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Formally reversible maps of C2

ANTHONY G. O’FARRELL AND DMITRI ZAITSEV

Abstract. An element g of a group is called reversible if it is conjugate in the
group to its inverse. This paper is about reversibles in the group G = G2 of
formally invertible pairs of formal power series in two variables, with complex
coefficients. The main result is a description of the generic reversible elements of
G2. We list two explicit sequences of reversibles which between them represent
all the conjugacy classes of such reversibles. We show that each such element
is reversible by some element of finite order, and hence is the product of two
elements of finite even order. The elements that may be reversed by an involution
are called strongly reversible. We also characterise them.

We draw some conclusions about generic reversibles in the group G = G2 of
biholomorphic germs in two variables, and about the factorization of formal maps
as products of reversibles. Specifically, we show that each product of reversibles
reduces to the product of five.

Mathematics Subject Classification (2010): 30D05 (primary); 32A05, 32H02,
32H50, 37F10, 37F50 (secondary).

1. Introduction

An element g of a group is called reversible if it is conjugate to its inverse, i.e. if
the conjugate gh := h�1gh equals g�1 for some h in the group. We say that h
reverses g or h is a reverser of g, in this case. Furthermore, if the reverser h can be
chosen to be an involution, g is called strongly reversible. (Note that some literature
uses the terminology “weakly reversible” and “reversible” instead of, respectively,
“reversible” and “strongly reversible” used here.)

Reversible maps have their origin in problems of classical dynamics, such as
the harmonic oscilator, the n-body problem or billiards, and Birkhoff [4] was one
of the first to realize their significance. He observed that a Hamiltonian system with
Hamiltonian quadratic in the momentum p (such as the n-body problem) or, more
generally, any system in of the form(

@q/@t = Lp,
@p/@t = V (p, q),

(q, p) 2 Rn
⇥ Rn, t 2 R, (1.1)
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where L is linear, admits the so-called “time-reversal symmetry” (t, q, p) 7!

(�t, q,�p). In particular, the flow map (q0, p0) 7!(q(t), p(t)), where (q(t), p(t))
is the solution of (1.1) with (q(0), p(0)) = (q0, p0), is reversed by the involution
(q, p) 7! (q,�p).

In CR geometry reversible maps played an important role in the celebrated
work of Moser and Webster [11], arising as products of two involutions naturally
associated to a CR singularity. Such a reversible map is called there “a discrete ver-
sion of the Levi form” and plays a fundamental role in the proof of the convergence
of the normal form for a CR singularity. More recently, this map has been used by
Ahern and Gong [1] for the so-called parabolic CR singularities.

There is a class of diffeomorphisms ofR2 that has received considerable atten-
tion: the so-called standard maps, or Taylor-Chirikov maps, which arise in many
applications in physics, and are strongly-reversible in the group of real-analytic
diffeomorphisms [8, Section 1.1.4]. The standard maps fix the origin and are area-
preserving. When they are real-analytic, they thus give reversible elements of our
power-series group.

This paper aims to classify formally reversible maps in two complex variables,
for which the eigenvalues of the linear part are not roots of unity. The presence
of roots of unity is a well-known obstruction leading to the presence of additional
resonances.

Reversibility is already understood [12] in the groupG1 of formal power series
maps of C without constant terms (see also [2] for reversibility in the group G1 of
biholomorphic map germs of C fixing the origin):

Theorem 1.1. [12, Theorem 5] A formal power series self-map of C without con-
stant term is reversible if and only if it is formally conjugate to

'µ,�,k(z) :=

µz
(1+ �zk)1/k

(1.2)

for some integer k � 1, µ = ±1 and � 2 {0, 1}. The map (1.2) is reversed by any
rotation z 7! !z with !k = �1.

Note that for k = 1, the map '1,1,1 is precisely the (unique up to conjugation)
map z 7! z + HOT that is conjugate to a projective transformation, whereas '1,1,k
is obtained from '1,1,1 via “conjugation” under the non-invertible map z 7! zk , i.e.
('1,1,k(z))k = '1,1,1(zk).

In this paper, our main focus is on the group G = G2 of formal power series
self-maps of C2 without constant terms. We obtain the following formal normal
form:

Theorem 1.2. A formal power series map of C2 whose linear part has eigenvalue
� not a root of unity is reversible if and only if it is ( formally) conjugate either to
its linear part or to one of the following maps, which are all pairwise inequivalent
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under conjugation:

(z1, z2) 7!
✓
�(1+ pk)z1,

1
�(1+ pk)

z2
◆

,

 
�(1+ pk)

1
k

(1+ 2pk)
1
k
z1,

1

�(1+ pk)
1
k
z2

!
,

p = z1z2,

(1.3)

where k � 1 is an integer. Furthermore, the following hold:

(1) Each map in (1.3) is reversed by any Jc(z1, z2) = c(z2, z1) such that c2k = 1
for the first series of maps and c2k = �1 for the second one;

(2) A map in (1.3) (with � not a root of unity) is strongly reversible if and only if it
is in the first series;

(3) Each reverser of a map in (1.3) has finite order.

Similarly to those in (1.2), the maps (1.3) can be obtained from those corresponding
to k = 1 by a “conjugation” under the non-invertible map (z1, z2) 7! (zk1, z

k
2). The

‘generic-type’ condition that � not be a root of unity is important as the following
example shows. (Note that a similar condition also appears in the work of Moser-
Webster [11], where it is also shown to be crucial for the existence of the formal
normal form constructed there.)
Example 1.3. The assumption that � is not a root of unity cannot be dropped in
Theorem 1.2. Indeed, the map

F(z1, z2) =

✓
z1

1+ z1
,

z2
1+ z1

◆
(1.4)

is reversed by the involution (z1, z2) 7! (�z1, z2); in fact, it is the projectiviza-
tion of the linear map (z0, z1, z2) 7! (z0 + z1, z1, z2) reversed by (z0, z1, z2) 7!

(z0,�z1, z2). However, it has the second order terms (�z21,�z2z1) that cannot be
eliminated by conjugation and do not occur in a map as in (1.3). Hence, F is not
conjugate to any map in (1.3).

We also obtain polynomial representatives conjugate to the maps of the second
series:

Proposition 1.4. For every k, the map from the second series in (1.3) is formally
conjugate to the polynomial map

(z1, z2) 7!

⇣
�(1+ pk)z1, ��1

⇣
1+ pk + (2k + 1)p2k z2

⌘⌘
, p = z1z2.

Remark 1.5. Moser [10] showed that real-analytic area-preserving map germs on
(R2, 0) having a hyperbolic fixed point at the origin may be conjugated by a con-
vergent coordinate change to the normal form

(� · x · exp(w(xy)), � · y · exp(�w(xy))) , (1.5)
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where � = ±1 and w is a convergent series. Thus they are strongly reversible
and conjugate to an element of our first series in (1.3), with some real � 6= ±1.
On the other hand, a general map conjugate to (1.5) is always strongly reversible
but need not be area-preserving, whereas maps of the second series in (1.3) are not
area-preserving.

Theorem 1.2 and Proposition 1.4 are proved in Section 7.
Furthermore, following the arguments of Moser-Webster [11], we come to a

biholomorphic classification for the maps conjugate to those in the first series:

Theorem 1.6. If a biholomorphic map germ in C2 is formally conjugate to a map
in the first series in (1.3) with |�| 6= 1, then it is biholomorphically conjugate to it.
On the other hand, there exist a biholomorphic map germ conjugate to a map in the
second series in (1.3), and hence formally reversible, that is not biholomorphically
conjugate to its formal normal form and even not biholomorphically reversible.

Note that any map in the first series in (1.3) is conjugated to itself by (i.e.
commutes with) any map of the form (z1, z2) 7!

�
z1'(p), z2/'(p)

�
, where ' is a

formal power series in t 2 C with '(0) 6= 0. Hence the biholomorphic conjugation
map may differ from the original formal one.

The second part of Theorem 1.6 is established by Example 8.1 below. The
statement of Theorem 1.6 also does not hold without the assumption |�| 6= 1 due
to the remarkable theorem of Gong [6, Theorem 1.1] stating the existence of a
biholomorphic map F(z1, z2) = (�z1, ��1z2) + HOT with � not a root of unity
and |�| = 1 such that F is formally reversible by an involution (and hence F is
formally conjugate to a map in the first series in (1.3)) but is not reversible by a
biholomorphic involution (and hence F is not biholomorphically conjugate to its
formal normal form).

We shall further discuss reversibility and centralisers in some related groups,
along the way. We draw some conclusions about generic reversibles in the group G2
of biholomorphic germs in two variables (Theorem 10.1), and about the factoriza-
tion of maps as products of reversibles. Since a reversible element of G2 has linear
part with determinant ±1 (see Subsection 2.4), any product of them has the same
property. Conversely we show:

Theorem 1.7. Each element of G2 whose linear part has determinant ±1 is the
product of at most four reversibles and an involution.

Theorem 1.7 is proved in Section 9.

2. Notation and preliminaries

2.1. The map L

A typical element F 2 G takes the form

F(z) = (F,1(z), F,2(z)) = (F,1(z1, z2), F,2(z1, z2))
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where each F, j (z) is a power series in two variables having complex coefficients,
and no constant term. We shall refer to such series F as maps, even though they
may be just ‘formal’, i.e. the series may fail to converge at any z 6= 0.

We usually write the formal composition of two maps F,G 2 G as FG. We
also write the product of two complex numbers a and b as ab, but in cases where
there might be some ambiguity we use a · b.

The series F may be expressed as a sum

F =

1X
k=1

Lk(F),

where Lk(F) is homogeneous of degree k. We abbreviate L1(F) to L(F). This
term, the linear part of F , belongs to the group GL = GL(2, C). We have inclu-
sions GL ! G, and L : G ! GL is a group homomorphism.

The elements of the kernel of L are said to be tangent to the identity.

2.2. Elements of finite order

We note the following, in whichGn denotes the group of all invertible formal power
series self-maps of Cn without constant coefficients. (Various cases of this lemma,
and the idea of its simple proof, are well-known. The case n = 1 is very classical.
For holomorphic maps in n variables, see [3, page 298]. In the differentiable cate-
gory, Montgomery and Zippin [9] proved the local conjugacy of any involution to
its derivative at a fixed point. The equivalent global question is more delicate.)
Lemma 2.1. Let n 2 N and let H be a subgroup of Gn such that
(1) L(F) 2 H whenever F 2 H, and
(2) H \ ker L is closed under convex combinations, i.e. if F1, F2 2 H, L(F1) =

L(F2) = id and 0 < ↵ < 1, then ↵F1 + (1� ↵)F2 2 H.
Suppose 2 2 H has finite order. Then 2 is conjugated by an element of H \ ker L
to its linear part L(2).
Proof. Suppose 2k

= id. Let T = L(2), and form

H =

1
k

⇣
id+ T�12+ T�222 + · · · + T�k�12k�1

⌘
. (2.1)

Then the assumptions imply that H 2 H, and a short calculation shows that
T�1H2 = H , so that T H

= 2, as required.

This applies to H = G, G \ ker L , G \ ker(det �L) = L�1(SL(2, C)),
L�1(U(2, C)) (and, more generally to L�1(H) for any subgroup H  GL), to
the corresponding subgroups of biholomorphic germs (i.e. series that converge on
a neighbourhood of the origin) and to other subgroups introduced below. It applies
to the intersection of any two groups to which it applies.

In particular, in anyH to which the lemma applies, each involution is conjugate
to one of the linear involutions in the group. In GL = GL(n, C), a matrix is an
involution if and only if it is diagonalizable with eigenvalues ±1.
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2.3. Reversibles in one variable

Here we collect facts about reversibles in one variable that will be used throughout
the paper.

Lemma 2.2. A map h 2 G1 is a reverser of the map (1.2) with µ = 1 and � 6= 0 if
and only if it is of the form

h!,⌫(z) =

!z
(1+ ⌫zk)1/k

, (2.2)

where ⌫,! 2 C are arbitrary with !k = �1.

Proof. Since '1,�,k is the inverse of '1,��,k , the map h!,0(z) = !z reverses '1,�,k
for any ! with !k = �1. Furthermore, since any map h1,⌫ commutes with '1,�,k ,
we have

h�1
!,⌫'1,�,kh!,⌫ = h�1

1,⌫h
�1
!,0'1,�,kh!,0h1,⌫ = h�1

1,⌫'
�1
1,�,kh1,⌫ = '�1

1,�,k

and therefore any h!,⌫ reverses '1,�,k . Vice versa, if h reverses '1,�,k , comparing
the coefficients of zk+1 in the equation

h'1,��,k = '1,�,kh (2.3)

yields h(z) = !z + O(z2) for some !k = �1. Furthermore, we can choose ⌫
such that g := h�1

!,⌫h has no coefficient of z p+1. Then it follows from (2.3) that
g commutes with '1,��. We claim that g = id. Suppose on the contrary, that
g(z) = z + az� + · · · with a 6= 0 and � 6= p+ 1. Then comparing the coefficients
of z�+k+1 in the identity g'1,�,k = '1,�,kg yields a contradiction. Hence g = id
proving that h is of the form (2.3).

Corollary 2.3. Any reverser of the map (1.2) with µ = 1 and � 6= 0 is of finite
order at most 2k.

Proof. Since h!,0 reverses '1,�,k , we have

h2k!,⌫ = (h!,0'1,⌫,kh!,0'1,⌫,k)
k

= (h!,0h!,0'
�1
1,⌫,k'1,⌫,k)

k
= h2k!,0 = id.

2.4. Linear reversibles

Reversibility is preserved by homomorphisms, so a map F 2 Gn is reversible only
if L(F) is reversible inGL(n, C). Classification of linear reversible maps is simple.
Suppose F 2 GL(n, C) is reversible. Since the Jordan normal form of F�1 consists
of blocks of the same size as F with inverse eigenvalues, the eigenvalues of F that
are not ±1 must split into groups of pairs �, ��1. Furthermore, we must have the
same number of Jordan blocks of each size for � as for ��1. Vice versa, if the
eigenvalues of F are either ±1 or split into groups of pairs �, ��1 with the same
number of Jordan blocks of each size, then both F and F�1 have the same Jordan
normal form and are therefore conjugate to each other.
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2.5. The Group GL(2, C)

In particular, a linear map is reversible in GL(2, C) if and only if it is an involution

or is conjugate to
✓
1 1
0 1

◆
,
✓

�1 1
0 �1

◆
or to a matrix of the form

✓
µ 0
0 µ�1

◆
, (2.4)

for some µ 2 C⇥. Thus each reversible F is conjugate inG (by a linear conjugacy)
to a map having one of these types as its linear part.

The collection of maps (2.4) forms an abelian subgroup, which we denote by
D. The element (2.4) has infinite order precisely when µ is not a root of unity,
and this is what we regard as the generic situation. In this paper, we are going to
concentrate on the following question:

Which elements F 2 G for which L(F) has an eigenvalue that is not a root of
unity are reversible?

To approach this, we are going to begin by studying the centraliser of D in
G. In fact, the classical Poincaré-Dulac Theorem [7, Section 4.8, Theorem 4.22]
implies that any map F 2 Gn is conjugate to a map in the centralizer of the linear
part L(F). In case L(F) = diag(µ,µ�1) 2 D and µ is not a root of unity, it is easy
to see that the centralizer of L(F) coincides with the centralizer of D. We shall,
incidentally, discover some classes of reversibles F that have L(F) = id, although
our focus is not on these non-generic examples. Apart from the maps given in (1.3),
which are tangent to the identity when � = 1, we also meet the maps given in
Equation (7.9) below.

2.6. The Groups C = CD(G) and E = ED(G)

A map F 2 G is in the centralizer of D if and only if it commutes with any
particular element of D of infinite order, and if and only if it takes the form F =

M(', ), given by

M(', )(z) = (z1'(z1z2), z2 (z1z2)), (2.5)

where '(t) and  (t) are series in one variable such that '(0) 6= 0 6=  (0) (i.e.
they are series having nonzero constant term). We denote by C the group of all such
maps:

C := CD(G) = {M(', ) : ', as above}.
In the following we shall adopt the notation

p := z1z2, J (z) =ez := (z2, z1).

Then J reverses every 3 2 D, i.e. J�13J = 3�1. Furthermore, a map 2 2

G reverses each (or any fixed infinite-order) element 3 2 D if and only if J2
commutes with 3 and hence, if and only if

2(z) = (z2'(p), z1 (p)), (2.6)
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where '(t) and  (t) are as before. This may be written as 2 = M(', )J =

JM( ,'). We denote the collection of such 2 byR:

R := {J F : F 2 C} = {F J : F 2 C}

and note that it is both a left and a right coset of C.
The extended centraliser ES(G) of a subset S in a group G is the set of all

elements of the group that either commute with all the elements of the subset or
reverse them all. We denote the extended centraliser of D in G, by E:

E := ED(G) = C [ R.

This is a group, in which C has index 2. Lemma 2.1 applies toH = C and toH = E:

Lemma 2.4. If F 2 E has finite order, then there exists H 2 C such that FH is
linear.

2.7. The homomorphisms P , H , and 8

To F 2 E we associate the one variable power series

P(F) = ⇢(t) 2 G1, ⇢(t) := t · '(t) ·  (t),

where F is given by the right-hand side of either (2.5) or (2.6). Note that, following
our convention, we use · for the (formal) pointwise multiplication of power series.
Denoting

p = ⇡(z1, z2) := z1z2,

we have the basic property

P(F) � ⇡ = ⇡ � F, (2.7)

i.e. P(F) is “semi-conjugate” to F via ⇡ . Property (2.7) determines P(F) uniquely.
A routine calculation using (2.7) proves:

Lemma 2.5. P : E ! G1 is a group homomorphism.

The map P and its homomorphic property have been fundamentally used in [5]
in a more general context of one-resonant maps. The kernel of P is the set of maps
F of the form

F(z) =

✓
z1'(p),

z2
'(p)

◆
or
✓
z2'(p),

z1
'(p)

◆
,

and C \ ker P is abelian.
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Define the “lifting” homomorphism map H : G1 ! C by

H(�)(z) =

✓
z1�(p)

p
, z2
◆

, (2.8)

whose basic property is P(H(�)) = � . In particular, the restriction P|C is surjec-
tive. We also consider the “lifting” to the second argument given by

(J H(�)J )(z) =

✓
z1,

z2�(p)
p

◆

that also has the basic property P(J H(�)J ) = � .
We denote by F⇥

1 the multiplicative group of the ring of formal power series
'(t) = a0+a1t +· · · in one variable having a0 6= 0, (in which the group operation
corresponds to convolution on the coefficients, the formal equivalent of pointwise
multiplication, as opposed to composition). The map

8 :

8<
:

F⇥

1 ! C,

' 7!

✓
z1'(p),

z2
'(p)

◆
,

is a group isomorphism onto its image, which is equal to C \ ker P .
We note that each F 2 C has a unique factorization in the form H(⇢)8( ),

and another in the form J H(⇢)J8('). However, C is not the direct product of
im H and im8.

3. Centralisers in E

3.1. Centralisers in C

A routine calculation gives:

Lemma 3.1. Let Fj (z) = (z1' j (p), z2 j (p)), and ⇢ j = P(Fj ), for j = 1, 2.
Then

F1(F2(z)) = (z1'2(p)'1(⇢2(p)), z2 2(p) 1(⇢2(p))) . (3.1)

This immediately yields:

Lemma 3.2. Let Fj (z) = (z1' j (p), z2 j (p)), and ⇢ j = P(Fj ), for j = 1, 2.
Then F1F2 = F2F1 if and only if⇢

'2(p)'1(⇢2(p)) = '1(p)'2(⇢1(p))
 2(p) 1(⇢2(p)) =  1(p) 2(⇢1(p))

. (3.2)

Lemma 3.3. Let F1 2 im8 (= C \ ker P) and F2 2 E. Suppose F1F2 = F2F1.
Then either F1 is linear (and hence is in the group D of matrices (2.4)) or P(F2)
has finite order.
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The proof is based on the following useful fact in one variable:

Lemma 3.4. Let '(t) be a formal power series in one variable that is invariant
under a formal change of variables t 0 = ⇢(t) 2 G1 with ⇢(0) = 0, i.e.

'(⇢(t)) = '(t). (3.3)

Then either ' = const or ⇢ has finite order.

Proof. Suppose that ' 6= const, i.e.

'(t) = '(0) + ↵tk +

1X
j=1

↵ j t k+ j , ↵ 6= 0.

Since ⇢(t) = ct+· · · , comparing the coefficients of tk in (3.3) gives ck = 1. Then,
replacing ⇢ with ⇢k , we may assume c = 1. It clearly suffices to show that ⇢ = id.
Assuming the contrary, we have

⇢(t) = t (1+ �tr + HOT), � 6= 0,

where HOT denotes terms of degree greater than r . Now

'(⇢(t)) = 1+ ↵⇢(t)k +

1X
j=1

↵ j⇢(t)k+ j

= 1+ ↵tk(1+ k�tr ) +

rX
j=1

↵ j t k+ j
+ HOT

where HOT denotes terms of degree greater than k + r , so comparing coefficients
of tk+r in (3.3), we get ↵�k = 0, a contradiction.

Proof of Lemma 3.3. Replacing F2 by F22 if necessary, we may assume that F2 2 C.
In the notation of Lemma 3.2 we have ⇢1(t) = t and therefore the first identity in
(3.2) implies '1(⇢2(t)) = '1(t). Then by Lemma 3.4, either '1 = const and then
F1 2 D or ⇢2 = P(F2) has finite order.

Corollary 3.5. If commuting elements F1 2 im8 and F2 2 C are tangent to the
identity, then F1 = id or F2 2 im8. In fact, it suffices to assume that F1 and P(F2)
are tangent to the identity.

Proof. By Lemma 3.3, either F1 is linear and hence F1 = id or P(F2) has finite
order and hence is the identity.

Corollary 3.6. The centraliser of im8 in E is im8.
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Proof. Recall that E = C [ R (see Section 2.6 for the notation). Suppose F 2 E
commutes with all elements of im8. If F 2 R, then it does not commute with, for
instance,

✓
2 0
0 1
2

◆
, so F must belong to C, in particular, 3 := L(F) 2 D. Since 3

commutes with each element of im8, it follows that F2 = 3�1F commutes with
each element of im8, and is tangent to the identity. Taking F1 to be any element
of im8 that is tangent to the identity but not equal to the identity, and applying the
last corollary, we conclude that F2 2 im8.

Corollary 3.7. im8 is a maximal Abelian subgroup of E.

4. Reversibility in E

Involutions are trivially reversible (by the identity), in any group. By Lemma 2.4,
each involution in C is conjugate to (±z1,±z2), and each proper involution in R
is conjugate to ±(z2, z1). It is not altogether clear what other elements of R are
reversible in E, but we do not need to know this, for our purposes. We concentrate
on describing the elements of C reversible in E.

4.1. Elements of im8

Lemma 4.1. Each element of im8 is strongly-reversible in E.

Proof. Such maps are obviously reversed by the involution J .

4.2. Elements of C

We remark that if F 2 C is reversible, then det(L(F)) = ±1, so P(F)(t) =

±t + · · · . Thus L(F) takes the form
✓

±µ 0
0 µ�1

◆
for some nonzero µ 2 C, so

L(F2) 2 D.

Theorem 4.2. Let F 2 C be reversed by 2 2 E, i.e.

2�1F2 = F�1. (4.1)

Then eitherP(F)has finite order or some power of2 belongs to the matrix groupD.

We use the following simple relation between reversers and commuting maps:

Lemma 4.3. If F is reversed by 2, then F is reversed by any 2m with m 2 Z odd
and commutes with any 2m with m 2 Z even.

Proof. The statement is straightforward for m � 0. Taking the inverse of (4.1)
yields 2�1F�12 = F showing the statement for m = �1 and therefore for any
m < 0.
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Proof of Theorem 4.2. Replacing F by F2, if need be, we may assume L(F) 2 D.
Suppose P(F) has infinite order. Since P(F) (which takes the form t + · · · ) is
reversed by P(2), it follows from Corollary 2.3 that P(2) has finite order, so we
may choose k 2 N such that 22k 2 im8. Since 22k also commutes with F by
Lemma 4.3, we may apply Lemma 3.3 with F1 = 22k and F2 = F , and conclude
that 22k 2 D.

Corollary 4.4. Suppose F 2 C has linear part L(F) 2 D, with L(F) 6= ±id, and
is reversible in E. Then (1) each reverser of F lies inR, and (2) F may be reversed
in E by some element of finite order.

Proof. Suppose 2 2 E reverses F . Then L(2) reverses L(F), which takes the
form (2.4), with µ 6= ±1. Thus L(2) has to interchange the eigenvectors of µ and
1/µ, and must take the form (az2, bz1) for some nonzero a and b. In particular, the
reverser cannot belong to C, so part (1) is proved. Composing with an element of
D, we may assume that the reverser2 has linear part (cz2, cz1). Then Theorem 4.2
tells us that either P(F) has finite order or some power 22k 2 D.

In the first case, P(F) is linearizable by Lemma 2.1. Furthermore, since
L(F) 2 D, the map P(F) is also tangent to the identity. Hence we must have
P(F) = id and therefore F 2 im8, which is reversed by J .

In the second case, 22k = L(2)2k = c2k · id, but the only multiples of the
identity belonging to D are ±id, so 2 has order at most 4k.

Corollary 4.5. Suppose F 2 C has linear part L(F) 2 D with L(F) 6= ±id, and
is reversible in E. Then either F is linear or each reverser of F in E has finite order.

Proof. We have seen this in the second case of Proof of Corollary 4.4. In the first
case, F 2 im8 is reversed by J , so each other reverser of F takes the form JG,
where G commutes with F , and G belongs to C since L(F) has two different
eigenvalues. Then for 3 := L(G) 2 D, the map 3�1G is tangent to the iden-
tity and commutes with L(F)�1F . If F 6= L(F), then Corollary 3.5 tells us that
3�1G 2 im8, hence G 2 im8, so (JG)2 = JGG�1 J = id.

We draw a further corollary from the proof of Corollary 4.4:

Corollary 4.6. Suppose F 2 C is reversible in E and has linear part L(F) 6= ±id.
Then F is conjugate in E to a map reversed by one of the maps Jc(z) = cez, where
c is a root of unity.

Proof. In the first case, we may take c = 1. In the second case, multiplying by a
suitable element 3 2 D, we see that 2 can be assumed to be of finite order and
to satisfy L(2) = Jc, where c is a root of unity. The statement now follows from
Lemma 2.1.
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5. Maps reversed by Jc(z) = cez
Here we fix one of the linear maps Jc 2 R identified in the last subsection, and we
describe all the elements of C that it reverses. We assume that c is a root of unity,
and we set ! = c̄2. Let k be the least natural number with !2k = 1 (i.e. k is the
order of !2).

5.1 If a map 2 reverses two commuting maps F and G, then it also reverses their
composition FG. Thus if Jc reverses a map F 2 C having linear part3, then, since
Jc reverses3, it also reverses the map G = 3�1F , which is tangent to the identity.
Thus each F 2 C reversed by Jc factors as 3G, where G 2 C is tangent to the
identity, and is reversed by Jc.

5.2 If Jc reverses an F 2 C then ⇢ = P(F) is reversed by c2t = !̄t (and hence by
the inverse !t , see Lemma 4.3), i.e.

!�1⇢(!⇢(t)) = t. (5.1)

In particular, Lemma 4.3 implies

⇢(!2t) = !2⇢(t). (5.2)

Also, reversibility implies ⇢(t) = ±t + HOT (see Subsection 2.4). Furthermore,
since Jc interchanges the eigenspaces of L(F), we must have L(F) 2 D and there-
fore

⇢(t) = t + HOT. (5.3)

5.3 Consider an arbitrary F 2C, with L(F)2D, of the form F=(z1'(p), z2 (p)),
with ⇢ = P(F). For any complex c, we calculate

(F J�1
c F Jc)(z)

=

⇣
z1 · (c2 p)·'

⇣
p · '(c2 p) ·  (c2 p)

⌘
, z2 · '(c2 p) ·  

⇣
p · '(c2 p) ·  (c2 p)

⌘⌘
.

Thus Jc reverses F if and only if
(
 (c2t) · '

�
t'(c2t) (c2t)

�
= 1,

'(c2t) ·  
�
t'(c2t) (c2t)

�
= 1,

(5.4)

or, equivalently, (
 (c2t) · '

�
!⇢(c2t)

�
= 1,

'(c2t) ·  
�
!⇢(c2t)

�
= 1,

(5.5)

where as before ⇢(t) = t'(t) (t).
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Now define
� (t) := !⇢(t), (5.6)

which satisfies
� (t) = !t + HOT (5.7)

in view of (5.3). Then the reversibility equation (5.1) for ⇢ becomes

� 2(t) = !2t, (5.8)

and the reversibility equations (5.5) for F become
(
 (t) · ' (� (t)) = 1,
'(t) ·  (� (t)) = 1,

(5.9)

where we replaced c2t by t . Denoting

g(t) :=

'(t)
 (t)

, (5.10)

we obtain from (5.9) that

g(� (t)) =

'(� (t))
 (� (t))

=

'(t)
 (t)

= g(t). (5.11)

In view of (5.8), it follows that

g(!2t) = g(� 2(t)) = g(t). (5.12)

Equation (5.8) admits two possibilities, a priori:

I: � may be the linear map � (t) = !t . In this case, equation (5.6) yields  (t) =

1/'(t), so F 2 im8. Equations (5.9) then yield '(!t) = '(t), i.e. '(t) takes the
form '1(tk), where k is the order of !.

Conversely, Jc reverses F(z) = (z1'(p), z2/'(p)) whenever '(c2t) = '(t),
i.e. '(t) is a function of tk and the order of c divides 2k.

We note that each of these F’s is reversed by the involution J = J1.

II: The more interesting possibility is that � is a nonlinear solution of (5.8). Since !
is a root of unity, � has finite even order. Then Lemma 2.1 implies the existence of
some h(t) = t+· · · such that � h(t) = !t , where � h denotes the conjugate h�1�h,
i.e. h�1(� (h(t))) = !t or, equivalently,

h(!t) = � (h(t)). (5.13)
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Since � (!2t) = !2� (t), it follows from formula (2.1) that h(!2t) = !2h(t). Fur-
thermore, setting g1(t) = g(h(t)) we obtain, using (5.13) and (5.11):

g1(!t) = g(h(!t)) = g(� (h(t))) = g(h(t)) = g1(t). (5.14)

The equations 8><
>:
'(t) (t) =

⇢(t)
t

,

'(t)
 (t)

= g(t),

are clearly equivalent to

'(t) =

✓
⇢(t)g(t)

t

◆ 1
2
,

 (t) =

✓
⇢(t)
tg(t)

◆ 1
2
,

(5.15)

where the branches of the square roots are chosen to make

'(0) =

1
 (0)

= � (5.16)

the first eigenvalue of F . It follows from (5.15), (5.2) and (5.12) that

'(!2t) = '(t),  (!2t) =  (t), (5.17)

so that these functions, also, depend only on tk .
Conversely, suppose c is a 4k-th root of unity, for some k, and take any invert-

ible h 2 G1 with h(t) = t + HOT and h(!2t) = !2h(t), i.e. h is any power series
h(t) = t (1+

P
j�1 h j tk j ) . Define

� (t) = h(!h�1(t)), ⇢(t) = !�1� (t) = !�1h(!h�1(t)), (5.18)

in particular, � h(t) = !t . Then clearly both � and ⇢ commute with !2, and

� 2(t) = h(!h�1(h(!h�1(t)))) = !2t,

i.e. (5.8) holds, which is equivalent to ⇢ being reversed by !t . Note that � has order
dividing 2k. Take any � 6= 0 and g1(t) = �2 +HOT satisfying g1(!t) = g1(t), and
define

g(t) = g1(h�1(t)), (5.19)
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so (5.14) holds. Since h and g1 commute with !t , also g does, i.e. g(!2t) = g(t).
Furthermore,

g(� (t)) = g1((h�1(h(!h�1(t))))) = g(t).

Finally define holomorphic germs ' and  by (5.15). Then

 (t)'(� (t)) =

 
!�1� 2(t)
� (t)

! 1
2
 
!�1� (t)

t

! 1
2

= 1,

so the first equation in (5.9) holds. The second equation follows from the first one,
using (5.10) and (5.11), and may also be verified by direct calculation. Thus Jc
reverses F .
Example 5.1. An explicit example of F in case II, reversed by Ji (z) = iez, and
corresponding to the choice

h(t) =

t
1� t

, g1(t) = g(t) = �2,

and hence

⇢(t) = �� (t) =

t
1+ 2t

, '(t) =

�

(1+ 2t)1/2
,  (t) =

��1

(1+ 2t)1/2
,

is given by

F(z1, z2) =

 
�z1

(1+ 2z1z2)1/2
,

��1z2
(1+ 2z1z2)1/2

!
.

Alternatively, choosing

g1(t) =

4�2

1+ t
,

and hence

g(t) = g1(h�1(t)) = �2
(1+ t)2

1+ 2t
, '(t) = �

1+ t
1+ 2t

,  (t) = ��1 1
1+ t

,

we obtain an example of a rational map

F(z1, z2) =

✓
�(1+ z1z2)z1
(1+ 2z1z2)

,
z2

�(1+ z1z2)

◆
.

These maps are not reversed by J or any other involution. Indeed, if an involution
T reverses F , then L(T ) = ±J and hence P(T )(t) = t + HOT and therefore
P(T )(t) = id since T is an involution. But then P(T ) cannot reverse P(F).
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Assembling the cases, we have identified all the series F 2 C reversed by a
given Jc, and we can state the following:

Theorem 5.2.

(1) Let c2k = 1. Then each F 2 im8 reversed by Jc takes the form

(z1'(p), z2/'(p)) ,

where '(c2t) = '(t).
(2) Let c4k = 1, and ! = c̄2. Then each F 2 C with L(F) = diag(�, ��1) that is

reversed by Jc and does not belong to im8 takes the form (z1'(p), z2 (p)),
where ' and  are defined by the equations (5.15) and (5.16), ⇢ is defined by
(5.18) for some h 2 G1 tangent to the identity that satisfies h(!2t) = !2h(t),
and g is defined by (5.19) for some g1(t) = �2 + HOT that satisfies g1(!t) =

g1(t). In particular, both ' and  depend only on tk . Moreover all these maps
are reversed by Jc.

In part (2), the map F may also be written with the notation of Subsection 2.7 in
the form

F(z) = J H(⇢)J8(') = H(⇢)8(1/ ), (5.20)

where '(!2t) = '(t) by (5.17), and ⇢ = P(F) is reversed by t 7! !t (see Subsec-
tion 5), so that both '(t) and ⇢(t)/t depend only on tk . However, such maps F are
not reversed by Jc in general, unless ' is constructed as above from h and some g1.

6. Reversibility in G

6.1. Resonances

Lemma 6.1. If F 2 G is reversible inG, and has an eigenvalue that is not a root of
unity, then F is conjugate to some element of C having L(F) 2 D of infinite order.
Moreover, the conjugating map can be chosen to be tangent to the identity.

Proof. By a linear conjugation, we may convert L(F) to the form3 =

✓
� 0
0 ��1

◆
2

D. Since � is not a root of unity, the only resonance relations are of the form

� = �k+1(1/�)k, 1/� = �k(1/�)k+1,

so the Poincaré-Dulac Theorem [7, Section 4.8, Theorem 4.22] tells us that F may
be conjugated to the resonant form (2.5).

Lemma 6.2. Suppose that F 2 G has L(F) 2 D, with L(F) 6= ±id, and is
reversible. Then each reverser 2 2 G has linear part of the form L(2)(z1, z2) =

(az2, bz1). Also, it is possible to choose a reverser with linear part Jc.
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Proof. The first assertion follows from the fact that L(2) must interchange the
eigenspaces of L(F). In view of Lemma 6.1, we may assume that F 2 C. In
general, the composition of a reverser of F and an element of the centraliser CF (G)
is another reverser of F . Since D  CF , we may compose2 with an element of D
to convert its linear part to the form Jc.

6.2. Terminology

It is usual to say that a map is in resonant form if the homogeneous terms in its
expansion commute with the linear part. For maps F that belong to G and have
L(F) 2 D of infinite order, this just means that they belong to C, and it is indepen-
dent of the particular F . For maps with L(F) of finite order, resonance amounts to
a less restrictive condition. Since we are concentrating on the generic case, we shall
use the term D-resonant map to mean an element of C. Similarly, we shall refer to
all the elements ofR as D-inverse-resonant maps.

More generally, we extend this terminology to maps that may not be invertible:
Definition 6.3. A formal power series map G : (Cn, 0) ! (Cn, 0) is called D-
resonant (respectively, D-inverse-resonant) if G � M = M � G (respectively, G �

M = M�1
� G), whenever M 2 D.

Remark 6.4. So a series G : (C2, 0) ! (C2, 0) with L(G) 2 D of infinite order is
D-resonant (respectively D-inverse-resonant) if and only if it is the sum of mono-
mials pkaz (respectively pkaez), where a is some diagonal matrix, p = z1z2 andez = (z2, z1).

We have the following obvious properties:

Lemma 6.5. Let G1,G2 be D-resonant and H1, H2 be D-inverse-resonant. Then
G1 �G2 and H1 �H2 are D-resonant, whereas G1 �H1 and H1 �G1 are D-inverse-
resonant.

6.3. Reversers of resonant maps

Proposition 6.6. Suppose that F 2 C, with 3 = L(F) of infinite order, and F is
reversed by some 2 2 G. Then 2 2 R.

Proof. By Lemma 6.2, the linear part of 2 belongs to R. Assume by induction
that all the terms of order less than k in the expansion of 2 are D-inverse-resonant.
Identifying homogeneous components of order k in the basic reversibility equation

F �2 � F = 2, (6.1)

we obtain an identity 3Lk(2)(3z) = Lk(2)(z) + . . . (using the notation intro-
duced in Subsection 2.1), where the dots contain expressions involving only Lm(2)
with m < k. It then follows from the inductive assumption and Lemma 6.5 that
these terms are D-inverse-resonant. Hence3Lk(2)(3z)� Lk(2)(z) is D-inverse-
resonant, which is only possible when Lk(2) is D-inverse-resonant, as is readily
seen by using the fact that 3 has infinite order. The proof is complete.
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Combining Lemmas 6.1 and 6.6, we have:

Theorem 6.7. Let F 2 G and suppose L(F) has an eigenvalue that is not a root
of unity. Then F is reversible in G if and only if it is conjugate in G to some
D-resonant element G 2 C, having L(G) 2 D, that is reversed by some D-inverse-
resonant element 2 2 R.

7. Conjugacy classes of reversibles

By Theorem 6.7, each generic reversible of G is conjugate in G to a map of the
form 3F , where 3 2 D and F 2 C is tangent to the identity and is reversible in
E. By Corollary 4.4, 3F , and hence F , may be reversed by some element of finite
order in R, and by a further conjugation (using an element of C, which does not
disturb the factorization 3F), we may arrange that F is reversed by some linear
map, which may be taken to be a Jc, for some root of unity c. By Theorem 5.2, F
is of one of two kinds. Now we turn to the question of cataloging the conjugacy
classes in G of the maps of these two kinds.

7.1 First we consider their conjugacy classes in E. The key idea is to use the
conjugacy actions induced by the homomorphisms H : G1 ! C and 8 : F⇥

1 ! C
on the group C (as introduced in Subsection 2.7).

Consider general F = M(', ) 2 C reversible or not, given by (2.5). Let
⇢ = P(F). For � 2 G1, letting K1 = H(�) and K2 = J H(�)J , we calculate

K�1
1 FK1(z) =

✓
z1⇢� (p)
p (�(p))

, z2 (�(p))
◆

, (7.1)

and, similarly,

K�1
2 FK2(z) =

✓
z1'(�(p)),

z2⇢� (p)
p'(�(p))

◆
. (7.2)

Also, for any ' 2 F⇥

1 , we calculate

8('1)
�1F8('1)(z) =

✓
z1'(p)'1(p)
'1(⇢(p))

,
z2 (p)'1(⇢(p))

'1(p)

◆
. (7.3)

Now consider the two kinds of reversible F 2 C, tangent to, but not equal to, the
identity, reversed by Jc, as in Theorem 5.2:

I: F 2 im8, so ⇢ = id.
We have '(t) = 1 + ↵tk + HOT, for some k 2 N and ↵ 6= 0. Then we may

choose � 2 G1 so that '(�(t)) = 1+ tk , and then

K�1
2 FK2(z) =

✓
z1(1+ pk),

z2
(1+ pk)

◆
. (7.4)
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Thus F is represented, up to conjugacy in C, by one of the maps (7.4), for some
k 2 N.
II: ⇢ 6= id. F takes the form

✓
z1'(p),

z2⇢(p)
p'(p)

◆
= J H(⇢)J8('), (7.5)

for some reversible ⇢ 2 G1, with ⇢ = t + HOT, but ⇢ 6= id, (reversed by !t ,
where !k = �1, for some k 2 N) and some '(t) that depends only on tk (see
Subsection 5). Then [12] ⇢ is conjugate to

fk(t) =

t

(1� ktk)
1
k

= t + tk+1 +

✓
k + 1
2

◆
t2k+1 + HOT, (7.6)

which is also reversed by all odd powers of !t (where ! = c̄2, as before). Let
� 2 G1 conjugate ⇢ to fk . Then conjugating F by J H(�)J , we may assume that
⇢ = fk . Then the formal iterate ⇢↵ is given by

⇢↵(t) = f ↵k (t) =

t

(1� k↵tk)
1
k

= t
⇣
1+ ↵tk + HOT

⌘
, (7.7)

whenever ↵ 2 C.
Choose ↵ 2 C such that '(t) = 1+ ↵tk + HOT (note that F is tangent to the

identity). Then ⇢
↵(t)
'(t) = t (1+HOT), where the higher terms involve only monomials

b j t jk with j � 2, so we may choose '1(t), depending only on tk , such that

'1(t)
'1(⇢(t))

=

⇢↵(t)
t'(t)

.

The latter fact follows by writing '1(t) = 1+

P
a j t jk , expanding the formula

1+

X
a j t jk =

 
1+

X
j�2

b j t jk
!⇣
1+

X
a j (t (1+ tk + HOT)) jk

⌘
, (7.8)

identifying coefficients of t jk and solving inductively for a j�1.
Then the conjugation (7.3) converts F to the form

F =

✓
z1⇢↵(p)

p
,
z2⇢(p)
⇢↵(p)

◆
, (7.9)

and this is reversed by

8('1)
�1 Jc8('1) = Jc8('21).
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We calculate (using the fact that z 7! !z reverses ⇢↵)

F Jc(z) = Jc̄F(cz2, cz1)

= Jc̄
✓
cz2⇢↵(!̄p)

!̄p
,
cz1⇢(!̄p)
⇢↵(!̄p)

◆

=

 
cz2!̄⇢�↵(p)

!̄p
,
cz1!̄⇢�1(p)
!̄⇢�↵(p)

!

=

 
z1⇢�1(p)
⇢�↵(p)

,
z2⇢�↵(p)

p

!
,

H(⇢)8

✓
⇢↵(t)
⇢(t)

◆
(z) = H(⇢)

✓
z1⇢↵(p)
⇢(p)

,
z2⇢(p)
⇢↵(p)

◆

=

✓
z1⇢↵(p)
⇢(p)

⇢(p)
p

,
z2⇢(p)
⇢↵(p)

◆
= F(z),

F�1(z) = 8

✓
⇢↵(t)
⇢(t)

◆
�1

H(⇢)�1(z)

= 8

✓
⇢(t)
⇢↵(t)

◆
H(⇢�1)(z)

= 8

✓
⇢(t)
⇢↵(t)

◆ 
z1⇢�1(p)

p
, z2

!

=

 
z1⇢�1(p)

p
·

⇢(⇢�1(p)
⇢↵(⇢�1(p))

,
z2⇢↵(⇢�1(p))
⇢(⇢�1(p))

!

=

 
z1⇢�1(p)
⇢↵�1(p)

,
z2⇢↵�1(p)

p

!
.

But conjugation of M(', ) by 8('1), and hence by 8('21), does not change the
coefficient of tk in ', so comparing this coefficient in the maps F Jc and F�1, we
obtain ↵ � 1 = �↵, or ↵ =

1
2 . Thus F takes the form

F(z) =

 
z1⇢

1
2 (p)
p

,
z2⇢(p)

⇢
1
2 (p)

!
. (7.10)

Conjugating with ⌫(z) =ez we obtain

F(z) =

 
z1⇢(p)

⇢
1
2 (p)

,
z2⇢

1
2 (p)
p

!
=

 
(1�

k
2 p

k)
1
k

(1� kpk)
1
k
z1,

1

(1�
k
2 pk)

1
k
z2

!
. (7.11)
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Conjugating further by a suitable scaling, eF takes the form

F(z) =

 
(1+ pk)

1
k

(1+ 2pk)
1
k
z1,

1

(1+ pk)
1
k
z2

!
. (7.12)

The alternative forms 
(1� 1

2 p
k)

(1�kpk)
1
k
z1,

1
(1� 1

2 pk)
z2

!
,

 
1

(1� kpk)
1
k (1+

1
2 pk)

z1,
✓
1+

1
2
pk
◆
z2

!
(7.13)

may be obtained from (7.11) by a conjugation of the type (7.3) with '1 satisfying
respectively

'1(t)
'1(⇢(t))

=

(1�
1
2 p

k)

(1�
k
2 pk)1/k

or
'1(t)
'1(⇢(t))

=

1
(1�

k
2 pk)1/k(1+

1
2 pk)

.

The latter fact follows by an argument analogous to that preceeding (7.8).
Vice versa, we have the following lemma that can be verified by direct calcu-

lation:

Lemma 7.1. Let ⇢(t) = t+HOT be reversed by the rotation t 7! !t with ! = c�2.
Then

F(z) =

 
z1⇢(p)

⇢
1
2 (p)

,
z2⇢

1
2 (p)
p

!
, p = z1z2, (7.14)

is reversed by Jc.

Proof of Theorem 1.2. Summarizing, we obtain that any reversible map is formally
conjugate either to a linear map or to a map (7.4) or to a map (7.12), which proves
the first assertion of Theorem 1.2.

To show that these map are pairwise inequivalent under conjugation, note that
the maps F in (7.4) have P(F) = id, whereas the ones in (7.12) have P(F) con-
jugate to fk . As consequence of Poincaré-Dulac, any conjugation map between
those maps must be D-resonant, i.e. in the centralizer C. Consequently, the cor-
responding one-variable maps P(F) must be conjugate. This shows that the maps
in (7.12) are pairwise inequivalent under conjugation and are not conjugate to any
map in (7.4). To see that also the maps in (7.4) are pairwise inequivalent, since any
map in C splits as H(�)8('), it suffices to observe any conjugation by 8(') is
trivial, whereas a conjugation by H(�) is given by (7.2) and hence cannot change
the integer k.

Statement (1) of Theorem 1.2 is evident for maps as in (7.4) and it follows
from Lemma 7.1 for maps as in (7.12).

To show the statement (2), observe that any map in (7.4) is reversed by the
involution J (z) = ez and hence is strongly reversible. On the other hand, suppose
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a map as F in (7.12) is reversed by an involution 2. Then we know from Propo-
sition 6.6 that 2 must be D-inverse-resonant, i.e. it reverses the linear part of F .
Since 2 is an involution and � 6= ��1, we must have L(2) = ±J and therefore
P(2)(t) = t + HOT. But then, since P(2) is also an involution, it follows that
P(2) = id. Consequently P(2) cannot reverse P(F) 6= P(F)�1 and hence 2
cannot reverse F .

Finally the statement (3) follows from Corollary 4.5.

Proof of Proposition 1.4. In the foregoing argument, the specific form fk may be
replaced by any element ⇢(t) 2 G1 that only has powers t1+ jk and takes the form

⇢(t) = t
✓
1+ tk +

✓
k + 1
2

◆
t2k + HOT

◆
,

and we still obtain the normal form (7.10) with the new ⇢. To see this, note first
that each such ⇢ is conjugate in G1 to fk , and that the conjugating map, say � ,
only has powers t1+ jk and may be chosen equal to be equal to the identity up to the
terms of order 2k + 1. It follows that Jc commutes with H(�) up to order 4k + 1
and therefore it reverses FH(�) up to terms of degree 4k + 1 in z, and, arguing as
before, we can conjugate FH(�) to the form (7.9), and then we still get ↵ =

1
2 .

Hence FH(�) is conjugate to (7.13). Now, noting that

⇢(t)
t (1+

1
2 tk)

= 1+

1
2
tk +

✓
2k + 1
4

◆
t2k + HOT,

we may choose

⇢(t) = t
✓
1+

1
2
tk +

✓
2k + 1
4

◆
t2k
◆✓

1+

1
2
tk
◆

and we get the form

F(z) =

✓
z1
✓
1+

1
2
pk
◆

, z2
✓
1+

1
2
pk +

✓
2k + 1
4

◆
p2k
◆◆

.

Conjugating by z 7! ↵z, with ↵2k = 2, we get the tidier polynomial form

F(z) =

⇣
z1(1+ pk), z2

⇣
1+ pk + (2k + 1)p2k

⌘⌘
. (7.15)

The alternative forms (7.10)/(7.15) each have their advantages. The second has the
simplest form, but the first is reversed by the simple map Jc.
Remark 7.2. We have seen that maps of the form (7.9) are only reversed by some
Jc when ↵ =

1
2 . However, it is worth remarking that for every ↵ 2 C they are

reversed by the D-resonant maps c · H(⇢↵), as is readily checked. This does not
mean, of course, that the original map is 3F is reversible for ↵ 6=

1
2 but might be

of interest for the study of the reversible F 2 G that are tangent to the identity.
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8. Convergence properties of the normal form

The convergence of the normal form as stated in Theorem 1.6 is obtained by closely
following the arguments of the [11, proof of Theorem 4.1, page 283]. In fact, as-
sume that F is biholomorphic and admits a formal Poincaré-Dulac normal form

⇠ 0

= M⇠, ⌘0

= M�1⌘, (8.1)

(written in the form similar to (3.6) in [11]), where M is a formal power series in
the product ⇠⌘. Changing the notation (x, y) = (z1, z2) as in [11] and writing F as

x 0

= �x + f (x, y), y0

= ��1y + g(x, y) (8.2)

with f and g convergent of order at least 2, analogously to (3.2) in [11], and the
conjugation map  into the normal form as

x = U(⇠, ⌘) = ⇠ + u(⇠, ⌘), y = V (⇠, ⌘) = ⌘ + v(⇠, ⌘) (8.3)

with u and v of order at least 2, analogously to (3.3) in [11], the fact that  conju-
gates F to (8.1) can be written as

U(M⇠,M�1⌘)��U(⇠,⌘)= f (U,V ), V (M⇠,M�1⌘)��V (⇠,⌘)=g(U,V ), (8.4)

analogously to (4.1) in [11].
As in [11] a formal power series p(⇠, ⌘) is said to have type s if it can be

written
p(⇠, ⌘) =

X
i� j=s

pi j⇠ i⌘ j

and any power series p admits an unique decomposition

p(⇠, ⌘) =

X
ps(⇠, ⌘)

with ps having type s. According to the proof of Poincaré-Dulac, we may assume
that the conjugating map  has no resonant terms, which as in [11, (3.4)] can be
written using the type decomposition as

u1 = 0, v�1 = 0. (8.5)

As in [11, (4.2)], taking terms of the same type in (8.4) yields

(Ms
� �)Us = [ f (U, V )]s, (Ms

� ��1)Vs = [g(U, V )]s . (8.6)

Then proceeding as in [11], pages 284–286, we obtain a convergent series W (⇠)
majorizing u(⇠, ⇠) and v(⇠, ⇠) and hence proving the convergence of the conju-
gating map  . Note that this proof gives the convergence of the (unique) map  
satisfying (8.5) and conjugating F to a normal form (8.1).
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Finally, once F is biholomorphically conjugate to (8.1) with convergent M ,
its further biholomorphic conjugation to the form (7.4) is obtained by a suitable
K2 = H(�) associated to the convergent � . This ends the proof of Theorem 1.6.

The following example shows that, in contrast to the first series in (1.3), bi-
holomorphic reversible maps conjugate to a map in the second series in (1.3) may
fail to be biholomorphically conjugate to their formal normal form.

Example 8.1. Let ⇢(t) = t + HOT be any one-variable biholomorphic map that
is formally but not biholomorphically reversible, see [2, Example 4.8] for the ex-
istence of such maps. Let ✓ be a formal map reversing ⇢. Then any two-variable
map

F := 3H(⇢) =

✓
⇢(p)
p
�z1, ��1z2

◆

is formally reversible by H(✓). On the other hand, any biholomorphic reverser
2 of F with � not a root of unity, would be inverse-resonant by Proposition 6.6.
But then ⇢ = P(F) would be reversible by the biholomorphic map P(2), which is
impossible due to the choice of ⇢. Hence F cannot be biholomorphically reversible.
In particular, it cannot be biholomorhically conjugate to any map in (1.3).

9. Factorization in G

The homomorphisms 8 and H may also be applied to resolve another question.
It is an interesting fact that in many very large groups each element may be fac-
tored as the product of a fixed small number of elements of a handful of conjugacy
classes. For instance, any permutation of a finite set is a product of transpositions,
and also the product of two involutions. Of particular interest are products of invo-
lutions, and, more generally, products of reversibles. In the present case, we have
the following:

Theorem 9.1. If F 2 G has det L(F) = 1, then it may be factorized as F =

g1g2g3g4, where each g j is reversible in G.

Remark 9.2. Each product F = f1 · · · fn of reversible f j ’s has det L(F) = ±1, so
(multiplying if necessary by a suitable linear involution) it follows from the theorem
that each product of reversibles reduces to the product of five. It also follows that the
elements that are products of reversibles are precisely those with det L(F) = ±1.

Proof of Theorem 9.1. In fact, if det L(F) = 1, then conjugating to a Jordan normal
form and multiplying by some (reversible) 3 2 D we can arrange that L(Fe3) is
conjugate to an infinite-order element of D, wheree3 is conjugate to3 and therefore
reversible. Then by Poincaré-Dulac, Fe3 is conjugate (say by K 2 G) to some
element of the centralizer C, so that (Fe3)K is resonant and hence may be factored
as H(�)8('), where �(t) = t + HOT. Now 8(') is reversible, and we know [12,
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Theorem 9(2)] that � is the product of two reversibles inG1, so H(�) is the product
of two reversibles, say H(�1) and H(�2). Thus

FK
= H(�1)H(�2)8(')(e3�1)K

is the product of four reversibles, and conjugating with K�1 we obtain the
result.

Theorem 1.7 now follows from Theorem 9.1. Indeed, if det L(F) = 1, it is
the product of 4 reversibles with the involution equal to the identity. Otherwise if
det L(F) = �1, consider the involution ⌫(z1, z2) = (�z1, z2). Then det L(F⌫) =

1 and hence F⌫ is the product of 4 reversibles, implying the result.

10. Reversible biholomorphic maps

For series in one variable, the single formal conjugacy class of fk inG1, intersected
with the subgroup G1 of biholomorphic maps splits into uncountably many conju-
gacy classes. Functional moduli for these classes have been provided by Écalle and
Voronin [7]. It is not necessarily true that every formally reversible biholomorphic
map is biholomorphically-reversible, but because of the fact that all reversers are
of finite order it is true that every reversible biholomorphic map is conjugate to one
that is reversed by a rational rotation. The same principle carries over to our present
context:

Theorem 10.1. Let F 2 G be an invertible biholomorphic germ on (C2, 0), and
suppose that L(F) has an eigenvalue that is not a root of unity. Then F is reversible
in G if and only if it is conjugate in G to a map that is reversed by linear map of
finite order.

Proof. Suppose 2 2 G reverses F 6= id in G. Then 2 reverses F in G by Theo-
rem 1.2, and hence has finite order. Thus, by Lemma 2.1, 2 is conjugate in G to a
linear map. Applying the same conjugation to F , we obtain the result.

Remark 10.2. It remains open, even for one-variable maps, whether results such
as Theorems 9.1 or 1.7 hold for biholomorphic maps.
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