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Unprojection and deformations
of tertiary Burniat surfaces

JORGE NEVES AND ROBERTO PIGNATELLI

Abstract. We construct a 4-dimensional family of surfaces of general type with
pg = 0 and K 2 = 3 and fundamental group Z/2⇥ Q8, where Q8 is the quater-
nion group. The family constructed contains the Burniat surfaces with K 2 = 3.
Additionally, we construct the universal coverings of the surfaces in our family
as complete intersections on (P1)4 and we also give an action of Z/2 ⇥ Q8 on
(P1)4 lifting the natural action on the surfaces.

The strategy is the following. We consider an étale (Z/2)3-cover T of a
surface with pg = 0 and K 2 = 3 and assume that it may be embedded in a Fano
3-fold V . We construct V by using the theory of parallel unprojection. Since V is
an Enriques–Fano 3-fold, considering its Fano cover yields the simple description
of the above universal covers.

Mathematics Subject Classification (2010): 14J29 (primary).

1. Introduction

A Burniat surface is the minimal resolution of singularities of a bidouble cover,
i.e., a finite flat Galois morphism with Galois group (Z/2)2, of the projective plane
branched along the divisors

D1 = A1 + A2 + A3, D2 = B1 + B2 + B3, D3 = C1 + C2 + C3,

where A1, B1, C1 form a triangle with vertices x1, x2, x3, A1, A2, A3 are lines
through x1, B1, B2, B3 are lines through x2 and C1,C2,C3 are lines through x3
(see Figure 1.1). Burniat surfaces were first constructed by Burniat [13], though a
substantial part of the initial study of these surfaces was done about 10 years later by
Peters [29]. They have an equivalent description known as the Inoue surfaces [17],
given as the quotient of a divisor in the product of three elliptic curves by a finite
group. See [3] for an excellent introduction to the subject of Burniat surfaces.

This work was partially supported by CMUC and FCT (Portugal) through the European program
COMPETE/FEDER and through Projects PTDC/MAT/099275/2008 and PTDC/MAT/111332/
2009.
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Burniat surfaces are minimal surfaces of general type with pg=dim H0(�2)= 0
and hence with irregularity, q = dim H0(�1), equal to 0. The study of the mo-
duli space of surfaces of general type with these invariants started in 1932 with
Campedelli’s celebrated construction of a surface of general type with pg = 0 and
K 2 = c21 = 2, as a double cover of the projective plane branched along a curve
of degree 10 with 6 singular points, not lying on a conic, all of type [3,3], that
is a triple point with another infinitely near triple point. Nowadays, this subject
is still the object of much attention, with new results on the description of whole
components of this moduli space (e.g. [2, 14, 23, 24, 30, 31]) and on the proof of
existence of new ones (e.g. [6, 7, 9, 20, 22, 26, 28]). See [8] for a survey on surfaces
of general type with pg = 0.

Let S be a Burniat surface. If we assume that the branch divisors D1, D2, D3
in the configuration described earlier, besides satisfying the conditions stated there,
are otherwise general, then K 2S = 6. By the general theory of bidouble covers (see
[15]), imposing further, to the triple D1, D2, D3, m singular points of type (1, 1, 1)
(which are points which belong to each Di , which are smooth for each Di , and
such that the three tangent directions are different), then K 2 drops by m and the
other invariants do not change. This yields 6 families (two for m = 2: the family of
nodal type and the family of non nodal type) the dimensions of which are equal to
K 2S � 2 = 4� m, respectively.

Following Bauer and Catanese [3], call a Burniat surface primary if K 2S = 6,
secondary if K 2S = 4, 5, tertiary if K 2S = 3 (see Figure 1.1) and quaternary if K 2S =

2. From a certain point of view, what sets apart primary and secondary Burniat sur-
faces from tertiary and quaternary Burniat surfaces is that the former families have
dimensions greater than or equal to the expected dimension 10�(OS) � 2K 2S of the
corresponding moduli spaces, while the latter families have dimensions strictly less
than the expected dimension of the corresponding moduli spaces. More precisely,
the family of tertiary Burniat surfaces is 1-dimensional, whereas the moduli space

Figure 1.1. Branching divisors for tertiary Burniat surfaces.
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of surfaces of general type with pg = 0 and K 2 = 3 has expected dimension equal
to 4 and the family quaternary Burniat surfaces is 0-dimensional, whereas the mod-
uli space of surfaces of general type with pg = 0 and K 2 = 2 (the Campedelli
surfaces) has expected dimension equal to 6.

In 2001, Mendes Lopes and Pardini (cf. [21]) proved that the 4-dimensional
family of primary Burniat surfaces forms a normal, unirational, irreducible con-
nected component of the moduli space of surfaces of general type with pg = 0
and K 2 = 6. In 2004, Kulikov (cf. [18]) proved that the class of the quaternary
Burniat surfaces belongs to the component of classical Campedelli surfaces, i.e.,
pg = 0, K 2 = 2 and torsion group (Z/2)3, which had been completely described
(cf. [25, 32]). In a deep recent analysis (cf. [3–5]), Bauer and Catanese have con-
tinued the study of the components of the moduli space of surfaces of general type
containing the Burniat surfaces. They gave an alternative proof of Mendes Lopes–
Pardini’s result on primary Burniat surfaces. They showed that of the 3 families
corresponding to secondary Burniat surfaces the one with K 2 = 5 and the one
with K 2 = 4 of non nodal type form irreducible connected components. They have
also described the whole connected component containing the Burniat surfaces with
K 2 = 4 of nodal type, which turns out to have dimension 3, one more than the ex-
pected dimension.

This article is devoted to a construction of a 4-dimensional family of mini-
mal surfaces, S, of general type with pg(S) = 0 and K 2S = 3, containing, as a
codimension 3 subfamily, the family of tertiary Burniat surfaces. We do this by
constructing a 4-dimensional family of surfaces of general type T with �(OT ) = 8
and K 2T = 24, equipped with a free G = (Z/2)3 action. We take S as the quotient
T/G. The family of surfaces T is a linear subsystem of |�2KV |, where V is an
Enriques–Fano 3-fold in P(17, 28) obtained from a complete intersection Fano 3-
fold in P6 on which there exists an action of G inducing the action of this group
on T . In this respect, we can see V as a key variety for this construction; just
as weighted projective space acts as key variety in most elementary constructions.
This idea is reminiscent of the construction of a numerical Campedelli surface with
torsion group Z/6 of [26]. Lifting the action of G to the Fano double cover of
V we obtain the simple description of our family described in the next theorem,
which synthesizes Theorem 2.10, Theorem 3.5, Theorem 3.6 and Theorem 4.5 of
this work.

Theorem 1.1. Consider P1 ⇥ P1 ⇥ P1 ⇥ P1, with coordinates (t00, t01), (t10, t11),
(t20, t21), (t30, t31) and the group G̃ < Aut(P1 ⇥ P1 ⇥ P1 ⇥ P1) generated by the 3
automorphisms in the following table, where ✏ is a chosen square root of �1:

t00 t01 t10 t11 t20 t21 t30 t31
↵̃1�̃2 �✏t10 t11 t00 ✏t01 t31 �✏t30 t21 ✏t20
↵̃2�̃3 �✏t20 t21 t31 ✏t30 t00 ✏t01 t11 �✏t10
↵̃3�̃1 �✏t30 t31 t21 �✏t20 t11 ✏t10 t00 ✏t01
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Then G̃ ⇠
= Z/2⇥ Q8, where Q8 denotes the standard quaternion group. Consider

also the G̃-invariant hypersurface of multi-degree (1, 1, 1, 1) given by

Z1 := (t01t10t20t30 + t00t11t21t31 = 0)

and the G̃-invariant surfaces T̃ cut out on Z1 by the multi-degree (2, 2, 2, 2) hyper-
surfaces given by

Z2 =

3X
i=0

⌫i

 
t2i0

Y
j 6=i

t2j1 + t2i1
Y
j 6=i

t2j0

!
� 2⌫4

X
a + b + c + d even

(�1)
b+c+d�a

2 t20at
2
1bt

2
2ct

2
3d = 0

for ⌫0, ⌫1, ⌫2, ⌫3, ⌫4 2 C. Then, if the ⌫i are general, G̃ acts freely on T̃ and the
quotient S = T̃ /G̃ is the canonical model of a surface of general type with pg = 0,
K 2 = 3 and ⇡1(S) ⇠

= Z/2 ⇥ Q8. The family obtained in this way describes a
4-dimensional locus in the moduli space of the surfaces of general type, containing
the tertiary Burniat surfaces, for which �⌫0 = ⌫1 = ⌫2 = ⌫3.

Note that the fundamental group of tertiary Burniat surfaces has already been com-
puted in [3], which fixes a mistake in a previous computation in [29]. The study of
surfaces of general type with pg = 0, K 2 = 3 and fundamental group of order 16
is of special interest as, according to a conjecture of M. Reid, this number should
be the maximum order of their (algebraic) fundamental groups.

Our construction gives a 4�dimensional stratum of the moduli space of the
surfaces of general type containing the tertiary Burniat surfaces. In [5], Bauer and
Catanese prove that the irreducible component of the moduli space of surfaces of
general type containing the tertiary Burniat surfaces has dimension 4, and they con-
struct a proper open set of it; it follows that also our family forms an open set of
the same component. We expect that our family is not a proper subset, covering
the full irreducible component. It is also reasonable to guess that this irreducible
component is a full connected component of the moduli space.

We now explain the motivation for our construction. Let T be a minimal
regular surface of general type with �(OT ) = 8 and K 2T = 24. Assume that
T 2 |�2KV |, where V is aQ-Fano 3-fold with n singular points of type 12 (1, 1, 1).
Then h0(�KV ) = pg = 7, �K 3V = K 2T /2 = 12 and by the orbifold Riemann–
Roch formulas (cf. [1, 12]), 4pg = K 2T + 12 � n, i.e., n = 8. This leads to a
candidate 3-fold V anticanonically embedded in P(17, 28) that, by the Graded Ring
Database [11], projects to a complete intersection W2,2,2 ⇢ P6. On the other hand,
suppose that T is equipped with a free G = (Z/2)3 action. By the Lefschetz Holo-
morphic Fixed Point Formula we know the character of the representation of G on
H0(nKT ). Throughout the paper a, b, c, d vary in Z/2 = {0, 1}, and we will use
the notation 00

= 1 and 10
= 0. Writing �abc, for the irreducible representations of

G, we get:

H0(KT ) =

L
(a,b,c)2G\{(0,0,0)} �abc, H0(2KT ) =

L
(a,b,c)2G ��4

abc,

S2 H0(KT ) = ��7
000 � ��3

100 � ��3
010 � ��3

001 � ��3
110 � ��3

101 � ��3
011 � ��3

111.
(1.1)
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We deduce that the canonical ring of T ,

R(T, KT ) =

M
n2N

H0(nKT ),

on which G acts, has 3 invariant quadric relations and needs 7 new generators in
degree 2, one for each of the nontrivial rank 1 representations G. This agrees with
the properties of V . The anticanonical ring R(V,�KV ) has 8 generators of degree
2 and 3 quadric relations between the degree 1 generators, coming from the defining
equations of W2,2,2 ⇢ P6. Note that R(T, KT ) can be obtained from R(V,�KV )
by taking a quotient by a degree 2 regular element.

As in [26], the first goal is to construct V from W2,2,2 ⇢ P6 using parallel
unprojection, which is to say, unproject all at once 8 divisors in W satisfying suffi-
ciently general conditions.

The second goal is to set up an action of G ⇠
= (Z/2)3 on P(18, 28) that leaves

Y , V and T invariant and is fixed point free on T . With this in mind we establish
a (Z/2)6 action on P(18, 28) which leaves Y and V invariant and for which there
exists a subgroup H ⇢ (Z/2)6 isomorphic to (Z/2)5 which leaves T invariant. We
then show that H has a subgroup G ⇠

= (Z/2)3 which acts fixed point freely on T .
The upshot is that the quotient group H/G ⇠

= (Z/2)2 acts on S := T/G and the
quotient map coincides with the bicanonical map of S. (Cf. Proposition 4.1.)

The paper is divided up as follows. In Section 2 we describe the construction
of Y ⇢ P(18, 28) via parallel unprojection of a 4-fold complete intersection of 3
quadrics X ⇢ P7 using the format introduced in [27]. We obtain a Q-Fano 3-fold
V ⇢ Y by taking a hypersurface section of degree 1 of V and the surface T ⇢ V by
taking a hypersurface section of degree 2 of V . The bulk of this section is concerned
with the study of the geometry of V (with emphasis on its singularities) and setting
up of the group action described above. In Section 3, we show that Y is the quotient
of P1⇥P1⇥P1⇥P1 by an involution and we lift the action of G to an action of G̃ =

Z/2⇥Q8 on P1⇥P1⇥P1⇥P1. We obtain a description of our surfaces as quotient
by a fixed point free action of G̃ on a complete intersection in P1 ⇥ P1 ⇥ P1 ⇥ P1,
which enables the computation of their fundamental group. Finally we show that
the family constructed is unirational and has 4 moduli. In Section 4 we carry out a
detailed study of the bicanonical map of S = T/G. We show that the bicanonical
map is a bidouble cover of a singular cubic surface S3 ⇢ P3 and compute the branch
loci of this map. Via a birational map S3 99K P2 we reinterpret this bidouble cover
as a bidouble cover of P2 and use it to show that the family of surfaces constructed
contains the family of tertiary Burniat surfaces.

ACKNOWLEDGEMENTS. The authors are grateful to CIRM-Trento for supporting
the visit of the first author to Trento in April of 2010. We are indebted withM.Mella
for pointing out the theory of Enriques–Fano 3-folds, which inspired the construc-
tion in Section 3.
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2. The Construction of S

Consider P7 with homogeneous coordinates x00, x01, x10, x11, x20, x21, x30, x31 and
let X ⇢ P7 be the 4-fold complete intersection of 3 quadrics given by:

x00x01 = x10x11 = x20x21 = x30x31. (2.1)

Notice that X contains the 16 linear spaces given by:

Habcd = (x0a = x1b = x2c = x3d = 0), a, b, c, d 2 {0, 1} (2.2)

all of which have codimension 1 in X . These 16 linear spaces can be thought of
as the vertices of the 4-cube, by identifying their equations (2.2) with the vertex
(a, b, c, d). An edge between two vertices means that the intersection of the corre-
sponding linear spaces has dimension� 2 or, equivalently, that the union of the sets
of equations of the linear spaces does not contain a regular sequence of length 6.

Since the homogeneous coordinate rings of X and of each linear space are
Gorenstein graded rings, we can use Kustin–Miller parallel unprojection on a sub-
set of the set of linear spaces in (2.2). Indeed the format of the equations of X
was studied in [27, Section 3], where a sufficient condition for the existence of the
parallel unprojection was given. In our case, a subset of linear spaces can be unpro-
jected if the defining equations of any two linear subspaces in it contain a regular
sequence of length 6. Since the 4-cube is a bipartite graph, there are 2 maximal sub-
sets with this property. These subsets yield isomorphic constructions, thus we shall
fix one. Let L denote the subset of {0, 1}4 consisting of the 4-tuples with even sum
and consider the corresponding subset of linear spaces: {Habcd | (a, b, c, d) 2 L}.
Recall that throughout the paper we shall be using the following shorthand notation:
00

= 1 and 10
= 0.

Remark 2.1. Notice that Habcd \Ha0b0c0d 0 = ;. Any other pair of distinct elements
in {Habcd | (a, b, c, d) 2 L} intersect along a line. These 24 lines form the singular
locus of X .

According to [27, Lemma 3.2] we can perform the parallel unprojection of
these 8 linear spaces in X , to obtain a projectively Gorenstein subscheme of a
weighted projective space, Y ⇢ P(18, 28), as follows.
Definition 2.2. Consider, for each (a, b, c, d) 2 L the rational section ofOX (2)

'abcd :=

x1b0x2c0x3d 0

x0a
=

x0a0x2c0x3d 0

x1b
=

x0a0x1b0x3d 0

x2c
=

x0a0x1b0x2c0
x3d

, (2.3)

where the equalities follow from (2.1). The divisor of the poles of 'abcd is Habcd .
We denote by ' : X 99K P(18, 28) the unprojection map, i.e., the rational map

'(x00, x01, . . . , x31) = (x00, x01, . . . , x31,'0000(xia), . . . ,'1111(xia)).

We define Y := '(X).
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Notation 2.3. We denote accordingly the weight-2 variables of the ambient
weighted projective space by yabcd , where yabcd is the variable corresponding to
'abcd(xia) in the definition of '. Let ⇡ : P(18, 28) 99K P7 denote the projection
map, i.e., the rational map obtained by forgetting the degree-2 variables.

The ideal J of the subvariety Y ⇢ P(18, 28) is generated by the following
homogeneous polynomials: the original 3 quadrics — given by the difference of
two terms in (2.1) — 32 cubics, given by

yabcd x0a � x1b0x2c0x3d 0, yabcd x1b � x0a0x2c0x3d 0,
yabcd x2c � x0a0x1b0x3d 0, yabcd x3d � x0a0x1b0x2c0,

(2.4)

for every (a, b, c, d) 2 L; and 28 quartics, given by

ya0a1a2a3 yb0b1b2b3 �

x0a0

0
x1a0

1
x2a0

2
x3a0

3

xia0

i
xiai

·

x0b0

0
x1b0

1
x2b0

2
x3b0

3

x jb0

j
x jb j

(2.5)

for every distinct (a0, a1, a2, a3), (b0, b1, b2, b3) 2 L, where, given (a0, a1, a2, a3),
(b0, b1, b2, b3) inL, i and j are such that ai 6= bi and a j 6= b j , so that the fractional
expression of (2.5) is always a polynomial.

Remark 2.4. The unprojection map ' : X 99K Y is a birational map between X
and Y , with inverse ⇡|Y : Y 99K X . Indeed, ' induces an isomorphism

X \

⇣[
abcd2L Habcd

⌘
! Y \

⇣[
abcd2LHabcd

⌘
, (2.6)

whereHabcd is the subscheme of Y given by x0a = x1b = x2c = x3d = 0.

Notation 2.5. Firstly we make notation for the coordinate points of P7 and
P(18, 28). Given 0  i  3 and a 2 {0, 1} we denote by xia the point of P7,
or of P(18, 28), depending on the context, having all but the coordinate xia equal to
zero. Similarly, given (a, b, c, d) 2 L, we denote by yabcd 2 P(18, 28) the point
defined in an analogous way. Note that the 8 points yabcd are the intersection of Y
with the singular locus of the ambient space, and also the centers of the projection
⇡|Y . Secondly we establish notation for a distinguish set of surfaces in P(18, 28).
There are 24 quartic polynomials in (2.5) involving the product of 2 squares. Such
is the case with y0011y0000 � x201x

2
11. This polynomial defines a subscheme, S0111 , of

dimension 2 of the 3-dimensional projective space P(12, 22)with variables x01, x11,
y0011, y0000 that we can regard as a subscheme S0111 ⇢ P(18, 28), by setting all but
the coordinates x01, x11, y0011, y0000 equal to 0. Similarly, given 0  i < j  3 and
a, b 2 {0, 1} we denote by S i jab the subscheme of P(12, 22) ⇢ P(18, 28) defined by
the quartic polynomial of (2.5) involving x2iax

2
jb. These are 24 surfaces contained

in Y .
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Lemma 2.6. Set-theoretically,Ha0b0c0d 0 = {yabcd}[S01ab [S02ac [S03ad [S12bc [S13bd [

S23cd . In particularHabcd is 2-dimensional, for all (a, b, c, d) 2 L.

Proof. We prove the lemma for (a, b, c, d) = (0, 0, 0, 0). The proof for the remain-
ing (a, b, c, d) 2 L is similar. Comparing the definitions of Habcd in Remark 2.4
and of S i jab and yabcd of Notation 2.5 it follows that

S0111 [ S0211 [ S0311 [ S1211 [ S1311 [ S2311 [ {y1111} ⇢ H0000.

Conversely, let x 2 H0000. From the cubic equations (2.4) involving y0000, we see
that there exist distinct i, j 2 {0, 1, 2, 3} such that xi1 = x j1 = 0. Assume that
i = 0 and j = 1. If yabcd = 0, for all (a, b, c, d) 2 L \ {(0, 0, 0, 0), (1, 1, 0, 0)},
then y0000y1100 � x221x

2
31 = 0 is the only equation of Y not made trivial. In

this situation x 2 S2311 . Suppose that yabcd 6= 0 for some (a, b, c, d) 2 L \

{(0, 0, 0, 0), (1, 1, 0, 0)}. Then, from the quartic equations (2.5) involving yabcd
we see that all other weight-2 variables are zero and, using the cubic equations
(2.4) involving yabcd , that x2c = x3d = 0. Note that necessarily (c, d) 6= (0, 0).
Now, if (c, d) = (1, 0) then all variables but yab10 and x31 vanish. In this case,
either (a, b) = (0, 1) and x 2 S0311 , or (a, b) = (1, 0) and x 2 S1311 . Similarly,
if (c, d) = (0, 1), x 2 S0211 [ S1211 . Finally, if (c, d) = (1, 1) then, x = y1111 or
x = y0011, and we conclude by observing that y0011 2 S0111 . The same reasoning
applies for any other distinct i, j 2 {0, 1, 2, 3}.

Proposition 2.7. Y is a reduced and irreducible normal 4-dimensional subscheme
of P(18, 28). Moreover KY = OY (�2) and degY = deg X + 4 = 12.

Proof. Let R denote the coordinate ring of X . The fact that dimY = 4 is a conse-
quence of the fact that dim Run = dim R = 4, coming from the general theory of
Kustin–Miller unprojection. However it is also a consequence of the isomorphism
(2.6) and Lemma 2.6. Run is obtained as an unprojection of R, that has canonical
module equal to R(�2). Hence Run is Gorenstein and has a canonical module equal
to Run(�2), cf. [27]. In view of Remark 2.1, isomorphism (2.6) and Lemma 2.6,
codimSingY � 2. Since Run is Cohen–Macaulay we deduce that Run is a normal
domain, cf. [16, Theorem 18.15]. Hence Y is a reduced and irreducible normal
subscheme of P(18, 28). That KY = OY (�2) follows from the computation of the
canonical module of Run. By [27, Proposition 3.4], degY = deg X + 4 = 12.

We can now define the key variety V . This variety is obtained intersecting
Y with the hypersurface given by x00 + x01 = 0. The reason for this choice of
degree 1 polynomial will be clear from the action of G ⇠

= (Z/2)�3 on V that
we describe below. We will regard V as a subvariety of P(18, 28) defined by the
ideal J + (x00 + x01), i.e., the ideal generated by x00 + x01 and the polynomials
in (2.1), (2.4) and (2.5). Since x00 + x01 is a regular element of Run and this ring
is Cohen–Macaulay we deduce that V is a 3-fold of degree 12. Clearly, V is the
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parallel unprojection of the 8 planes5abcd := Habcd \(x00+x11 = 0) in the 3-fold
W = X \ (x00 + x01 = 0). The following diagram shows the construction so far.

V

✏✏�
�

�
� � // Y ⇢ P(18, 28)

⇡|Y
✏✏�
�

�

W � � // X ⇢ P7

(2.7)

Proposition 2.8. The singular locus of V = Y \ (x00 + x01 = 0) consists of 14
points, 8 quotient singularities of type 12 (1, 1, 1) at the points yabcd and 6 isolated
singularities locally analytically isomorphic to the vertex of a cone over the Del
Pezzo surface P1 ⇥ P1 ⇢ P8 at the points xia 2 P(18, 28), for i > 0.

Proof. Consider W = X \ (x00 + x01 = 0). The variety W is smooth away
from [abcd2LHabcd . Since ⇡ is an isomorphism away from [abcd2LHabcd (cf. Re-
mark 2.4), we deduce that

Sing(V ) ⇢ V \ ([abcd2LHabcd) = V \ ([S i jab). (2.8)

We start by analyzing the points x of Sing(V ) in the locus {yabcd | (a, b, c, d) 2 L}.
We assume, without loss of generality, that x = y0000. Consider the affine piece
of V given by y0000 = 1. Then, using the quartic equations (2.5) we can elimi-
nate all of the remaining yabcd , using the cubic equations (2.4) we can eliminate
x00, x10, x20, x30 and using x00 + x01 we can eliminate x01. The coordinates x11,
x21, x31, y0000 map an analytic neighborhood of y0000 2 V isomorphically onto a
neighborhood of the point (0, 0, 0, 1) 2 P(13, 2), which is a quotient singularity of
type 12 (1, 1, 1).

Suppose now that x 2 Sing(V ) \ {yabcd | (a, b, c, d) 2 L}. Let Va ⇢ A16
denote the affine cone of V . Among the equations of Va, besides x00 + x01 = 0, we
find the 7 quartic equations yabcd y0000 � · · · = 0, plus

y0000x00 � x11x21x31 = 0, y0000x10 � x01x21x31 = 0,
y0000x20 � x01x11x31 = 0, y0000x30 � x01x11x21 = 0.

Let us take the 12 ⇥ 12 minor of the Jacobian matrix of the ideal defining Va of
the gradients of these 12 polynomials with respect to the variables x01, yabcd for
(a, b, c, d) 2 L\{(0, 0, 0, 0)} and x00, x10, x20, x30. This minor is equal to±y110000,
where the sign depends on the order we give to the equations and to the variables.
Similarly we can find minors of the form ±y11abcd , for all (a, b, c, d) 2 L. Hence
if x 2 Sing(V ) \ {yabcd | (a, b, c, d) 2 L} then yabcd = 0, for all (a, b, c, d) 2

L. From (2.8) and Lemma 2.6, we deduce x 2 {x10, x11, x20, x21, x30, x11}. We
assume, without loss of generality, that x = x10. Consider the affine piece of Y
given by x10 = 1. Here, we can use the cubic equations (2.4) to eliminate all
variables of the form ya0cd and one of the quadrics (2.1) to eliminate x11. After
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eliminating these 5 variables, we see that this affine piece of Y is isomorphic to the
subvariety of A9 defined by the 2⇥ 2 minors of the symmetric matrix

0
B@
y1100 x31 x21 x00

y0110 x01 x20
y0101 x30

sym y1111

1
CA ,

with x10 being identified with the origin of A9. Hence x10 is a singular point of Y
locally isomorphic to the cone over the 2-Veronese embedding of P3 in P9. Since
V = Y \ (x00 + x01 = 0) we conclude that V is locally, near x10, analytically
isomorphic to a cone over the Del Pezzo surface P1 ⇥ P1 ⇢ P8. Similarly for all
other points in {x10, x11, x20, x21, x30, x31}.

Corollary 2.9. V is a reduced and irreducible normal 3-dimensional subscheme of
P(18, 28). Moreover KV = OV (�1) and deg(V ) = 12.

Proof. The proof is similar to that of Proposition 2.7.

The surface T , on which we will set up a group action of G ⇠
= (Z/2)3 will be a

suitable hypersurface section of V of degree 2, and therefore a canonical surface. In
particular the group action is induced by action of G on the ambient weighted pro-
jective space. What we do next is to set an action of the larger group (Z/2)6 on the
ambient space, which leaves V invariant. Following that, we single out a subgroup
G ⇠

= (Z/2)3 of (Z/2)6 inducing on H0(OV (1)) the regular representation of G
minus the trivial rank 1 representation. Finally, we choose the surface T 2 |OV (2)|
in such a way that G leaves it invariant and that the induced representation of G on
H0(OT (2)) = H0(KT ) is the sum of 4 copies of the regular representation.

Let ↵1, ↵2, ↵3, �1, �2, �3 be generators of (Z/2)6. Let them act on the space⌦
xi j

↵
in the following way: ↵i exchanges x00 with x01 and exchanges xi0 with xi1,

fixing all the remaining variables; �i takes xi0 to �xi0 and xi1 to �xi1, fixing all
the remaining variables. Since the actions of two generators commute, we obtain
an action of (Z/2)6 on P7. Clearly, by inspection of (2.1), X is invariant under this
action. The identification of the variables yabcd with the rational functions on X
of (2.3) induces an extension of this action to P(18, 28) so that Y , and V as well,
become invariant. Since

'abcd =

x1b0x2c0x3d 0

x0a
↵1

�!

x1bx2c0x3d 0

x0a0

= 'a0b0cd , (2.9)

etc., it suffices to set ↵1(yabcbd) = ya0b0cd , ↵2(yabcd) = ya0bc0d , ↵3(yabcd) = ya0bcd 0

and �i (yabcd) = �yabcd , for all 1  i  3. We summarize this in Table 2.1.

Consider the subgroup G ⇢ (Z/2)6 given by

G = h↵1�2,↵2�3,↵3�1i ⇠
= (Z/2)3. (2.10)
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Table 2.1. The (Z/2)6-action.

↵1 x00 $ x01 x10 $ x11 yabcd $ ya0b0cd

↵2 x00 $ x01 x20 $ x21 yabcd $ ya0bc0d

↵3 x00 $ x01 x30 $ x31 yabcd $ ya0bcd 0

�i xi0 ! �xi0 xi1 ! �xi1 yabcd ! �yabcd

It is easy to see that the representation of G on H0(OV (1)) is the regular repre-
sentation minus the trivial rank 1 representation; indeed the representation of G on
hx00, x01, . . . , x31i is the regular representation and x00+x01 generates the invariant
eigenspace. Likewise, given a character ✏ 2 Hom((Z/2)3, C), it is not hard to see
that the polynomial X

abcd2L
✏(b, c, d)yabcd (2.11)

is an eigenvector for the action of G on the space hyabcd | (a, b, c, d) 2 Li and that
the 8 polynomials obtained in this way generate distinct eigenspaces of the action.
The expression for the trivial eigenvector, obtained from (2.11) using the character
given by ✏(b, c, d) = (�1)b+c+d , for all (b, c, d) 2 (Z/2)3, is given by:X

abcd2L
(�1)b+c+d yabcd =

X
abcd2L

(�1)a yabcd . (2.12)

The representation theory of G on the cohomology of T dictates the eigenspace of
H0(OV (2)) from which to take the equation of T 2 |OV (2)|. According to (1.1)
and the discussion above, the equation for T belongs to the invariant eigenspace of
H0(OV (2)). Consider the following invariant quadratic forms in the xia variables:

si =

x2i0 + x2i1
2

and ti = xi0xi1 for i = 0, 1, 2, 3. (2.13)

using x00 + x01 = 0 and (2.1) we obtain

ti = t0 = �s0 (2.14)

on V and W . Hence s0, s1, s2, s3 form a basis for the invariant subspace of the
second symmetric power of H0(OV (1)). From this and (2.12) we see that a general
element of the invariant eigenspace of H0(OV (2)) is given by:

q = l + ⌫4
X

abcd2L
(�1)a yabcd , where l = ⌫0s0 + ⌫1s1 + ⌫2s2 + ⌫3s3 (2.15)

and ⌫0, ⌫1, ⌫2, ⌫3, ⌫4 are general complex parameters. Let N ⇠
= P4 be the linear

system of surfaces given by

N =

n
T = V \ (q = 0) | (⌫0, ⌫1, ⌫2, ⌫3, ⌫4) 2 P4

o
. (2.16)
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Then G acts on every T 2 N , and we can take the quotient S = T/G.

Theorem 2.10. A general element T 2 N is smooth surface of general type with
ample canonical divisor and with pg(T ) = 7, q(T ) = 0 and K 2T = 24. Further-
more the canonical map of T is a birational morphism onto a complete intersection
of three quadrics and a cubic in P6. For a general surface T 2 N , the action of G
is free and therefore S := T/G is a surface of general type with ample canonical
divisor and with pg(S) = 0 and K 2S = 3.

Proof. The base locus of N is contained in the locus given by (s0 = s1 = s2 =

s3 = 0). Using (2.13) and (2.14), we get xi0xi1 = 0 for all i = 0, 1, 2, 3; and since
2si = x2i0 + x2i1 we deduce xi0 = xi1 = 0 for all i = 0, 1, 2, 3. Therefore

(s0 = s1 = s2 = s3 = 0) \ V = {yabcd | (a, b, c, d) 2 L} ,

which, for general ⌫0, ⌫1, ⌫2, ⌫3, does not intersect T . By Bertini’s Theorem,
Sing(T ) is contained in the union of the base locus of N and Sing(V ). For a gen-
eral choice of ⌫0, ⌫1, ⌫2, ⌫3, ⌫4, the surface T does not meet Sing(V ), (cf. Propo-
sition 2.8), and as we showed, N is base point free. Hence T is nonsingular.
Since the coordinate ring of T is the quotient of Run by a regular sequence, it
is a Gorenstein graded ring and, in particular, Cohen-Macaulay. By [16, Theo-
rem 18.15] the coordinate ring of T is a domain and, accordingly, T is reduced
and irreducible. By adjunction, KT = OT (1) which is ample, and the projec-
tively Gorensteinness of T yields q = dim H1(KT ) = 0 and pg(T ) = 7. Finally
K 2T = deg(T ) = 2 deg(V ) = 24.

The canonical map 'KT of T equals ⇡|T , the map given by the sections x00 =

x01, x10, x11, x20, x21, x30, x31, cf. Notation 2.3. Since the locus of common zeros
of these sections is contained in the locus (s0 = s1 = s2 = s3 = 0) we deduce
that 'KT is a morphism. Moreover since KT is ample, 'KT is finite. Since ⇡|V
is birational, and T 2 N is a general element of a movable linear system, 'KT is
also birational. Then the canonical image 'KT (T ) is a nondegenerate surface of
degree K 2T = 24 in the hyperplane P6 := (x00 + x01 = 0) ⇢ P7, contained in the
locus defined by (2.1). By elimination, we find a new cubic hypersurface through
'KT (T ). From q = 0 () ⌫4

P
abcd2L(�1)a yabcd = �l, substituting yabcd with

x1b0 x2c0 x3d0

x0a and using x01 = �x00 we get

⌫4
P

abcd2L(�1)a x1b0 x2c0 x3d0

x0a = l () ⌫4
P

bcd2{0,1}3
x1b0 x2c0 x3d0

x00 = l,

which yields the irreducible cubic equation:

⌫4(x10 + x11)(x20 + x21)(x30 + x31) = x00l. (2.17)

Therefore 'KT (T ) is a surface of degree 24 contained in the intersection of the
hyperplane (x00 + x01 = 0), the quadrics (2.1) and the cubic defined by (2.17).
Since these polynomials form a regular sequence, we deduce that 'KT (T ) coincides
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with the complete intersection of 3 quadrics and 1 cubic that, choosing x00, x10,
x11, . . . , x30, x31 as basis for H0(KT ), are obtained substituting x01 for �x00 in
(2.1) and (2.17).

Let us now show that the action of G on T is free. By symmetry it is enough
to check that the 3 elements ↵1�2, ↵1↵2�2�3 and ↵1↵2↵3�1�2�3 act on T without
fixed points. In the weighted projective space P(18, 28) the fixed locus of an invo-
lution splits into three spaces; the (+,+) part (i.e., positive on the x variables and
positive on the y variables), the (�,+) part and the (0,�) part (i.e., negative on the
y variables with all the x variables 0); since the last space cuts out the empty set
on T , we will repeatedly ignore it. Denote these spaces by Fix(+,+) and Fix(�,+).
Then, referring to Table 2.1, we see that Fix(+,+)(↵1�2) is equal to:

(x00 � x01 = x10 � x11 = x20 = x21 = yabcd + ya0b0cd = 0,8abcd2L).

From (2.1) we get x00x01 = x10x11 = 0 and hence x00 = x01 = x10 = x11 = 0.
Thus all coordinates xia vanish except for, possibly, x30 or x31. From the quartic
relation yabcd ya0b0cd = x22c0x

2
3d 0

= 0, cf. (2.5), and yabcd + ya0b0cd = 0 we deduce
that yabcd = 0 for all (a, b, c, d) 2 L. Using q = 0 we obtain x30 = x31 = 0.
Hence T does not meet Fix(+,+)(↵1�2).
Next we consider the loci Fix(�,+)(↵1�2), Fix(+,+)(↵1↵2�2�3), Fix(�,+)(↵1↵2�2�3)
and Fix(+,+)(↵1↵2↵3�1�2�3) which are given by:

(x00 + x01 = x10 + x11 = x30 = x31 = yabcd + ya0b0cd = 0,8abcd2L),

(x10 � x11 = x20 + x21 = x30 = x31 = yabcd � yab0c0d = 0,8abcd2L),

(x00 = x01 = x10 + x11 = x20 � x21 = yabcd � yab0c0d = 0,8abcd2L),

(x00 � x01= x10 + x11= x20 + x21= x30 + x31= yabcd + ya0b0c0d 0 =0,8abcd2L),

respectively. Arguing as before (remembering, for the last locus, that x00+ x01 = 0
holds) we see that none of them meets T .

Finally Fix(�,+)(↵1↵2↵3�1�2�3) is given by:

(x00+ x01 = x10� x11 = x20� x21 = x30� x31 = yabcd + ya0b0c0d 0 = 0,8abcd2L).

Using (2.1) we get x2j0 = �x200. Hence s j = �s0, for all j = 1, 2, 3. From
the quartic equations (2.5) we get �y2abcd = yabcd ya0b0c0d 0 = x20x21x30x31 = x400.
Taking square roots of this equation, substituting in q = 0 and using the gen-
erality of ⌫0, ⌫1, ⌫2, ⌫3, ⌫4 we deduce that x00 = 0; and hence x01 = x j0 =

x j1 = 0 for all j = 1, 2, 3 and yabcd = 0 for all (a, b, c, d) 2 L. Therefore
T \ Fix(�,+)(↵1↵2↵3�1�2�3) = ;.

Since the action of G on T is free, S = T/G is a nonsingular surface of
general type with pg(S) = 0 and K 2S = 3. Since KT is ample, we deduce that KS
is ample.
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Remark 2.11. Theorem 2.10 shows that for every T 2 N such that

• T has at most canonical singularities,
• the action of G on T is free,

the quotient S = T/G is the canonical model of a surface of general type with
pg(S) = 0 and K 2 = 3: this provides a 4-dimensional family of these surfaces.
Remark 2.12. By analysis of the proof of Theorem 2.10, we see that if, for a given
T 2 N , the action of G has any fixed points on T then either ⌫1⌫2⌫3 = 0 or there
exists � in a finite set of (integer) multiples of i such that ⌫0�⌫1�⌫2�⌫3+�⌫4 = 0.
We shall use this observation later on.

3. A double cover

Consider the Fano 4-fold P1 ⇥ P1 ⇥ P1 ⇥ P1 with coordinates (t00, t01), (t10, t11),
(t20, t21), (t30, t31), and let � : P1 ⇥ P1 ⇥ P1 ⇥ P1 ! P(18, 28) be the map given
by:

�](x0a) = t0a0 t1at2at3a, �](x1a) = t0at1a0 t2at3a,
�](x2a) = t0at1at2a0 t3a, �](x3a) = t0at1at2at3a0,

�](yabcd)= t20a0
t21b0

t22c0 t
2
3d 0

, if a=b=c=d and �](yabcd)= t20at
2
1bt

2
2ct

2
3d otherwise.

It is straightforward to check that � (P1 ⇥ P1 ⇥ P1 ⇥ P1) = Y ⇢ P(18, 28).

Proposition 3.1. The map � : P1⇥P1⇥P1⇥P1 ! Y is finite of degree 2 branched
exactly at the set {xia, yabcd : 0  i  3, (a, b, c, d) 2 L}.

Proof. Let Uia ⇢ Y be the open subset of Y given by xia 6= 0. First note that
��1(yabcd) consists of a point, more precisely one of the coordinate points of P1 ⇥

P1 ⇥ P1 ⇥ P1. Moreover, the family {Uia}, with 0  i  3 and a 2 {0, 1} is an
open affine cover of Y \ {yabcd}. Consider the restriction �| : ��1(U00) ! U00.
The open set ��1(U00) is simply C4 with coordinates

t00
t01

,
t11
t10

,
t21
t20

,
t31
t30

.

The coordinate ring ofU00, which we denote byC[U00], is generated by the regular
functions:

xia
x00

,
yabcd
x200

, with 0  i  3 and (a, b, c, d) 2 L.

Computing the image by �
]
|
of each of the generators of C[U00], we get the gen-

erators of the ideal ( t00t01 ,
t11
t10 ,

t21
t20 ,

t31
t30 )

2. Hence �| : ��1(U00) ! U00 is finite of
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degree 2. The same computation on eachUia yields the same result, showing that �
is a double cover. Additionally, the involution s 2 Aut

�
P1 ⇥ P1 ⇥ P1 ⇥ P1

�
given

by
s(tia) = (�1)atia, for 0  i  3 and a 2 {0, 1} (3.1)

satisfies � � s = � . Note that s has exactly 16 fixed points, the coordinate points of
P1 ⇥ P1 ⇥ P1 ⇥ P1. In particular, � branches exactly at their images, i.e. the points
in the set {xia, yabcd : 0  i  3, (a, b, c, d) 2 L}.

Remark 3.2. We can deduce from Proposition 3.1 that SingY is the set of 16 points
{xia, yabcd : 0  i  3, (a, b, c, d) 2 L}, which are quotient singularities of type
1
2 (1, 1, 1, 1). This agrees with Proposition 2.8.
Remark 3.3. The restriction of � to the Fano 3-fold

Z1 = (t01t10t20t30 + t00t11t21t31 = 0) ⇢ P1 ⇥ P1 ⇥ P1 ⇥ P1 (3.2)

is a double cover of V , branched on the 14 singularities of V . The 3-fold Z1 is
a (special) member of |O(1, 1, 1, 1)|�, the linear system of effective divisors on
P1⇥P1⇥P1⇥P1 of degree (1, 1, 1, 1) anti-invariant respect to the involution s. A
general member of |O(1, 1, 1, 1)|� is the canonical double cover of an Enriques–
Fano 3-fold with only terminal singularities. These 3-folds were classified by Bayle
and Sano [10,33]. The image of a general member of |O(1, 1, 1, 1)|� under � falls
in case 10 of Sano’s list. Indeed the whole construction in this section has been
inspired by that case.

Recall that (Z/2)6 acts on Y as given in Table 2.1.

Table 3.1. Automorphisms of P1 ⇥ P1 ⇥ P1 ⇥ P1. (For the last 4, since the action is
diagonal we list only the eigenvalues. Here ✏ is a square-root of �1.)

t00 t01 t10 t11 t20 t21 t30 t31
↵̃1 t10 t11 t00 t01 t31 t30 t21 t20
↵̃2 t20 t21 t31 t30 t00 t01 t11 t10
↵̃3 t30 t31 t21 t20 t11 t10 t00 t01
�̃1 -✏ 1 1 �✏ 1 ✏ 1 ✏

�̃2 -✏ 1 1 ✏ 1 �✏ 1 ✏

�̃3 -✏ 1 1 ✏ 1 ✏ 1 �✏
s 1 �1 1 �1 1 �1 1 �1

In Table 3.1, we distinguish a set of automorphisms of P1 ⇥ P1 ⇥ P1 ⇥ P1, one
of which, s, has already been defined in (3.1) and the remaining ones are meant
to lift the actions of ↵1,↵2,↵3,�1,�2,�3. One can check by direct computation
that ↵̃1, ↵̃2, ↵̃3, �̃1, �̃2, �̃3 lift the action of ↵1,↵2,↵3,�1,�2,�3, i.e., that � � ↵̃i =

↵1 � � and � � �̃i = �1 � � , for i = 1, 2, 3. On the other hand, there are a
number of small checks that are straightforward. It is clear that s commutes with
every other automorphism listed in Table 3.1; it is also clear that ↵̃1, ↵̃2, ↵̃3 are
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automorphisms of order 2 commuting with each other, that �̃1, �̃2, �̃3 commute
with each other and that �̃21 = �̃22 = �̃23 = s. Finally, a less straightforward (but
still elementary) computation shows that ↵̃i �̃ j = s�i j �̃ j ↵̃i , where �i j is Kronecker’s
delta. These identities are useful in the proof of the next proposition, where we
characterize the group G̃ generated by the automorphisms that lift the generators of
G = h↵1�2,↵2�3,↵3�1i ' (Z/2)3.

Lemma 3.4. G̃ := h↵̃1�̃2, ↵̃2�̃3, ↵̃3�̃1i is isomorphic to Z/2⇥Q8, where Q8 is the
classical quaternion group.

Proof. Since deg � = 2, |G̃| equals either 2|G|, if s 2 G̃, or |G|, if s 62 G̃. Since
(↵̃1�̃2)2 = s, we get |G̃| = 2 |G| = 16. Consider the standard presentation of Q8
given by

h�1, i, j, k | (�1)2 = 1, i2 = j2 = k2 = i jk = �1i

and, for clarity, let us use multiplicative notation for Z/2 = {1,�1}. Set:

µ(1,�1) = s, µ(�1, 1) = ↵̃1�̃2↵̃2�̃3↵̃3�̃1,

µ(1, i) = ↵̃2�̃3↵̃3�̃1, µ(1, j) = ↵̃3�̃1↵̃1�̃2, µ(1, k) = ↵̃1�̃2↵̃2�̃3.

Using the identities stated earlier, one can check easily that these definitions respect
all the relations of (Z/2) ⇥ Q8 and therefore determine a group homomorphism
µ : (Z/2) ⇥ Q8 ! G̃. Since:

µ(�1,�i) = µ(�1, 1)µ(1, i)�1 = ↵̃1�̃2↵̃2�̃3↵̃3�̃1�̃
�1
1 ↵̃3�̃

�1
3 ↵̃2 = ↵̃1�̃2,

µ(�1,� j) = (↵̃1�̃2)↵̃2�̃3↵̃3�̃1(�̃
�1
2 ↵̃1)�̃

�1
1 ↵̃3 = ↵̃2�̃3↵̃3�̃1�̃

�1
1 ↵̃3 = ↵̃2�̃3,

µ(�1,�k) = ↵̃1�̃2(↵̃2�̃3)↵̃3�̃1(�̃
�1
3 ↵̃2)�̃

�1
2 ↵̃1 = s↵̃1�̃2↵̃3�̃1�̃�1

2 ↵̃1 = ↵̃3�̃1,

we deduce that µ is surjective, which, as |G̃| = |(Z/2) ⇥ Q8|, implies that µ is an
isomorphism.

We can now give a good description of the family of surfaces T/G, for general
T in the linear systemN .

Theorem 3.5. Let T 2 N be a surface with at most canonical singularities for
which the action of G on it is free. Then ⇡1(T/G) ⇠

= Z/2 ⇥ Q8 and the universal
cover of T is a complete intersection of the two hypersurfaces in P1⇥P1⇥P1⇥P1,
Z1 and Z2, of multi-degrees (1, 1, 1, 1) and (2, 2, 2, 2), respectively, given by:

Z1 = (t01t10t20t30 + t00t11t21t31 = 0) and

Z2 =

3X
i=0

⌫i

 
t2i0

Y
j 6=i

t2j1 + t2i1
Y
j 6=i

t2j0

!
� 2⌫4

X
abcd2L

(�1)
b+c+d�a

2 t20at
2
1bt

2
2ct

2
3d = 0.
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Proof. We note that T does not contain any of the 16 points in the set

{xia, yabcd | 0  i  3, (a, b, c, d) 2 L} .

Indeed T is a Cartier divisor in V , which contains 14 of these points that, by Propo-
sition 2.8, are singular points of V with Zariski tangent space of dimension 5 or 8.
In particular, if T contains one of these points, the Zariski tangent space of T at this
point has at least dimension 4, whereas every canonical singularity of a surface has
Zariski tangent space of dimension 3. Since T is the complete intersection of two
divisors (V and a quadric section, given by x00 + x01 = 0 and (2.15), respectively)
in Y , the surface T̃ := ��1(T ) is the complete intersection of their pull-back to
P1 ⇥ P1 ⇥ P1 ⇥ P1, which one easily sees are the hypersurfaces Z1 and Z2, re-
spectively, of the statement of this theorem. By the Lefschetz hyperplane section
theorem, ⇡1(T̃ ) = 0. Now as the composition T̃

�|

! T ! S is étale, we conclude
that T̃ is the universal cover of S. In particular, ⇡1(S) is isomorphic to the group
of automorphisms of the cover, which coincides with the group of automorphisms
of T̃ lifting the action of G. This is G̃, which, by Lemma 3.4, is isomorphic to
Z/2⇥ Q8.

We conclude this section by studying the locus of the moduli space of the
surfaces of general type described by the surfaces S.

Theorem 3.6. Let U be the dense open set of N ⇠
= P4 consisting of the surfaces

T with at most canonical singularities on which G acts freely. Then, the map as-
sociating to each point of U the class of the surface S/G, in the Gieseker moduli
space of surfaces of general type with � = 1 and K 2 = 3, is finite. In particular,
its image is 4-dimensional and unirational.

Proof. Let S1 := T1/G, S2 := T2/G be surfaces with T1, T2 2 U . Assume that
S1 ⇠

= S2. By Theorem 3.5, ⇡1(S1) ⇠
= ⇡1(S2) ⇠

= (Z/2) ⇥ Q8. Since the Abelianiza-
tion of (Z/2) ⇥ Q8 is (Z/2)3, each Si has exactly one (Z/2)3-cover up to isomor-
phism. Therefore from S1 ⇠

= S2, it follows that T1 ⇠
= T2. This isomorphism induces

an isomorphism of the canonical rings of T1 and T2. Choose an automorphism8 of
P(18, 28) that lifts the isomorphism between Proj R(T1, KT1) and Proj R(T2, KT2).
Note that 8 is not unique, as the image by 8] of each generator of the underlying
polynomial ring is determined only modulo the ideal of T2 and therefore, in par-
ticular, 8](xia) is determined only up to x00 + x10. In what follows we show that
8|(x00+x01=0) belongs to a finite set.

The restriction of the isomorphism 8] to the variables of degree 1 yields an
automorphism of P7, which we denote by 8̃, mapping the canonical image of T1 to
the canonical image of T2. In particular 8̃ preserves the hyperplane (x00+x01 = 0),
which is the linear span of both surfaces, and W ⇢ P7, given by (2.1), which is
their quadric hull. Recall that, as in Definition 2.2, for every (a, b, c, d) 2 L,
Habcd is the divisor of poles of the rational function '](yabcd) = 'abcd on W .
Let us consider the 8 planes given by 5abcd := Habcd \ (x00 + x01 = 0) ⇢ W .
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Then 8̃�1(5abcd) is a plane, it is contained in W , and it is the intersection of
(x00 + x01 = 0) with the divisor of the poles of ']8](yabcd). Since 8](yabcd) 2

S2 hxiai � hyabcdi, we deduce that 8̃�1 permutes the 8 planes 5abcd . The first
consequence is that 8̃�1 preserves the linear span of these 8 planes, (x00 = x10 =

0). Now, as we are only interested on 8|(x00+x01=0), we may modify 8 so that
8](x0a) = �x0a , for a = 0, 1 and for some � 2 C⇤. Then, rescaling 8], and
thus still without changing 8|(x00+x01=0), we may finally assume that 8](x0a) =

x0a . Another consequence of the fact that 8̃�1 permutes the 8 planes 5abcd is that
there exists ⌧ 2 S3, (a, b, c, d) 2 L, with a = 0 and �1, �2, �3 2 C⇤ such that
8](x10) = �1x⌧ (1)b, 8](x20) = �2x⌧ (2)c and 8](x30) = �3x⌧ (3)b. Since 8] must
also preserve (2.1) we deduce that8](x11) = ��1

1 x⌧ (1)b0 ,8](x21) = ��1
2 x⌧ (2)c0 and

8](x31) = ��1
3 x⌧ (3)b0 .

Consider the action ofS3 on P(18, 28) given, for every ⌧ 2 S3 by,

⌧ ](x0a) = x0a, ⌧ ](xia) = x⌧ (i)a, ⌧ ](ya0a1a2a3) = ya0a⌧�1(1)a⌧�1(2)a⌧�1(3)
,

for all 1  i  3 and (a, b, c, d) 2 L. We note that given ⌧ 2 S3, we have
⌧↵i⌧

�1
= ↵⌧ (i) and ⌧�i⌧

�1
= �⌧ (i), where, recall, ↵i and �i generate (Z/2)6 and

act on P(18, 28) as given in Table 2.1. These actions generate a finite group 3
of automorphisms of P(18, 28) preserving V and Y which is a semidirect product,
3 ⇠

= (Z/2)6oS3. Accordingly, going back to8, there exists9 2 3 and constants
�ia 2 C⇤ such that

(8 � 9)](xia) = (9]
� 8])(xia) = �iaxia

with �00 = �01 = 1 and �i1 = ��1
i0 . Notice that from the cubic relations (2.4)

we get (8 � 9)](yabcd) = �1b0�2c0�3d 0 yabcd . Since for both T1, T2 2 U ⇢ N
we must have ⌫4 6= 0 (for otherwise T1 or T2 would be too singular), from the
equation of the quadric section (2.15), we deduce that the products �1b0�2c0�3d 0 , for
(a, b, c, d) 2 L are all equal. This can only happen if �i1 = �i0 for i 2 {1, 2, 3}.
Hence �ia 2 {±1}, for i = 1, 2, 3 and thus there are only finitely many possibilities
for 8|(x00+x01)=0 � 9. Since 9 belongs to the finite group 3, we deduce that there
are, as well, only finitely many possibilities for 8|(x00+x01)=0.

4. The bicanonical map of S

The main goal of this section is to compare the surfaces we have constructed with
the other constructions existing in literature. To reach this goal we study the bi-
canonical map of S, which is interesting in its own right. We show that, as in the
Burniat case, the bicanonical map of S is a bidouble cover of a cubic surface in P3
with 3 nodes. This induces a birational description of these surfaces as bidouble
covers of the plane. We compute the branch divisors, and then identify the Burniat
surfaces. Not surprisingly, the branch divisors corresponding to a general surface in
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our family (cf. Figure 4) correspond exactly to the one used in the recent paper [5]
to define the extended tertiary Burniat surfaces.

Consider the action of (Z/2)6 on V as given in Table 2.1. For a subgroup of
(Z/2)6 to act on T it must preserve the equation q = 0. An element of (Z/2)6,
written as ↵

a1
1 ↵

a2
2 ↵

a3
3 �

b1
1 �

b2
2 �

b3
3 , sends q = 0 to a scalar multiple of it if and only if

the integer a1 + a2 + a3 + b1 + b2 + b3 is even. Let H be the subgroup of (Z/2)6
given by

H=

n
↵
a1
1 ↵

a2
2 ↵

a3
3 �

b1
1 �

b2
2 �

b3
3 2(Z/2)6 | a1 + a2 + a3 + b1 + b2 + b3 is even

o
. (4.1)

The group G defined in (2.10) is obviously a subgroup of H . Hence the quotient
0 := H/G ⇠

= (Z/2)2 acts on S = T/G. Denote by � : S ! S/0 the quotient
morphism. In the next proposition we show that � is the bicanonical map of S.

Proposition 4.1. Let T 2 N be a surface with at most canonical singularities and
such that the action of G on it is fixed-point free. Consider S = T/G. Then, the
bicanonical map of S is a bidouble cover of the cubic surface S3 ⇢ P3 given by
8⌫24(s1 � s0)(s2 � s0)(s3 � s0) � s0(⌫0s0 + ⌫1s1 + ⌫2s2 + ⌫3s3)2 = 0.

Proof. The bicanonical system of S is generated by the 4 invariants quadratic forms
s0, s1, s2, s3. We showed in the proof of Theorem 2.10 that s0 = s1 = s2 = s3 = 0
cuts out the empty set on T ; therefore |2KS| has no fixed part and no base points.
Since S is a minimal surface of general type with pg = 0 and K 2 � 2, by [34], the
bicanonical system is not composed with a pencil. Hence the image of '2KS is a
surface. To find its equation, we square both sides of (2.17):

⌫24(x10 + x11)2(x20 + x21)2(x30 + x31)2 = x200l
2

and use (xi0+xi1)2 = 2(si+ti ) = 2(si�s0), for i = 1, 2, 3, and s0 = x200, cf. (2.13),
(2.14). Substituting, we get 8⌫24(s1� s0)(s2� s0)(s3� s0)� s0l2 = 0. For a general
choice of ⌫0, ⌫1, ⌫2, ⌫3, ⌫4 this cubic is irreducible, hence the cubic surface S3 ⇢ P3
it defines coincides with '2KS (S). S has no (�2)-curves, as by construction KS is
ample, thus '2KS is a finite morphism of degree 4. Since s0, s1, s2, s3 are invariant
for the action of H on T , '2KS factors through � , which is also a finite morphism
of degree 4. Hence, since S3 is normal (cf. Remark 4.2), S/0 ⇠

= S3 and, up to
isomorphism, '2KS = � .

Remark 4.2. For general ⌫0, . . . , ⌫4, the cubic S3 ⇢ P3 has 3 ordinary double
points:

n1 = (s2 � s0 = s3 � s0 = ⌫0s0 + ⌫1s1 + ⌫2s2 + ⌫3s3 = 0),
n2 = (s1 � s0 = s3 � s0 = ⌫0s0 + ⌫1s1 + ⌫2s2 + ⌫3s3 = 0),
n3 = (s1 � s0 = s2 � s0 = ⌫0s0 + ⌫1s1 + ⌫2s2 + ⌫3s3 = 0);

(4.2)

and these are the only singularities of S3.
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Let us denote by ✓i 2 0 = H/G the class of ↵i�i , i.e.,

✓i = [↵i�i ] = {↵i�i g | g 2 G} . (4.3)

By Proposition 4.1, '2KS is the quotient by the action of 0 = {1, ✓1, ✓2, ✓3}. To
study this map, by the general theory of the bidouble covers (see [15]), we study its
branch locus. A ramification point of '2KS is the image of a point x 2 S fixed by
some ✓i , i.e., for which Ix 6= {1}, where Ix = {g 2 0 | gx = x} is the inertia group
of x. When S is smooth, there are 3 possibilities for Ix:

(a) Ix = h✓i i and x is an isolated fixed point of ✓i . Then, in suitable local coordi-
nates, ✓i acts by (z1, z2) 7! (�z1,�z2) and '2KS (x) is a node.

(b) Ix = h✓i i and x is not an isolated fixed point of ✓i . Then, in local coordinates, ✓i
acts by (z1, z2) 7! (�z1, z2) and the locus of all such points is a smooth curve
Ri ⇢ S.

(c) Ix = 0. Then x belongs to exactly two Ri ’s, intersecting transversally in x.

Let Di := '2KS (Ri ) and denote by 1i the image of the set of isolated fixed points
of ✓i the inertia group of which is not the whole of 0 — as in type (a), above. Then
each 1i is a set of nodes of S3. The bidouble cover is determined by D1, D2, D3
and 11,12,13.

To describe Di we introduce some notation. The intersection of S3 with the
plane s0 + si = 0 splits as the union of a line with a conic. Denote these by Li and
Ci , respectively. In other words, set

Li = (s0 = si = 0) and
Ci = (s0 + si = 16⌫24(si+1 � s0)(si+2 � s0) + l2 = 0),

(4.4)

taking the indices in {1, 2, 3}, modulo 3.

Proposition 4.3. Let Di ,1i , for i=1,2,3, be the branch loci of the map '2KS: S!

S3 ⇢ P3. Then1i = {ni } and Di = Ci+1+Li�1, taking indices in {1, 2, 3}, modulo
3.

Proof. By cyclic symmetry, it is enough to compute11 and D1. On the other hand,
the fixed points of ✓1 are the images on S of the points of T fixed by an element of
[↵1�1]. Recall that the elements of ✓1 = [↵1�1] are ↵1�1, �1�2, ↵1↵2�1�3, ↵1↵3,
↵2�1�2�3, ↵3�2, ↵1↵2↵3�3 and ↵2↵3�2�3.

Fix(+,+)(↵2�1�2�3) and Fix(�,+)(↵2�1�2�3) are given by

(x00 � x01= x10= x11= x20 + x21= x30= x31= yabcd + ya0bc0d =0,8abcd2L),
(x00 + x01 = x20 � x21 = yabcd + ya0bc0d = 0,8abcd2L),

respectively. We have Fix(+,+)(↵2�1�2�3)\T = ;. This can be seen either directly
on T or by noticing that its image in S3 must have s0 = s1 = s3 = 0 and, by (2.1),
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s2 = 0. In Fix(�,+)(↵2�1�2�3) \ T we have x00 = �x01 and x20 = x21, which by
(2.1) imply that s0 + s2 = 0. We deduce that the image of Fix(�,+)(↵2�1�2�3) \ T
in S3 is contained in L2 [ C2. Suppose that s0 = s2 = 0. Then

x00 = x01 = x20 = x21 = x10x11 = x30x31 = 0.

Assume that x10 = x30 = 0. Then using (2.5), we get y2abcd = �yabcd ya0bc0d = 0,
for all (a, b, c, d) 2 L \ {(0, 0, 0, 0), (1, 0, 1, 0)}. Hence we are left with the 2
equations:

�y20000 = x211x
2
31 = 4s1s3 and 2⌫4y0000 + l = 0,

given by (2.5) and q = 0. Eliminating y0000, we get the equation of C2 with
s0 = s2 = 0. This is independent of the choices we made. We deduce that the
image of Fix(�,+)(↵2�1�2�3) \ T is contained in C2. To see that the image of this
locus coincides with C2 it suffices to check that it is 1-dimensional. The equations
x00 + x01 = 0 and x20 � x21 = 0 define in W a 2-dimensional subscheme (in fact,
x00+ x01 is an equation ofW ). It is clear that this subscheme is not contained in the
exceptional locus of ' : W 99K V . Denote by Z its strict transform in V . Assume
x00, x01 6= 0. Then

yabcd x0a = x1b0x2c0x3d 0 = x1b0x2cx3d 0 = �ya0bc0d x0a0 =) yabcd = �ya0bc0d .

Hence on the open set x00 6= 0 of Z ⇢ V , the equations yabcd + ya0bc0d = 0 are
redundant. Hence dim Z = 2. Since we obtain T from V by taking a hypersurface
section (q = 0) we deduce that Fix(�,+)(↵2�1�2�3) \ T is 1-dimensional. We
conclude that the fixed points of ↵2�1�2�3 do not contribute to 11 and that their
contribution to D1 is C2.

Fix(+,+)(�1�2) and Fix(�,+)(�1�2) are given by:

(x10 = x11 = x20 = x21 = 0) and (x00 = x01 = x30 = x31 = 0), (4.5)

respectively. The image of Fix(�,+)(�1�2) \ T equals L3 = (s0 = s3 = 0): it is
clearly contained in L3 and the equality follows since Fix(�,+)(�1�2) � S1211 and
S1211 \ T is positive dimensional. Hence L3 ⇢ D1. Notice that by symmetry of
the indices we have just shown that L1 ⇢ D2 and L2 ⇢ D3. For the image of
Fix(+,+)(�1�2) \ T , in S3 we get s1 = s2 = 0 and then s0 = 0, which means that
Fix(+,+)(�1�2) \ T consists of the preimages of the point L1 \ L2; these are points
in R2 \ R3 — type (c) above. We conclude that the fixed points of �1�2 do not
contribute to 11 and that their contribution to D1 is L3.

Fix(+,+)(↵2↵3�2�3) and Fix(�,+)(↵2↵3�2�3) are given by:

(x20 + x21 = x30 + x31 = yabcd � yabc0d 0 = 0,8abcd2L),
(x00= x01= x10= x11= x20 � x21= x30 � x31= yabcd � yabc0d 0 =0,8abcd2L),

respectively. The locus Fix(�,+)(↵2↵3�2�3) \ T is clearly empty. For the image
of the locus Fix(+,+)(↵2↵3�2�3) \ T we get s0 � s2 = 0 and s0 � s3 = 0 and
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then from the equation of S3, s0l2 = 0. If s0 = 0 then s2 = s3 = 0 and then in
Fix(+,+)(↵2↵3�2�3) we get x00 = x01 = x20 = x21 = x30 = x31 = x10x11 = 0.
From this we deduce that all yabcd are zero, which together with q = 0 forces all
variables to be zero. Hence s0 6= 0 and we must have l = 0. To show that the
image of Fix(+,+)(↵2↵3�2�3) \ T coincides with n1, as in (4.2), it suffices to show
that this locus is nonempty. The equations x20 + x21 = x30 + x31 = 0 define in
W a subscheme of dimension 1 which is not contained in the exceptional locus of
'|W : W 99K V , hence in V they define a positive-dimensional subscheme Z 0

⇢ V .
If x00, x01 6= 0 then,

yabcd x0a = x1b0x2c0x3d 0 = x1b0x2cx3d = yabc0d 0x0a =) yabcd = yabc0d 0,

which means that in the corresponding (nonempty) open set of Z 0 the equations
yabcd = yabc0d 0 of Fix(+,+)(↵2↵3�2�3) are redundant. Hence Fix(+,+)(↵2↵3�2�3) \

V is positive-dimensional. Since T is obtained from V by taking a hypersurface
section, we deduce that Fix(+,+)(↵2↵3�2�3)\T is nonempty. We conclude that the
fixed points of ↵2↵3�2�3 do not contribute to D1 and that their contribution to 11
is {n1}.

The arguments we have used so far can be used to show that the 5 remaining
elements of [↵1�1] contribute neither to 11 nor to D1.

The cubic surface with 3 nodes S3 contains exactly 12 lines, as represented in
Figure 4.1 (courtesy of [19]).

Figure 4.1. Lines on S3.

The plane (s0 = 0) cut the lines L1, L2, L3, forming the bottom triangle in the
picture. The plane through the nodes cut the lines

Ni j = (s0 � sk = l = 0), (4.6)
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where {i, j, k} = {1, 2, 3}, forming the top triangle. Each Li intersects exactly one
of the Ni j : L1 intersects N23, L2 intersects N13 and L3 intersects N12. Consider
the plane P1 through L1 and n1, given by

(⌫0 + ⌫2 + ⌫3)s0 + ⌫1s1 = 0, (4.7)

and the analogous planes P2 through L2 and n2 and P3 through L3 and n3. S3 \Pi
splits as union of 3 lines: S3 \ Pi = L1 [ A [ A0, S3 \ P2 = L2 [ B [ B0 and
S3 \P3 = L3 [ C [ C 0. We have labeled these last 6 lines as in Figure 4.1, so that
A, B,C are pairwise disjoint.

Let ⇣ : 6 ! S3 be the the blow-up of the 3 nodes, and let Ei denote the
exceptional divisor of ni . With abuse of notation, let us denote by A, A0, B, B0, C ,
C 0, Li , Ni j the strict transforms in 6 of the namesake lines. Similarly we do not
change the notation for the strict transforms in 6 of Ci ⇢ S3. Denote by H6 be
the pull-back of an hyperplane section. Since K6 = �H6 , the strict transform of
every line in S3 is a (�1)-curve. The curves N12, N13, N23, A0, B0, C 0 are pairwise
disjoint rational curves with self-intersection�1; by Castelnuovo’s criterion we can
contract them to a smooth rational surface with K 2 = 9. Therefore, the contraction
of these curves yields a morphism ⇠ : 6 ! P2. Again, with abuse of notation,
we shall continue using the same notation for a curve in S3, its strict transform in
6, and, when it is not contracted to a point, its image in P2. Let us denote by
r12, r13, r23 and by x1, x2, x3, the points of P2 to which ⇠ contracts N12, N13, N23
and A0, B0,C 0, respectively. In P2 we get the configuration of curves of Figure 4.2.

We leave to the reader the straightforward check that L1, L2, L3, E1, E2, E3,
A, B, C in P2 are in the configuration of Figure 4.2. As for C2, using the equations
of C2 and N12, (4.4) and (4.6), we see that it meets N12 in S3. Similarly C2 meets
N23. Hence in the plane C2 contains the points r12, r23. To see that C2 contains the
points x1 and x3 it is enough to show that, in S3, C2 meets the lines A, A0 and the
lines C,C 0. Indeed, as C2 = HS3 � L2 and A + A0

= HS3 � L1 in S3, we have
C2(A + A0) = (HS3 � L2)(HS3 � L1) = H2S3 � HS3L1 � HS3L2 + L1L2 = 2.
Likewise one shows that C2(C + C 0) = 2. Additionally, C2(B + B0) = 0, hence
C2 does not contain x2. The conics C1 and C3 have similar properties, obtained by
cyclic permutation of the indices {1, 2, 3}.
Remark 4.4. Consider the following commutative diagram:

S
�

✏✏

S0

� 0

✏✏

⇠̂ //⇣̂oo S00

� 00

✏✏
S3 6

⇠
//

⇣
oo P2

(4.8)

where S0, S00, � 0, � 00, ⇣̂ , ⇠̂ are constructed as fiber products to make both squares
cartesian. Notice that ⇠̂ is the contraction of the preimages of N12, N13, N23, A0,
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Figure 4.2. The branch divisors of � 00
: S00

! P2.

B0, C 0. All horizontal maps in (4.8) are birational morphisms and all vertical maps
are bidouble covers. Consider each of the non-trivial involutions of 0, ✓i , and
denote by D0

i and D
00

i the images via � 0 and � 00 of the fix locus of ✓i . According to
Proposition 4.3, ✓i fixes each of the 2 pre-images of the node ni . Since these are
smooth isolated fixed points for ✓i , ✓i fixes each point in the exceptional divisor of
their blow up and accordingly Ei is in the branch divisor of � 00 associated with ✓i .
In conclusion, we have

D00

1 = E1 + C2 + L3 D00

2 = E2 + C3 + L1 D00

3 = E3 + C1 + L2. (4.9)

In the Figure 4.2 we have depicted the divisor D00

1 by dashed lines and by dotted lines
the divisor D00

2 . Note that S
00 is singular and ⇠̂ is a resolution of its singularities.

Theorem 4.5. A general surface in the 1-dimensional linear subsystem

B=

n
T =V \ (q=0) |(⌫0,⌫1,⌫2,⌫3,⌫4)=(�⌫,⌫,⌫,⌫,⌫4), for (⌫,⌫4)2P1

o
⇢ N

is a surface with 24 isolated rational double points as only singularities and G acts
freely on it. The quotient T/G is the canonical model of a tertiary Burniat surface
and, conversely, every tertiary Burniat surface arises in this way.

Proof. Analyzing the base locus of B, like in the proof of Theorem 2.10, we get
Sing(T ) ⇢ (l =

P
abcd2L(�1)a yabcd = 0), where l = ⌫(�s0 + s1 + s2 + s3). Let

T1, T2 2 B be given in V by s0 � s1 � s2 � s3 = 0 and
P

abcd2L(�1)a yabcd = 0.
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Fix coordinates x1, x2, x3 on C3. Consider the open set �00 = V \ {x00 = 0} and
the map ⇠1 : �00 ! C3 given by

⇠1(x, y) =

✓
x10
x00

,
x20
x00

,
x30
x00

◆
. (4.10)

Since x00x01 6= 0 and (2.1) hold, ⇠1(�00) is contained in C3 \ {x1x2x3 = 0} and the
map ⇠2 : C3 \ {x1x2x3 = 0} ! �00 given by

⇠2(x1, x2, x3) = (1,�1, x1,�1/x1, x2,�1/x2, x3,�1/x3, . . . ), (4.11)

is the inverse of ⇠1. Let B�00 denote the pencil {T \ �00 : T 2 B} on �00. The
pencil ⇠⇤

2B�00 is spanned by ⇠1(T1 \ �00) and ⇠1(T2 \ �00), whose equations are:

F1 := 1�
1
2
P

i>0
�
x2i + 1/x2i

�
= 0,

F2 := (x1 � 1/x1)(x2 � 1/x2)(x3 � 1/x3) = 0,
(4.12)

respectively. We show next that a general member of ⇠⇤

2B�00 is smooth outside a
(fixed) set of 24 rational double points. Since @F1

@xi = 1/x3i � xi , the singularities of
⇠1(T1 \ �00) lie in the set defined by x41 = x42 = x43 = 1. These equations define
64 points. However only the 24 points of the set

D = {(±✏,±1,±1), (±1,±✏,±1), (±1,±1,±✏)} , (4.13)

where ✏ is a square root of �1, actually belong to ⇠1(T1 \ �00). As @2F1
@xi @x j = 0, for

i 6= j , and @2F1
@x2i

= �3/x4i � 1, we see that the determinant of the Hessian matrix
is nonzero at the points of D, showing that they are indeed ordinary double points
of ⇠1(T1 \ �00). For every point ofD, two factors of F2 vanish, thus it is clear that
⇠1(T2 \ �00) is also singular at the points ofD. This shows that a general member
of ⇠⇤

2B�00 has a rational double point at each point of D. Since ⇠1(T1 \ �00) is
smooth away from D it follows that a general member of ⇠⇤

2B�00 is also smooth
away fromD.

We proceed to show that a general T2B is smooth along T \(x00=0)=T \�00.
If x00 = 0, then x01 = �x00 = 0 and, from (2.1), x10x11 = x20x21 = x30x31 = 0.
Let �

i j
ab denote the open set of V given by xiax jb 6= 0. Since a general T 2 B

has Sing(T ) ⇢ (l = 0), if all the variables x00, x01, . . . , x30, x31 but one vanish
at a point of Sing(T ) \ (x00 = 0), then from l = 0 we deduce the remaining
one must vanish also. From this, using (2.5) and the fact that Sing(T ) is con-
tained in T2 = (

P
abcd2L(�1)a yabcd = 0), we deduce that all variables must

vanish, which is impossible. Hence, for a general T 2 B, there exist i, j, a, b
with j > i > 0 such that Sing(T ) \ (x00 = 0) ⇢ �

i j
ab. Since the role that

x10, x11, x20, x21, x30, x31 play in the equations of V and T 2 B is symmetric, we
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may reduce to showing that a general member T 2 B is smooth along T \ (x00 =

0) \ �23
11. Similarly to what we did earlier, we consider a map ⇣1 : �23

11 ! P(13, 2)
given by ⇣1(x, y) = (x00, x21, x31, y0000). This map has image the (affine) open
set defined by x21x31y0000 6= 0. This is a consequence of the quartic relation
y0000y1100 � x221x

2
31 in (2.5) which holds in V . As before, to show that an inverse

⇣2 : P(13, 2) \ (x21x31y0000 6= 0) ! �23
11 to ⇣1 exists, it is enough to express every

variable on �23
11 has a rational function of x00, x21, x31, y0000. Using the equations

of V , i.e., (2.1), (2.4), (2.5) and x00 + x01 = 0, on �23
11 we have:

x01 = �x00, y1100 =

x221x
2
31

y0000
,

x20 =

x00x01
x21

= �

x200
x21

, x30 =

x00x01
x31

= �

x200
x31

,

x10 =

x01x21x31
y0000

= �

x00x21x31
y0000

, x11 =

x00x21x31
y1100

=

x00y0000
x21x31

.

(4.14)

which are all rational functions of x00, x21, x31, y0000. Moreover

yabc1 =

x0a0x1b0x2c0
x31

and yab1d =

x0a0x1b0x3d 0

x21
, (4.15)

which, using (4.14), can be seen to be also rational functions of x00, x21, x31, y0000.

Consider B�2311
the pencil

�
T \ �23

11 : T 2 B
 
. Next we show that a general

member of ⇣ ⇤

2B�2311
is smooth along x00 = 0. It suffices to show that ⇣1(T1 \ �23

11)

is smooth along x00 = 0. Additionally, since ⇣1(T1 \ �23
11) does not meet the

singular point of P(13, 2) we can reduce to showing quasi-smoothness, or, more
precisely, non-vanishing of the Jacobian matrix of the polynomial F3, obtained from
the equation of ⇣1(T1 \ �23

11) by setting y0000 = 1, at the points of ⇣1(T1 \ �23
11 \

(x00 = 0)). From (4.14) we deduce F3 = x200x
2
21x

2
31 � x200x

4
21x

4
31 � x200 � x400x

2
31 �

x421x
2
31� x400x

2
21� x221x

4
31 using, to ease notation, x00, x21, x31 as coordinates for the

corresponding affine piece of P(13, 2). Hence, at x00 = 0,

@F3
@x21

= �4x321x
2
31 � 2x21x431 and

@F3
@x31

= �2x421x31 � 4x221x
3
31

which have no common zeros for x21x31 6= 0.
We have shown that a general member of B is a smooth away from a set of

24 rational double points given by ⇠2(D) where D is the set of points (4.13), in
other words, the set of points given in local coordinates by (4.13). Notice that by
Remark 2.12, the group G acts freely on a general member of B. To show that S :=

T/G for a general T in B is the canonical model of a Burniat surface we analyze
(4.8) for this case in detail. We start by observing that if (⌫0, ⌫1, ⌫2, ⌫3, ⌫4) =
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(�⌫, ⌫, ⌫, ⌫, ⌫4) then the plane P1 defined in (4.7) is nothing other that the plane
(s0 + s1 = 0) and hence the conic C1 splits as A [ A0. Likewise, C2 splits up as
B [ B0 and C3 splits up as C [ C 0. Recall that n1 2 A \ A0, n2 2 B \ B0 and
n3 2 C \ C 0. Also, the nodes become n1 = (1,�1, 1, 1), n2 = (1, 1,�1, 1) and
n3 = (1, 1, 1,�1). Their pre-image in T coincides with the 24 ordinary nodes
of T . Indeed we see that 8 points of T , written in local coordinates of �00 '

C3 \ (x1x2x3 = 0) as (±✏,±1,±1), map to n1; the 8 points (±1,±✏,±1) map
to n2 and the 8 points (±1,±1,±✏) map to n3. Since G acts freely on T , each of
these sets of 8 points maps to a single point in S := T/G which is a node of S and
is fixed by every element of 0. Denote these 3 nodes of S by n̂1, n̂2, n̂3. Using the
notation of Proposition 4.3, we claim that

11 = {n1, n3} , D1 = B + B0
+ L3,

12 = {n2, n1} , D2 = C + C 0
+ L1,

13 = {n3, n2} , D3 = A + A0
+ L2.

We compute 11 and D1 by analyzing the fixed loci on T of the elements of:

[↵1�1] = {↵1�1,�1�2,↵1↵2�1�3,↵1↵3,↵2�1�2�3,↵3�2,↵1↵2↵3�3,↵2↵3�2�3} .

The computation of 12, D2, 13 and D3 follows by symmetry. Recall from the
proof of Proposition 4.3 that Fix(�1�2) \ T maps to L3 on S3, Fix(↵2�1�2�3) \ T
maps to C2 which is now B [ B0 and that Fix(↵2↵3�2�3) \ T maps to n1. With
the assumptions of that proposition, all of the other elements of [↵1�1] have empty
fixed locus on T . In case of T 2 B this is no longer true. Indeed all but ↵1↵2↵3�3
have empty fixed locus on T . To see this, recall that Fix(+,+)(↵1↵2↵3�3) and
Fix(�,+)(↵1↵2↵3�3) are given by

(x00 � x01= x10 � x11= x20 � x21= x30 + x31 = yabcd + ya0bc0d = 0,8abcd2L),
(x00 + x01= x10 + x11= x20 + x21= x30 � x31 = yabcd � yabc0d 0 = 0,8abcd2L),

respectively. It is easy to see that Fix(+,+)(↵1↵2↵3�3) \ T is empty. However the
locus Fix(�,+)(↵1↵2↵3�3) now contains the set of points {(±1,±1,±✏)}, given in
local coordinates in �00. Since n1 and n3 are the only isolated fixed points of ✓1
(notice that n2 2 B \ B0) we have 11 = {n1, n3} and D1 = B + B0

+ L3.
We claim that the branch loci of � 0

: S0
! 6 are:

D0

1 = E3 + B + B0
+ L3,

D0

2 = E2 + C + C 0
+ L1,

D0

3 = E1 + A + A0
+ L2.

Again by symmetry it is enough to compute D0

1. To do this we must analyze the
action of ✓1 on the tangent cone at n̂1, n̂2 and n̂3, showing that it fixes every tangent
direction in the tangent cone at n̂3 and that it does not act in this way on the tangent
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cones at the nodes n̂1 and n̂2. This will mean that the action of ✓1 on S0 will fix
pointwise E3 and will not fix pointwise E1 and E2. (Recall that S0 can be obtained
by blowing up n̂1, n̂2, n̂3.) To analyze the action of ✓1 on each of the nodes we will
study the action of the corresponding involutions of [↵1�1] on the local model given
by �00 ⇢ V . As we showed earlier, the involutions in [↵1�1] which fix in T points
in the pre-image of n̂1, n̂2, n̂3 are ↵2↵3�2�3, ↵2�1�2�3 and ↵1↵2↵3�3. We have
seen that ↵2�1�2�3 fixes a positive dimensional locus containing the pre-images
of n̂2, hence, locally at each pre-image, this involution cannot fix every tangent
direction to it and therefore E2 is not in D0

1. The involution ↵2↵3�2�3, whose fixed
locus on T maps to

�
n̂1

 
, can be written in the local modelC3\(x1x2x3 = 0) ' �00

as:

(x1, x2, x3) =

✓
x10
x00

,
x20
x00

,
x30
x00

◆
7!

✓
x10
x00

,�
x21
x00

,�
x31
x00

◆
=

✓
x1,

1
x2

,
1
x3

◆
.

(Recall that x00 + x01 = 0 and x00x01 = xi0xi1 =) x00/xi0 = xi1/x01.) We
see that (±✏,±1,±1) are fixed. However we see also that the fixed loci of this
involution in the ambient C3 \ (x1x2x3 = 0) is a set of four lines, going through
the 8 points (±✏,±1,±1). Hence this involution does not fix all of the tangent
directions at any of these points. This implies that ✓1 does not fix all of the tangent
directions of n̂1 and thus E1 is also not in D0

1. Finally, writing ↵1↵2↵3�3 in the
local model:

(x1, x2, x3) =

✓
x10
x00

,
x20
x00

,
x30
x00

◆
7!

✓
x11
x01

,
x21
x01

,�
x31
x01

◆
=

✓
1
x1

,
1
x2

,�
1
x3

◆
,

we see that this involution fixes exactly the set of points given in local coordinates
by {(±1,±1,±✏)}. This coincides with the pre-image of

�
n̂3

 
. Moreover, since it

fixes only finitely many points, it must fix every tangent direction at each of these
points. We conclude that ✓3 fixes every tangent direction of n̂3 and thus D0

1 =

E3 + B + B0
+ L3.

It is now easy to compute the ramification divisors of � 00
: S00

! P2. Since
S00 can be obtained by contracting the pre-images of N23, N13, N12, A0, B0,C 0 it is
clear that

D00

1 = E3 + B + L3,
D00

2 = E2 + C + L1,
D00

3 = E1 + A + L2.
(4.16)

With the help of Figure 4.2 we see that these are exactly the branch loci for a tertiary
Burniat surface.

The space of tertiary Burniat surfaces is parameterized by � 2 C⇤
\ {1} as

follows. In Figure 1.1, we may always choose coordinates (u0, u1, u2) such that
x1 = (1, 0, 0), x2 = (0, 1, 0), x3 = (0, 0, 1) and the further 3 marked points are
respectively (1, 1, 1), (1, 1, �) and (�, 1, �). The bicanonical image of the Burniat
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surface is the image of P2 in P3 by the linear system of cubics through the 6 marked
points. If we choose, as basis for this system, the cubics

s0 = �
1
2 (u0 � �u1)(u1 � u2)(u2 � �u0)

s1 = (1� �)u0(u1 � u2)(�u1 � u2) � s0
s2 = (1� �)u1(u2 � u0)(u2 � �u0) � s0
s3 = (1� �)u2(u0 � u1)(u0 � �u1) � s0,

then one can check that

(� + 1)2(s1 � s0)(s2 � s0)(s3 � s0) = �2�s0(s3 + s2 + s1 � s0)2

and we easily conclude that the tertiary Burniat surface under consideration is iso-
morphic to S = T/G with T 2 N given by �⌫0 = ⌫1 = ⌫2 = ⌫3 =

p

�� and
⌫4 = 4(� + 1).
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