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Deformation openness and closedness of various classes
of compact complex manifolds; examples
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Abstract. We review the relations between compact complex manifolds carry-
ing various types of Hermitian metrics (Kähler, balanced, or strongly Gauduchon)
and those satisfying topological properties such as the @@̄-lemma, or the degener-
ation at E1 of the Frölicher spectral sequence. We also review the behaviour of
these properties under holomorphic deformations. The emphasis will be placed
on the notion of strongly Gauduchon (sG) manifold that we introduced recently in
the study of deformation limits of projective and Moishezon manifolds. Besides
its expository aspect, the paper presents new results such as exhibiting various
examples of sG and non-sG manifolds. These are then used to review and rein-
terpret from this new standpoint a range of constructions already known in the
literature.

Mathematics Subject Classification (2010): 32G05 (primary); 53C55, 58A14,
58A25, 14E05 (secondary).

1. Introduction

The main theme of this text is the interaction between metric and topological prop-
erties satisfied by compact complex manifolds.

1.1. Metric properties: smooth metrics

A Hermitian metric on a given compact complex manifold X (dimCX := n) will
be identified with the associated positive-definite C1 (1, 1)-form ! > 0 on X . The
metric ! is said to be:
• Kähler if d! = 0;
• Balanced1(or semi-Kähler2or co-Kähler) if d!n�1 = 0;
• Strongly Gauduchon3(or sG) if @!n�1 is @̄-exact;
• Gauduchon if @!n�1 is @̄-closed or, equivalently, if @@̄!n�1 = 0.

1 Terminology of [35].
2 Terminology of [19], unrelated to the balanced condition used by Donaldson, Luo and others in
the context of cscK metrics.
3 Notion introduced in [41].
Received October 18, 2011; accepted in revised form March 28, 2012.



256 DAN POPOVICI

Although Hermitian metrics always exist, the stronger Kähler, balanced and
sG metrics need not exist on an arbitrary X . A compact complex manifold carry-
ing one of the first three types of metrics described above is said to be a compact
Kähler, balanced on, respectively, strongly Gauduchon (or sG) manifold. By con-
trast, Gauduchon metrics exist on any compact complex manifold (cf. [18]). Ac-
tually, Gauduchon’s main result in [18] asserts far more: there exists a Gauduchon
metric (unique up to normalisation) in the conformal class of any Hermitian metric
on X . At the level of Hermitian metrics ! on X , the following obvious implications
hold:

! is Kähler =) ! is balanced =) ! is sG =) ! is Gauduchon.

In the case of complex surfaces X (i.e. n = 2), it is obvious that ! is a Kähler metric
if and only if ! is a balanced metric. An sG metric ! need not be Kähler even when
n = 2, but compact complex surfaces X carrying sG metrics also carry Kähler
metrics (see [41, Section 3]). Thus, at the level of compact complex manifolds, we
have the following equivalences:

X is a Kähler surface() X is a balanced surface() X is an sG surface.

However, if compact complex surfaces are replaced by compact complex manifolds
of complex dimension n � 3, the above equivalences break down, and only strict
implications from left to right hold.

1.2. Metric properties: currents and birational transformations

Recall that the so-called Kähler currents provide a singular (thus weaker) substitute
for Kähler metrics. A d-closed positive (1, 1)-current T on X is said to be a Kähler
current4 if it satisfies the strong positivity condition

T � "! on X,

for some constant " > 0 and some Hermitian metric ! > 0. Kähler currents
need not exist on an arbitrary X , but they may exist when Kähler metrics do not.
Recall that X is said to be a Fujiki class-C manifold if X is bimeromorphic to
a compact Kähler manifold, or equivalently, if there exists a proper holomorphic
bimeromorphic map (i.e. a modification)

µ :
eX ! X

from a compact Kähler manifold eX . Fujiki introduced class-C manifolds X as
meromorphic images of compact Kähler manifolds in [17], while Varouchas gave
them the above nice characterisation in [47]. It is a result of Demailly and Paun that
class-C manifolds are characterised by the existence of a Kähler current.

4 Terminology introduced in [27].



DEFORMATION OPENNESS AND CLOSEDNESS 257

Theorem 1.1 (Demailly-Paun [15]). A compact complex manifold X is of class C
if and only if there exists a Kähler current T on X .

Recall that a Moishezon manifold is, by definition, a compact complex mani-
fold that is bimeromorphic to a projective manifold. Equivalently, X is Moishezon
if and only if there exists a modification

µ :
eX ! X

from a projective manifold eX . Thus Moishezon manifolds are to projective mani-
folds what class-C manifolds are to compact Kähler manifolds.

The special case of integral cohomology classes is relevant in characterisations
of some of the above classes of manifolds. Recall that the De Rham 2-cohomology
class {!} 2 H2DR(X, R) (respectively, {T } 2 H2DR(X, R)) defined by a C1 d-
closed real (1, 1)-form ! (respectively, by a d-closed real (1, 1)-current T ) is said
to be integral if it is the first Chern class of a holomorphic line bundle L ! X
or, equivalently, if ! (respectively, T ) is the curvature form (respectively, curvature
current) i

⇡2h(L) of a holomorphic line bundle (L , h) ! X endowed with a C1

(respectively, singular) Hermitian fibre metric h.
There are neat characterisations of projective and Moishezon manifolds mir-

roring the general case of arbitrary (i.e. possibly transcendental) classes that occur
on Kähler and class-C manifolds.
Theorem 1.2 (Kodaira’s embedding theorem). A compact complex manifold X
is projective if and only if there exists a Kähler metric ! on X whose De Rham
cohomology class {!} 2 H2DR(X, R) is integral.

Thus projective manifolds are integral-class special cases of compact Kähler
manifolds. Likewise, Moishezon manifolds are integral-class special cases of class-
C manifolds, as the following characterisation shows:
Theorem 1.3 (Ji-Shiffman [27]). A compact complex manifold X is Moishezon if
and only if there exists a Kähler current T on X whose De Rham cohomology class
{T } 2 H2DR(X, R) is integral.

An interesting result of Alessandrini and Bassanelli (see [4–6]) asserts that ev-
ery class-C manifold is balanced (i.e. carries a balanced metric). They actually
accomplished rather more proving that balanced manifolds are stable under modi-
fications:

Theorem 1.4 (Alessandrini-Bassanelli [6]). Let µ :
eX ! X be a modification of

compact complex manifolds. Then X is balanced if and only if eX is balanced.

Now if X is a class-C manifold, then by [47] there exists a modification µ :eX ! X where eX is a compact Kähler manifold. Then eX is also balanced and, by
Theorem 1.4, X must be balanced as well.

It is worth mentioning that the sG condition enjoys the same modification sta-
bility property.
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Theorem 1.5 (Theorem 1.3. in [43]). Let µ :
eX! X be a modification of compact

complex manifolds. Then X is strongly Gauduchon if and only if eX is strongly
Gauduchon.

Once again, the picture is known to be much simpler in the case of compact
complex surfaces (i.e. when n = 2): all class-C surfaces are actually Kähler, while
all Moishezon surfaces are actually projective. However, in dimension n � 3,
there exist Moishezon manifolds that are not projective and class-C manifolds that
are not Kähler (see e.g. the examples of Hironaka and Moishezon described in
[21, Appendix B, Example 3.4.2.], from which the only known class of class-C
manifolds that are neither Kähler nor Moishezon can be obtained). A host of other
examples are provided by Lebrun’s twistor spaces in [33]: these are all Moishezon
(hence class-C) 3-dimensional compact complex manifolds that are not Kähler.

1.3. Topological properties

First recall the following standard piece of terminology.
Definition 1.6. A compact complex manifold X is said to satisfy the @@̄-lemma
if, for any d-closed pure-type form u on X , the following exactness properties are
equivalent:

u is d-exact() u is @-exact() u is @̄-exact() u is @@̄-exact

If the pure-type assumption on u is dropped, then u must be assumed to be both
d-closed and dc-closed (or, equivalently, both @-closed and @̄-closed) before the
above exactness properties are required to be equivalent (cf. [14]). For a pure-type
form u, the sole d-closedness is equivalent to u being both @-closed and @̄-closed.
However, if u is not of pure-type, du = 0 does not imply @u = 0 and @̄u = 0.

It is a standard fact in Hodge theory that any compact Kähler manifold satis-
fies the @@̄-lemma. Moreover, if µ :

eX ! X is a modification between compact
complex manifolds and if the @@̄-lemma holds for eX , then the @@̄-lemma also holds
for X (see e.g. [14, Theorem 5.22.]). In particular, class-C manifolds (hence also
Moishezon manifolds) satisfy the @@̄-lemma.

Now recall that on any compact complex manifold X , we always have
bk(X) 

X
p+q=k

h p,q(X), k = 0, 1, . . . , 2n = dimRX, (1.1)

where bk(X) := dimCHk
DR(X, C) is the k-th Betti number of X and h p,q(X) :=

dimCH p,q(X, C) is the Hodge number of type (p, q) of X . The Dolbeault
cohomology group associated with (p, q)-forms on X is denoted, as usual, by
H p,q(X, C). Recall that the Frölicher spectral sequence of X degenerates at E1
(a property that will be denoted by E1(X) = E1(X)) if and only if equality
is achieved in all of the above inequalities (1.1). Indeed, we always have
Hk
DR(X, C) =

L
p+q=k

E p,q
1

(X) for all k and E p,q
1 (X) = H p,q(X, C), as well as

dim E p,q
1

(X)  dim E p,q
1 (X), for all p, q. Frölicher degeneration at E1 means that

E p,q
1 (X) = E p,q

1
(X) for all p, q. Hence we have:
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Proposition 1.7 (Standard). On any compact complex manifold X (dimCX =: n),
the property E1(X) = E1(X) is equivalent to the existence of a Hodge decompo-
sition on X , possibly without Hodge symmetry, in the form:

Hk
DR(X, C) '

M
p+q=k

H p,q(X, C), k = 0, 1, . . . , 2n,

where the isomorphism need not be canonical.

On the other hand, recall that the @@̄-lemma implies both the Hodge decomposi-
tion and the Hodge symmetry. In particular, the Frölicher spectral sequence of any
compact complex manifold X that satisfies the @@̄-lemma degenerates at E1.

Indeed, it is easily verified that the @@̄-lemma implies that every Dolbeault co-
homology class of type (p, q) can be represented by a d-closed (p, q)-form. This
allows one to define, for every (p, q), a linear map H p,q(X, C) �! H p+q

DR (X, C)
by sending every Dolbeault class to the De Rham class of any of its d-closed rep-
resentatives. This De Rham class is independent of the choice of the d-closed rep-
resentative of the initial Dolbeault class. Furthermore, the @@̄-lemma also implies
that the map defined in this way for every (p, q) is injective. Consequently, when
the @@̄-lemma holds on X , there is, for every k, a canonical injectionM

p+q=k
H p,q(X, C) ,! Hk

DR(X, C)

which must be an isomorphism thanks to the reverse-way dimension inequality (1.1)
which always holds on X .

The @@̄-lemma is also known to imply the Hodge symmetry because:
– On any X , there are well-defined linear maps from the Bott-Chern cohomology
to the Dolbeault cohomology

H p,q
BC (X, C) �! H p,q(X, C), p, q = 0, 1, . . . , n = dimCX, (1.2)

mapping the Bott-Chern cohomology class [u]BC of any d-closed (p, q)-form u to
the Dolbeault cohomology class [u] of the same form u;
– On any X , the map H p,q

BC (X, C) 3 [u]BC 7! [ū]BC 2 Hq,p
BC (X, C) is well-

defined, C-anti-linear and bijective, so the Hodge symmetry analogue for the Bott-
Chern cohomology always holds in a trivial way;
– If the @@̄-lemma holds on X , the maps (1.2) are easily seen to be isomorphisms.
The conclusion is summed up in the following:

Proposition 1.8 (Standard). If the @@̄-lemma holds on a compact complex mani-
fold X (dimCX := n), then there are canonical isomorphisms:

Hk
DR(X, C) '

M
p+q=k

H p,q(X, C) and H p,q(X, C) ' Hq,p(X, C)

for all k = 0, 1, . . . , 2n and all p, q = 0, 1, . . . , n.



260 DAN POPOVICI

As usual, the situation is much simpler on surfaces than in higher dimension:
every compact complex surface X satisfies the property E1(X) = E1(X) (see
e.g. [8]), while the only compact complex surfaces satisfying the @@̄-lemma are
the Kähler ones. The latter statement can either be verified directly or seen using
sG surfaces: the @@̄-lemma always implies the sG property (see next subsection),
while for compact complex surfaces the sG property and the Kähler property are
equivalent (see Subsection 1.1).

1.4. Metric-topological interplay

The @@̄-lemma property and the balanced property are unrelated (see e.g. examples
below), but they are both implied by the class-C property and, in turn, they both
imply the sG property.

Let us recall the argument given in [41] proving that on every compact complex
manifold X which satisfies the @@̄-lemma, the notions of Gauduchon and sGmetrics
are equivalent, hence every such X is an sG manifold. If ! is a Gauduchon metric
on X , then the pure-type (n, n � 1)-form @!n�1 is @̄-closed by definition. Since
@!n�1 is also @-closed, it must be d-closed. Thus, if the @@̄-lemma holds on X , the
d-closed and @-exact pure-type form @!n�1 must also be @̄-exact. Hence ! is an
sG metric on X .

While the sG property of X and the degeneration at E1 of the spectral sequence
of X are unrelated (see Theorem 1.11 below), we have seen above that they are both
implied by the @@̄-lemma.

The relations among these properties for a compact complex manifold X are
summed up in the following diagram:

( )
X relhäK X balanced

=⇒ =⇒
=⇒ =⇒

X projective X class C X sG

=⇒
=⇒ =⇒

=⇒

X Moishezon
X satisfies
∂∂̄ − lemma

=⇒

E1(X) = E∞(X)

-

the

The above diagram simplifies dramatically, with many implications becoming
equivalences, when dimCX = 2:
X projective () X Moishezon =) X Kähler () X class-C () X balanced
() X satisfies the @@̄-lemma() X sG;
and we always have E1(X) = E1(X) for surfaces.
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1.5. Examples

One of the purposes of this work is to explain how the new notion of strongly
Gauduchon manifold fits into the context of the well-known earlier other notions
featuring in diagram (?) above. On one hand, we shall provide examples of compact
complex manifolds that are not sG (cf. Section 2) in order to stress that the sG
condition is not automatically satisfied:
Theorem 1.9. The Calabi-Eckmann manifolds [12], the Hopf manifolds [26] and
Tsuji’s manifolds [46] are not strongly Gauduchon.

On the other hand, we shall provide examples of compact complex manifolds
that drive home the peculiarity of the sG condition distinguishing it from the two
stronger notions that immediately precede it in diagram (?) (cf. also Theorem 3.15
in Section 3).
Theorem 1.10. There exist compact complex manifolds that are strongly Gaudu-
chon but are not balanced and on which the @@̄-lemma does not hold.

We also point out that the last two notions in diagram (?) are unrelated:
Theorem 1.11.
(a) There exist strongly Gauduchon compact complex manifolds whose Frölicher
spectral sequence does not degenerate at E1 (e.g. the Iwasawa manifold, which is
even balanced).
(b) There exist compact complex manifolds whose Frölicher spectral sequence de-
generates at E1 but which are not strongly Gauduchon (e.g. any compact non-
Kähler complex surface).

This observation seems to indicate the existence of two disjoint realms in dia-
gram (?): the metric notions (i.e. balanced and sG) branching off upwards from the
class-C notion; the topological notions (i.e. @@̄-lemma and E1 = E1) branching
off downwards. The overall idea underlying the proof of our main result in [41]
was based on switching from the latter to the former realm after observing that the
topological condition of non-jumping at t = 0 of the Hodge number h0,1(t) is suf-
ficient for our purposes but next to impossible to guarantee on an a priori basis,
we replaced it with the metric sG condition on the central fibre that we managed to
guarantee.

1.6. Holomorphic deformation behaviour

Another purpose of this work is to review known results and open questions about
the behaviour of these properties under holomorphic deformations, with a special
emphasis on the new notion of strongly Gauduchon (or sG) manifolds. We adopt
the Kodaira-Spencer terminology (cf. e.g. [28]):

A complex analytic (or holomorphic) family of compact complex manifods is a
proper holomorphic submersion ⇡ : X ! 1 from an arbitrary complex analytic
manifold X to some open ball 1 ⇢ Cm centered at the origin 0 2 Cm .
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Thus the fibres Xt := ⇡�1(t) for t 2 1, are all (smooth) compact complex
manifolds of the same dimension varying holomorphically with the parameter t 2

1. It is well-known that any such family is differentiably trivial, i.e. there exists a
C1 manifold X independent of t 2 1 such that the fibre Xt is C1-diffeomorphic
to X for all t 2 1. Only the complex structure Jt of Xt varies with t 2 1. Thus
the holomorphic family (Xt )t21 can be identified with a fixed C1 manifold X
endowed with a holomorphic family of complex structures (Jt )t21 (cf. [28]).

It will be sufficient to restrict our attention to the case where the base 1 is an
open disc centered at the origin in C, i.e. m = 1. We shall be concerned with
stability properties of the notions featuring in diagram (?) when they appear in
holomorphic families as above. Two points of view will be adopted:
Definition 1.12. (i) A given property (P) of a compact complex manifold is said to
be open under holomorphic deformations if for every holomorphic family of com-
pact complex manifolds (Xt )t21 and for every t0 2 1, the following implication
holds:

Xt0 has property (P) =) Xt has property (P) for all t 21 sufficiently close to t0.

(ii)A given property (P) of a compact complex manifold is said to be closed under
holomorphic deformations if for every holomorphic family of compact complex
manifolds (Xt )t21 and for every t0 2 1, the following implication holds:

Xt has property (P) for all t 2 1 \ {t0} =) Xt0 has property (P).

It is obvious that if a property (P) is both open and closed, then all the fibres of a
family satisfy (P) whenever one of them satisfies (P).

The interest in deformation stability questions was sparked by the following
celebrated result of Kodaira and Spencer:

Theorem 1.13 (Kodaira-Spencer [29]). The Kähler property of compact complex
manifolds is open under holomorphic deformations.

However, when Hironaka constructed an example in 1962, the following fact
came as a bit of a surprise.

Theorem 1.14 (Hironaka [23]). The Kähler property of compact complex mani-
folds of complex dimension � 3 is not closed under holomorphic deformations.

Our main result of [41] states that the degeneration of the projective property of
compact complex manifolds in the deformation limit is relatively mild, i.e. projec-
tive manifolds degenerate to Moishezon manifolds. In view of Hironoka’s example
that proved Theorem 1.14, the following result is optimal:

Theorem 1.15 (Theorem 1.1. in [41]). Let ⇡ : X ! 1 be a complex analytic
family of compact complex manifolds. If the fibre Xt is projective for every t 2 1?,
then X0 is Moishezon.
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Hironaka’s example does not cover the case of holomorphic families of com-
pact complex surfaces, which turned out to behave very differently from manifolds
of higher dimensions. Indeed, Kodaira’s classification of surfaces, Miyaoka’s re-
sult [36] asserting that an elliptic surface is Kähler if and only if its first Betti num-
ber is even, and Siu’s result [45] asserting that every K3 surface is Kähler showed
that the Kählerness of compact complex surfaces is a topological property:

Theorem 1.16 (Kodaira, Miyaoka, Siu). A compact complex surface X is Kähler
if and only if its first Betti number b1(X) is even.

Direct proofs of this theorem that do not invoke Kodaira’s classification of
compact complex surfaces were subsequently given by Buchdahl [9] and Lamari
[31], independently. The reader will find further details on the history of the result
in these references.

Since all the fibres Xt in a holomorphic family of compact complex manifolds
(Xt )t21 are differentiably diffeomorphic, they have the same Betti numbers. In
particular, we have the following:

Corollary 1.17. TheKähler property of compact complex surfaces is both open and
closed under holomorphic deformations. In particular, if in a holomorphic family
of compact complex surfaces some fibre is Kähler, then all the fibres are Kähler.

Let us also recall that the deformation behaviour of the class-C property is the
opposite of that of the Kähler property:

Theorem 1.18 (Campana [10], Lebrun-Poon [34]). The class C property of com-
pact complex manifolds is not open under holomorphic deformations.

The examples proving this statement use families of twistor spaces and will
be alluded to in section 4. Since it is known by a result of Campana [11] that the
Moishezon and class-C properties are equivalent for twistor spaces, the Moishezon
property is also seen not to be open under deformations. This latter fact is hardly
surprising since a property associated with integral classes is not naturally expected
to be deformation open. However, the following long-standing conjecture is still
unsettled:
Conjecture 1.19. The class C property of compact complex manifolds is closed
under holomorphic deformations.

Our main result in [42] amounts to a confirmation of this conjecture in the
integral-class case, since Moishezon manifolds can be seen as integral-class ver-
sions of class-C manifolds (thanks to Theorems 1.1 and 1.3):

Theorem 1.20 ([42, Theorem 1.1.]). TheMoishezon property ofcompact complex
manifolds is closed under holomorphic deformations.

We have shown in [42] (see also Theorem 3.1 below) that the sG property is
deformation open. We hope that the following also holds:
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Conjecture 1.21. 5 The sG property of compact complex manifolds is closed under
holomorphic deformations.

The proof is still elusive, but if this turns out to be the case, the sG property
would be the only known property of compact complex manifolds to be stable under
all known operations (i.e. both open and closed under deformations, as well as
stable under modifications as shown in cf. [43, Theorem 1.5 above]). In particular,
it would suffice for just one fibre Xt0 to be sG in order to guarantee that all the
fibres Xt are sG.We have proved the conclusion of Conjecture 1.21 under a stronger
assumption on the generic fibres and this has played a major part in our proofs of
the main results of [41] and [42]:

Proposition 1.22 ( [41, Proposition 4.1.]). Let ⇡ : X ! 1 be a complex analytic
family of compact complex manifolds. If the @@̄-lemma holds on Xt for every t 2

1?, then X0 is a strongly Gauduchon manifold.

When it comes to balanced manifolds, Alessandrini and Bassanelli showed
in [2] (see Theorem 3.3 below) that the balanced property of compact complex
manifolds is not deformation open. This difference in deformation behaviour be-
tween sG and balanced manifolds will be exploited in Section 3. However, we hope
that the balanced analogue of Conjecture 1.21 holds:
Conjecture 1.23. The balanced property of compact complex manifolds is closed
under holomorphic deformations.

If this turns out to be the case, Conjecture 1.23 might be used to tackle the
standard Conjecture 1.19. Indeed, by the Alessandrini-Bassanelli Theorem 1.4,
proving that the limit fibre X0 is balanced when Xt has been supposed to be class
C (hence also balanced) for all t 6= 0, is necessary to proving the stronger class C
property of X0.

As for the property of Frölicher degeneration at E1, we have the following:

Theorem 1.24. (a) [29, Kodaira-Spencer] For compact complex manifolds, the
property of the Frölicher spectral sequence degenerating at E1 is open under holo-
morphic deformations.

(b) (Eastwood-Singer [16, Theorem 5.4.]) For compact complex manifolds, the
property of the Frölicher spectral sequence degenerating at E1 is not closed under
holomorphic deformations.

Part (a) is by now a classical statement that follows immediately from the in-
equality (1.1) satisfied by every fibre Xt (in which equality is equivalent to E1(Xt )=
E1(Xt )), from the Betti numbers bk(Xt ) of the fibres being independent of t
(thanks to the C1 triviality of the family) and from the upper-semicontinuity of
every Hodge number h p,q(Xt ) with respect to t 2 1 (which is another classical

5 This conjecture was a posteriori suggested to the author by Jean-Pierre Demailly as a reinforce-
ment of our earlier Proposition 1.22.
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result of Kodaira and Spencer). An overview of the Eastwood-Singer proof of part
(b) will be given in Section 4.
Turning now to the @@̄-lemma, we have the following:
Theorem 1.25 ([49, C.-C. Wu]). 6 For compact complex manifolds, the @@̄-lemma
property is open under holomorphic deformations.

We give a brief account of Wu’s strategy of proof in Subsection4.3 of the last
section.

We are at a loss to know anything about the deformation limits of compact
complex manifolds satisfying the @@̄-lemma. It might well be the case that this
property is not deformation-closed although the current evidence is tenuous. We
will outline a possible approach to this question via twistor spaces in Subsection 4.4
of the last Section 4.

ACKNOWLEDGEMENTS. The author is extremely grateful to Professor Akira Fujiki
for kindly inviting him to Osaka University, for patiently explaining to him exciting
titbits about various notions in mathematics and for indicating a host of bibliograph-
ical references that have broadened his understanding of a wider picture. Thanks
are also due to Professor Hajime Tsuji over a similar invitation to Tokyo and for
kindly pointing out the reference [46].

2. Examples of non-sG compact complex manifolds

In this section we prove Theorem 1.9 by pointing out three well-known classes of
compact complex manifolds as not being sG: the Calabi-Eckmann manifolds, the
Hopf manifolds and Tsuji’s manifolds constructed in [46]. The underlying space of
all these manifolds is a product X := S2p+1 ⇥ S2q+1 of two real odd-dimensional
spheres, so they all share the property H2DR(X, R) = 0 for the second De Rham
cohomology group. This implies that any d-closed positive current T of type (1, 1)
on X , should it exist, must be d-exact since the associated De Rham cohomology 2-
class {T } 2 H2DR(X, R)must vanish. The existence of a non-trivial (1, 1)-current T
on X that is both positive and d-exact amounts to X being non-sG as the following
intrinsic characterisation of sG manifolds obtained in [41] shows:
Proposition 2.1 ([41, Proposition 3.3.]). Let X be a compact complex manifold.
Then X carries a strongly Gauduchon metric if and only if there exists no non-zero
current T of type (1, 1) such that T � 0 and T is d-exact on X .

We shall briefly review the three classes of compact complex manifolds men-
tioned above and notice that every such manifold X possesses complex hypersur-
faces Y ⇢ X . Thus, since H2DR(X, R) = 0, the current of integration on any of

6 The author is grateful to Professor Jixiang Fu for pointing out to him this work of Wu of which
he was unfortunately unaware when writing the first version of the present paper.
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these complex hypersurfaces Y is a current as in Proposition 2.1, ruling out the
possibility that any manifold X in one of these classes be sG.

(a) Calabi-Eckmann manifolds. For all p, q 2 N, Calabi and Eckmann [12]
constructed a complex structure on the Cartesian product S2p+1 ⇥ S2q+1 of odd-
dimensional spheres. The case p = q = 0 being equivalent to a closed Riemann
surface of genus 1 and periods 1, ⌧ , they assume p > 0. In the case q = 0,
the Calabi-Eckmann complex structure on S2p+1 ⇥ S1, although constructed by a
different method, coincides with the complex structure constructed earlier by Hopf
in [26] starting from the universal covering space of S2p+1 ⇥ S1 equipped with the
complex structure of Cp+1

\ {0}. The simply connected manifolds S2p+1 ⇥ S2q+1

(p, q > 0) are given in [12] complex structures making them into compact, simply
connected, non-Kähler complex manifolds Mp,q of complex dimension p + q + 1
enjoying, among other things, the following properties (for all p, q, including q =

0):

(i) There exists a complex analytic fibring � : Mp,q
! Pp

⇥Pq over the product
of complex projective spaces Pp and Pq whose fibres are tori of real dimension
2 (or algebraic curves of genus 1) (cf. [12, Theorem II]);

(ii) Every compact complex subvariety of Mp,q is the set of all points that are
mapped by � onto an algebraic subvariety of Pp

⇥ Pq ; it is therefore also
fibred by tori (cf. [12, Theorem IV]).

It is clear that the inverse image under � of any complex hypersurface of Pp
⇥ Pq

defines a complex hypersurface of the Calabi-Eckmann manifold Mp,q . Thus no
Calabi-Eckmann manifold Mp,q (p > 0) can be an sG manifold.7

(b) Hopf manifolds. As mentioned above (and proved in [12, Section 3]), the Hopf
manifolds S2p+1 ⇥ S1 (p > 0) endowed with the complex structure constructed in
[Hop48] can be seen in retrospect as special cases for q = 0 of Calabi-Eckmann
manifolds. Thus they contain complex hypersurfaces and are not sG manifolds by
the above arguments.

(c) Tsuji’s manifolds. Generalising the Calabi-Eckmann complex structures, Tsuji
constructed in [46] complex structures on S3 ⇥ S3 in the following way. Starting
from an arbitrary (↵1,↵2,↵3) 2 C3 satisfying

0 < |↵1|  |↵2| < 1 and 0 < |↵3| < 1,

the author of [46] considers the primary Hopf manifold

H(↵) := C3 \ {0}/hhi

7 This same argument was invoked in [35, page 263], to show that Calabi-Eckmann manifolds
are not balanced.
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of complex dimension 3, where the automorphism h : C3 ! C3 is defined by
h(z1, z2, z3) := (↵1 z1,↵2 z2,↵3 z3) for all (z1, z2, z3) 2 C3 and hhi ⇢ Aut(C3)
denotes the automorphism group generated by h. He then goes on to consider

C := {[z1, z2, z3] 2 H(↵) ; z1 = z2 = 0} ⇢ H(↵),

an elliptic curve contained in H(↵) and

S0 := {[z1, z2, z3] 2 H(↵) ; z3 = 0} ⇢ H(↵),

a primary Hopf surface which is a complex hypersurface of H(↵). For every

A =

✓
a b
c d

◆
2 SL(2, Z) and m = (m1,m2) 2 Z2,m1,m2 � 1,

he shows the existence of � = (�1,�2,�3) 2 C3 defining biholomorphisms

L?(�)
8±

' L?(↵),

where L?(↵) and L?(�) are obtained from L(↵) and L(�) by removing the re-
spective zero section, while L(↵) and L(�) are holomorphic line bundles over the
respective primary Hopf surfaces

S↵1,↵2,0 := C2 \ {0}/hg↵i and S�1,�2,0 := C2 \ {0}/hg�i

associated with automorphisms of C2

g↵(z1, z2) := (↵1 z1,↵2 z2) and g�(z1, z2) := (�1 z1,�2 z2)

defined by
L(↵) := C2 \ {0} ⇥ C/hh↵i
L(�) := C2 \ {0} ⇥ C/hh�i,

where the automorphisms h↵ and h� of C3 are defined by

h↵(z1, z2, z3) := (↵1 z1,↵2 z2,↵3 z3)
h�(z1, z2, z3) := (�1 z1,�2 z2,�3 z3).

Considering a compactification of L(�) as a P1-bundle P(�) ! S�1,�2,0, the infin-
ity section of P(�) is denoted S1, while U(S1) denotes a tubular neighbourhood
of S1 in P(�). The author defines compact complex manifolds

M±(↵, A,m)

by identifying
L?(�) ⇢ P(�) \ (zero section)

with
L?(↵) ' H(↵) \ (S0 [ C) ⇢ H(↵)
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using 8±. These compact complex manifolds are seen to arise as
M±(↵, A,m) = (H(↵) \ C) [U(S1), (2.1)

or equivalently, M±(↵, A,m) are obtained from H(↵) by a surgery which replaces
C with U(S1).
Theorem 2.2 ( [46, Theorem 1.13]). M±(↵, A,m) is diffeomorphic to S3 ⇥ S3 if

and only if A is of the form A =

✓
a b

±1 d

◆
.

Consequently, if A has the above shape, M±(↵, A,m) is diffeomorphic to an
S3-bundle over a lens space, hence M±(↵, A,m) has a complex structure.

With this outline of Tsuji’s construction understood, we see that the complex
hypersurface S0 ⇢ H(↵) satisfies S0 \ C = ;. Thus, in view of the description
(2.1) of M±(↵, A,m), we get a complex hypersurface

S0 ⇢ M±(↵, A,m)

whose existence, along with the property H2DR(M±(↵, A,m), R) = 0, shows that
Tsuji’s compact complex manifolds M±(↵, A,m) are not sG for any ↵ 2 C3, A 2

SL(2, Z),m = (m1,m2) 2 Z2 as above.

3. Examples of sG manifolds

As pointed out in the Introduction, all balanced manifolds and all compact complex
manifolds on which the @@̄-lemma holds provide examples of sG manifolds (cf. im-
plication diagram (?)). In this section we shall exhibit compact complex manifolds
that are sG but neither are they balanced nor do they satisfy the @@̄-lemma. These
examples are thus meant to emphasise the difference between sG manifolds and
stronger earlier types of possibly non-Kähler compact complex manifolds.

3.1. Deformation stability

The examples we shall exhibit will be provided by holomorphic families of compact
complex manifolds. The starting point is the following stability property of sG
manifolds under small deformations:
Theorem 3.1 ([42, Conclusion 2.4.]). The sG property of compact complex mani-
folds is open under holomorphic deformations.

We now recall the proof of this small deformation stability result. The main
argument is provided by the following characterisation of sG manifolds:
Lemma 3.2 ([41, Lemma 3.2]). Let X be a compact complex manifold of complex
dimension n. Then X carries an sG metric if and only if there exists a C1 (2n�2)-
form � on X satisfying the following three conditions:

(a) � = � (i.e. � is real);
(b) d� = 0;



DEFORMATION OPENNESS AND CLOSEDNESS 269

(c) �n�1,n�1 > 0 on X (i.e. the component of type (n�1, n�1) of� with respect
to the complex structure of X is positive-definite).

Note that conditions (a) and (b) are independent of the complex structure of X ,
while a change of complex structure changes the (n � 1, n � 1)-component of a
given (2n � 2)-form �. Thus condition (c) is the only one to be dependent on the
complex structure of X .

Proof of Lemma 3.2 (cf. [41]). The vanishing of the (2n � 1)-form d� (cf. (b))
amounts to the simultaneous vanishing of its components @�n�1,n�1

+ @̄�n,n�2

(of type (n, n � 1)) and @�n�2,n
+ @̄�n�1,n�1 (of type (n � 1, n)). These two

components are conjugate to each other if � satisfies (a). Thus, if (a) holds, (b) is
equivalent to @�n�1,n�1

+ @̄�n,n�2
= 0.

Suppose there exists an sG metric ! on X . This means that ! is a C1 positive-
definite (1, 1)-form on X such that the (n, n � 1)-form @!n�1 is @̄-exact. Then the
(n � 1, n � 1)-form �n�1,n�1

:= !n�1 is positive-definite on X and there exists a
C1 (n, n� 2)-form�n,n�2 on X satisfying @�n�1,n�1

= �@̄�n,n�2. Considering
the (n � 2, n)-form �n�2,n

:= �n,n�2, we see that the C1 (2n � 2)-form

� := �n,n�2
+�n�1,n�1

+�n�2,n

satisfies conditions (a), (b), (c).
Conversely, suppose there exists a C1 (2n � 2)-form � on X satisfying con-

ditions (a), (b), (c). According to an observation in linear algebra due to Michel-
sohn [35], every C1 positive-definite (n�1, n�1)-form admits a unique (n�1)st
root. Applying this to �n�1,n�1 > 0, we get a unique C1 positive-definite (1, 1)-
form ! > 0 on X such that

!n�1 = �n�1,n�1.

By condition (b) satisfied by�, we see that @!n�1 is @̄-exact, which means that the
Hermitian metric ! of X is strongly Gauduchon.

Proof of Theorem 3.1. If we are given a holomorphic family of compact complex
manifolds (Xt )t21 with dimCXt = n, we denote by X the C1 manifold underlying
the fibres Xt and by Jt the complex structure of Xt for all t 2 1. The family
(Xt )t21 is thus equivalent to the holomorphic family of complex structures (Jt )t21
on X . If we have a C1 (2n � 2)-form � on X , its components �n�1,n�1

t of type
(n�1, n�1)with respect to the complex structures Jt vary in aC1 way with t 2 1.
Consequently, if �n�1,n�1

0 > 0 then �n�1,n�1
t > 0 for t 2 1 sufficiently close to

0 2 1. Thus condition (c) of Lemma 3.2 is preserved under small deformations by
mere continuity. Since conditions (a) and (b) of Lemma 3.2 are independent of the
complex structure of X , it follows that any C1 (2n � 2)-form � on X satisfying
conditions (a), (b) and (c) of Lemma 3.2 with respect to J0 also satisfies these
conditions with respect to Jt for all t sufficiently near 0. The proof of Theorem 3.1
is complete.
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One fundamental difference between balanced and sG manifolds that we shall
exploit is that, unlike sG manifolds, balanced manifolds are not stable under small
deformations. This result was first observed by Alessandrini and Bassanelli [2] and
refutes Michelsohn’s claim of the contrary made in the introduction to [35]:
Theorem 3.3 (Alessandrini-Bassanelli [2]). The balanced property of compact
complex manifolds is not open under holomorphic deformations.

3.2. The Iwasawa manifold

Alessandrini and Bassanelli use the explicit description of the Kuranishi family of
the Iwasawa manifold (known to be balanced) calculated by Nakamura in [37] and
observe that one particular direction among the six dimensions of the base space
yields the example that proves Theorem 3.3. We now review a few basic facts
about compact complex parallelisable manifolds to the class of which the Iwasawa
manifold belongs, before surveying the arguments and results of [2,37] and [3] that
are necessary to the understanding of the observation of Alessandrini and Bassanelli
(cf. Proposition 3.13) which proves Theorem 3.3.

Let X be a compact complex manifold, dimCX = n. Recall the following:
Fact. If X is Kähler, then for every p = 0, 1, . . . , n and for every form u 2

C1(X,3p,0T ?X) such that @̄u = 0, we have du = 0. In other words, every
holomorphic p-form is d-closed on a compact Kähler manifold.

To see this, fix any Kähler metric ! on X and recall that the associated d-
Laplacian 1! := dd? + d?d, @-Laplacian 10

! := @@? + @?@ and @̄-Laplacian
100

! := @̄ @̄? + @̄?@̄ (where the formal adjoints d?, @?, @̄? are calculated with respect
to !) are related by

10

! = 100

! =

1
2
1!. (3.1)

This property is peculiar to Kähler metrics; it fails dramatically for arbitrary, non-
Kähler metrics. Now, given any smooth (p, 0)-form u on X , we clearly have @̄?u =

0 for trivial bidegree reasons. If u is holomorphic (i.e. @̄u = 0), then 100

!u = 0
because ker100

! = ker @̄ \ ker @̄?. (This last identity of kernels is valid for any
Hermitian metric ! on a compact manifold.) It then follows from (3.1) that1!u =

0. Since ker1! = ker d \ ker d?, we see that du = 0.
Let us now recall that this standard fact enables one to see that the Iwasawa

manifold is not Kähler. The Iwasawa manifold is, by definition, the compact com-
plex manifold of complex dimension 3 defined as the quotient

X := G/0

of the simply connected, connected complex Lie group (the Heisenberg group)

G :=

8<
:

0
@1 z1 z30 1 z2
0 0 1

1
A ; z1, z2, z3 2 C

9=
; ⇢ Gl3(C)
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by the discrete subgroup 0 ⇢ G of matrices with entries z1, z2, z3 2 Z[i]. The
complex manifold structure on G is defined by the complex structure of C3 via the
obvious diffeomorphism G ' C3, while the group structure on G is defined by the
multiplication of matrices

0
@1 z1 z30 1 z2
0 0 1

1
A

0
@1 w1 w3
0 1 w2
0 0 1

1
A =

0
@1 z1 + w1 z3 + w3
0 1 z2 + w2
0 0 1

1
A .

Since the holomorphic 1-form on G

G 3 M 7! M�1 dM

is invariant under the action of 0, it descends to a holomorphic 1-form on X . An
elementary calculation shows that

if M =

0
@1 z1 z30 1 z2
0 0 1

1
A then M�1 dM =

0
@0 dz1 dz3 � z1 dz2
0 0 dz2
0 0 0

1
A .

Thus we get holomorphic 1-forms on the Iwasawa manifold X induced by the fol-
lowing forms on C3:

'1 := dz1, '2 := dz2, '3 := dz3 � z1dz2. (3.2)

Denoting the induced forms by the same symbols '1,'2,'3, it is obvious that

d'1 = d'2 = 0 but d'3 = �'1 ^ '2 6= 0 on X. (3.3)

Since the holomorphic 1-form '3 on X is not d-closed, X is not Kähler.
Finally recall that the forms defined in (3.2), which are linearly independent

at every point of X , can be used to completely calculate the De Rham, Dolbeault
and Bott-Chern cohomologies of the Iwasawa manifold (see e.g. [44, page 4-6] for
details). For example, '1, '2, '1, '2 are all d-closed, but not d-exact, 1-forms on
X and any two of them are not d-cohomologous. For instance, if we had '1 =

d f = @ f + @̄ f for a smooth function f on X , then @̄ f = 0 since '1 is of type
(1, 0). Thus f would be holomorphic, hence constant, on the compact X , which is
impossible since '1 is not zero. It is readily seen that H1DR(X, C) is the C-vector
space generated as follows:

H1DR(X, C) = h{'1}, {'2}, {'1}, {'2}i, hence b1(X) = 4, (3.4)

where { } denotes a De Rham cohomology class. Using (3.3), we can easily see
that '1 ^ '3 and '2 ^ '3 (both of type (2, 0)) are d-closed but not d-exact on X ,
hence they and their conjugates (the latter being of type (0, 2)) induce non-zero
elements in H2DR(X, C), while '1 ^ '2 is d-exact on X hence it induces the zero
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class. On the other hand, the (1, 1)-forms '1 ^'1, '2 ^'2, '1 ^'2 and '2 ^'1 are
all d-closed but not d-exact. We easily get that H2DR(X, C) is the C-vector space
generated as follows:

H2DR(X, C) = h{'1 ^ '3}, {'2 ^ '3}i

�h{'1 ^ '1}, {'2 ^ '2}, {'1 ^ '2}, {'2 ^ '1}i (3.5)
�h{'1 ^ '3}, {'2 ^ '3}}i, hence b2(X) = 8.

We have recalled (3.4) and (3.5) since they will be used further on.
We now review the argument showing that the Iwasawa manifold is balanced.

Actually every compact complex parallelisable manifold will be seen to be bal-
anced. The point of view presented here is that of [3].
Observation 3.4 (cf. e.g. [37, Lemma 1.2.] or [3, Remark 3.1.]). Let X be any
compact complex (possibly non-Kähler) manifold, dimCX = n. Then for every
form u 2 C1(X,3n�1,0T ?X) such that @̄u = 0, we have du = 0. In other words,
every holomorphic (n � 1)-form is d-closed on any compact complex manifold of
dimension n.

Proof. Let u 2 C1(X,3n�1,0T ?X) such that @̄u = 0. Then du = @u is of type
(n, 0) and dū = du = @u is of type (0, n). We get

in
2
du ^ dū � 0 as an (n, n) � form on X (3.6)

and Z
X

in
2
du ^ dū = in

2
Z
X

d(u ^ dū) = 0 by Stokes. (3.7)

Thus (3.6) and (3.7) yield in2du ^ dū = 0 everywhere on X , hence du = 0 every-
where on X . This proves the contention. To justify (3.6), write in local holomorphic
coordinates z1, . . . , zn:

du= f dz1 ^ . . . dzn, hence in
2
du ^ dū=| f |2 idz1 ^ dz̄1 . . . idzn ^ dz̄n � 0.

It is clear that in2du ^ dū = 0 iff f = 0 iff du = 0.

Corollary 3.5. Let X be a compact complex manifold, dimCX = n. Suppose we
have a form u 2 C1(X,3n�1,0T ?X) such that @̄u = 0.

Then the (n � 1, n � 1)-form i (n�1)2u ^ ū satisfies

i (n�1)
2
u ^ ū � 0 and d

⇣
i (n�1)

2
u ^ ū

⌘
= 0 on X.

Proof. The first inequality is checked to hold for any (n � 1, 0)-form u by a trivial
calculation. If @̄u = 0, then du = 0 by Observation 3.4. Then we also have dū = 0
and the second part follows.
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Now recall the following standard notion introduced by Wang [Wan54]. A
compact complex manifold X is said to be complex parallelisable if its holomor-
phic tangent bundle T 1,0X is trivial. This condition is, of course, equivalent to
the sheaf of germs of holomorphic 1-forms �1X being trivial. If n = dimCX ,
the complex parallelisable condition is equivalent to the existence of n holomor-
phic vector fields ✓1, . . . , ✓n 2 H0(X, T 1,0X) that are linearly independent at ev-
ery point of X . It is again equivalent to the existence of n holomorphic 1-forms
'1, . . . ,'n 2 H0(X,�1X ) that are linearly independent at every point of X .

By a result of Wang [48], every compact complex parallelisablemanifold is the
compact quotient X = G/0 of a simply connected, connected complex Lie group
G by a discrete subgroup 0 ⇢ G. Conversely, it is obvious that any such quotient is
complex parallelisable. In particular, for any compact complex parallelisable man-
ifold X , H0(X, T 1,0X) ' g where g is the Lie algebra of G. A compact complex
parallelisable manifold X is said to be nilpotent (respectively solvable)8 if the cor-
responding complex Lie group G is nilpotent (respectively solvable). The Heisen-
berg group defining the Iwasawa manifold being nilpotent, the Iwasawa manifold is
a nilpotent compact complex parallelisable manifold.

Corollary 3.6 (cf. e.g. [3, Remark 3.1.]). Every compact complex parallelisable
manifold is balanced.

In particular, the Iwasawa manifold is balanced.

Proof. Let X be an arbitrary compact complex parallelisable manifold, dimCX =

n. Let '1, . . . ,'n 2 H0(X,�1X ) be n holomorphic 1-forms that are linearly inde-
pendent at every point of X . Consider the (n � 1, n � 1)-form on X :

� := i (n�1)
2

nX
i=1

'1^· · ·^b'i^· · ·^'n^'̄1^· · ·^
b̄'i^· · ·^'̄n =

nX
i=1

i (n�1)
2
ui^ūi ,

where ui := '1 ^ · · · ^ b'i ^ · · · ^ 'n 2 C1(X,3n�1,0T ?X) and b indicates a
missing factor. Since @̄'k = 0 for all k = 1, . . . , n, we see that @̄ui = 0 for all
i = 1, . . . , n. Then Observation 3.4 gives dui = 0 for all i = 1, . . . , n, while
Corollary 3.5 gives

� � 0 and d� = 0 on X.

Furthermore, since '1, . . . ,'n are linearly independent at every point of X , we must
even have � > 0. Thus � is a C1 (n � 1, n � 1)-form on X satisfying

� > 0 and d� = 0 on X.

Applying Michelsohn’s procedure [35] for extracting the (n� 1)st root of a smooth
positive-definite (n � 1, n � 1)-form, there exists a unique C1 positive-definite
(1, 1)-form ! > 0 on X such that !n�1 = �. Since d(!n�1) = d� = 0, we see
that ! is a balanced metric on X . The proof is complete.

8 Or to be a compact complex parallelisable nilmanifold (respectively solvmanifold).
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Note, however, that very few compact complex parallelisable manifolds are
Kähler, thanks to a result of Wang:
Remark 3.7 ([48, Corollary 2, page 776]). Let X = G/0 be a compact complex
parallelisable manifold. Then

X is Kähler () G is Abelian () X is a complex torus.

3.3. The Kuranishi family of the Iwasawa manifold (after Nakamura [37])

(a) Let X be a compact complex manifold, with dimCX = n. Since there are no
non-zero @̄-exact (1, 0)-forms on X (for obvious bidegree reasons), we have

H1,0(X, C) = {u 2 C1(X,31,0T ?X); @̄u = 0},

i.e. H1,0(X, C) consists of holomorphic 1-forms on X . Denoting h1,0(X) :=

dimCH1,0(X, C) we have the following trivial:
Observation 3.8. If X is complex parallelisabilisable, then h1,0(X) = n.

Proof. By the complex parallelisability hypothesis on X , the rank-n analytic sheaf
�1X is trivial, hence it is generated by n holomorphic 1-forms '1, ...,'n2H

1,0(X,C)
that are linearly independent at every point of X . In particular, {'1, ...,'n} is a basis
of H1,0(X, C) ' H0(X,�1X ).

Suppose now that X is compact complex parallelisable. Let ✓1, . . . , ✓n 2

H0(X, T 1,0X) be n holomorphic vector fields that are linearly independent at ev-
ery point of X , chosen to be dual to the holomorphic (1, 0)-forms '1, . . . ,'n 2

H1,0(X, C) considered in the above proof. For every smooth function g : X ! C,
we have

@g =

nX
�=1

(✓�g)'�, @̄g =

nX
�=1

(✓̄�g)'�, (3.8)

i.e. the familiar formalism induced by local holomorphic coordinates finds a global
analogue on a compact complex parallelisable manifold in a formalism where ✓�
replaces @/@z� and '� replaces dz�. Thus any (0, 1)-form ' on X has a unique
decomposition

' =

nX
�=1

f�'�

with f1, . . . , fn : X ! C functions on X . Thus there is an implicit L2 inner
product on C1(X,30,1T ?X) defined as follows (no Hermitian metric is needed on

X): for any ' =

nP
�=1

f�'�, =

nP
�=1

g�'� 2 C1(X,30,1T ?X), set

hh', ii :=

Z
X

✓ nX
�=1

f� ḡ�
◆
in
2
'1 ^ · · · ^ 'n ^ '1 ^ · · · ^ 'n. (3.9)
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It is clear that dV := in2'1 ^ · · · ^ 'n ^ '1 ^ · · · ^ 'n > 0 is a global volume
form on X and that the above L2 inner product is independent of the choices made.
We can define the formal adjoint @̄? of @̄ with respect to this L2 inner product in
the usual way: for any smooth (0, 1)-form ', define @̄?' to be the unique smooth
function on X satisfying

hh@̄?', gii = hh', @̄gii

for any smooth function g on X . A trivial calculation using Stokes’ theorem gives

@̄?' = �

nX
�=1

✓� f� (3.10)

for any smooth (0, 1)-form ' =

nP
�=1

f�'� on X . Thus we see that

@̄?'⌫ = 0, ⌫ = 1, . . . , n, (3.11)

because '⌫ =

nP
�=1

�⌫�'� and ✓��⌫� = 0 (since the �⌫� are constants).

Now denote by r 2{0, 1, ..., n} the number of d-closed forms among '1, ...,'n .
After a possible reordering, we can suppose that '1, ...,'r are d-closed and
'r+1, ...,'n are not d-closed. Then we have

@'1 = · · · = @'r = 0 or equivalently @̄'1 = · · · = @̄'r = 0. (3.12)

Thus the @̄-closed (0, 1)-forms '1, . . . ,'r define Dolbeault (0, 1)-cohomology
classes in H0,1(X, C).

We can define the @̄-Laplacian on forms of X in the usual way:

100

:= @̄ @̄? + @̄?@̄.

The corresponding harmonic space of (0, 1)-formsH0,1
100

(X, C) := ker100
= ker @̄\

ker @̄? satisfies the Hodge isomorphism H0,1
100

(X, C) ' H0,1(X, C). Notice that
(3.11) and (3.12) give

100'⌫ = 0, ⌫ = 1, . . . , r, (3.13)

i.e. the forms '1, . . . ,'r are 100-harmonic. On the other hand, 'r+1, . . . ,'n are
not100-harmonic. Thus the number r of linearly independent d-closed holomorphic
1-forms of X (independent of the choice of '1, . . . ,'n) satisfies:

r  h0,1(X). (3.14)

Suppose now that the compact complex parallelisable X is nilpotent.
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Fact 3.9 (see e.g. [37] or [13, page 5405-5406]). If X is a compact complex par-
allelisable nilmanifold, then the holomorphic 1-forms '1, . . . ,'n that form a basis
of H1,0(X, C) can be chosen such that

d'µ =

X
1�<⌫n

cµ�⌫ '� ^ '⌫, 1  µ  n, (3.15)

with constant coefficients cµ�⌫ 2 C satisfying

cµ�⌫ = 0 whenever µ  � or µ  ⌫.

Taking this standard fact (which in [37] follows from the existence of a Chevalley
decomposition of the nilpotent Lie algebra g) for granted, we now spell out the de-
tails of the proof of the following result of Kodaira along the lines of [37, Theorem
3, page 100]:

Theorem 3.10 (Kodaira). If X is a compact complex parallelisable nilmanifold
then h0,1(X) = r . Moreover, the100-harmonic (0, 1)-forms '1, . . . ,'r form a basis
of the harmonic spaceH0,1

100
(X, C). Equivalently, the Dolbeault (0, 1)-cohomology

classes {'1}, . . . , {'r } form a basis of H0,1(X, C).

Proof. The only thing that needs proving is that the linearly independent forms
'1, . . . ,'r 2 H0,1

100
(X, C) generate H0,1

100
(X, C). Pick an arbitrary C1 (0, 1)-form

' on X and write

' =

nX
�=1

f� '�

with C1 functions f1, . . . , fn on X . Using formula (3.8) for @̄ and the obvious
identities @̄ '� = d '�, � = 1, . . . , n, due to '� being holomorphic, we get:

@̄' =

nX
�, ⌫=1

(✓̄⌫ f�)'⌫ ^ '� +

nX
µ=1

fµ d 'µ

=

nX
�, ⌫=1

(✓̄⌫ f�)'⌫ ^ '� +

nX
µ=1

fµ
X

1⌫<�n
cµ⌫� '⌫ ^ '� (3.16)

=

X
1⌫<�n

✓
✓̄⌫ f� � ✓̄� f⌫ +

nX
µ=1

cµ⌫� fµ
◆
'⌫ ^ '�,

where the second line above follows from the conjugate of (3.15).
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Now ' is 100-harmonic if and only if

(i) @̄' = 0 () ✓̄⌫ f� � ✓̄� f⌫ +

nP
µ=1

cµ⌫� fµ = 0 for 1  ⌫ < �  n (cf. (3.16));

and
(ii) @̄?' = 0 ()

nP
�=1

✓� f� = 0 (cf. (3.10)).

Suppose that ' is 100-harmonic. Then the above (i) reads:

✓̄� f⌫ =

nX
µ=1

cµ⌫� fµ + ✓̄⌫ f�, 1  ⌫ < �  n.

Summing over � = 1, . . . , n and using formula (3.8) for @̄ , we get

@̄ f⌫ =

nX
�=1

(✓̄� f⌫)'� =

nX
�, µ=1

cµ⌫� fµ'� +

nX
�=1

(✓̄⌫ f�)'�, ⌫ = 1, . . . , n,

with the understanding that cµ⌫� = 0 if ⌫ � �. Now 100 f⌫ = @̄?@̄ f⌫ since f⌫ is a
function. Taking @̄? on either side above and using formula (3.10) for @̄?, we get

100 f⌫ = �

nX
�, µ=1

✓� (cµ⌫� fµ) �

nX
�=1

✓� (✓̄⌫ f�)

(3.17)

= �

nX
�, µ=1

cµ⌫� ✓� fµ, for all ⌫ = 1, . . . , n,

because ✓� (cµ⌫� fµ) = cµ⌫� ✓� fµ due to cµ⌫� being constant, while
nP
�=1

✓� f� = 0

due to ' being 100-harmonic (cf. (ii) or (3.10)).
Taking now ⌫ = n in (3.18), we get 100 fn = 0 since cµn� = 0 for all µ, � by

Fact 3.9 and the obvious inequality µ  ⌫ = n. Thus the compactness of X and the
ellipticity of 100 yield

fn is constant on X if 100' = 0. (3.18)

Taking now ⌫ = n � 1 in (3.18) and using the fact that ✓� fn = 0 for all � (since fn
is constant by (3.18)), we get

100 fn�1 = �

nX
�=1

✓ n�1X
µ=1

cµn�1� ✓� fµ
◆

= 0 on X,

since cµn�1� = 0 for all µ = 1, . . . , n � 1 and � = 1, . . . , n by Fact 3.9 and the
obvious inequality µ  ⌫ = n � 1. Hence we get

fn�1 is constant on X if 100' = 0. (3.19)
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We can now continue by decreasing induction on ⌫. Taking ⌫ = n�2 in (3.18) and
using the fact that ✓� fn = ✓� fn�1 = 0 for all � (since fn is constant by (3.18) and
fn�1 is constant by (3.19)), we get

100 fn�2 = �

nX
�=1

✓ n�2X
µ=1

cµn�2� ✓� fµ
◆

= 0 on X,

since cµn�2� = 0 for all µ = 1, . . . , n � 2 and � = 1, . . . , n by Fact 3.9 and the
obvious inequality µ  ⌫ = n � 2. Hence we get

fn�2 is constant on X if 100' = 0. (3.20)

Running a decreasing induction on ⌫, we get

f⌫ := C⌫ is constant on X for all ⌫ = 1, . . . , n if 100' = 0. (3.21)

We conclude that whenever 100' = 0 we have

' =

nX
⌫=1

C⌫ '⌫ with C⌫ constant for all ⌫ = 1, . . . , n.

On the other hand, since 100' = 0, we must have @̄' = 0 which amounts to
nP
⌫=1

C⌫ @̄'⌫ = 0. However, we know that @̄'⌫ = 0 for all ⌫ 2 {1, . . . , r} (cf.

(3.12)), hence
nP

⌫=r+1
C⌫ @̄'⌫ = 0. Now the forms

@̄'⌫ = d'⌫ =

X
�,µ

c⌫�µ '� ^ 'µ, ⌫ = 1, . . . , n,

are linearly independent because '1, . . . ,'n are linearly independent at every point
of X . Hence C⌫ = 0 for all ⌫ = r + 1, . . . , n. We get

' =

rX
⌫=1

C⌫ '⌫ with C⌫ constant for all ⌫ = 1, . . . , r.

Since ' has been chosen arbitrary in H0,1
100

(X, C), we have proved that the linearly
independent forms '1, . . . ,'r 2 H0,1

100
(X, C) generate H0,1

100
(X, C). The proof of

Kodaira’s theorem 3.10 is complete.

When applying Observation 3.8 and Kodaira’s Theorem 3.10 to the Iwasawa
manifold (a compact complex parallelisable nilmanifold of dimension n = 3 having
r = 2), we get the following classical fact:
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Observation 3.11. For the Iwasawa manifold, we have

h1,0 = 3 and h0,1 = 2.

Since, on the other hand, the first Betti number is b1 = 4 (see e.g. (3.4)), we
see that b1 < h1,0 + h0,1. Thus the Frölicher spectral sequence of the Iwasawa
manifold does not degenerate at E19. In particular, the @@̄-lemma does not hold on
the Iwasawa manifold.

On the other hand, we have seen in Corollary 3.6 that the Iwasawa manifold is
balanced, hence sG. Combined with Observation 3.11, this fact proves part (a) of
Theorem 1.11. The same statement will be proved again in section 4 (see comments
after Gauduchon’s Theorem 4.9) by a twistor space featuring as the central fibre in
the Eastwood-Singer family [16].

(b) Now suppose that X is the Iwasawa manifold. In particular, X is a compact
complex parallelisable nilmanifold of complex dimension 3. Let '1 = dz1, '2 =

dz2, '3 = dz3 � z1dz2 be the holomrophic 1-forms on X defined in (3.2); they
are linearly independent at every point of X . Since '1 and '2 are d-closed while
'3 is not d-closed, r = 2 for the Iwasawa manifold. By Kodaira’s Theorem 3.10,
the C-vector space H0,1(X, C) has complex dimension 2 and is spanned by the
Dolbeault cohomology classes {'1} and {'2}. Let ✓1, ✓2, ✓3 2 H0(X,�1X ) be the
holomorphic vector fields dual to '1,'2,'3. They are given by

✓1 =

@

@z1
, ✓2 =

@

@z2
+ z1

@

@z3
, ✓3 =

@

@z3
(3.22)

and satisfy the relations

[✓1, ✓2] = �[✓2, ✓1] = ✓3, [✓1, ✓3] = [✓2, ✓3] = 0, (3.23)

i.e. [✓i , ✓ j ] = 0 whenever {i, j} 6= {1, 2}.
Since the holomorphic tangent bundle T 1,0X is trivial and spanned by ✓1,✓2,✓3,

the cohomology group H0,1(X, T 1,0X) of T 1,0X-valued (0, 1)-forms on X is a C-
vector space of dimension 6 spanned by the classes of ✓i '�:

H0,1(X, T 1,0X) =

M
1i3,1�2

C{✓i '�}, dimCH0,1(X, T 1,0X) = 6. (3.24)

This will be seen to imply that the Kuranishi family of the Iwasawa manifold is a
6 -parameter family.

(c) We now briefly recall a few basic facts in the deformation theory of compact
complex manifolds in order to fix the notation. The standard reference is Kodaira’s

9 Historically, the Iwasawa manifold was the first example exhibited of a compact complex man-
ifold with this property. It is even known to have E1 6= E2 = E1 in its Frölicher spectral
sequence.
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book [28]. Given a compact complex manifold X of complex dimension n, let @̄ be
the Cauchy-Riemann operator representing the complex structure J = J0 of X and
let z1, . . . , zn be local holomorphic coordinates about an arbitrary point on X . A
deformation Xt of the complex structure of X is represented by a vector (0, 1)-form

 (t) 2 C1(X,30,1T ?X ⌦ T 1,0X)

in the following sense: the Cauchy-Riemann operator @̄t representing the (almost)
complex structure Jt of Xt is defined by

@̄t := @̄ �  (t).

Equivalently, a locally defined C1 function f on X satisfies the equivalence:

f is Jt�holomorphic if and only if (@̄ �  (t)) f = 0.

The integrability condition reads:

Jt is integrable if and only if @̄ (t) =

1
2
[ (t), (t)] (3.25)

if and only if the system of n PDE’s @̄t f = 0 has
n linearly independent C1 solutions in
a neighbourhood of any point of X. (3.26)

Recall furthermore that the Kodaira-Spencer map of a holomorphic family ⇡ :

X �! B ⇢ Cm at t = 0 (having supposed that 0 2 B) is

⇢0 : T0B �! H0,1(X, T 1,0X),
@

@t
7! �

@ (t)
@t |t=0

:=

@Xt
@t |t=0

.

Thus @Xt@t |t=0 denotes the infinitesimal deformation of X at t = 0. Recall now the
fundamental Kuranishi Theorem of Existence:

Theorem 3.12 (Kuranishi [30]). Given any compact complex manifold X , there
exists a complete holomorphic family

⇡ : X �! B ⇢ 1" := {t 2 Cm
; |t | < "}

such that X0 = X , for some small " > 0 and some analytic subset B of the ball1",
where m := dimCH0,1(X, T 1,0X).

Completemeans that the Kodaira-Spencer map ⇢0 : T0B �! H0,1(X, T 1,0X)
is surjective. This family is called the Kuranishi family of X . The base B of the
family may have singularities and arises as

B = {t 2 1" ; f1(t) = · · · = fl(t) = 0},
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where l := dimCH0,2(X, T 1,0X) and f1, . . . , fl : 1" ! C are holomorphic func-
tions. In the special case of a manifold X satisfying H0,2(X, T 1,0X) = 0, the base
B is smooth and Kuranishi’s theorem reduces to the earlier Kodaira-Nirenberg-
Spencer theorem of existence.

The construction of the Kuranishi family of a given X amounts to the construc-
tion of a family of vector (0, 1)-forms (t) 2 C1(X,30,1T ?X⌦T 1,0X) satisfying
the integrability condition (3.25) for t = (t1, . . . , tm) in the largest possible subset
of some 1" ⇢ Cm . Given an arbitrary basis {�1, . . . ,�m} of H0,1(X, T 1,0X), set

 1(t) := t1�1 + . . . tm�m 2 H0,1(X, T 1,0X). (3.27)

Identifying H0,1(X, T 1,0X) with H0,1
100

(X, T 1,0X) by the Hodge isomorphism, we
see that 100 1(t) = 0 (i.e.  1(t) is 100-harmonic).

Since  1 need not satisfy the integrability condition (3.25), we search for a
power series

 (t) =  1(t) +

+1X
⌫=2

 ⌫(t), (3.28)

where  ⌫(t) =

P
⌫1+···+⌫m=⌫

 ⌫1...⌫m t
⌫1
1 . . . t⌫mm is a homogeneous polynomial of de-

gree ⌫ in t1, . . . , tm whose coefficients  ⌫1...⌫m 2 C1(X,30,1T ?X ⌦ T 1,0X) will
be determined such that the following two conditions are fulfilled:
• The power series defining  (t) converges and its sum is C1 on X ⇥1" for some
small " > 0;

Kuranishi’s proof achieves convergence in a Hölder norm | |k,↵ for all k � 2
and all t 2 1" provided that " > 0 is small enough.

• The integrability condition @̄ (t) =
1
2 [ (t), (t)] holds (cf. (3.25)).

To fulfill the integrability condition (3.25), it suffices to ensure that the vector
(0, 2)-form [ (t), (t)] 2 C1(X,30,2T ?X ⌦ T 1,0X) is @̄-exact and that  (t) �

 1(t) is the minimal L2-norm solution of equation @̄u =
1
2 [ (t), (t)] (recall that

@̄ 1(t) = 0). Minimality of the solution’s L2-norm translates to

 (t) =  1(t) +

1
2
@̄?1

00
�1

[ (t), (t)],

a formula that is easily seen to be equivalent to

 ⌫(t) =

1
2

⌫�1X
µ=1

@̄?1
00
�1

[ µ(t), ⌫�µ(t)] for all ⌫ � 2. (3.29)

This means that  ⌫(t) is the minimal L2-norm solution of the equation @̄u = v⌫ ,
where v⌫ is the projection of 1/2

P
1µ⌫�1[ µ(t), ⌫�µ(t)] onto Im @̄ . In partic-

ular,  ⌫(t) 2 Im @̄? for all ⌫ � 2.
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Identities (3.29) allow one to construct  ⌫(t), ⌫ � 2, inductively from  1(t)
defined in (3.27). Convergence in Hölder norm | |k,,↵ of the resulting series (3.28)
follows from a priori estimates on the Laplacian 100, while the integrability condi-
tion (3.25) for the sum  (t) of this series is seen to be equivalent to

H [ (t), (t)] = 0, (3.30)

where H : C1(X,30,2T ?X ⌦ T 1,0X) ! H0,2
100

(X, T 1,0X) is the harmonic projec-
tor. Condition (3.30) requires [ (t), (t)] to have no harmonic component which,
for a @̄-closed form, is equivalent to @̄-exactness (precisely what is needed in view
of (3.25)). If {�1, . . . , �l} is any orthonormal basis ofH0,2

100
(X, T 1,0X), then

H [ (t), (t)] =

lX
k=1

h[ (t), (t)], �ki �k, t 2 1",

and we see that the vanishing condition (3.30) is equivalent to f1(t) = · · · =

fl(t) = 0, where fk(t) := h[ (t), (t)], �ki for all k = 1, . . . , l and t 2 1".
Thus the integrability condition (3.25) is satisfied for t 2 B, where

B := {t 2 1" ; f1(t) = · · · = fl(t) = 0} ⇢ 1" (3.31)

is analytic.

(d) Nakamura’s calculation of the Kuranishi family of the Iwasawa manifold
Given a compact complex manifold X of dimension n, for any vector (0, 1)-

forms  , ⌧ 2 C1(X,30,1T ?X ⌦ T 1,0X) written locally as

 =

nX
↵=1

 ↵
@

@z↵
, ⌧ =

nX
�=1

⌧�
@

@z�
,  ↵, ⌧� 2 C1(X, T 1,0X),

Kuranishi defines in general

[ , ⌧ ] :=

nX
↵,�=1

✓
 ↵ ^

@⌧�

@z↵
+ ⌧↵ ^

@ �

@z↵

◆
@

@z�
.

Now fix X = C3/0 to be the Iwasawa manifold. Then n = 3 and we get:

[✓i'�, ✓k'⌫] = [✓i , ✓k]'� ^ '⌫, i, k, �, ⌫ = 1, 2, 3, (3.32)

with [✓i , ✓k] given in (3.23).
We have seen in (3.24) that the classes {✓i '�}, with 1  i  3, 1  �  2,

form a basis of H0,1(X, T 1,0X). Consequently the Kuranishi family of X can be
described by 6 parameters t = (ti�)1i3, 1�2. By (3.13), the T 1,0X-valued
(0, 1)-forms ✓i '� are 100-harmonic when 1  �  2. In order to construct the
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vector (0, 1)-forms  (t) 2 C1(X,30,1T ?X ⌦ T 1,0X) that describe the Kuranishi
family of X = C3/0, formula (3.27) prescribes to start off by setting

 1(t) :=

3X
i=1

2X
�=1

ti�✓i'�, t = (ti�)1i3, 1�2, (3.33)

for which we see that
1
2
[ 1(t), 1(t)] =

1
2

X
i, j=1,2,3

X
�,µ=1,2

ti�t jµ[✓i , ✓ j ]'� ^ 'µ.

By (3.23), this translates to

1
2
[ 1(t), 1(t)] =

1
2
(t11t22✓3 '1 ^ '2 + t12t21✓3 '2 ^ '1

� t21t12✓3 '1 ^ '2 � t22t11✓3 '2 ^ '1).

Since '1 ^ '2 = �'2 ^ '1, we get

1
2
[ 1(t), 1(t)] = (t11t22 � t12t21) ✓3 '1 ^ '2. (3.34)

On the other hand, for the choice (3.33) we see that

@̄ 1(t) = d 1(t) =

3X
i=1

2X
�=1

ti� ✓i d'� = 0 (3.35)

since d'1 = d'2 = 0. Now setting

 2(t) := �(t11t22 � t12t21) ✓3'3, (3.36)

and using (3.3) and (3.34), we find

@̄ 2(t) = d 2(t) = (t11t22 � t12t21) ✓3 (�d '3)
(3.37)

= (t11t22 � t12t21) ✓3 '1 ^ '2 =

1
2

[ 1(t), 1(t)].

In particular, [ 1(t), 1(t)] is seen to be @̄-exact here (although it need not be so in
the case of an arbitrary manifold, see comments after (3.29)), but the solution  2(t)
of equation (3.37) need not be of minimal L2-norm (unlike the  2(t) defined in the
case of a general manifold by formula (3.29) for ⌫ = 2). In other words, in the
special case of the Iwasawa manifold, a solution  2(t) of (3.37) is easily observed
and we are spared the application of the general formulae (3.29). This readily yields
the desired  (t) by setting

 (t) :=  1(t) +  2(t) =

3X
i=1

2X
�=1

ti� ✓i '� � (t11t22 � t12t21) ✓3 '3, (3.38)
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for which we find

1
2
[ (t), (t)] =

2X
j,,k=1

1
2
[ j (t), k(t)] =

1
2
[ 1(t), 1(t)]. (3.39)

Indeed, [ j (t), k(t)] = 0 for all (i, j) 6= (1, 1) since these terms involve only
brackets of the shape [✓3, ✓i ] = 0 and [✓i , ✓3] = 0 which vanish by (3.23).

On the other hand, combining (3.35) and (3.37), we get

@̄ (t) = @̄ 1(t) + @̄ 2(t) = @̄ 2(t) =

1
2
[ 1(t), 1(t)]. (3.40)

Then (3.39) and (3.40) yield

@̄ (t) =

1
2
[ (t), (t)], (3.41)

showing that  (t) defined in (3.38) satisfies the integrability condition (3.25).
By Kuranishi’s Theorem 3.12, this T 1,0X-valued (0, 1)-form  (t) defines a

locally complete complex analytic family of deformations Xt of X depending on 6
effective parameters t = (ti�)1i3,1�2 such that the complex structure of each
fibre Xt is defined by @̄t := @̄� (t) and X0 = X = C3/0 is the Iwasawamanifold.
It is noteworthy that in the special case of the Iwasawa manifold, the power series
(3.28) can be built with only two terms ( 1(t) and  2(t)) and the above simple
calculations show  (t) =  1(t)+ 2(t) to satisfy the integrability condition (3.25)
for all t = (ti�)1i3, 1�2 2 1" ⇢ C6 if " > 0 is small. With the notation of
(3.31), this means that B = 1".

Nakamura goes on to calculate holomorphic coordinates ⇣1 = ⇣1(t), ⇣2 =

⇣2(t), ⇣3 = ⇣3(t) on Xt such that ⇣⌫(0) = z⌫ for ⌫ = 1, 2, 3 starting from arbi-
trary holomorphic coordinates z1, z2, z3 given beforehand on the Iwasawa manifold
X0 = X = C3/0. Here is the way he proceeds.

We are looking for C1 functions ⇣⌫(t), ⌫ = 1, 2, 3, on X satisfying the holo-
morphicity condition

@̄t⇣⌫(t) = 0 () @̄⇣⌫(t) �  (t)⇣⌫(t) = 0, ⌫ = 1, 2, 3. (3.42)

Given the definition (3.38) of  (t) and the formulae (3.22) for ✓1, ✓2, ✓3, condition
(3.42) reads for ⌫ = 1, 2, 3:

@̄⇣⌫ �

2X
�=1

t1�
@⇣⌫

@z1
dz̄� �

2X
�=1

t2�
✓
@⇣⌫

@z2
+ z1

@⇣⌫

@z3

◆
dz̄�

(3.43)

�

2X
�=1

t3�
@⇣⌫

@z3
dz̄� + (t11t22 � t12t21)

@⇣⌫

@z3
(dz̄3 � z̄1dz̄2) = 0.
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For ⌫=1, we arrange to have @⇣1@z1 = 1 (in order to get ⇣1(t) = z1+(terms depending
only on z̄�)) and @⇣1

@z2 =
@⇣1
@z3 = 0. With these choices, condition (3.43) for ⌫ = 1

becomes:

@̄⇣1 �

2X
�=1

t1�@̄ z̄� = 0 () @̄⇣1(t) = @̄

✓ 2X
�=1

t1� z̄�
◆

.

Thus we can take

⇣1(t) = z1 +

2X
�=1

t1� z̄�. (3.44)

For ⌫ = 2, we similarly require @⇣2
@z2 = 1 and @⇣2

@z1 =
@⇣2
@z3 = 0 and condition (3.43)

for ⌫ = 2 similarly yields:

⇣2(t) = z2 +

2X
�=1

t2� z̄�. (3.45)

For ⌫ = 3, we require @⇣3@z3 = 1, @⇣3@z2 = 0 and @⇣3
@z1 =

2P
�=1

t2� z̄�. With these choices,

(3.43) for ⌫ = 3 reads

@̄⇣3 �

✓ 2X
�=1

t1�dz̄�
◆✓ 2X

�=1
t2� z̄�

◆
� z1

2X
�=1

t2�dz̄�

�

2X
�=1

t3�dz̄� + (t11t22 � t12t21)(dz̄3 � z̄1dz̄2) = 0.

We thus get

⇣3(t) = z3 +

2X
�=1

(t3� + t2�z1)z̄� + A(t, z̄) � D(t)z̄3, (3.46)

where we have denoted A(t, z̄) :=
1
2 (t11t21 z̄

2
1+2t11t22 z̄1 z̄2+ t12t22 z̄22) and D(t) :=

(t11t22 � t12t21). We clearly have

d⇣1(t) ^ d⇣2(t) ^ d⇣3(t) = C(t) dz1 ^ dz2 ^ dz3

for a constant C(t) depending in a C1 way on t such that C(0) = 1. Hence
⇣1(t), ⇣2(t), ⇣3(t) define holomorphic coordinates on Xt for all t = (ti�)1i3,1�2
such that

P
i=1,2,3;�=1,2

|ti�| < " if " > 0 is small enough.



286 DAN POPOVICI

3.4. The example of Alessandrini and Bassanelli proving Theorem 3.3

In the 6-parameter Kuranishi family (Xt )t2B , with t = (ti�)1i3,1�2, of the
Iwasawa manifold X0 = X = C3/0, Alessandrini and Bassanelli [2] single out the
direction corresponding to parameters t such that

t12 6= 0, ti j = 0 for all (i, j) 6= (1, 2). (3.47)

With this choice of t , they have

A(t, z̄) = 0 and D(t) = 0.

Thus, setting t := t12, the holomorphic coordinates of Xt calculated in (3.44),
(3.45) and (3.46) reduce to

⇣1(t) = z1 + t z̄2, ⇣2(t) = z2, ⇣3(t) = z3. (3.48)

Implicitly z1 = ⇣1(t) � t⇣ 2(t), which yields

'3(t) : = dz3 � z1dz2 = d⇣3(t) + (t⇣ 2(t) � ⇣1(t)) d⇣2(t),
(3.49)

'2(t) : = dz2 = d⇣2(t), e'1(t) := dz1 = d⇣1(t) � td⇣ 2(t).

Set
'1(t) := d⇣1(t). (3.50)

The above 1-forms '1(t),'2(t),'3(t) are all of Jt -type (1, 0) since ⇣1(t), ⇣2(t),
⇣3(t) are holomorphic coordinates for the complex structure Jt of Xt .

Proposition 3.13 (Alessandrini-Bassanelli [2, page 1062]). Let (Xt )t be the Ku-
ranishi family of the Iwasawa manifold X = X0, t = (ti�)1i3,1�2. Then, for
parameters such that ti� = 0 for all (i, �) 6= (1, 2), Xt is not balanced for any
t := t12 6= 0 satisfying |t12| < " if " > 0 is small enough.

Proof. For the forms defined in (3.49) and (3.50), an immediate calculation shows

d'3(t) = (t d ⇣̄2(t) � d⇣1(t)) ^ d⇣2(t) = �t '2(t) ^ '2(t) � '1(t) ^ '2(t). (3.51)

Thus the 2-form d'3(t) has two components: �t '2(t) ^ '2(t) is of Jt -type (1, 1),
while�'1(t)^'2(t) is of Jt -type (2, 0). Recall that dimCXt = 3 for all t . Suppose
that Xt were balanced for some t = t12 6= 0 satisfying |t12| < " with " > 0 small.
Then there would exist a balanced metric !t > 0 on Xt . Thus �t := !2t would be
a C1 (2, 2)-form on Xt satisfying

�t > 0, d�t = 0. (3.52)

In this case we would have:

0 =

Z
Xt

d�t ^ i t̄'3(t) = �

Z
Xt

�t ^ i t̄ d'3(t) = |t |2
Z
Xt

�t ^ i'2(t)^'2(t). (3.53)
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Indeed, the first identity above follows from d�t = 0 (cf. (3.52)), the second one
follows from Stokes’s theorem, while the third one follows from formula (3.51) for
d'3(t) and the fact that the (2, 0)-component �'1(t) ^ '2(t) is annihilated when
wedged with the (2, 2)-form �t .

Now �t > 0 and i'2(t) ^ '2(t) � 0, hence �t ^ i'2(t) ^ '2(t) � 0 at every
point of Xt . It follows that the right-hand term in (3.53) is non-negative. However,
since it must vanish by the first identity in (3.53), the (3, 3)-form�t^i'2(t)^'2(t)
must vanish identically on Xt , hence so must the (1, 1)-form i'2(t)^'2(t). This can
only happen if '2(t) vanishes identically on Xt , which is impossible since '2(t) =

d⇣2(t) and ⇣2(t) is a holomorphic coordinate on Xt if " is small enough. This
provides the desired contradiction.

Therefore Xt cannot be balanced for any t = t12 6= 0 if ti� = 0 for all (i, �) 6=

(1, 2) and " > 0 is small. The proof is complete.

It is by means of this Proposition 3.13 that Alessandrini and Bassanelli proved
Theorem 3.3: they observed that the fibres along one particular direction among
the 6 directions available in the base space of the Kuranishi family of the Iwasawa
manifold prove the non-openness of the balanced property under holomorphic de-
formations.

We now make the following:

Observation 3.14. (Implicit in [37]) In the Kuranishi family of the Iwasawa mani-
fold, the Frölicher spectral sequence does not degenerate at E1 (hence the @@̄-lemma
does not hold) on any fibre Xt corresponding to parameters such that ti� = 0 for all
(i, �) 6= (1, 2) and t := t12 satisfies |t12| < " with " > 0 small enough.

Proof. We have seen in (3.5) that the second Betti number of the Iwasawa manifold
is b2 = 8. By the C1-triviality of the family, all the fibres have the same Betti
numbers. On the other hand, Nakamura concludes from his calculations reproduced
above (via standard reasoning like that exemplified above between formulae (3.3)
and (3.5)) that the Hodge numbers of weight 2 of any fibre Xt corresponding to
parameters such that ti� = 0 for all (i, �) 6= (1, 2) and t := t12 6= 0 are (see
[37, table on page 96] for the case (ii) when D(t) = 0 and (t11, t12, t21, t22) 6=

(0, 0, 0, 0)])
h2,0(t) = h0,2(t) = 2, h1,1(t) = 5.

Thus we see that for any such fibre Xt with t := t12 6= 0, we have:

b2 = 8 < h2,0(t) + h1,1(t) + h0,2(t) = 9.

Hence the conclusion follows. Notice that for fibres as above with t := t12 6= 0,
Nakamura’s table gives b1 = 4 = 2+ 2 = h1,0(t) + h0,1(t), while we have seen in
Observation 3.11 that for X0 we have b1 = 4 < 3+ 2 = h1,0(0) + h0,1(0).
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3.5. The desired examples of sG manifolds

We can now conclude this section by exhibiting the desired examples of sG man-
ifolds showing the difference between, on one hand, the sG property and, on the
other hand, the (combined) balanced and @@̄-lemma properties. It suffices to bring
together Theorem 3.1, Theorem 3.3 and Observation 3.14:

Theorem 3.15. Let (Xt )t be the Kuranishi family of the Iwasawa manifold X= X0,
t = (ti�)1i3,1�2. Then, for parameters such that ti� = 0 for all (i, �) 6= (1, 2),
Xt is a strongly Gauduchon manifold that is not balanced and whose Frölicher
spectral sequence does not degenerate at E1 (hence the @@̄-lemma does not hold)
for any t = t12 6= 0 satisfying |t12| < " if " > 0 is small enough.

Proof. Since the Iwasawa manifold is balanced (cf. Corollary 3.6), it is also an sG
manifold. Since the sG property is open under holomorphic deformations (cf. The-
orem 3.1), all sufficiently nearby fibres Xt in the Kuranishi family of the Iwasawa
manifold X0 are again sG manifolds. However, by the observation of Alessandrini
and Bassanelli (cf. Proposition 3.13), the fibres Xt corresponding to parameters for
which ti� = 0 for all (i, �) 6= (1, 2) are not balanced if t := t12 6= 0 is suffi-
ciently close to 0. By Observation 3.14, the Frölicher spectral sequence does not
degenerate at E1, hence the @@̄-lemma does not hold, on any of these fibres.

4. The Eastwood-Singer construction

In Subsection 4.2 of this section we give an outline of the Eastwood-Singer proof
[16] of part (b) of Theorem 1.24 asserting the non-closedness of the Frölicher de-
generation at E1 under holomorphic deformations. All the fibres of the holomor-
phic family they construct in their example are twistor spaces (hence in particular
compact complex 3-folds). We also outline in 4.3 the proof given in [49, Theorem
1.25]. We conclude by raising a few natural questions in 4.4 about other deforma-
tional stability properties of manifolds satisfying the @@̄-lemma to which twistor
spaces might hold the key.

4.1. Background on twistor spaces

We briefly recall the barest essentials of Penrose’s twistor space theory [40] for
which the standard mathematical reference is [1]. Given a compact oriented Rie-
mannian manifold (M, g) of real dimension 4, for every point x 2 M one defines
Lx to be the set of all complex structures Jx on the tangent space TxM such that
Jx is orthogonal with respect to gx and Jx induces the negative (i.e. opposite to
the given one) orientation on TxM . Orthogonality with respect to gx for a complex
structure Jx : TxM ! TxM means, as usual, that

gx (Jxu, Jxv) = gx (u, v), for all u, v 2 TxM,
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i.e. Jx is required to be a gx -isometry of TxM . When x varies in M , the union Z
(which depends only on the conformal class [g] of Riemannian metrics on M but
not on the actual representative g) of all twistor lines Lx has a natural structure as
a C1 manifold of real dimension 6 and a natural almost complex structure. The
almost complex structure is integrable if and only if the conformal structure [g]
of M is self-dual. Recall that for an arbitrary-dimensional Riemannian manifold
(M, g), the curvature tensor R decomposes as

R = W + ⇢,

where W is the Weyl tensor depending only on the conformal class [g]. Peculiar to
the case when M has real dimension 4 is a further decomposition of the Weyl tensor
as

W = W+ + W�,

where W+ is the self-dual component and W� is the anti-self-dual component. Re-
versing the orientation of M permutes W+ and W�. The conformal structure [g]
of M is said to be self-dual if the associated Weyl tensor reduces to its self-dual
component W+ (i.e. W� = 0).

One thus gets the Penrose correspondence between self-dual compact con-
nected oriented C1 real 4-manifolds M and the associated twistor spaces Z (which
are compact complex 3-manifolds). The natural projection ⌫ : Z ! M can be
identified with the unit sphere subbundle of the rank-three real vector bundle of
anti-self-dual 2-forms on M . Every twistor line ⌫�1(x) = Lx is isomorphic to the
complex projective line P1.

For every r , denote by 3r
:= C1

r (M, C) the space of C1 complex-valued
r-forms on M . Recall that the Hodge star operator of the Riemannian metric g of
M acting on 2-forms

? : 32 ! 32

satisfies ?2 = 1. Hence it induces a direct-sum splitting

32 = 32
+

�32
�1

into its ±1-eigenspaces. The 2-forms u 2 32
+
(i.e. ? u = u) are termed self-dual,

while the 2-forms u 2 32
�
(i.e. ? u = �u) are termed anti-self-dual. If the Weyl

curvature tensor W is viewed as a bundle-valued 2-form, its components satisfy
?W+ = W+ and respectively ?W� = �W�. One gets a corresponding splitting of
the differential operator d acting on 1-forms of M:

31
d=d++d�

������! 32 = 32
+

�32
�

that induces cohomology groups H2
+
(M, C) and H2

�
(M, C).
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4.2. The results of Eastwood and Singer

For a fixed compact connected oriented C1 manifold M of real dimension 4 en-
dowed with a self-dual Riemannian metric g, Eastwood and Singer establish the
following general facts about the associated twistor space Z ; the details may be
found in [16, Section 2, 3, 4.]:
Fact 1. Given that the sheaves �1, �2 and �3 of germs of holomorphic 1, 2 and
respectively 3-forms on Z are explicitly given, on every twistor line L = Lx = P1,
by the formulae

�1
|L ' O(�2) �O(�1) �O(�1),

�2
|L ' O(�3) �O(�3) �O(�2),

�3
|L ' O(�4),

we see that the restricted bundles �1
|L ,�

2
|L ,�

3
|L have no non-trivial sections over

L . Since Z is fibred by projectives lines L = Lx = P1, it follows that the vector
bundles �1,�2,�3 have no non-trivial global holomorphic sections over Z , hence

H1,0(Z , C) = 0, H2,0(Z , C) = 0, H3,0(Z , C) = 0. (4.1)

By Serre’s duality, one also gets

H2,3(Z , C) = 0, H1,3(Z , C) = 0, H0,3(Z , C) = 0. (4.2)

Since Z and M are compact, one infers that

H0,0(Z , C) = H0(M, C) = C and H3,3(Z , C) = H4(M, C) = C, (4.3)

where the latter set of identities follows from the former by Serre duality on Z and
Poincaré duality on M .

Fact 2. The Penrose transform relating analytic cohomology on the twistor space
Z to solutions of differential equations on the base manifold M is used to see the
following:
• For all q = 0, 1, 2, 3, H0,q(Z , C) is canonically isomorphic to the qth cohomol-
ogy of the complex

30 �! 31
d�

�! 32
�

�! 0;

• For all q = 0, 1, 2, 3, H3,q(Z , C) is canonically isomorphic to the qth cohomol-
ogy of the complex

0 �! 32
�

d
�! 33 �! 34.

It follows as a corollary that

H0,1(Z , C) = H1(M, C), H0,2(Z , C) = H2
�
(M, C)

H3,1(Z , C) = H2
�
(M, C), H3,2(Z , C) = H3(M, C).

(4.4)
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Fact 3. The Penrose transform of the vector bundles associated with �1 and �2
yields a commutative diagram with exact rows (cf. [16, Proposition 3.3]) from
which it follows that:

• H1,1(Z , C) can be identified with the set of pairs ( f, ⇢) 2 30 � 32
+
satisfying

the equation
Dd f � d⇢ = 0 on M, (4.5)

where the operator D : 31 �! 33 is defined by

!b 7!

✓
r
a
r
b
+ 2Rab �

2
3
R gab

◆
!b, (4.6)

while r denotes the Levi-Civita connection, Rab denotes the Ricci curvature and R
denotes the scalar curvature of (M, g);

• For E1,12 featuring in the Frölicher spectral sequence of Z at E2 level, we always
have the canonical isomorphism of C-vector spaces:

E1,12 :=ker
✓
d1=@ : H1,1(Z , C)!H2,1(Z , C)

◆
'H0(M, C) � H2

+
(M, C), (4.7)

hence dimCE1,12 = 1+ b+(M), where b+(M):= dimCH2+(M, C).
(Clearly dimCH0(M, C) = 1 by compactness and connectedness of M .)

Fact 4. By [24], there exists a (1, 1)-form h on Z such that dh = 0 and h|L
generates H2(L , C) for every twistor line L = Lx = ⌫�1(x) ⇢ Z . Using the
Leray-Hirsch theorem, we get isomorphisms

Hr�2(M, C) � Hr (M, C) ' Hr (Z , C), 0  r  6,

induced by 3r�2
�3r

3 (↵,�) 7! h ^ ⌫?↵ + ⌫?� 2 C1

r (Z , C).

The conclusion of these four facts is that for any twistor space Z we always
have E2(Z) = E1(Z) (i.e. the Frölicher spectral sequence degenerates at the
latest at E2 level), while the degeneration at E1 level depends exclusively on one
arrow. Recall that for any complex manifold, the E1 level of the Frölicher spectral
sequence is given by the Dolbeault cohomology groups (i.e. E p,q

1 = H p,q for all
p, q) and the d1 arrows are induced by @:

E p,q
1

d1=@
���! E p+1,q

1 for all p, q.

When Z is a twistor space, it follows from the above facts (1) � (4) that all arrows
d1 = @ : E p,0

1 ! E p+1,0
1 are zero when q = 0 (hence also when q = 3 by duality),



292 DAN POPOVICI

while the part of the E1 level of the Frölicher spectral sequence corresponding to
q = 1 reads:

0 ! H0,1(Z , C)
d1=0
���! H1,1(Z , C)

d1
! H2,1(Z , C)

d1=0
���! H3,1(Z , C) ! 0

k k

H1(M, C) H2
�
(M, C) .

Since the part corresponding to q = 2 at E1 level is dual to that for q = 1, we see
that E1(Z) = E1(Z) if and only if the middle arrow above, i.e.

d1 = @ : H1,1(Z , C) ! H2,1(Z , C), (4.8)

vanishes. It is clear that the kernel of the arrow (4.8) equals E1,12 (cf. (4.7)) since
the arrow preceding it in the last complex vanishes. We get the following:
Conclusion 4.1 (cf. [16, page 653-662]). For any twistor space ⌫ : Z ! M ,
H0(M, C) � H2

+
(M, C) injects canonically into H1,1(Z , C).

Moreover, the Frölicher spectral sequence of Z degenerates at E1 if and only
if H1,1(Z , C) is isomorphic to H0(M, C) � H2

+
(M, C) iff h1,1(Z) = 1+ b+(M).

To construct the actual examples that prove part (b) of Theorem 1.24, East-
wood and Singer [16, Section 5] go on to choose M to be a compact complex
surface endowed with a Kähler metric ! of zero scalar curvature. By [32], any such
M that has been given the conjugate orientation is self-dual, hence M possesses a
twistor space Z .

On the other hand, for any compact Kähler manifold (X,!), the Lichnerowicz
operator (cf. e.g. [7]) is defined on functions by

L : C1(X, C) ! C1(X, C), L( f ) := 12 f + hhddc f,Ric!ii, (4.9)

where1 is the Laplacian and Ric! is the Ricci form of !. A result of Lichnerowicz
(cf. e.g. [7, Proposition 2.151]]) guarantees that when the scalar curvature of (X,!)
is constant, there is an isomorphism

u(X)/u0(X) ' (kerL)/C,

where u(X) denotes the complex Lie algebra of holomorphic vector fields on X ,
while u0(X) denotes the Abelian Lie algebra of parallel such vector fields.

It turns out that when (X,!) = (M,!) is a compact Kähler complex surface
of zero scalar curvature, the operator D of (4.6) (defining equation (4.5) on M
which characterises the Dolbeault cohomology group H1,1(Z , C)) relates to the
Lichnerowicz operator as follows (cf. [16, page 662]):

dDd = L,

after identification of 4-forms with functions on M via the volume form.
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This leads to the following consequence of the main theorem of [16]:

Theorem 4.2 ([16, Theorem 5.3.]). Let (M,!) be a compact Kähler complex
surface of zero scalar curvature. If Z is the twistor space of M , then

H1,1(Z , C) = H0(M, C) � H2
+
(M, C) �

{holomorphic vector fields on M}

{parallel vector fields on M}

.

Since we always have E1,12 ' H0(M, C) � H2
+
(M, C) = C � H2

+
(M, C) (cf.

(4.7)), we see by Conclusion 4.1 that the Frölicher spectral sequence of Z degener-
ates at E1 if and only if all holomorphic vector fields on M are parallel.

The simplest case to which Eastwood and Singer apply their results is that of
M := 6g ⇥ P1, where 6g is any compact complex curve of genus g � 2 endowed
with the Poincaré metric !P (which is of constant curvature �1) and the complex
projective line P1 is endowed with the metric !P1 := 2!FS (which is of constant
curvature+1 if !FS denotes the Fubini-Study metric). The metric ! induced on the
product compact complex surface M = 6g ⇥ P1 is a Kähler metric of zero scalar
curvature.

Proposition 4.3 ([16, page 663]). If M = 6g ⇥ P1 has been given the Kähler
metric of zero scalar curvature ! = !P � !P1 , the Frölicher spectral sequence of
the twistor space Z of M does not degenerate at E1.

Proof. We have seen in (4.5) that

E1,11 = H1,1(Z , C) ' {( f, ⇢) 2 30 �32
+

; Dd f = d⇢ on M}. (4.10)

On M = 6g ⇥ P1, we have

Dd f = (ra
r
b
+ 2Rab)rb f

because the scalar curvature R ⌘ 0. If a C1 function f : 6g ⇥ P1 ! C depends
only on the P1 variable, we get:

Dd f = (ri
r
j
+ 2!i j )r j f = r

i (r j
r j f ) + 2!i jr j f

= r
i (�1+ 2) f,

where r j is the Chern connection and 1 = �r
j
r j is the Laplacian on P1, while

! = (!i j )i, j locally on P1 and the identity Ri j = !i j holds because Ric! = ! on
P1. Using now the well-known fact that 2 is an eigenvalue of the Laplacian on P1
with eigenspace E1(2) of complex dimension 3, we get

{C1 functions f : M ! C ; Dd f = 0} � {Constants} � E1(2) = C � E1(2),

hence dimC{C1 functions f : M ! C ; Dd f = 0} � 4. Thus (4.10) yields

h1,1(Z) = dimCH1,1(Z , C) � 4+ dimC{⇢ 2 32
+

; d⇢ = 0} = 4+ b+(M).

As dimCE1,12 = 1+ b+(M) by (4.7), the claim follows from Conclusion 4.1.
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It is obvious that M = 6g ⇥ P1 is the ruled surface P(E0) associated with the
trivial rank-two vector bundle E0 := 6g ⇥ C2 ! 6g. This suggests a natural way
of constructing a holomorphic family of compact complex surfaces (Mt )t21 such
that M0 = M = 6g ⇥ P1 for which we can hope to ensure that E1(Zt ) = E1(Zt )
for all t 2 1? in the associated family of twistor spaces (Zt )t21: take Mt := P(Et )
when we have found a suitable family of rank-two holomorphic vector bundles
(Et )t21 over 6g with the trivial bundle E0 := 6g ⇥ C2 corresponding to t = 0.
The authors make clear the meaning of suitable in the following form:

Proposition 4.4 ([16, page 663-664]). If E ! 6g is a stable rank-two holomor-
phic vector bundle with trivial determinant over a compact complex curve of genus
g � 2, then the corresponding ruled surface P(E) satisfies:

(i) P(E) admits a Kähler metric of zero scalar curvature;
(ii) P(E) has no non-zero holomorphic vector fields.

Proof. Eastwood and Singer deduce the above statements from classical results of
Narasimhan-Seshadri [39] and Narasimhan-Ramanan [38].

By [39], any stable rank-two holomorphic vector bundle on 6g (with g � 2)
arises from a representation of ⇡1(6g) into SU2, hence the corresponding ruled
surface is a quotient P(E) = (P1 ⇥ H)/⇡1 where H is the upper half-plane and ⇡1
acts by isometries of the natural metric on P1⇥ H . This natural metric, obtained as
the Riemannian product of the metric of curvatute +1 on P1 with that of curvature
�1 on H , is Kähler and of zero scalar curvature, hence (i) follows.

It follows from [39] that any vector bundle as in the statement satisfies
H0(6g, S2E?) = 0. Indeed, for any rank-two vector bundle E there is an iso-
morphism of bundles (see e.g. the proof in [25, Proposition 3.3.]:

End0E ' S2E? ⌦32E = S2E? ⌦ det E (4.11)

induced by the map T which associates with every A 2 End E the quadratic map
E 3 v 7! Av ^ v 2 32E . The kernel of T consists of the scalar endomor-
phisms (identified with C), while End0E denotes the traceless endomorphisms. It
obviously satisfies End E = End0E � C. On the other hand, if E is stable then
E is simple (cf. [39, Corollary to Proposition 4.3.]), i.e. dimCH0(6g,End E) =

1, which means that the only endomorphisms of E are the scalar ones. Hence
H0(6g,End0 E) = 0 when E is stable. Thus, if E is stable and det E is trivial, we
see by (4.11) that H0(6g, S2E?) = 0.

Now, an easy argument explained in [16] shows that H0(P(E), T 1,0P(E)) '

H0(6g, S2E?) for any rank-two holomorphic vector bundle E ! 6g when g � 2.
This is because any holomorphic vector field ⇠ 2 H0(P(E), T 1,0P(E)) must be
vertical. Indeed, the normal bundle of any fibre of P(E) ! 6g being trivial,
the component of ⇠ normal to any such fibre is constant along the fibre, hence it
projects to a holomorphic vector field on 6g. Now any holomorphic vector field on
6g must vanish because, since g � 2, 6g embeds into a g-dimensional complex
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torus Cg/3 whose flat metric induces a metric of negative curvature on T 1,06g
viewed as a holomorphic line subbundle of the tangent bundle of Cg/3. Thus
any ⇠ 2 H0(P(E), T 1,0P(E)) is indeed vertical, hence the restriction of ⇠ to any
fibre of P(E) ! 6g defines a holomorphic vector field on the fibre P(Et ) ' P1.
Meanwhile, the holomorphic vector fields of P1 are the holomorphic sections of
�KP1 = OP1(2). Thus (ii) follows.

We now get an immediate corollary of Theorem 4.2 and Proposition 4.4. In
view of Theorem 4.2, a weaker version of conclusion (ii) of Proposition 4.4 (with
non-parallel in place of non-zero) would have sufficed.

Corollary 4.5 ([16, page 664]). Let E ! 6g be a stable rank-two holomorphic
vector bundle with trivial determinant over a compact complex curve of genus
g � 2. Let Z be the twistor space associated with the ruled surface P(E). Then the
Frölicher spectral sequence of Z degenerates at E1.

Putting together Proposition 4.3 and Corollary 4.5, we see that it suffices to
show that the trivial rank-two vector bundle E0 = 6g ⇥ C2 ! 6g deforms to
stable rank-two holomorphic vector bundles Et ! 6g with trivial determinant,
t 2 1?. As explained before the statement of Proposition 4.4, associated with the
family of bundles (Et )t21 will be the family of ruled surfaces (Mt := P(Et ))t21
whose corresponding family of twistor spaces (Zt )t21 will provide the example
proving the Eastwood-Singer part (b) of Theorem 1.24: E1(Zt ) = E1(Zt ) for all
t 6= 0 by Corollary 4.5, but E1(Z0) 6= E1(Z0) by Proposition 4.3.

Theorem 4.6 ([16, page 664-665]).Given any compact complex curve 6g of genus
g � 2, the trivial rank-two vector bundle E0 = 6g ⇥ C2 ! 6g deforms to stable
rank-two holomorphic vector bundles with trivial determinant on 6g.

Proof. We give an outline of the proof found in [16] which, as mentioned there,
is a modification of an argument from [38]. Fix an arbitrary point x 2 6g and
denote by Lx the holomorphic line bundle on 6g defined by x (viewed as a divisor
on the curve 6g). If L�1

x denotes the line bundle dual to Lx , consider the rank-two
holomorphic vector bundles E ! 6g that are non-trivial extensions of Lx by L�1

x .
Equivalently, one considers short exact sequences of vector bundles on 6g:

0 ! L�1
x ! E ! Lx ! 0 (4.12)

that do not split holomorphically. There is a one-to-one correspondence between
the equivalence classes of such non-trivial extensions and the non-zero classes
{�?} 2 H0,1(6g,Hom(Lx , L�1

x )) ' H1(6g,O(L�2
x )), where �? denotes the sec-

ond fundamental form of extension (4.12). Any such E has trivial determinant
(since det E = L�1

x ⌦ Lx ) and degree zero since Lx has degree+1, L�1
x has degree

�1 and the degree is additive in exact sequences. By [38, Lemma 5.1], any such
E can have no holomorphic line subbundles of positive degree, hence any such E
is at least semi-stable. To find stable vector bundles E arising as extensions (4.12),
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it remains to rule out the existence of holomorphic line subbundles of degree zero
in E .

Suppose that a rank-two holomorphic vector bundle E given by an extension
(4.12) contains a degree-zero holomorphic line subbundle L ⇢ E . By the proof of
[38, Lemma 5.2], any such L must be of the form L = Lx⌦L�1

y for some point y 2

6g and [38, Lemma 5.2] asserts that the class {�?} of extension (4.12) maps to the
zero class in the cohomology group H0,1(6g,Hom(L , L�1

x )) = H1(6g,O(L�2
x ⌦

Ly)) under the map

H1(6g,O(L�2
x )) ! H1(6g,O(L�2

x ⌦ Ly)). (4.13)

Since (4.13) is a surjective linear mapping of complex vector spaces of dimensions
g+1 and respectively g thanks to Riemann-Roch, the kernel of (4.13) is a complex
line ly in the (g+1)-dimensional vector space H1(6g,O(L�2

x )). We conclude that
L = Lx ⌦ L�1

y is a holomorphic subbundle of E iff

{�?} 2 ker
✓
H1(6g,O(L�2

x )) ! H1(6g,O(L�2
x ⌦ Ly))

◆
\ {0} = ly \ {0}.

By [38, Lemma 3.3], proportional extension classes {�?} and �{�?}, with � 2 C?,
give rise to isomorphic bundles E and E�. Now the punctured line ly \ {0} defines a
point in the complex projective space PH1(6g,O(L�2

x )) ' Pg and, when y varies
in 6g, we get an analytic mapping

6g 3 y 7! ly \ {0} 2 PH1(6g,O(L�2
x )) ' Pg. (4.14)

The conclusion is that an extension class {�?} 2 H1(6g,O(L�2
x )) \ {0} defines a

holomorphic rank-two vector bundle E ! 6g with trivial determinant that contains
no degree-zero holomorphic line subbundles L ⇢ E (hence E is stable) if and
only if the image of {�?} in the projective space PH1(6g,O(L�2

x )) ' Pg under
the natural projection H1(6g,O(L�2

x )) \ {0} �! PH1(6g,O(L�2
x )) lies in the

complement of the curve which is the image of the map (4.14). Since g � 2, the
complement of a complex curve in the g-dimensional complex projective space Pg
provides plenty of room for choice of deformations E = Et , t 6= 0, of the trivial
rank-two vector bundle E0. Of course, E0 corresponds to the trivial extension (4.12)
or, equivalently, to the zero class {�?} 2 H1(6g,O(L�2

x )).

As explained before the statement of Theorem 4.6, this result provides the final
argument to the proof of the Eastwood-Singer part (b) of Theorem 1.24. We have
chosen to reproduce the approach of [16] in some detail because it throws up new
stimulating questions of which we now mention just a few.

4.3. Wu’s deformation openness of the @@̄-lemma property

In this subsection we outline the main ideas in the proof given by C.-C. Wu in [49]
to the fact that the @@̄-lemma for compact complex manifolds is a deformation-open
property (cf. Theorem 1.25).
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The proof in [49] makes crucial use of a characterisation of the @@̄-lemma that
was given in [14] (cf. Proposition 4.8 below). It is cast in terms of the relations
between the Bott-Chern and the Aeppli cohomology groups of a compact complex
manifold X (dimCX = n) whose definitions (for all p, q = 0, . . . , n) we now
recall:

H p,q
BC (X, C) :=

ker @ \ ker @̄
Im (@@̄)

and H p,q
A (X, C) :=

ker(@@̄)
Im @ + Im @̄

. (4.15)

(The operators @ , @̄ and @@̄ featuring in the numerators act on (p, q)-forms, while
those in the denominators arrive in the subspace of (p, q)-forms.)

In a similar way, one also standardly defines

H p,q
@ (X, C) :=

ker @
Im @

and H p,q
@̄

(X, C) :=

ker @̄
Im @̄

. (4.16)

(Of course, H p,q
@̄

(X, C) is the Dolbeault cohomology group of type (p, q) that was
earlier denoted by H p,q(X, C).)

For all p, q = 0, . . . , n, there is always a natural (canonical) linear map

H p,q
BC (X, C) �! H p,q

A (X, C)
[u]BC 7�! [u]A

mapping the Bott-Chern class of any d-closed (p, q)-form u to the Aeppli class of
u (which makes sense since @@̄u = 0 whenever @u = 0 and @̄u = 0). This map is
always well defined but it need not be either injective or surjective on an arbitrary
X . However, it is an isomorphism when X satisfies the @@̄-lemma. The converse
also holds as Proposition 4.8 will implicitly show.

Before stating the @@̄-lemma characterisation of [14], we introduce some ad
hoc terminology:
Definition 4.7. For a given k = 0, 1, . . . , 2n, a given compact complex manifold
X (with dimCX = n) is said to satisfy property:

(Ak) if the natural map H p,q
BC (X, C) �! H p,q

A (X, C) is injective for all p, q such
that p + q = k.
This property is clearly equivalent to property

(A0

k) ker @ \ ker @̄ \ (Im @ + Im @̄) = Im (@@̄), for all p, q s.t. p + q = k.
(Bk) if the natural map H p,q

BC (X, C) �! H p,q
A (X, C) is surjective for all p, q such

that p + q = k.
This property is clearly equivalent to property

(B0

k) Im @ + Im @̄ + (ker @ \ ker @̄) = ker(@@̄), for all p, q s.t. p + q = k.
(Ck) if the natural maps H p,q

BC (X, C) �! H p,q
@ (X, C) and

H p,q
BC (X, C) �! H p,q

@̄
(X, C) are injective for all p, q such that p + q = k.

This property is clearly equivalent to the simultaneous occurence of
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(C 0

k) (i) Im @ \ ker @̄ = Im (@@̄) and (C 0

k)(ii) Im @̄ \ ker @ = Im (@@̄),
for all p, q such that p + q = k.

(D0

k) if (i) Im @̄ + ker @ = ker(@@̄) and (ii) Im @ + ker @̄ = ker(@@̄)
for all p, q such that p + q = k.

(Lk) if the @@̄-lemma holds on every space of forms C1

p,q(X, C) with p + q = k.

It is obvious that (Lk) implies each of the other properties listed above and that
(Lk) is implied by the simultaneous occurence of these other properties. As already
pointed out, the following equivalences are obvious

(Ak) () (A0

k), (Bk) () (B0

k), (Ck) () (C 0

k).

The inclusions � in (A0

k), ⇢ in (B0

k), � in (C 0

k)(i), (ii) and ⇢ in (D0

k)(i), (ii) are
obvious. The following statement is implicit in [14] and provides a key ingredient
for the proof of Theorem 1.25 obtained in [49].

Proposition 4.8 (Contained in [14, Lemma 5.15]). Let X be a compact complex
manifold, dimCX = n. For every k = 1, . . . , 2n, the following equivalences hold:

(Lk) () (Ak) () (Ck) () (D0

k�1) () (Bk�1).

Proof. Fix an arbitrary k 2 {1, . . . , 2n}. In view of what we have already noticed,
it suffices to prove the equivalences

(A0

k) () (C 0

k) () (D0

k�1) () (B0

k�1).

Proof of (A0

k) =) (C 0

k). Let u 2 C1

p,q(X, C) (where p + q = k) such that @̄u = 0
and u = @v for some (p�1, q)-form v. Then u = @v +0 2 ker @ \ker @̄ \ (Im @+

Im @̄). Then (A0

k) forces u 2 Im (@@̄). This proves (i) of (C 0

k). The proof of (ii) of
(C 0

k) is similar with @ and @̄ reversed.
Proof of (C 0

k) =) (A0

k). Let u 2 C1

p,q(X, C) (where p + q = k) such that @u = 0,
@̄u = 0 and u = @v + @̄w for some (p � 1, q)-form v and some (p, q � 1)-form
w. Then we have:

• Im @ 3 @v = u� @̄w 2 ker @̄ , hence @v 2 Im @\ker @̄ = Im (@@̄), the last identity
of subspaces being given by the hypothesis (C 0

k)(i). Thus @v 2 Im (@@̄).

• Im @̄ 3 @̄w = u � @v 2 ker @ , hence @̄w 2 Im @̄ \ ker @ = Im (@@̄), the last
identity of subspaces being given by the hypothesis (C 0

k)(i i). Thus @̄w 2 Im (@@̄).

It is now clear that u = @v + @̄w 2 Im (@@̄). This proves (A0

k).

Proof of (C 0

k) =) (D0

k�1). Let u 2 C1

r,s(X, C) (where r + s = k � 1) such that
@@̄u = 0. Then:
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• @u is a k-form of type (r + 1, s) and @u 2 ker @̄ \ Im @ = Im (@@̄), the last
identity of subspaces being given by the hypothesis (C 0

k)(i). Hence @u = @@̄⇣ for
some (r, s � 1)-form ⇣ . This amounts to @(u� @̄⇣ ) = 0 or again to u� @̄⇣ 2 ker @ .

We get u = @̄⇣ + (u � @̄⇣ ) 2 Im @̄ + ker @ . This proves (D0

k�1)(i).

• @̄u is a k-form of type (r, s+1) and @̄u 2 ker @\ Im @̄ = Im (@@̄), the last identity
of subspaces being given by the hypothesis (C 0

k)(ii). Hence @̄u = @@̄w for some
(r � 1, s)-form w. This amounts to @̄(u + @w) = 0 or again to u + @w 2 ker @̄ .

We get u = �@w + (u + @w) 2 Im @ + ker @̄ . This proves (D0

k�1)(ii).

Proof of (D0

k�1) =) (C 0

k). Let u 2 C1

p,q(X, C) (where p+q = k) such that @̄u = 0
and u = @v for some (k � 1)-form v of type (p � 1, q). Then 0 = @̄u = �@@̄v,
hence v 2 ker(@@̄). Since ker(@@̄) = Im @̄ + ker @ for (k � 1)-forms by (D0

k�1)(i),
we can find a (p � 1, q � 1)-form w and a (p � 1, q)-form ⇣ such that

v = @̄w + ⇣ and @⇣ = 0.

Applying @ , we get: u = @v = @@̄w. Thus u 2 Im (@@̄). This proves (C 0

k)(i).

Reversing the roles of @ and @̄ , we get (C 0

k)(ii) in a similar way from (D0

k�1)(ii).

Proof of (D0

k�1) =) (B0

k�1). Let u 2 C1

r,s(X, C) (where r + s = k � 1) such that
@@̄u = 0. Thanks to (D0

k�1)(i i), we can find an (r�1, s)-form v and an (r, s)-form
w such that

u = @v + w and w 2 ker @̄.

Now since @̄w = 0, we also have @@̄w = 0. Hence by (D0

k�1)(i) we can write

w = @̄⇣ + ⇢ with ⇢ 2 ker @

for some (r, s � 1)-form ⇣ and some (r, s)-form ⇢. We get: ⇢ = w � @̄⇣ and since
w, @̄⇣ 2 ker @̄ , we finally get ⇢ 2 ker @̄ . Given the choice of ⇢, this implies that
⇢ 2 ker @ \ ker @̄ .

Putting the bits together, we have

u = @v + @̄⇣ + ⇢ 2 Im @ + Im @̄ + (ker @ \ ker @̄).

This proves (B0

k�1).

Proof of (B0

k�1) =) (D0

k�1). This implication is trivial because Im @ + (ker @ \

ker @̄) ⇢ ker @ and Im @̄ + (ker @ \ ker @̄) ⇢ ker @̄ .
The Proposition is proved.
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Outline of proof of Wu’s Theorem 1.25 (according to [49]). The main idea is
to exploit the one-unit discrepancy between k and (k � 1) in the Deligne-Griffiths-
Morgan-Sullivan characterisations given to the @@̄-lemma in Proposition 4.8,
namely the equivalences

(Lk) () (Ak) () (Bk�1).

This enables an argument by induction on the degree k of forms. Note that the @@̄-
lemma always holds in a trivial way for k = 0 (i.e. on functions). Fix an arbitrary
holomorphic family of compact complex n-dimensional manifolds (Xt )t21. The
proof falls into two steps.

Step 1. Assuming the @@̄-lemma on X0, Wu shows that the dimensions of the Bott-
Chern and Aeppli cohomology spaces remain constant in a small neighbourhood of
0 2 1, i.e.

dimCH
p,q
BC (Xt , C) = dimCH

p,q
BC (X0, C) for all t 2 1 sufficiently close to 0

dimCH
p,q
A (Xt , C) = dimCH

p,q
A (X0, C) for all t 2 1 sufficiently close to 0.

This parallels the analogous results for the Dolbeault cohomology that are classical
and known to hold under the weaker assumption that the Frölicher spectral sequence
of X0 degenerates at E1.

Step 2. Suppose the @@̄-lemma holds on X0. Wu shows that the same thing holds
on every sufficiently close fibre Xt by induction on k = 0, 1, . . . , 2n. Suppose the
@@̄-lemma holds for the k-forms of Xt . We have to show that it then also holds for
the (k + 1)-forms of Xt .

The induction hypothesis is that (Lk) holds on Xt which, by Proposition 4.8, is
equivalent to (Ak) holding on Xt . This means that the natural map H p,q

BC (Xt ,C)�!

H p,q
A (Xt , C) is injective for all p, q such that p + q = k.
On the other hand, dimCH

p,q
BC (X0, C) = dimCH

p,q
A (X0, C) for all p, q thanks

to the @@̄-lemma assumption on X0 (see explanation above Definition 4.7). Since,
by Step 1, the dimensions of these spaces do not change when t remains close to 0,
we still have

dimCH
p,q
BC (Xt , C) = dimCH

p,q
A (Xt , C), for all p, q and all t near 0.

Thus, for all t near 0, H p,q
BC (Xt , C) and H p,q

A (Xt , C) are finite-dimensional vector
spaces of equal dimensions and the natural linear map between them is injective
whenever p + q = k by the induction hypothesis (Ak). Then it must also be
surjective, which means that property (Bk) holds on Xt for all t close to 0. By
Proposition 4.8, this is equivalent to property (Lk+1), i.e. to the @@̄-lemma for the
(k + 1)-forms of Xt .
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4.4. Twistor spaces and the @@̄-lemma

The limiting behaviour under holomorphic deformations of compact complex man-
ifolds satisfying the @@̄-lemma seems to be shrouded in mystery. A likely guess is
that this property may not be deformation-closed. Our expectation is that deforma-
tions of twistor spaces may hold the key. We take this opportunity to raise a few
natural questions.

We start by recalling the following result of Gauduchon.

Theorem 4.9 ([20, Proposition 11.b, page 618]). Every twistor space is bal-
anced10. Moreover, this is the case for any self-dual metric on the correspond-
ing four-manifold (i.e. a balanced metric is obtained on the twistor space from any
self-dual metric in a given conformal class of the base four-manifold).

Combined with [ES93], this readily (re-)proves part (a) of Theorem 1.11. In-
deed, by Gauduchon’s Theorem 4.9, the central fibre Z0 in the Eastwood-Singer
family is an sG manifold since, as a twistor space, it even has the stronger balanced
property. However, E1(Z0) 6= E1(Z0) as has been seen in Proposition 4.3. Recall
that the Iwasawa manifold had provided another example proving (a) of Theorem
1.11 (cf. comments after Observation 3.11).

On the other hand, Hitchin’s main result in [24] states that there exist only two
Kähler twistor spaces: P3 and the space of flags in C3. Together with Gauduchon’s
Theorem 4.9 and Campana’s result in [11] stating that a twistor space is Moishezon
if and only if it is of class-C, this fact will point to a relative lack of variation in the
properties of twistor spaces.

However, combining Wu’s Theorem 1.25 with the examples of Campana [10]
and Lebrun-Poon [34] that proved the deformation non-openness of the class-C
property (cf. Theorem 1.18), we notice the first piece of evidence against the above
mock “principle”.
Observation 4.10. There exist twistor spaces satisfying the @@̄-lemma that are not
of class C.

Indeed, in [10] and [34] families of twistor spaces (Zt )t21 are constructed
in which the central fibre Z0 is a Moishezon (= class-C) twistor space (hence its
algebraic dimension is maximal: a(Z0) = dimCZ0 = 3), while all the nearby fibres
can be chosen to be decidedly non-Moishezon (= non-class-C) twistor spaces, i.e.
to have minimal algebraic dimension a(Zt ) = 0 for t 6= 0. Now, the Moishezon
central fibre Z0 must satisfy the @@̄-lemma, hence by Wu’s Theorem 1.25 all the
nearby fibres Zt also satisfy the @@̄-lemma if t 2 1? is sufficiently close to 0. Thus
any of these nearby fibres is an example of a twistor space that is not in the class-C
but satisfies the @@̄-lemma.

In a similar vein, one may ask whether there exist twistor spaces whose
Frölicher spectral sequence degenerates at E1 but on which the @@̄-lemma does

10 The term semi-Kähler is used in [20] to mean balanced.
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not hold. As pointed out in the introduction (cf. Proposition 1.8), the @@̄-lemma
implies the Hodge symmetry. On the other hand, the Dolbeault cohomology of any
twistor space Z can be calculated in terms of the De Rham cohomology of the base
four-manifold M (see (4.1), (4.2), (4.4) taken from [16]). Hence the following are
necessary conditions on the Betti numbers of M for its twistor space Z to satisfy
the @@̄-lemma:

b1(M) = b3(M) = 0 and b�(M) = 0, (4.17)
where b�(M):= dimCH2�(M,C). Now the twistor spaces (Zt )t21 in the Eastwood-
Singer family have (Mt := P(Et ))t21 as respective underlying four-manifolds,
where each Et ! 6g is a rank-two holomorphic vector bundle over a complex
curve of genus g�2. Thus each Mt is a non-rational ruled surface having b1(Mt ) =

2g � 4. In particular, b1(Mt ) 6= 0, showing that Mt does not satisfy conditions
(4.17). Hence no fibre in the Eastwood-Singer family of twistor spaces (Zt )t21 can
satisfy the @@̄-lemma. Since E1(Zt ) = E1(Zt ) for all t 2 1 \ {0}, we obtain the
following:
Observation 4.11. There exist twistor spaces whose Frölicher spectral sequence
degenerates at E1 but which do not satisfy the @@̄-lemma. Any fibre Zt with t 6= 0
in the Eastwood-Singer family is such an example.
Another consequence of the Eastwood-Singer main theorem was that the Frölicher
spectral sequence of the twistor space of any K3 surface degenerates at E1 (cf.
Corollary 5.2. in [16]). Now it is well-known that any K3 surface M satisfies

b1(M) = b3(M) = 0 and b�(M) = 19,

meaning that the last of the conditions (4.17) is not satisfied by K3 surfaces. Hence
we have yet another class of examples illustrating Observation 4.11.
Observation 4.12. On the twistor space of any K3 surface, the @@̄-lemma does not
hold although E1 = E1 in the Frölicher spectral sequence.

It is thus natural to ask the following:
Question 4.13. Can one characterise the twistor spaces on which the @@̄-lemma
holds? Is there a @@̄-lemma analogue of the Eastwood-Singer description of the
Frölicher degeneration property for twistor spaces?

In other words, it would be interesting to knowwhether there exists an equation
similar to (4.5) or any other condition on M that can be an indicator of the @@̄-lemma
property on Z .

We conclude by briefly mentioning another class of compact complex mani-
folds that usually provide a host of examples of various sorts: nilmanifolds. Re-
call that a connected, simply connected real Lie group G possessing a discrete
co-compact subgroup 0 and a left-invariant complex structure J defines a quotient
compact complex manifold X := 0\G (inheriting its complex structure from J by
passing to the quotient) that is said to be a nilmanifold if the group G is nilpotent.
In the special case of a complex Lie group G, the quotient X is a compact com-
plex parallelisable nilmanifold (e.g. the Iwasawa manifold) of the class introduced
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by Wang in [48], but G need not be a complex Lie group in general. Putting the
following two pieces of information together:

– By [14], any compact complex manifold on which the @@̄-lemma holds is for-
mal.

– By [22], the only formal nilmanifolds are the complex tori (i.e. those defined
by an Abelian Lie group G),

and since complex tori are clearly Kähler, we see that Kählerness and the @@̄-lemma
property are equivalent conditions on nilmanifolds. So we can ask whether one can
construct a holomorphic family of nilmanifolds in which all the fibres, except one,
are Kähler.

Added in proof. Conjectures 1.21 and 1.23 have been disproved in the paper
Classification of complex structure on 6-dimensional nilpotent Lie algebras (arXiv
e-print math.DG/1111.5873v4) by M. Ceballos, A. Otal, L. Ugarte and R. Villa-
campa.

References

[1] M. F. ATIYAH, N. J. HITCHIN and I. M. SINGER, Self-duality in four-dimensional Rie-
mannian geometry, Proc. Roy. Soc. London Ser. A 362 (1978), 425–461.

[2] L. ALESSANDRINI and G. BASSANELLI, Small deformations of a class of compact non-
Kähler manifolds, Proc. Amer. Math. Soc. 109 (1990), 1059–1062.

[3] L. ALESSANDRINI and G. BASSANELLI, Compact p-Kähler manifolds, Geom. Dedicata
38 (1991), 199–210.

[4] L. ALESSANDRINI and G. BASSANELLI, Smooth proper modifications of compact Kähler
manifolds, In: Proc. Internat. Workshop on Complex Analysis (Wuppertal 1990); Complex
Analysis, Aspects of mathematics, Vol. E17, Vieweg, Braunschweig, 1991, 1–7.

[5] L. ALESSANDRINI and G. BASSANELLI,Metric properties of manifolds bimeromorphic to
compact Kähler spaces, J. Differential Geom. 37 (1993), 95–121.

[6] L. ALESSANDRINI and G. BASSANELLI,Modifications of compact balanced manifolds, C.
R. Acad. Sci. Paris, Sér. I 320 (1995), 1517–1522.

[7] A. L. BESSE, “Einstein Manifolds”, Springer, Berlin 1987.
[8] W. BARTH, C. PETERS and A. VAN DE VEN, “Compact Complex Surfaces”, Springer-

Verlag, Berlin, 1984.
[9] N. BUCHDAHL, On compact Kähler surfaces, Ann. Inst. Fourier 49 (1999), 287–302.
[10] F. CAMPANA, The class C is not stable by small deformations, Math. Ann. 290 (1991),

19–30.
[11] F. CAMPANA, On twistor spaces of the class C, J. Differential Geom. 33 (1991), 541–549.
[12] E. CALABI and B. ECKMANN, A class of compact, complex manifolds which are not alge-

braic, Ann. of Math. 58 (1953), 494–500.
[13] L. A. CORDERO, M. FERNANDEZ, A. GRAY and L. UGARTE, Compact nilmanifolds with

nilpotent complex structures: Dolbeault cohomology, Trans. Amer. Math. Soc. 352 (2000),
5405–5433.

[14] P. DELIGNE, PH. GRIFFITHS, J. MORGAN and D. SULLIVAN, Real homotopy theory of
Kähler manifolds, Invent. Math. 29 (1975), 245–274.

[15] J.-P. DEMAILLY and M. PAUN, Numerical charaterization of the Kähler cone of a compact
Kähler manifold, Ann. of Math. (2) 159 (2004), 1247–1274.



304 DAN POPOVICI
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