0(�⇤).

(4.43)

Since u � u⇤ is a continuous function in �⇤ which satisfies 1(u � u⇤) = 0 in ��
and u � u⇤ = u � 0 on @�⇤ ✓ �, it follows from the Maximum Principle that
u � u⇤ in �⇤. Thus, for every � 2 (0, 1),Z

�⇤

u(x)�� dx 

Z
�⇤

u⇤(x)�� dx  C(�⇤,�) < +1, (4.44)

by virtue of Corollary 3.8. Now, (4.38) follows readily from (4.41), (4.42) and
(4.44).

In the class of convex polygons in R2 it is possible to further clarify the nature
of the constant C(�,�) in (4.38). This is done in Theorem 4.7, stated later in this
section. As a preamble, a key technical result used in the proof of this theorem is
isolated in the proposition below.

Proposition 4.4. Assume that � is a bounded domain in R2 for which there exist
r > 0 and ✓ 2 (0,⇡/2) with the property that

� \ B(0, r) = S✓,r and B
�
(r(cos ✓)�1, 0), r tan ✓

�
✓ �. (4.45)

As usual, let u be the function defined by (2.1). Then

0<�<min
n
1, 4✓⇡

o
=)

Z
S✓,r
u(x)�� dxC�

 
✓2(1��)

4✓ � ⇡�

!
r2(1��)(cos ✓)�, (4.46)
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where C� > 0 is the finite constant which depends only on �.
Furthermore, retaining (4.45) it follows that for every � 2 (0, 1) there holds

Z
S✓,r

u(x)�� dx  C� ✓1�2� r2(1��)(cos ✓)� . (4.47)

Proof. Consider the function defined by

v(x) :=
1
4

h
r2 tan2 ✓ �

�
x1 � r(cos ✓)�1

�2
� x22

i
, x = (x1, x2). (4.48)

In polar coordinates x = (x1, x2) = (⇢ cos!, ⇢ sin!) this takes the form

v(⇢,!) =
1
4

h
2r⇢ cos!(cos ✓)�1 � r2 � ⇢2

i
. (4.49)

Let us also define the harmonic function

w(⇢,!) := ⇢⇡/(2✓) cos
⇣⇡!
2✓

⌘
, ⇢ > 0, |!| < ✓ . (4.50)

Then, w vanishes on the straight sides of @S✓,r (i.e., for ! = ±✓), while on the
rounded portion of the boundary of @S✓,r (i.e., the arc described by ⇢ = r and
|!| < ✓) we have

w(r,!)

v(r,!)
= 2(cos ✓) r⇡/(2✓)�2

cos
⇣
⇡!
2✓

⌘
cos! � cos ✓

, |!| < ✓ . (4.51)

Note that

sup
|!|<✓

0
@ cos

⇣
⇡!
2✓

⌘
cos! � cos ✓

1
A = sup

0<!<✓

0
@ cos

⇣
⇡!
2✓

⌘
cos! � cos ✓

1
A (4.52)

and, for each ! 2 (0, ✓),

cos
⇣
⇡!
2✓

⌘
cos! � cos ✓

=

sin
⇣
⇡
2 �

⇡!
2✓

⌘
cos! � cos ✓

=

sin
⇣
⇡(✓�!)
2✓

⌘
cos! � cos ✓

(4.53)

=

⇡

2✓

0
@sin

⇣
⇡(✓�!)
2✓

⌘
⇡(✓�!)
2✓

1
A ✓ � !

cos! � cos ✓
.

Since ⇡(✓ � !)/(2✓) 2 (0,⇡/2) whenever ! 2 (0, ✓), it follows that the fraction
in parentheses in the right-most expression in (4.53) is  1 for each ! 2 (0, ✓).
Also, elementary calculus shows that there exists a universal constant c > 0 such
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that (✓ � !)/(cos! � cos ✓)  c/✓ if 0 < ! < ✓ (recall that ✓ 2 (0,⇡/2)).
Consequently,

w(r,!)

v(r,!)
 c ✓�2(cos ✓) r⇡/(2✓)�2, for every ! 2 (�✓, ✓). (4.54)

Next, given that by design

v = 0 on @B
�
(r(cos ✓)�1, 0), r tan ✓

�
,

1v = �1 in B
�
(r(cos ✓)�1, 0), r tan ✓

�
,

(4.55)

and that, by assumption, B
�
(r(cos ✓)�1, 0), r tan ✓

�
✓ �, the Maximum Principle

ensures that

v  u in B
�
(r(cos ✓)�1, 0), r tan ✓

�
. (4.56)

In particular,

v(r,!)  u(r,!) for all ! 2 (�✓, ✓). (4.57)

From this and (4.54) we may therefore conclude that

c�1 ✓2(cos ✓)�1 r2�⇡/(2✓)w(r,!)  u(r,!) for every ! 2 (�✓, ✓). (4.58)

Granted this, as well as the properties of w recorded just after (4.50), the Maximum
Principle applies again and yields that

c�1 ✓2(cos ✓)�1 r2�⇡/(2✓)w(x)  u(x) for every x 2 S✓,r . (4.59)

Hence, for every � 2 (0, 4✓/⇡), a familiar (by now) computation gives that
Z
S✓,r

u(x)�� dx

 c�✓�2�(cos ✓)� r (⇡/(2✓)�2)�
Z
S✓,r

w(x)�� dx

(4.60)

= c�✓�2�(cos ✓)�r (⇡/(2✓)�2)�B
⇣1
2
;

1��
2

⌘ 4✓2

⇡(4✓�⇡�)

!
r2�⇡�/(2✓)

= C�

 
✓2(1��)

4✓ � ⇡�

!
r2(1��)(cos ✓)�,

proving (4.46).
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Finally, when ✓ 2 (⇡/3,⇡/2), it follows from (4.46) that for every � 2 (0, 1)
we have Z

S✓,r
u(x)�� dx  C� r2(1��)(cos ✓)�, (4.61)

which further implies (4.47) in the case we are considering. When ✓ 2 (0,⇡/3),
then (4.47) is a direct consequence of (4.10).

Continuing the buildup to Theorem 4.7, we now make several definitions and
comment on their significance and how they interrelate.
Definition 4.5. The eccentricity of an open, bounded convex set� inRn is defined
as

ecc (�) :=

inf {R1 > 0 : 9 x 2 Rn such that � ✓ B(x, R1)}
sup {R2 > 0 : 9 x 2 Rn such that B(x, R2) ✓ �}

. (4.62)

It follows that

ecc (�) controls both the NTA constants of �
as well as the Ahlfors character of @�,

(4.63)

uniformly in the class of open, bounded and convex subsets � of Rn . Further-
more, there exists a dimensional constant cn with the property that for every open,
bounded convex set � ✓ Rn we have

diam (�)  cn ecc (�) |�|
1/n. (4.64)

Definition 4.6. Let � be a convex polygon in R2. Call R > 0 an admissible radius
for � provided for each side of � there exists a ball of radius R contained in �
which is tangent to that side. Then define the maximal admissible radius of � as

R� := sup {R > 0 : R is an admissible radius for �}, (4.65)

and set

�# :=

[
x2�, ��(x)>R�

B(x, R�). (4.66)

Straight from definitions it can be seen that

� ✓ R2 convex polygon =)�# satisfies an inner ball condition of radius R�. (4.67)

Also, it is not too difficult to show that

� ✓ R2 convex polygon =) �# is a C1,1 convex domain
satisfying ecc (�#)  ecc (�).

(4.68)
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Shortly we will also need the readily verified claim that

� ✓ R2 convex polygon =) the angles of � are � 2✓⇤, where
✓⇤ 2 (0,⇡/2) depends only on ecc (�).

(4.69)

After this prelude, we are now prepared to state and prove a refined version of (4.38)
in the class of convex polygons in R2.

Theorem 4.7. Assume that � is a convex polygon in R2. Then for every � 2 (0, 1)
the solution u of (2.1) satisfies

Z
�
u(x)�� dx  C(ecc (�),�)

⇣diam (�)

R�

⌘m�+2
|�|

1��, (4.70)

where m > 0 depends only on ecc (�).

Proof. Denote by {P1, ..., PN } the vertices of the polygon � and, for each i 2

{1, ..., N }, let ✓i 2 (0,⇡/2) be the half-measure of the angle corresponding to Pi .
Set

ri := R� cos ✓i , 1  i  N , (4.71)

and fix � 2 (0, 1). Also, let ✓⇤ 2 (0,⇡/2) be as in (4.69). Then, thanks to (4.47),
for each i 2 {1, ..., N } we have
Z
�\B(Pi ,ri )

u(x)�� dx  C(✓⇤,�) r2(1��)
i (cos ✓i )� = C(✓⇤,�) R��

� r2��i . (4.72)

Consequently,

NX
i=1

Z
�\B(Pi ,ri )

u(x)�� dx  C(✓⇤,�) R��
�

NX
i=1

r2��i

(4.73)

 C(✓⇤,�) R��
�

⇣ NX
i=1

ri
⌘2��

,

since 2�� > 1. Given that
PN

i=1 ri is controlled by the perimeter of �, this yields

NX
i=1

Z
�\B(Pi ,ri )

u(x)�� dx  C(✓⇤,�) R��
�

⇥
H1(@�)

⇤2��

 C(✓⇤,�) R��
� (diam (�))2�� (4.74)

= C(✓⇤,�)
⇣diam (�)

R�

⌘�
(diam (�))2(1��).
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In light of (4.70) (and keeping (4.69) in mind), this bound suits our purposes.
To continue, we note that

�# [

⇣ N[
i=1

(� \ B(Pi , ri ))
⌘

= �, (4.75)

and observe that, thanks to (4.67) and (3.60),Z
�#
u(x)�� dx  C�#(�)

⇣diam (�#)

R�

⌘m�+2
|�#|1��

(4.76)

 C�#(�)
⇣diam (�)

R�

⌘m�+2
(diam (�))2(1��),

where m > 0 depends only on the NTA constants of �#, and C�#(�) > 0 is a finite
constant which depends only on the Ahlfors character of @�# and �. Hence, by
(4.63) and (4.68), C�#(�) can be controlled in terms of ecc (�) and �. Estimate
(4.70) now follows from this observation, (4.74), (4.75), (4.76) and (4.64).

Remark 4.8. In regard to (4.70), it should be pointed out that, in the class of convex
polygons in R2, the maximal admissible radius cannot be controlled in terms of the
diameter and the eccentricity. A simple example is as follows. Let� be the triangle
whose vertices have coordinates (�1, 0), (1, 0), (0, 1) and, for each j � 2, consider
the convex quadrilateral � j := {(x, y) 2 � : y < 1 � 1/j}. It is then clear that
while ecc (� j ) and diam (� j ) stay bounded, R� j ! 0 as j ! 1.

We conclude this section by giving an asymptotic formula for the �-integral
of a regular polygon, as the number of vertices increases. This augments earlier
estimates in (3.49)-(3.50).

Proposition 4.9. For each N 2 N, N � 3, let �N ✓ R2 denote the regular
polygon with N sides, circumscribed by B(0, 1). Denote by uN the solution u of
(2.1) when � = �N . Then for each � 2 (0, 1) the following asymptotic formula
holds Z

�N

uN (x)�� dx =

4�⇡
1� �

+O(N��1) as N ! 1. (4.77)

Proof. We specialise part of the proof of Theorem 4.7 to the present case. In the
current setting, using notation introduced on that occasion, we have:

R�N =1�o(1), ✓i =
⇡

2
�

⇡

N
, ri = R�N cos ✓i = R�N sin(⇡/N ), 1 iN . (4.78)

Also, as before, we let P1, ..., PN be the vertices of �N . Hence, the first inequality
in (4.73) gives

NX
i=1

Z
�N\B(Pi ,ri )

uN (x)��dxC�R2(1��)
�N

NX
i=1

�
sin(⇡/N )

�2��
 C� N��1. (4.79)
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Since the Maximum Principle and (2.12) imply u(x) �
1
4 (1 � |x |2) for all x 2

B(0, 1), we therefore obtain the asymptotic estimate

Z
�N

uN (x)�� dx 

NX
i=1

Z
�N\B(Pi ,ri )

uN (x)�� dx +

Z
B(0,1)

uN (x)�� dx

 4�
Z
B(0,1)

dx
(1� |x |2)�

+O(N��1) (4.80)

=

4�⇡
1� �

+O(N��1).

On the other hand, (2.12) and the Maximum Principle give

uN (x) 
1
4
�
(cos(⇡/N ))�2 � |x |2) for all x 2 �N , (4.81)

which then forces
Z
�N

uN (x)�� dx � 4�
Z
B(0,1)

dx�
(cos(⇡/N ))�2 � |x |2

��
= 4�⇡

Z 1

0

dt�
(cos(⇡/N ))�2 � t

��

=

4�⇡
1��

⇣
(cos(⇡/N ))�2(1��)

�

�
(cos(⇡/N ))�2�1

�1��⌘ (4.82)

=

4�⇡
1� �

(cos(⇡/N ))�2(1��)
⇣
1�

�
sin(⇡/N )

�2(1��)
⌘

=

4�⇡
1� �

⇣
1�O(N2(��1))

⌘
.

Now, (4.77) follows from (4.80) and (4.82).

5. Piecewise smooth domains with conical singularities in Rn

In this section we shall work in the general n-dimensional case, n � 2. Throughout,
we retain notation introduced in § 3. Given r > 0 and an open connected subset G
of Sn�1 with a sufficiently regular boundary (relative to Sn�1), define the truncated
cone

SG,r := B(0, r) \ 0G = {(⇢,!) : 0 < ⇢ < r, ! 2 G}, (5.1)
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where (⇢,!) 2 (0,1)⇥ Sn�1 are the standard polar coordinates inRn . Associated
with this truncated cone, consider the barrier function vG,r : SG,r ! R which, in
polar coordinates is given by

vG,r (⇢,!) :=

8>><
>>:

r2
3G�2n

h⇣
⇢
r

⌘2
�

⇣
⇢
r

⌘↵G
i
�G(!) if 3G 6= 2n,

⇢2

n+2 log
⇣
r
⇢

⌘
�G (!) if 3G = 2n,

(5.2)

for each ! 2 G and ⇢ 2 (0, r). Given that, by (3.8), we have

3G � 2n = (↵G � 2)(↵G + n), (5.3)

it is worth noting that

3G = 2n () ↵G = 2. (5.4)

In particular, the formula for vG,r (⇢,!) in the second line of (5.2) is the limiting
case of the formula for vG,r (⇢,!) in the first line of (5.2) as3G becomes 2n. Much
as before, in axially symmetric case, i.e., for G = Sn�1 \ 0✓ for some ✓ 2 (0,⇡),
we agree to abbreviate SSn�1\0✓ ,r and vSn�1\0✓ ,r by S✓,r and v✓,r , respectively. In
this scenario, we therefore have

v✓,r (⇢,!) =

8>><
>>:

r2
3✓�2n

h⇣
⇢
r

⌘2
�

⇣
⇢
r

⌘↵✓ i
�✓ (!), if ✓ 6= ✓n,

⇢2

n+2 log
⇣
r
⇢

⌘
�✓n (!), corresponding to ✓ = ✓n,

(5.5)

where ✓n 2 (0,⇡) is the unique angle for which ↵✓n = 2. Note that since the
assignment ✓ 7! ↵✓ is strictly decreasing (cf. (3.14)) and since ↵⇡/2 = 1 and
↵✓ % +1 as ✓ & 0 (cf. (3.15)), there exists precisely one angle ✓n 2 (0,⇡/2) for
which ↵✓n = 2. In fact, from (3.19) we know that

✓n = arccos (1/
p

n), n � 2, (5.6)

so that, in particular,

✓n =

(
⇡
4 when n = 2,
⇡
3 when n = 4,

and ✓n %

⇡

2
as n ! 1. (5.7)

This discussion shows that 3✓ 6= 2n if ✓ 6= ✓n and, hence, v✓,r (⇢,!) is well-
defined for every ✓ 2 (0,⇡) and v✓n,r (⇢,!) is the limit of v✓,r (⇢,!) as ✓ ! ✓n .

Lemma 5.1. Assume that G is an open, connected subset of Sn�1 whose relative
boundary is a submanifold of class C1,↵ , for some ↵ 2 (0, 1), and of codimension
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one in Sn�1. Then for every � 2 (0, 1) and r > 0, the barrier function vG,r from
(5.2) satisfiesZ

SG,r

vG,r (x)�� dx = cn(G,�) rn�2�
⇣Z

G
�G(!)�� d!

⌘
< +1, (5.8)

where

cn(G,�) :=

8>>>>><
>>>>>:

(3G�2n)�
↵G�2 B

⇣
n�2�
↵G�2 ; 1� �

⌘
, if 2 < ↵G < +1,

(n � 2�)��1(n + 2)�0(1� �), if ↵G = 2,

(2n�3G)�

2�↵G
B
⇣
n�2�
2�↵G

; 1� �
⌘

if 0 < ↵G < 2.

(5.9)

Proof. The proof largely parallels that of Lemma 4.2. We include it primarily to
indicate how the right-hand side of (5.8) shapes up. Fix � 2 (0, 1), let r > 0 be
arbitrary and first assume that ↵G 2 (2,1). This forces 3G > 2n and we haveZ
SG,r

vG,r (x)��dx = r�2�(3G�2n)�
Z
SG,r

h⇣⇢
r

⌘2
�

⇣⇢
r

⌘↵G
i
��
�G(!)��dx

(5.10)
= r�2�(3G � 2n)� I · I I,

where

I :=

Z r

0

h⇣⇢
r

⌘2
�

⇣⇢
r

⌘↵✓ i��
⇢n�1 d⇢ and I I :=

Z
G
�G(!)�� d!. (5.11)

As in the past, we make two changes of variables, first letting t := ⇢/r , then
replacing t" by s where, this time, we set " := ↵G � 2 > 0. This yields

I = "�1rn
Z 1

0
s(n�2�)/"�1(1� s)�� ds =

rn

"
B
⇣n � 2�

"
; 1� �

⌘
(5.12)

=

rn

↵G � 2
B
⇣n � 2�
↵G � 2

; 1� �
⌘
,

Thus, (5.10)-(5.12) prove (5.8) in the case when ↵G 2 (2,1) and with a constant
cn(G,�) as in the first line in the right-hand side of (5.9). The case when ↵G 2

(0, 2) is treated similarly and we omit it. Moving on, in the case corresponding to
↵G = 2 we writeZ

SG,r

vG,r (x)�� dx = (n + 2)�
Z
SG,r

⇢�2�
h
log
⇣ r
⇢

⌘i
��
�G(!)�� dx

(5.13)
= (n + 2)�r2�2� I I I · I V,
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where (after a natural change of variables)

I I I :=

Z 1

0
tn�1�2�

h
log
⇣1
t

⌘i
��

dt and I V :=

Z
G
�G(!)�� d!. (5.14)

Substituting exp(�s/(n � 2�)) for t in I I I , further transforms this term into

I I I = (n � 2�)��1
Z

1

0
e�ss�� ds = (n � 2�)��10(1� �). (5.15)

Together, (5.13)-(5.15) justify (5.8) in the case when ↵G = 2, with a constant
cn(G,�) as in the middle line in the right-hand side of (5.9).

The last thing left to justify, in order to complete the proof of the lemma, is the
finiteness condition in (5.8). This, however, is a direct consequence of (3.5) (cf. also
Lemma 2.14).

The main result in this section is the following higher-dimensional analogue
of Theorem 4.3. Essentially, this asserts that (1.6) holds for every � 2 (0, 1) in the
class of bounded piecewise C1 domains inRn with conical singularities. While this
constitutes a subclass of the larger class of bounded Lipschitz domains, it is worth
recalling that Theorem 3.7 establishes (1.6) only for a smaller range of values for
the parameter � (described in (3.47)). This is surprising since the conclusion in
(the first part of) Corollary 3.8 progressively weakens precisely when the Lipschitz
constant of a domain becomes large (cf. (3.31)). Thus, for the type of domains
considered here, the approach developed in this section yields a better control of the
�-integral of the solution of the Saint Venant problem (2.1) than the earlier methods
based on direct pointwise estimates (from below) on the solution u of (2.1) in terms
of powers of the distance to the boundary.

Theorem 5.2. Assume that� is a bounded open set in Rn , n � 2, whose boundary
is of class C1 with the exception of finitely many points P1, ..., PN 2 @�, and such
that for each i 2 {1, ..., N } there exist an open, connected subsetGi of Sn�1 whose
relative boundary is a submanifold of class C1,↵ , ↵ 2 (0, 1), and of codimension
one in Sn�1, along with a number ri > 0 with the property that

� \ B(Pi , ri ) and SGi ,ri coincide, modulo a rigid transformation of Rn. (5.16)

Let u be the solution of (2.1). Then for every � 2 (0, 1) there holds
Z
�
u(x)�� dx  C(�,�) < +1. (5.17)

Proof. Pick P 2 @� with the property that there exist an open, connected subsetG
of Sn�1 whose relative boundary is a C1,↵ submanifold of codimension one in Sn�1
(where ↵ 2 (0, 1)) and r > 0 such that�\B(P, r) and SG,r are congruent. Without
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loss of generality, assume that P is the origin in Rn and that, in fact, �\ B(0, r) =

SG,r . Bring in the barrier function vG,r from (5.2) and note that, by design,

vG,r = 0 on @SG,r , vG,r > 0 in SG,r ,

and (1vG,r )(⇢,!) = ��G(!) in SG,r .
(5.18)

Indeed, these are direct consequences of (5.2), (3.10), (3.6), (3.8), and (3.4). The
normalisation constants in (5.5) have been selected so that the right-hand side in
the second line of (5.18) is always a number belonging to the interval [�1, 0] (for
this, (3.4) is crucial). As such, 1(u � vG,r )(⇢,!) = �1 + �G(!)  0 for any
⇢! 2 SG,r . Since u � vG,r is continuous in SG,r and is equal to (the nonnegative
function) u on @SG,r , the Maximum Principle gives that

u � vG,r in SG,r . (5.19)

In turn, this and (5.8) permit us to estimateZ
�\B(P,r)

u(x)�� dx  cn(G,�) rn�2�
⇣Z

G
�G(!)�� d!

⌘
< +1, (5.20)

where the constant cn(G,�) is as in (5.9). Once this local estimate near a conical
point P 2 @� has been established, the remainder of the proof follows along the
lines of the proof of Theorem 4.3.

6. Results for other classes of nonsmooth domains

In this section we study the nature of �-integrals associated with other important
classes of non-smooth domains, starting with

6.1. The case of polyhedral domains

Consider the case when � ✓ R3 is a polyhedral domain5. Pick a vertex x0 2 @�
and, for a sufficiently small " > 0, set

G :=

�
(x � x0)/|x � x0| : x 2 B(x0, ") \�

 
✓ S2. (6.1)

Hence, the spherical polygon G is the profile of the cone which agrees with @� is
a small neighbourhood of x0. In this setting, a good portion of our earlier analysis
carries through verbatim. In particular, we may consider the eigenvalue problem
(3.3) which continues to have a solution which satisfies (3.4). The key feature
which is lost in the present setting (in which G no longer has a smooth boundary
in S2) is the equivalence (3.5). Recall that this played a basic role in the finiteness
condition in (5.8). We nonetheless have the following result.

5 Throughout, a polyhedral domain is understood to have finitely many faces, edges and vertices.
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Theorem 6.1. Suppose that u is the solution of the Saint Venant problem (2.1) in
the case when � is a polyhedral domain in R3. ThenZ

�
u(x)�� dx  C(�,�) < +1 (6.2)

for every � 2 (0, 1).

The remainder of this section is devoted to presenting a proof of this result.
Dealing with the first eigenfunction �G in the case whenG is a spherical polyhedral
domain requires the following asymptotic representation of �G near a corner point
of the spherical polygon G (in the spirit of work in [26])

�G( ,') = CG (sin')⇡/(2✓) cos(⇡ /(2✓)) +O
�
(sin')⇡/(2✓)+"�, (6.3)

for some " > 0, where CG is a constant depending on the global shape of G and
 , ' are local polar coordinates near a corner vertex O 2 @S2G, i.e., 0 < ' << 1,
| | < ✓ where ✓ is the half-aperture of the spherical angle at O . In addition, the
coefficient CG in (6.3) is given by the following formula, itself a special case of
closely related results proved in [33],

CG = 3G

Z
G
�G(!)⇣(!) d!. (6.4)

Above, ⇣ is a positive function in G, harmonic (in the sense of Laplace-Beltrami)
in G and vanishing on @S2G \ {O}, and which exhibits a prescribed singularity at
the vertex O , namely

⇣( ,')⇠(2/⇡)(sin')�⇡/(2✓) cos(⇡ /(2✓)), uniformly for | |<✓ , as '&0. (6.5)

Together with (6.4) and the fact that �G > 0, this analysis shows that CG > 0.
Unfortunately, formula (6.3) is not sufficiently refined in order to allow us to

estimate Z
G
�G(!)�� d!. (6.6)

An asymptotic expansion of �G near a corner O 2 @S2G which better suits our
purposes is contained in the lemma below.

Lemma 6.2. The remainder in the asymptotic formula

�G( ,') = CG(sin')⇡/(2✓) cos
�
⇡ /(2✓)

�
+ A( ,'), (6.7)

where 0 < ' << 1 and | | < ✓ , obeys the estimate

|A( ,')|  C(sin')⇡/(2✓)+" cos(⇡ /(2✓)), (6.8)

for some " > 0.
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Proof. Without loss of generality assume that the direction of the edge inducing the
spherical angle with opening 2✓ is along the x3-axis and set

x = (x 0, x3), x 0
= (x1, x2) = (⇢ sin' cos , ⇢ sin' sin ),

x3 = ⇢ cos', ⇢ =

q
x21 + x22 + x23 .

(6.9)

Let ↵G > 0 solve (3.8) so that, in particular, the function described in polar coordi-
nates by ⇢↵G�G( ,') is harmonic. Consequently,

0 = 1x
�
⇢↵G�G( ,')

�
= CG1x 0(⇢↵G�⇡/(2✓)(⇢ sin')⇡/(2✓) cos(⇡ /(2✓))

�
(6.10)

+1x
�
⇢↵GA( ,')

�
.

Given that

1x 0((⇢ sin')⇡/(2✓) cos(⇡ /(2✓))
�

= 0, (6.11)

we can express the last term in the first line of (6.10) as

CG1x 0(⇢↵G�⇡/(2✓)�
· (⇢ sin')⇡/(2✓) cos(⇡ /(2✓))

(6.12)
+2CGrx 0(⇢↵G�⇡/(2✓)�

· rx 0

�
(⇢ sin')⇡/(2✓) cos(⇡ /(2✓))

�
.

Fix � 2 (0, 1) small enough and restrict ⇢ to the interval [1� �, 1]. On this range,
we have |rx 0⇢|  C sin' and |1x 0⇢|  C , where the constant C depends only on
�. As a result, the absolute value of the expression in (6.12) does not exceed

C(sin')⇡/(2✓). (6.13)

Using this and (6.10) we may then write

7 := 1x
�
⇢↵GA( ,')

�
= O

⇣
(sin')⇡/(2✓)

⌘
. (6.14)

Next, since ⇢↵GA( ,') vanishes on the sides of the dihedral angle  = ±✓ , it
follows from the classical local regularity result of Agmon, Douglas and Nirenberg
(cf. [1]) that

X
0|� |2

�|� |�2
k@
�
x (⇢↵GA)kL p(E�)  C

⇣
k7kL p(eE�) + �3/p�2 maxeE�

|⇢↵GA|

⌘
,(6.15)

where p 2 (1,1) is fixed and we have set

E� :=

�
x 2 R3 : 1� �  ⇢  1, | |  ✓, �  sin'  2�

 
,

eE� :=

�
x 2 R3 : 1� 2�  ⇢  1+ �, | |  ✓, �/2  sin'  4�

 
.
(6.16)
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On account of this and the Sobolev embedding theorem we therefore obtain for
p > 3

�3/p�1 max
E�

|rx (⇢
↵GA)|  C

⇣
k7kL p(eE�) + �3/p�2 maxeE�

|⇢↵GA|

⌘
. (6.17)

On the other hand, recall that (cf. (6.14) and (6.3))

7 = O
⇣
(sin')⇡/(2✓)

⌘
and A = O

⇣
(sin')⇡/(2✓)+"

⌘
. (6.18)

In concert with (6.17) this yields

�3/p�1 max
E�

|rx (⇢
↵GA)|  C

⇣
�3/p+⇡/(2✓)

+ �3/p�2+⇡/(2✓)+"
⌘

(6.19)

so that, ultimately,

max
E�

|rx (⇢
↵GA)|  C�⇡/(2✓)+"�1. (6.20)

Using this and the fact that ⇢↵GA vanishes on the sides of the dihedral angle  =

±✓ we then obtain

⇢↵G
|A( ,')|  C cos(⇡ /(2✓)) · � ·max

E�
|rx (⇢

↵GA)|

(6.21)
 C�⇡/(2✓)+" cos(⇡ /(2✓)).

This proves that (6.8) holds for small values of '.

Corollary 6.3. Retaining the notation introduced above we have

�G( ,') =

⇣
CG +O

�
(sin')"

�⌘
(sin')⇡/(2✓) cos(⇡ /(2✓)), (6.22)

as ' ! 0. In addition,

�G(x)�C distS2
�
x,@S2G

�
, uniformly for x2G away from the vertices of G. (6.23)

Proof. Formula (6.22) is simply a re-writing of (6.7)-(6.8), whereas formula (6.23)
follows from a simple barrier argument and the Maximum Principle.

Let O be a point on one of the edges such that its distance from the nearest
vertex of our polyhedron is r > 0. In such a scenario, G equals the diangle on the
unit sphere

G = {! = ( ,') : 0 < ' < ⇡, | | < ✓}. (6.24)

In this case, the normalised eigenfunction (in spherical polar coordinates) is

�G(!) = (sin')⇡/(2✓) cos(⇡ /(2✓)), ! = ( ,'). (6.25)
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After this preamble, we are ready to present the following:

Proof of Theorem 6.1. Let G ✓ S2 be the spherical polygon from (6.1) and con-
sider the truncated cone SG,1 (cf. (5.1)) with edges meeting at a generic vertex
O 2 R3 of �. Without loss of generality, assume that O is the origin in R3.
Throughout, ↵G retains its earlier significance, and we denote the openings of the
dihedral angles of SG,1 by 2✓ j , 1  j  N . We wish to show that u�� is integrable
near O , and divide the subsequent analysis into several cases, starting with:
Case (i): Assume that the vertex O is such that ↵G > 2 (our analysis also applies
to “fictitious vertices”, i.e., for points of edges with 2✓ j < ⇡/2). Let 8G be the
(unique) variational solution of the Dirichlet problem

�1S2 8G(!) � 68G(!) = 1 on G, 8G

��
@S2G

= 0. (6.26)

Since 6 < ↵G(↵G + 1) in the current case, it follows from the Maximum Principle
that 8G > 0 on G. Furthermore, there exists � > 0 small with the property that
the following asymptotic representations hold for 8G near the j-th angle vertex on
@S2G (cf. [26] and [33] for closely related results):

8G(!) =

8>>>><
>>>>:

'2j
4 (1+O('�j ))

⇣
cos(2 j )
cos(2✓ j ) � 1

⌘
, if ✓ j < ⇡/4,

'2j (1+O('�j ))
�
log 1

' j

�
cos(2 j ), if ✓ j = ⇡/4,

C j'
⇡/2✓ j
j (1+O('�j )) cos

�⇡ j
2✓ j
�
, if ✓ j > ⇡/4,

(6.27)

where C j > 0 and (' j , j ) are the polar coordinates of the point ! 2 S2, near the
j-th angle vertex of @S2G. In turn, this yieldsZ

G

d!
8G(!)�

< +1 whenever � < 1. (6.28)

To proceed, recall that, in general, for any functionw inR3 we have (with ⇢ := |x |)

1w = ⇢�2(⇢2w⇢)⇢ + ⇢�21S2 w. (6.29)

Hence, if we now introduce the function

v(x) :=

�
|x |2 � |x |↵G

�
8G

⇣ x
|x |

⌘
on SG,1, (6.30)

it follows that

�1v(x)=1+
�
↵G(↵G + 1) � 6

�⇣ x
|x |

⌘↵G�2
8G

⇣ x
|x |

⌘
� |x |↵G�2 on SG,1 (6.31)

v
��
@SG,1

= 0. (6.32)
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Since, by assumption, ↵G > 2, the right-hand side of (6.31) bounded by some
positive finite constant c0. Based on this and the Maximum Principle we may then
conclude that for a sufficiently small r > 0 there holds

u(x) �

1
c0
r2v

⇣ x
r

⌘
on SG,r . (6.33)

Now, the fact that u��
2 L1(� \ B(O, r)) follows from (6.33) and (6.28), by

observing that
Z 1

0

⇢2 d⇢
(⇢2 � ⇢↵G)�

=

1
↵G � 2

B
⇣ 3� 2�
↵G � 2

; 1� �
⌘

< +1. (6.34)

Case (ii): Assume that the vertex O is such that ↵G = 2 (our subsequent analysis
also applies to “fictitious” vertices, i.e., points of edges with 2✓ j = ⇡/2). In this
case, it follows from (3.8) that the first eigenvalue of �1S2 on G is 3G = 6, and
we recall the eigenfunction �G from (3.3) (with n = 3). Also, fix some small r > 0
and set

vr (x) := |x |2
⇣
log

r
|x |

⌘
�G

⇣ x
|x |

⌘
on SG,r . (6.35)

Hence, by (6.29),

�1vr (x) = �

⇣
log

r
|x |

⌘
(1S2 �G + 6�G) + 5�G = 5�G. (6.36)

Since vr
��
@SG,r

= 0 and u
��
@SG,r

� 0, and since

�1vr (x)  5max
G
�G = �1(5max

G
�G · u(x)), (6.37)

it follows that

u(x) � (5max
G
�G)�1vr (x) on SG,r . (6.38)

As a consequence of this, (6.35) and Corollary 6.23, we therefore obtain

u(x) � C|x |2(sin' j )⇡/(2✓ j ) cos(⇡ j/(2✓ j )), where x/|x | = ( j ,' j ), (6.39)

for x near O . In turn, the nature of the expression in the right-hand side of (6.39)
guarantees the integrability of u�� for each � 2 (0, 1) over small conical neigh-
bourhoods of every edge of a dihedral angle of half-opening ✓ j � ⇡/4, since gen-
erally speaking

Z 1

0

⇢2 d⇢
(⇢2)�

Z ⇡

0

sin' j d' j
(sin' j )(⇡/(2✓ j ))�

Z
| j |<✓ j

d j

[cos(⇡ j/(2✓ j )]�
< +1 (6.40)

whenever � < min{1, 4✓ j⇡ }.
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The treatment of the case when ✓ j < ⇡/4 requires a different approach which
we now describe. Let us consider a conic neighbourhood, centred at O , of the j-th
edge of a dihedral angle of opening 2✓ j with ✓ j < ⇡/4, i.e.,

Uj := {x = (⇢, j ,' j ) : ⇢ > 0, | j |  ✓ j , 0 < ' j < ✏}, (6.41)

where ✏ > 0 is a small number. We choose a point P on this edge, set r := |P|/3
and apply (6.33) with the role of v played by the function

v(P)(x) :=

�
|x � P|

2
� |x � P|

⇡/(2✓ j )�8( j)� x�P
|x�P|

�
, (6.42)

where 8( j) is our old 8G (cf. (6.27)) constructed for the point P . On account
of the first asymptotic formula in (6.27), this gives (much as for (6.33)) that on
{x 2 Uj \� : |x | = r} we have

u(x) � c�1o r2
✓⇣

|x � P|

r

⌘2
�

⇣
|x � P|

r

⌘⇡/(2✓ j )
◆
8( j)� x�P

|x�P|

�

� C|x � P|
2'2j

⇣cos(2 j )

cos(2✓ j )
� 1

⌘
(6.43)

� Cr2'2j
⇣cos(2 j )

cos(2✓ j )
� 1

⌘
.

To continue, let 0G solve the boundary value problem

�1S20G � 60G = 1�

⇣Z
G
�G(!) d!

⌘
�1
�G in G,

(6.44)

0G

���
@S2G

= 0,

Much as in [26], it follows that there exists � > 0 with the property that

0G(!) = 4�1'2j
�
1+O('�j )

�⇣cos(2 j )

cos(2✓ j )
� 1

⌘
. (6.45)

Also, clearly,

1
�
|x |20G(x/|x |)

�
= �(1S20G)(x/|x |) � 60G(x/|x |)  1. (6.46)

To continue, we consider a smooth, nonnegative cutoff function ⌘ j (!) with the
property that ⌘ j = 1 for ' j 2 (0, ✏/2) and ⌘ j = 0 for ' j 2 (✏,⇡). Then

�1
�
⌘ j (x/|x |)|x |20G(x/|x |)

�
 c1 on SG,r . (6.47)
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Furthermore, by (6.45), on {x 2 Uj \� : |x | = r} we have

⌘ j (!)|x |20G(!)  cr2'2j
⇣cos(2 j )

cos(2✓ j )
� 1

⌘
. (6.48)

Note that the function in the left-hand side of (6.48) vanishes on the conical side of
@SG,r . The same is, obviously, true for u. Consequently, on account of this, (6.43)
and (6.47)-(6.48), we obtain

u(x) � c2⌘ j (!)|x |20G(!) on {x 2 Uj \� : |x | = r}. (6.49)

Hence, by the Maximum Principle, we ultimately have

u(x) � c2⌘ j
⇣ x
|x |

⌘
|x |20G

⇣ x
|x |

⌘
for all x 2 SG,r . (6.50)

This, along with (6.45) now shows that u�� is integrable for all � 2 (0, 1) over
a small conical neighbourhood of the j-th edge, completing the treatment of the
situation described in Case (ii).
Case (iii): Assume that the vertex O is such that ↵G < 2 (our analysis also applies
to a point on the edge with 2✓ j > ⇡/2). Hence, in this situation, 6 > ↵G(↵G + 1)
and, therefore, by a slight variant of results proved in [26] and [33], there exists a
positive constant C0 with the property that, granted that |x | is small,

u(x) = C0|x |↵G�G

⇣ x
|x |

⌘
+O(|x |↵G+�), for some � > 0, (6.51)

where �G is the eigenfunction of the Laplace-Beltrami operator 1S2 with Dirichlet
boundary condition on G corresponding to the eigenvalue ↵G(↵G + 1) (compare
with (3.3) when n = 3). Let ⌘(!) denote a smooth cut-off function with sup-
port in a small conical neighbourhood of the edges, such that ⌘ = 1 in a conical
neighbourhood of every edge. Furthermore, let H(x) be a smooth cut-off func-
tion in C1

0 (B(O, 2)) with small support near O, which is identically equal to 1 on
B(O, 1).

As in Case (i), we need the solution 8G of problem (6.26). We wish to stress
that, in the current context, it is not known whether 8G is of definite sign, but we
shall not make use of this property. The asymptotic formulas for 8G(!) given in
Case (i) for ✓ j  ⇡/4 remain valid here as well. However, for ✓ j > ⇡/4 we can
only say that

8G(!) = O
⇣
'
⇡/2✓ j
j cos

⇡ j

✓ j

⌘
. (6.52)

For some small r > 0, let us now introduce the function

w(x) := |x |28G

⇣ x
|x |

⌘
⌘
⇣ x
|x |

⌘
H
⇣ x
r

⌘
. (6.53)
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Since �1(|x |28G

� x
|x |
�
) = 1 on SG,1, we have �1w = 1 in the intersection of

B(O, r) and small conical neighbourhoods of the edges meeting at O . Moreover,
|1w|  C on SG,r . Finally, introduce

W (x) := u(x) � w(x), 8 x 2 SG,r (6.54)
and note that W = 0 on the conical side of @SG,r . Also,

�1W = 1+1w on SG,r , (6.55)
and the right-hand side is bounded, and vanishes on small conical neighbourhoods
of the edges meeting at O . Consequently, by [26],

W (x) = C1|x |↵G�G

⇣ x
|x |

⌘
+O(|x |↵G+�). (6.56)

Comparing this with (6.51) and using (6.52), (6.53) and (6.54), we derive from
↵G < 2 that actually C1 = C0. Using the asymptotics (6.22) of �G near angle
vertices on @S2G as well as the harmonicity of the remainder term in (6.56), we
see that the remainder term in (6.56) can be replaced by O(|x |↵G+�)�G( x

|x | ). (The
argument is similar to the proof of Lemma 6.2 and we omit it.) Thus,

W (x) = C0|x |↵G

⇣
1+O(|x |�)

⌘
�G

⇣ x
|x |

⌘
, (6.57)

and we have by (6.53) and (6.54)
u(x) = w(x) + W (x)

(6.58)

= |x |28G

⇣ x
|x |

⌘
⌘
⇣ x
|x |

⌘
H
⇣ x
r

⌘
+ C0|x |↵G

⇣
1+O(|x |�)

⌘
�G

⇣ x
|x |

⌘
.

This means that for |x | < r in a small angular neighbourhood of the edges meeting
at O and such that ✓ j  ⇡/4 the following holds

u(x) � c1|x |28G

⇣ x
|x |

⌘
� c2(|x |' j )2. (6.59)

On the other hand, in a small angular neighbourhood of the edges with ✓ j > ⇡/4,
for |x | < r we have that

u(x) � C0|x |↵G
�
1+O(|x |�)

�
�G

⇣ x
|x |

⌘
� C|x |2'⇡/(2✓ j )

j cos
⇣⇡ j

2✓ j

⌘
(6.60)

� C1|x |↵G'
⇡/(2✓ j )
j cos

⇣⇡ j

2✓ j

⌘
,

where C1 is a finite constant. Finally, when x is at a fixed, positive angular distance
to the edges meeting at O , we may conclude in the same way as in (6.43) that

u(x) � C2|x |↵G�1dist (x, @�). (6.61)
Collectively, (6.59), (6.60) and (6.61) prove that u�� is integrable near O , for each
number � in the interval (0, 1).



NEGATIVE INTEGRABILITY AND THE SAINT VENANT PROBLEM 521

6.2. Piecewise C2 domains with outward cuspidal vertices in Rn

Here we elaborate on the case of domains with exterior cusps. This class of domains
consists of bounded open sets � ✓ Rn with a piecewise C2 boundary, exhibiting
finitely many exterior cusps. By definition, x0 2 @� is called an exterior cusp
if, after a rigid transformation of the space which maps x0 into the origin of Rn ,
there exist two small numbers ", ⌘ > 0 along with a function F 2 C2([0, ⌘]) with
F(0) = 0, F > 0 on (0, ⌘] and F 0(0) = 0, and such that {x 2 � : xn  ⌘}
coincides with the cuspidal set

{x = (x 0, xn) : 0 < xn  ⌘, |x 0

| < "F(xn)}. (6.62)

Theorem 6.4. Assume that u is the solution of the Saint Venant problem (2.1) in
the case when � ✓ Rn , n � 2, is a domain with exterior cusps. If n � 3 then for
every � 2 (0, 1) there holds

Z
�
u(x)�� dx  C(�,�) < +1 . (6.63)

The same is true in the two dimensional setting provided 0 < �  1/2. Finally, in
the case when n = 2 and � 2 (1/2, 1), then (6.63) holds if and only the finiteness
condition Z ⌘

0
F(⌧ )1�2� d⌧ < +1 (6.64)

holds for every boundary cusp.

Proof. Assume that 0 2 @� is a cusp, andF is as in the preamble to this subsection.
Without loss of generality assume that ⌘ = 1 (hence F is defined on [0, 1]). The
function v(x) := "2F2(xn) � |x 0

|
2 satisfies

�1v(x) = 2(n � 1) � "2(F2)00(xn) (6.65)

and its trace on @� is nonnegative and vanishes when xn < 1.
As usual, u stands for the unique solution of

�1u = 1 in �, u = 0 on @�. (6.66)

Since �1v > 1 on {x 2 � : xn < 1} (assuming " small), we have

u  v on {x 2 � : xn < 1}. (6.67)

We are next going to obtain an opposite estimate. First, by the smallness of ", we
have

�1v  2n = �2n1u. (6.68)
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Next, by the Giraud-Hopf Lemma (cf. Lemma A.3 in the Appendix), we obtain

�@⌫u � C > 0 on {x 2 @� : xn = 1}, (6.69)

where ⌫ is the outward unit normal to �. Therefore, for some c1 > 0, we have (cf.
Lemma A.3 in the Appendix)

u(x) � c1 dist (x, @�) on {x 2 � : xn = 1}. (6.70)

The estimate

v(x)  c2 dist (x, @�) on {x 2 � : xn = 1} (6.71)

for some c2 > 0 follows directly from the definition of v. Hence, taking c :=

max {2n, c2/c1}, we have

v(x)  cu(x) on {x 2 � : xn = 1}. (6.72)

Recall that the traces of u and v on @� vanishes when xn < 1, while v � cu  0 on
{x 2 � : xn = 1} by (6.72). Given that 1(v � cu) � 0 on {x 2 � : xn < 1} by
(6.68) and the choice of c, the Maximum Principle then gives

v(x)  c u(x) on {x 2 � : xn  1}. (6.73)

If the origin is the only singularity of @�, the condition u��
2 L1(�) is equivalent

to Z
{x2�: xn<1}

dx
v(x)�

< +1, (6.74)

which is the same as Z 1

0
dxn

Z
|x |<"F(xn)

dx 0

v(x)�
< +1. (6.75)

This can be written in the form

+1 >

Z 1

0
dxn

Z "F(xn)

0

⇢n�2d⇢
("2F2(xn) � ⇢2)�

(6.76)

=

Z 1

0
("F(xn))n�1�2� dxn

Z 1

0

⌧ n�2 d⌧
(1� ⌧ 2)�

,

which is satisfied if and only if � < 1 for n � 3, and if and only if � < 1 andZ 1

0
F(⌧ )1�2� d⌧ < +1 (6.77)

for n = 2 (note that (6.77) is always satisfied when �  1/2; compare also with the
example (2.60) in which case we take F(⌧ ) := ⌧ 1/(2��1)).

Once the contribution from near each boundary cusp has been estimated, the
end-game of the argument is similar to that of the proof of Theorem 5.2.
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A. Appendix

This appendix is devoted to presenting a proof of the equivalence in (3.5). The main
ingredient, contained in LemmaA.3 below, is a version of classical work by Giraud6
in domains of class C1,↵ , ↵ 2 (0, 1). Its statement has two parts, the first of which
may be regarded as a quantitative version of the classical Hopf lemma, while the
second part gives two-sided pointwise bounds for functions satisfying conditions
which are reminiscent of the properties of the eigenfunction corresponding to the
first eigenvalue for the Laplacian (cf. (3.3) and (3.4)). Significantly, the format of
this result is designed in a manner which makes it applicable to localised versions
of the Laplace-Beltrami operator on C1,↵ domains on a given smooth surface (we
shall comment on the actual localisation procedure in the last part of the appendix).

To set the stage, we make a few definitions. Given an index ↵ 2 (0, 1] and two
numbers a, b > 0, consider the region in Rn given by

G↵a,b := {x = (x1, . . . , xn) 2 Rn
: a|x |1+↵ < xn < b} (A.1)

and call it a pseudo-ball (note that G1a,b is a genuine solid spherical cap).
Definition A.1. (i) Let � ✓ Rn be an open set, and assume that x0 2 @�. Then
� is said to satisfy an interior pseudo-ball condition at x0 provided there exists a
rigid transformation R : Rn

! Rn (i.e., a composition between a translation and a
rotation in Rn) with the property that R(x0) = 0 and there exist an index ↵ 2 (0, 1)
and two numbers a, b > 0 (collectively referred to as the pseudo-ball character of
� at x0) such that G↵a,b ✓ R(�).

(ii) An open set � ✓ Rn is said to satisfy a uniform interior pseudo-ball con-
dition relative to a subset 6 of @� provided � satisfies an interior pseudo-ball
condition at every boundary point x 2 6 with parameters ↵ 2 (0, 1) and a, b > 0
independent of x . Collectively, ↵, a, b will be referred to as the uniform pseudo-ball
character of � relative to 6.

There is one important property of domains � ✓ Rn of class C1 (cf. the last
part in Definition 3.3) satisfying a pseudo-ball condition at a boundary point x0,
namely

the outward unit normal at x0 is �R�1en, (A.2)

where en := (0, · · · , 0, 1) 2 Rn and R : Rn
! Rn is the rigid transformation

appearing in the first part of Definition A.1. This is going to be of relevance shortly

6 A result related to our Lemma A.3 is stated in [35, Theorem 3, IV, p. 7] for C1,↵ domains,
though the proof given there actually requires a C2 boundary. This result is attributed to Gi-
raud who has indeed dealt in [19, p. 50] with C1,↵ domains via an argument based on a change
of variables (this explains the global nature of the smoothness assumption on the boundary of
the domain in question). By way of contrast, our proof, which is based on a barrier construc-
tion, works for more general domains and, at the same time, appears conceptually simpler and
significantly shorter than the one provided in [19].
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(cf. (A.13) below). For now, we note that one expeditious way of justifying the
aforementioned property is by invoking the following result of geometric measure
theoretic flavour (which appears as Proposition 2.9 in [21]):

Lemma A.2. Let � be a proper, nonempty open subset of Rn , of locally finite
perimeter. Fix a point x0 belonging to @⇤� (the reduced boundary of �) with the
property that there exists a (circular, open, truncated, one-component, not neces-
sarily upright) cone 0 in Rn with vertex at 0 2 Rn and having total aperture
✓ 2 (0,⇡), for which

x0 + 0 ✓ �. (A.3)

Denote by 0⇤ the (circular, open, infinite, one-component) cone in Rn with vertex
at 0 2 Rn , of total aperture ⇡ � ✓ , having the same axis as 0 and pointing in
the opposite direction to 0. Then, if ⌫(x0) denotes the geometric measure theoretic
outward unit normal to @� at x0, it is that

⌫(x0) 2 0⇤. (A.4)

Indeed, if G↵a,b is the pseudo-ball associated with the point x0 2 @� as in the first
part of Definition A.1, it suffices to observe that the subset R�1(G↵a,b) of� contains
truncated circular cones of total aperture arbitrarily close to ⇡ and whose axes are
along R�1en . From this (A.2) readily follows.

We are now prepared to state and prove the main result in the appendix. While
other versions naturally present themselves (for example, a suitable variant of this
result continues to hold for domains of class C1,! where ! is a modulus of conti-
nuity satisfying a Dini condition), the result proved here more than suffices for our
purposes, and its treatment has the advantage of being largely self-contained.

Lemma A.3. Suppose � ✓ Rn is a bounded domain of class C1 and denote by ⌫
the outward unit normal to �. Assume that

L := �

nX
i, j=1

ai j@i@ j +

nX
i=1

bi@i (A.5)

is a nondivergence-form, second-order, differential operator whose coefficients sat-
isfy

ai j , bi 2 C0(�), 1  i, j  n, and
nX

i, j=1
ai j (x)⇠i⇠ j � c|⇠ |2 (A.6)

for every point x 2 � and every vector ⇠ 2 Rn , where c > 0 is a fixed constant.
Finally, consider a real-valued function � 2 C1(�) \ C2(�) satisfying

L� � 0 in �, (A.7)
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and assume that x0 2 @� is a point with the property that � satisfies an interior
pseudo-ball condition at x0 and for which

�(x0) < inf
K
� for any compact subset K of �. (A.8)

Then there exist a compact subset K0 of � and a constant  > 0 which depends
only on

c, �(x0), inf
K0
�,

nX
i, j=1

sup
�

|ai j | +

nX
i=1

sup
�

|bi |,

as well as the pseudo-ball character of � at x0,
(A.9)

with the property that

�(@⌫�)(x0) � . (A.10)

Furthermore, if � ✓ Rn is a bounded domain of class C1, satisfying a uniform
interior pseudo-ball condition relative to @� \ B(x#, R) for some point x# 2 @�
and number R > 0, the operator L is as before, and if � 2 C1(�) \ C2(�) is a
real-valued function satisfying

L� � 0 in �, � > 0 in �, and � = 0 on @� \ B(x#, R), (A.11)

then there exist a compact subset K0 of� along with two constants c0, c00 > 0 which
depend only on R, kr�kL1(�) the quantities listed in the first line of (A.9) and the
uniform pseudo-ball character of� relative to @�\B(x#, R) with the property that

c0 dist (x, @�)  �(x)  c00 dist (x, @�), for every x 2 � \ B(x#, R/2).(A.12)

In particular, with the same background assumptions on the operator L and the
function � as above, all earlier conclusions hold in domains of class C1,↵ for some
↵ 2 (0, 1).

Proof. Given that both the hypotheses and the conclusion in the statement of the
lemma are invariant under rotations and translations, there is no loss of generality
in assuming that x0 is the origin in Rn and that the tangent plane to @� at x0 is
Rn�1

⇥ {0}. Hence, in particular, ⌫(x0) = (0, . . . , 0,�1). Also, since both L and
@⌫ annihilate constants, we may assume that �(x0) = 0.

To proceed, we note that owing to assumptions and the discussion pertaining to
(A.2) there exist an exponent ↵ 2 (0, 1) and two constants a, b⇤ > 0 which depend
exclusively on the pseudo-ball character of � at x0 with the property that if G↵a,b
denotes the region introduced in (A.1) then

G↵a,b \ {0} ✓ �, 8 b 2 (0, b⇤]. (A.13)
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Fix b 2 (0, b⇤] and, for two constants C0,C1 > 0 to be specified later, consider the
barrier function

v(x) := xn + C0x1+↵n � C1|x |1+↵, for every x = (x1, ..., xn) 2 G↵a,b.(A.14)

A direct computation then gives that, for each x 2 G↵a,b,

(Lv)(x) = I + II + III, (A.15)

where

I := C1(↵2�1)
⇣ nX
i, j=1

ai j (x)xi x j
⌘
|x |↵�3

+C1(↵+1)
⇣ nX
i=1

aii (x)
⌘
|x |↵�1, (A.16)

II := �C0↵(↵ + 1)ann(x)x↵�1
n , (A.17)

III := bn(x) + C0(↵ + 1)bn(x)x↵n � C1(↵ + 1)
⇣ nX
i=1

bi (x)xi
⌘
|x |↵�1. (A.18)

In concert with the uniform ellipticity condition for L (which, in particular, entails
ann(x) � c), formulas (A.15)-(A.18) then allow us to estimate

(Lv)(x)  �Ax↵�1
n + B|x |↵�1

+ C, 8 x 2 G↵a,b, (A.19)

where

A := cC0↵(↵ + 1), B := C1(↵ + 1)
⇣
c(↵ � 1) +

nX
i=1

sup
�

|aii |
⌘
, (A.20)

C := [C0(↵ + 1)b↵ + 1] · sup
�

|bn| + C1(↵ + 1)b
↵
↵+1
⇣ nX
i=1

sup
�

|bi |
⌘
. (A.21)

Let us also observe that

v(x)=(1� a�1C1)xn+C0x1+↵n (A.22)
for every x = (x1, ..., xn) 2 @G↵a,b \ {x 2 Rn

: xn = b}.

Hence, by selecting first C1 > a, then C0 sufficiently large and, finally, b 2 (0, b⇤]

sufficiently small, it follows from (A.19)-(A.21) and (A.22) that matters may be
arranged so that

Lv  0 on G↵a,b, (A.23)
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and

v  0 on @G↵a,b \ {x = (x1, ..., xn) 2 Rn
: xn = b}. (A.24)

If we now consider the compact subset of � given by

K0 := {x = (x1, ..., xn) 2 G↵a,b : xn = b}, (A.25)

then, thanks to (A.24), (A.8), and the earlier conventions made in the proof, we may
choose " > 0, depending only on the constants listed in (A.9) so that, on the one
hand,

0  �(x) � "v(x) for every x 2 @G↵a,b. (A.26)

On the other hand, from (A.23) and (A.7) we obtain

L(� � "v) � 0 in G↵a,b. (A.27)

Having established (A.26) and (A.27), the Weak Maximum Principle (cf., e.g., [15,
p. 329]) then gives

� � "v � 0 in G↵a,b. (A.28)

Given that both � and v vanish at x0 = 0 2 @G↵a,b, this proves that the function
� � "v 2 C1(G↵a,b) has a global minimum at x0. Hence,

(@⌫�)(x0) � "(@⌫v)(x0)  0, (A.29)

which further entails

�(@⌫�)(x0) � �"(@⌫v)(x0) = "
@v

@xn
(0) = " > 0. (A.30)

Choosing  := " > 0 then finishes the proof of (A.10).
Consider next the claim made in the last part of the statement of the lemma.

Given that � is continuous in �, the last two conditions in (A.11) ensure that (A.8)
is satisfied for any x0 2 @� \ B(x#, R). To proceed, we note that since @� is a
compact C1 surface, the following property holds:

for every x 2 � there exists a point x⇤ 2 @�

so that if r := dist (x, @�) then x = x⇤ � r⌫(x⇤).
(A.31)

Indeed, B(x, r) ✓ � and if x⇤ 2 @� is such that dist (x, @�) = |x � x⇤| then
x⇤ 2 @B(x, r) \ @�. Then elementary geometrical analysis gives that ⌫(x⇤) is
parallel to x � x⇤, from which the desired conclusion follows. Next, fix an arbitrary
point x 2 � \ B(x#, R/2) and suppose that x⇤ 2 @� is associated with x as in
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(A.31). Also, assume that R > 0 is sufficiently small to begin with. Then, after
making a translation and a rotation, matters may be arranged so that (with G↵a,b as
before):

x⇤ is the origin in Rn , ⌫(x⇤) = (0, . . . , 0,�1) 2 Rn,

and x = (0, . . . , 0, r) 2 G↵a,b, where r := dist (x, @�).
(A.32)

In such a scenario, (A.28) and (A.14) then yield

�(x) � "v(x) = "(r + C0r1+↵ � C1r1+↵) � c0r = c0 dist (x, @�), (A.33)

given that R small forces r small. This takes care of the lower bound for � in (A.12).
There remains to establish the upper bound for � in (A.12). Keeping in mind (A.32)
and recalling that � vanishes on @� \ B(x#, R), the Mean Value Theorem then
allows us to estimate

�(x) = �(x) � �(x⇤)  r · sup
t2(0,r)

��⌫(x⇤) · (r�)(x⇤�t⌫(x⇤))
��

(A.34)
 c00dist(x, @�),

where c00 := kr�kL1(�). This concludes the proof of the lemma.

Moving on, we wish to note that the smoothness requirements for the function
� from Lemma A.3 are automatically satisfied in the case in which � is a bounded
domain of class C1,↵ for some ↵ 2 (0, 1) and the function � is a classical solution
of the boundary value problem

(L � V )� = 0 in �, � = 0 on @�, (A.35)

where L is a second-order, elliptic, nondivergence-form differential operator with
smooth coefficients, and V is a smooth scalar function, in�. Indeed, in this context
the function � actually satisfies � 2 C1,↵(�) \ C1(�). Such a regularity result
is well-known; see, e.g., [19, Théorème I, p. 42] (cf. also [1], or the discussion
in [34, Chapter 7]).

The last step in the proof of (3.5) has to do with localisation. In this vein, recall
that if M is a C2 boundaryless manifold of (real) dimension n equipped with a C1

Riemannian metric tensor g =

nP
j,k=1

g jk dx j ⌦ dxk then, in local coordinates, the

Laplace-Beltrami operator 1M on M is given by

1M :=

1
pg

nX
j,k=1

@ j
�
g j,k

p

g @k ·

�
(A.36)
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where ( g jk )1 j, k n is the inverse of the matrix ( g jk )1 j, k n and g :=

det (g jk)1 j,kn . The relevant issue for us here is that such a differential opera-
tor falls within the class of operators considered in Lemma A.3. In particular, the
results in this lemma apply to the local version of the Laplace-Beltrami operator on
the unit sphere.

As a consequence of the above analysis, the equivalence in (3.5) follows.
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Bull. Soc. Math. France 61 (1933), 1–54.



530 ANTHONY CARBERY, VLADIMIR MAZ’YA, MARIUS MITREA AND DAVID RULE
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[29] Ü. KURAN and J. L. SCHIFF, A uniqueness theorem for nonnegative superharmonic func-
tions in planar domains, J. Math. Anal. Appl. 93 (1983), 195–205.

[30] F.-Y. MAEDA and N. SUZUKI, The integrability of superharmonic functions on Lipschitz
domains, Bull. Lond. Math. Soc. 21 (1989), 270–278.

[31] W. MAGNUS, F. OBERHETTINGER and R. P. SONI, “Formulas and Theorems for the Spe-
cial Functions of Mathematical Physics”, Third enlarged edition, Die Grundlehren der
Mathematischen Wissenschaften, Band 52, Springer-Verlag New York, New York 1966.

[32] M. MASUMOTO, Integrability of superharmonic functions on plane domains, J. Lond.
Math. Soc. (2) 45 (1992), 62–78.

[33] V. G. MAZ’YA and B. A. PLAMENEVSKII, The coefficients in the asymptotics of solutions
of elliptic boundary value problems with conical points, Math. Nachr. 76 (1977), 29–60.
English translation in Amer. Math. Soc. Transl. (2) 123 (1984), 57–88.

[34] V. G. MAZ’YA and T. SHAPOSHNIKOVA, “Theory of Multipliers in Spaces of Differen-
tiable Functions”, Pitman Publishing Inc., 1985.

[35] C. MIRANDA, “Partial Differential Equations of Elliptic Type”, 2nd revised edition,
Springer Verlag, New York, Heidelberg, Berlin, 1970.

[36] K. MILLER, Extremal barriers on cones with Phragmén-Lindelöf theorems and other ap-
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Linköping University
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