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A priori estimates and existence for elliptic equations
with gradient dependent terms

NATHALIE GRENON, FRANÇOIS MURAT AND ALESSIO PORRETTA

Abstract. We consider, in a bounded domain � ⇢ RN , a class of nonlinear
elliptic equations in divergence form as

(
↵0 u � div(a(x, u, Du)) = H(x, u, Du) in �,

u = 0 on @�

where ↵0 � 0, the second order part is a coercive, pseudomonotone operator of
Leray-Lions type in the Sobolev space W1,p

0 (�), p > 1, and the function H
grows at most like |Du|q + f (x), with p�1 < q < p. Assuming f (x) to belong
to an (optimal) Lebesgue class Lm , with m < N

p , we prove a priori estimates
and existence of solutions, discussing several ranges of the exponents m, q and
p which include cases of singular data (L1 data or measures). The obtention
of a priori estimates is not straightforward because of the “superlinear”character
of the first order terms. To this purpose we use a new approach, generalizing
the method introduced in our note [29]. We complete the results known in the
previous literature where either q  p � 1 or m �

N
p .

Mathematics Subject Classification (2010): 35J60 (primary); 35J25, 35R05,
35Dxx (secondary).

1. Introduction

Let � be a bounded domain in RN , N � 1. In this paper we will deal with the
following class of nonlinear elliptic equations in divergence form

(
�div(a(x, u, Du)) + a0(x, u) = H(x, u, Du) in �,

u = 0 on @� ,
(1.1)

where the operator �div(a(x, u, Du)) is a bounded, coercive and pseudomonotone
operator of Leray-Lions type in the Sobolev space W 1,p

0 (�), p > 1, a0 satisfies
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a0(x, u)u � 0, H(x, u, Du) is a lower order term which satisfies |H(x, u, Du)| 

� |Du|q + f (x), where p � 1 < q < p, and the function f belongs to some
Lebesgue space Lm(�) to be specified later.

The simplest model that we have in mind is the following example
⇢

�1p(u) + ↵0 u = � |Du|q + f (x) in �,
u = 0 on @� ,

(1.2)

where �1p(u) = �div(|Du|p�2Du) is the p-Laplace operator and ↵0 � 0. If
p = 2, problem (1.2) is also referred to as a viscous Hamilton-Jacobi equation.

Let us now discuss the restrictions p � 1 < q < p on the growth of the right-
hand side with respect to |Du|. We confine now our discussion to the case p < N ,
even if we also deal with the case p � N in the present paper.

The case where 0  q < p � 1 is well known. Indeed, in this case an a
priori estimate for every solution of (1.1) with u 2 W 1,p

0 (�) is easily obtained
using u as test function, and existence follows; this is part of the general theory of
pseudomonotone operators of J. Leray and J.-L. Lions, see e.g. [33]. In contrast,
the limit case q = p � 1 presents important difficulties when � is large. Indeed,
while for small � the operator �div(a(x, u, Du)) � H(x, u, Du) is coercive, this
is no more the case for large � ; nevertheless this problem has been solved first by
G. Bottaro and M. E. Marina [19] in the linear case, and then by various authors in
the nonlinear case, see e.g. [8] and [23].

On the other hand, we confine here ourselves to the case q  p in order for the
growth of H(x, u, Du) not to exceed the natural energy |Du|p of the principal part
of the operator, which in particular allows us to define H(x, u, Du) as a function
of L1(�), and thus as a distribution, whenever u 2 W 1,p

0 (�). The case q > p
is completely different and largely open; some results can be found in [4, 20, 34]
and [35].

The limit case q = p has been considered in many papers, first in the case
where f 2 Lm(�) with m > N

p , allowing one to prove a priori estimates for (and
existence of) solutions of (1.1) in W 1,p

0 (�) \ L1(�), see e.g. [15–17] and [37].
The case where q = p and m =

N
p was then studied in [25, 26] (if ↵0 = 0)

and [21] (if ↵0 > 0). In those papers the authors prove a priori estimates for (and
existence of) solutions in W 1,p

0 (�) which are not bounded in general but satisfy
exp

⇣
�
p�1 |u|

⌘
� 1 2 W 1,p

0 (�). The latter regularity comes, roughly speaking,

from the underlying change of unknown function w =

h
exp

⇣
�
p�1 |u|

⌘
� 1

i
sign u

which allows one to cancel the term � |Du|p in the case of equation (1.2) with
q = p (see [25] and [26]). Let us also mention, without further comments, the case
where the right-hand side H(x, u, Du) has a good sign, namely H(x, u, Du) =

f (x) � g(x, u, Du) with g(x, s, ⇠)s � 0, see e.g. [7].
Thus, we deal here with the range p � 1 < q < p. Of course, if f 2 L

N
p (�),

the results known in the case q = p apply immediately to q < p. Therefore,
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we consider the case of f 2 Lm(�) with m < N
p , and we obtain results for the

“optimal” exponent m, which depends on q. We provide here both existence results
and, what is actually more important, a priori estimates for solutions.

The results of the present paper generalize and develop our note [29]. Similar
results were obtained in [24] and very recently in [2] using symmetrization methods
(see also [3] for the case p = 2). We finally refer to [18] for results on some
equation close to (1.2) under different assumptions.

1.1. The model problem: statement of the results in the case
of solutions of finite energy

When dealing with the problem of existence of solutions for problems like (1.2),
some necessary conditions are required on the data. Such necessary conditions are
derived in a sharp way in [1] and [30] for p = 2 and ↵0 = 0: when specialized
to the class of Lebesgue spaces, they correspond to f 2 Lm(�) with m �

N (q�1)
q

(assuming q �
N

N�1 in order to have m � 1), and k f kLm(�) sufficiently small. In
the case of arbitrary p, similar necessary conditions may be derived and lead to

f 2 Lm(�) , with m �
N (q�(p�1))

q , (1.3)

(assuming q �
N (p�1)
N�1 in order to have m � 1), and in addition, if ↵0 = 0, to

k f kLm(�) sufficiently small.
The reader may try to convince himself that condition (1.3) is natural by look-

ing at the linear case (i.e. p = 2)

�1u = � |Du|q + f (x) . (1.4)

By standard elliptic regularity1, 1u 2 Lm(�) implies u 2 W 2,m(�), which in
turn, by Sobolev embedding, implies |Du| 2 Lm⇤

(�), m⇤
=

Nm
N�m . Thus when

f 2 Lm(�) one can expect that |Du|q belongs both to Lm(�) and to L
m⇤

q (�),
which leads to take m =

m⇤

q . When p = 2 this is the equality in condition (1.3).

Henceforth, we assume condition (1.3), and more precisely, when we deal with
existence results, m =

N (q�(p�1))
q (which is the weakest condition in bounded

domains). Note that when q = p one recovers f 2 L
N
p (�), as in the above

cited literature; however, if q < p, this choice allows us to take data f in a larger
Lebesgue space, suitably depending on q, which was not considered previously.
Moreover, when ↵0 = 0 (no zero-th order term in the left-hand side), we will
assume a size condition on k f kLm(�) (as mentioned before, this is necessary) but
such a condition will not be required whenever ↵0 > 0.

1 In this paper, dealing with operators with only measurable bounded coefficients, we will never
make use of the W2,m regularity. We only use it for similar short examples like this one where
we consider the Laplace operator in order to clarify some necessary condition on the data.
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Let us now give the statement of our main results in the case of the model
problem (1.2). For any s > 1, we denote by s0 =

s
s�1 the conjugate exponent of

s, and, if 1  s < N , by s⇤ =
Ns
N�s the Sobolev embedding exponent. In this

subsection we restrict ourselves to the case p < N and to the range p�1+
p
N  q.

This range is equivalent to m =
N (q�(p�1))

q � (p⇤)0, which implies Lm(�) ⇢

W�1,p0

(�), so that the data under consideration belong to the space W�1,p0

(�)

and solutions are in W 1,p
0 (�). If p = 2, these results have been proved in our

note [29].

Theorem 1.1. Assume that p � 1 +
p
N  q < p and that f 2 Lm(�) with m =

N (q�(p�1))
q . If either
(i) ↵0 > 0,

or
(ii) ↵0 = 0 and

�
N�p
p�q

|| f ||
pm0

pm0
�p⇤

Lm(�) < C⇤ , (1.5)

where C⇤ is a given constant depending only on p, q and N , then every solution
u 2 W 1,p

0 (�) of (1.2) such that

|u|� 2 W 1,p
0 (�) , � =

(N�p)(q�(p�1))
p(p�q) , (1.6)

satisfies the estimate

kukW 1,p
0 (�)

+ k|u|�kW 1,p
0 (�)

 M , (1.7)

where M is a constant that depends on p, q, N , ↵0, � , |�| and f .

When ↵0 = 0, the constant M in (1.7) depends only on p, q, N , � and
k f kLm(�). When ↵0 > 0, the constant M does not depend only on k f kLm(�)

but it remains bounded when f varies in a set which is bounded and equi-integrable
in Lm(�).

We also observe that, using Sobolev embedding, estimate (1.7) implies an es-
timate for |u|� in L p⇤

(�), which means an estimate of u in L((p�1)m⇤)⇤(�) since
� p⇤

= ((p � 1)m⇤)⇤.
The a priori estimate (1.7) also holds for nonnegative subsolutions of (1.2)

satisfying (1.6); in this case hypothesis (1.5) can be made upon f + instead of f
(see Remark 3.4 below).

As usual, the a priori estimate (1.7) is a crucial step in the proof of the following
existence result.

Theorem 1.2. Assume that the hypotheses of Theorem 1.1 hold true. Then there
exists at least one solution u 2 W 1,p

0 (�) of (1.2) which also satisfies (1.6).
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As far as (1.6) is concerned, in the range p � 1 +
p
N  q < p, we have

1  � < 1, hence (1.6) is stronger than simply requiring u 2 W 1,p
0 (�). Let us

emphasize that the regularity class (1.6) is natural for such problems, as shown by
the following well-known example.
Example 1.3. Let � = B1(0) be the unit ball of RN . The function

u(x) = Cq (|x |�
2�q

q�(p�1)
� 1) (1.8)

satisfies, for q > p � 1+
p
N and for a suitable constant Cq ,
(
u 2 W 1,p

0 (�) ,

�1pu = |Du|q in D0(�),

but
|u|⇢�1u 2 W 1,p

0 (�) if and only if ⇢ < � .

This example (where f = 0) proves that uniqueness does not hold for solutions
of (1.2) in W 1,p

0 (�), whereas the uniqueness of solutions in W 1,p
0 (�) which also

belong to the class (1.6) has been proved in [5] when p = 2 and in [40] when
p > 2.

Moreover, this example proves that no bootstrap regularity holds for solutions
which do not satisfy (1.6). In contrast, the following result proves that bootstrap
regularity holds when starting in the class (1.6).

Theorem 1.4. Assume that the hypotheses of Theorem 1.1 hold and, in addition,
that f 2 Ls(�) with s > m =

N (q�(p�1))
q . Let u 2 W 1,p

0 (�) be a solution of (1.2)
which satisfies (1.6). Then

(i) if f 2 Ls(�), s > N
p , then u 2 L1(�),

(ii) if f 2 Ls(�), s =
N
p , then u 2 Lt (�) for any t < 1,

(iii) if f 2 Ls(�), s < N
p , then u 2 L(s⇤(p�1))⇤(�),

with corresponding estimates depending on k f kLs(�).

Note that in the above result the source f is taken in a Lebesgue space Ls(�)

with s bigger than the limiting value m =
N (q�(p�1))

q . In this case, the result fol-
lows from an estimate of |u|⌧�1u in W 1,p

0 (�) for some ⌧ bigger than the exponent
� in (1.6) (see Theorem 3.8 below).

Finally, let us point out that Theorems 1.1, 1.2 and 1.4 are nothing but the
results, specialized to the model case of equation (1.2), which we prove later in
more generality (Theorems 3.1, 3.7, 3.8).
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1.2. Main ideas of the method

Let us spend a few words on the method of proof of Theorem 1.1. The main novelty
of our work relies on the proof of this a priori estimate, which is not obvious due
to the superlinear growth of the right-hand side. Our proof, based on a continuity
argument, is new with respect to previous results which were concerned with the
case q = p where a change of unknown can get rid of the “superlinear” term.

In order to explain the difficulties related to obtaining a priori estimates, let
us consider example (1.4) where the principal part is the Laplace operator without
zero-th order term. In this very special case, one is allowed to use the Calderon-
Zygmund regularity, i.e. theW 2,m regularity of the solution (in our general context,
we will never use this regularity later). This leads to the estimate

kDukLm⇤

(�)  C1kukW 2,m(�)  C2k1ukLm(�)

 C2
⇥
� k|Du|qkLm(�) + k f kLm(�)

⇤
= C2

h
� kDukqLqm(�) + k f kLm(�)

i
.

For p = 2, the necessary condition (1.3) is nothing but qm  m⇤, hence we end up
with

kDukLm⇤

(�)  C3
h
� kDukqLm⇤

(�)
+ k f kLm(�)

i
, (1.9)

but unfortunately, since q > 1, this inequality does not provide any a priori bound
for kDukLm⇤

(�).
Notice also another consequence of the superlinear character q > 1, namely

that a size condition on k f kLm(�) is needed in order for (1.9) to be not trivial.
Indeed, since (1.9) is equivalent to F̂(|DukLm⇤

(�))  k f kLm(�), where F̂(t) =

1
C3 t � � tq , we need that k f kLm(�) < max

(0,1)
F̂(t) for (1.9) to be significant. As

mentioned before, the necessity of a size condition is a natural feature of the prob-
lem (1.2) when ↵0 = 0 [1, 30].

In order to overcome the difficulties to derive an estimate from (1.9), our idea
is the following. First of all (this is a natural idea for general operators with measur-
able coefficients and especially for nonlinear ones, since then Calderon-Zygmund
theory is not available), instead of working with kDukLm⇤

(�) we will use energy
estimates on |u|� as in (1.6). In that context, in place of (1.9) we will be able to
prove an estimate of the form

k|u|�k

1
�

H10 (�)
 C4


�

✓
k|u|�k

1
�

H10 (�)

◆q
+ k f kLm(�)

�
. (1.10)

A crucial observation now is that the estimate (1.10) remains true even for nonneg-
ative subsolutions of the equation. This allows us to obtain the estimate (1.10) for
the family of functions Gk(u) = (|u| � k)+, where k > 0, namely

k|Gk(u)|�k

1
�

H10 (�)
 C4


�

✓
k|Gk(u)|�k

1
�

H10 (�)

◆q
+ k f kLm(�)

�
8k � 0 .
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This inequality can be rewritten as

F(Yk)  k f kLm(�) , where Yk = k|Gk(u)|�k

1
�

H10 (�)
, and F(t) =

1
C4 t � � tq .

Now, if f satisfies the size condition k f kLm(�) < max(0,1) F , the equation F(Y ) =

k f kLm(�) has two positive solutions Y�

0 < Y+

0 , and the inequality implies that
either Yk  Y�

0 or Yk � Y+

0 . However, since |u|� 2 H10 (�) (i.e. since u belongs

to the class (1.6)), when k is large we have Yk = k|Gk(u)|�k

1
�

H10 (�)
close to 0 and

therefore Yk  Y�

0 for k large. By continuity, we get that Yk  Y�

0 for every k � 0.
This gives the desired estimate k|u|�kH10 (�)  Y�

0 .
In the case where ↵0 > 0, we use the same method with a slight refinement,

which allows us to remove the size condition on the data. Here the idea is that,
replacing f by f � ↵0u and localizing on the set where u > k, we have

( f � ↵0u)�{u>k}  ( f � ↵0u)�{u>k}�{ f>↵0 u}

 ( f � ↵0u)�{ f>↵0k}�{u>k}

 f �{ f>↵0k} .

Hence Gk(u) will be a subsolution for a problem with a right-hand side which is
suitably small as soon as k is large enough. A similar difference between the case
↵0 = 0 (no zero-th order term, size condition required on the data) and the case
↵0 > 0 (no size condition required on the data) already appeared for the case of the
natural growth q = p studied in [21] and [25,26]. Note also that in these papers the
class (1.6) is replaced by the requirement that (exp(�|u|) � 1) 2 W 1,p

0 (�) for some
� > 0: consistently, the exponent � in (1.6) tends to infinity as q tends to p.

The method described above will be used throughout the whole paper, although
it will be slightly modified according to the different ranges of the growth q (as
explained in the next subsection). In particular, the cases when the solutions do not
have finite energy, corresponding to the case q < p � 1+

p
N , will need some more

technicalities and a few additional arguments.

1.3. The full range of growth. Plan of the paper

Theorems 1.1, 1.2 and 1.4, which have been stated above for the model problem
(1.2), are the prototype results that we prove in this paper for the more general class
of problems (1.1).

In Section 2 we give the precise assumptions satisfied by (1.1). These as-
sumptions include in particular the case where the equation contains source terms
in the form div(F(x)) (allowed by (2.2) below) as well as transport terms of the
type B(x)Du |Du|p�2 with |B| 2 LN (�) (allowed by (2.6)-(2.7) below, as a con-
sequence of the Young inequality).

In Section 3 we state and prove the analogue of Theorems 1.1-1.4 in this more
general framework, still in the range of growth p � 1 +

p
N  q < p. Here the
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solutions have finite energy (i.e. they are usual weak solutions) and satisfy the
regularity (1.6) (note that � � 1 in this range).

The purpose of Sections 4 and 5 is to extend these results to the range2 p�1 <
q < p � 1 +

p
N . In this range we still take data f in Lm(�) with the optimal

exponent m =
N (q�(p�1))

q ; however in this range we have m < (p⇤)0, so that f
does not necessarily belong to W�1,p0

(�). This implies that solutions do not in
general belong to the energy space W 1,p

0 (�) and that a generalized formulation of
(1.2) is needed. We will use the notion of renormalized solution to give a meaning
to (1.1) in this case.

Moreover, in this range another critical exponent naturally appears, which is
q =

N (p�1)
N�1 . Indeed, the exponent m given by the equality in (1.3) satisfies m � 1

if and only if q �
N (p�1)
N�1 . This is the reason why we will distinguish between the

two cases N (p�1)
N�1  q < p� 1+

p
N (Section 4) and p� 1 < q < N (p�1)

N�1 (Section
5).

In Section 4 we consider the growth N (p�1)
N�1 < q < p � 1 +

p
N , so that the

optimal exponent m varies in the interval 1 < m < (p⇤)0, and we prove a priori
estimates, existence of solutions and bootstrap regularity for renormalized solutions
which, as in Section 1.1, satisfy condition (1.6), rephrased now (since � < 1 in this
range) as

(1+ |u|)��1u 2 W 1,p
0 (�) , � =

(N�p)(q�(p�1))
p(p�q) .

The borderline value q =
N (p�1)
N�1 corresponds to m = 1; however, one is not

allowed in this case to take general data f 2 L1(�) as we point out in Example 4.10
below. The optimal space in this case is possibly some Orlicz space (see Remark
4.12 below), but our results are only given for f 2 Lm(�) with any m > 1.

In Section 5 we deal with the range p � 1 < q < N (p�1)
N�1 and we take f in

L1(�) or more generally in the space of bounded Radon measures, and we obtain
similar results for (standard) renormalized solutions. Actually, when ↵0 > 0 (in the
model problem (1.2)) the case where f is a measure which charges a set of zero
capacity is delicate since our method relies on some equi-integrability arguments.
In this case we give two types of results: the first one concerns the case where the
singular measure is small, and the second one for any singular measure but only for
p � 2.

The differences in the range of exponents of q and m, which distinguish Sec-
tions 3, 4 and 5, are summarized by the relations (2.7) and (2.8) below.

A few more words will be said in Section 7 concerning the case of Neumann
or Robin boundary condition and the case where f belongs to some Lorentz space
(and no more to a Lebesgue space).

2 As said at the beginning of the Introduction, the case q  p � 1 is standard and already well-
known.
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To conclude, in view of the above comments, the paper will be organized as
follows:

2. Assumptions and notation;
3. The case p � 1+

p
N  q < p;

4. The case N (p�1)
N�1  q < p � 1+

p
N ;

5. The case q < N (p�1)
N�1 ;

6. The case p � N ;
7. Further remarks.

ACKNOWLEDGEMENTS. The third author wishes to thank the Laboratoire Jacques-
Louis Lions de l’Université Pierre et Marie Curie for its invitation and the warm
hospitality in July 2008, when this work was mostly completed.

2. Assumptions and notation

Let � be a bounded domain in RN , N � 1, and let p be given with 1 < p < 1.
We consider the following non linear elliptic equation:(

�div(a(x, u, Du)) + a0(x, u) = H(x, u, Du) in �,

u = 0 on @� ,
(2.1)

where a : �⇥R⇥RN
! RN , a0 : �⇥R ! R and H : �⇥R⇥RN

! R are
Carathéodory functions (i.e. measurable with respect to x , continuous with respect
to (s, ⇠ )) which satisfy, for almost every x 2 �, for every s 2 R and for every
⇠, ⇠ 0

2 RN the following assumptions:(
a(x, s, ⇠)⇠ � ↵ |⇠ |p � g(x),

↵ > 0, g 2 Lr (�) , r � 1 ,
(2.2)

(
|a(x, s, ⇠)|  � [|⇠ |p�1 + |s|p�1 + ⌘(x)] ,
� > 0, ⌘(x) 2 L

p
p�1 (�),

(2.3)

(a(x, s, ⇠) � a(x, s, ⇠ 0))(⇠ � ⇠ 0) > 0 if ⇠ 6= ⇠ 0 , (2.4)

(
a0(x, s) sign(s) � ↵0 h(|s|) ,

↵0 � 0, h 2 C(R+, R+) nondecreasing with lim
s!+1

h(s) = +1,
(2.5)

(
H(x, s, ⇠) sign(s)  � |⇠ |q + f (x)
� > 0 , p � 1 < q < p , f 2 Lm(�) , m � 1 .

(2.6)
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Observe that latest assumption allows H(x, u, Du) to be the sum of two terms
H1(x, u, Du) and H2(x, u, Du) where H2 has a good sign (this means that
H2(x, u, Du)sign(u)  0) and H1 has q-growth. Indeed, as far as a priori esti-
mates are concerned, the difficult part lies only on the part of H(x, u, Du) which
has a bad sign. On the other hand, as far as the existence of solutions is concerned, a
stronger hypothesis will be needed in order to control the growth of |H(x, u, Du)|,
see (3.35) below. Similarly, assumption (2.5) is what is needed for a priori esti-
mates, whereas some further growth condition (with respect to x) will be assumed
to obtain the existence of solutions, see (3.34) below.

As said in the introduction, the exponent m appearing in (2.6) must satisfy
condition (1.3). A similar bound is necessary as far as the exponent r appearing in
(2.2) is concerned, which reads as r �

N (q�(p�1))
p . Of course both exponents are

required to be larger than one, so we will always assume that

m = max
✓
N (q � (p � 1))

q
, 1
◆

, r = max
✓
1,
N (q � (p � 1))

p

◆
. (2.7)

As a consequence of (2.7), for 1 < p < N we will distinguish between the
following three situations depending on the q-growth (2.6) of the Hamiltonian
H(x, u, Du): p � 1 +

p
N  q < p, N (p�1)

N�1  q < p � 1 +
p
N and q < N (p�1)

N�1 ,
and we observe that in view of (2.7):

8>><
>>:
p � 1+

p
N  q < p () (p⇤)0  m < N

p , 1  r < N
p ,

N (p�1)
N�1 < q < p � 1+

p
N () 1 < m < (p⇤)0 , r = 1 ,

q < N (p�1)
N�1 ) m = 1 , r = 1,

(2.8)

where, for any s > 1, we denote by s0 =
s

s�1 the conjugate exponent of s, and, if
1  s < N , by s⇤ =

Ns
N�s the Sobolev embedding exponent.

Finally, we often use the truncation function at level k defined as follows:

Tk(s) = max(�k,min(s, k)) for every s 2 R,

and we set
Gk(s) = s � Tk(s) = (|s| � k)+ sign(s) . (2.9)

3. The case p� 1+
p
N  q < p

In this section we consider the range of q (and, correspondingly, the range of m) in
the growth of the Hamiltonian (2.6) which leads to solutions of (2.1) belonging to
W 1,p
0 (�). Indeed, when p�1+

p
N  q we have, from (2.6)-(2.8), that f 2 Lm(�)

with m =
N (q�(p�1))

q � (p⇤)0, hence data belong to W�1,p0

(�).
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In this case we consider solutions of (2.1) in the usual weak sense:
8>>><
>>>:

u 2 W 1,p
0 (�) , a0(x, u) 2 L1(�) , H(x, u, Du) 2 L1(�) ,Z

�
a(x, u, Du)D' dx +

Z
�
a0(x, u)' dx =

Z
�
H(x, u, Du)' dx

for every ' 2 W 1,p
0 (�) \ L1(�).

(3.1)

Note that in (3.1) we asked that H(x, u, Du) belongs to L1(�) because the formu-
lation of the growth condition (2.6) does not prescribe any bound from below on
the growth of H(x, u, Du)sign(u). The same reason explains the requirement on
the lower order term a0(x, u).

Our main result is the following a priori estimate.

Theorem 3.1. Assume (2.2), (2.3), (2.5), (2.6), (2.7), with p � 1 +
p
N  q < p

(hence (2.7) reads asm =
N (q�(p�1))

q , r =
N (q�(p�1))

p ). Assume further that either
(i) ↵0 > 0

or
(ii) ↵0 = 0 and

↵
�

p⇤
pm0

�p⇤
|| f ||

pm0

pm0
�p⇤

Lm(�) + ↵
�

p⇤
pr 0�p⇤

kgk
pr 0

pr 0�p⇤
Lr (�) < C⇤

↵
N�q
p�q

�
N�p
p�q

, (3.2)

whereC⇤ is the constant depending only on p, N , q defined in formula (3.20) below.
Let u satisfy (3.1) and the regularity condition

|u|� 2 W 1,p
0 (�) , � =

(N�p)(q�(p�1))
p(p�q) . (3.3)

Then we have
kukW 1,p

0 (�)
+ k|u|�kW 1,p

0 (�)
 M , (3.4)

where M depends on p, q, N , ↵0, ↵, � , |�| and the data f and g. When ↵0 = 0, the
constant M does not depend on |�|; it depends on f and g only through k f kLm(�)

and kgkLr (�) (in particular through the gap in (3.2)). When ↵0 > 0, the constant
M does not depend only on k f kLm(�) and kgkLr (�) but remains bounded when f
and g vary in sets which are bounded and equi-integrable, respectively, in Lm(�)
and in Lr (�).

Let us recall that, if ↵0 = 0, some size condition of the type of (3.2) is neces-
sary (see [1, 30]).

In the range of values p � 1 +
p
N  q < p we have 1  � < 1. Using

Sobolev embedding theorem and the values of � and m (which imply that � p⇤
=

(m⇤(p � 1))⇤), the regularity (3.3) implies that u 2 L(m⇤(p�1))⇤(�).
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Remark 3.2. Assumption (2.3) will not be used in the proof below but for ensuring
that the term a(x, u, Du) belongs to L p0

(�)N whenever u 2 W 1,p
0 (�). Therefore

Theorem 3.1 remains true if one removes assumption (2.3) and consider solutions
u such that a(x, u, Du) 2 L p0

(�)N .
Remark 3.3. The case where assumption (2.5) is relaxed into

(
9 L > 0 : a(x, s) sign(s) � ↵0h(|s|) 8|s| � L ,

↵0 � 0, h 2 C(R+, R+) nondecreasing with lim
s!+1

h(s) = +1,

can be reduced to the previous one, by defining ã0(x, s)=(a0(x, s)sign(s))+sign(s)
and replacing f with f̃ = f + |a0(x, s) � ã0(x, s)|. Assuming, for instance, that
sup

|s|L a0(x, s) belongs to L1(�) makes this correction harmless, since we only
add a bounded term to f . In this case, nothing changes if ↵0 > 0, while if ↵0 = 0
the condition (3.2) has to be modified replacing f with f̃ .
Remark 3.4. The conclusion of Theorem 3.1 remains true for nonnegative subso-
lutions of the problem⇢

�div(a(x, z, Dz)) + ↵0 h(z) = � |Dz|q + f in �,
z = 0 on @� ,

namely for z satisfying
8>>><
>>>:

z2W 1,p
0 (�) , z � 0 , z� 2W 1,p

0 (�) with � =
(N�p)(q�(p�1))

p(p�q) , h(z)2L1(�) ,Z
�
a(x, z, Dz)D' dx + ↵0

Z
�
h(z)' dx  �

Z
�

|Dz|q ' dx +

Z
�
f (x)' dx

for every ' 2 W 1,p
0 (�) \ L1(�),' � 0.

Indeed, we will see that using assumptions (2.5) and (2.6), the proof of the a priori
estimate reduces to this case, starting from (3.8) below (or from (3.28) when q =

p � 1+
p
N ).

Let us stress that in some situations it is interesting to use the result for subso-
lutions. In particular, this allows one to separate estimates on u+ and u�, whenever
u is a solution. As an example, consider the model problem (1.2), i.e.(

�1p(u) + ↵0 u = � |Du|q + f (x) in �,

u = 0 on @� .
(3.5)

It is well-known that if u 2 W 1,p
0 (�) is a solution of (3.5), then u+ satisfies

�1p(u+) + ↵0 u+

 � |Du+

|
q

+ f (x)�u�0 ,

while u� satisfies

�1p(u�) + ↵0 u�

 �� |Du�

|
q

� f (x)�u0 .
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Now, in the equation for u�, the Hamiltonian has a good sign and in particular u�

satisfies
�1p(u�) + ↵0 u�

 � f (x)�u0 .

Therefore an estimate for u� follows from standard results, without any extra con-
dition (in particular, no size condition at all). On the other hand, u+ satisfies

�1p(u+) + ↵0 u+

 � |Du+

|
q

+ f +(x)�u�0

and an estimate for u+ follows by applying the present variant of Theorem 3.1 for
subsolutions, with f + as source term. In that case, one concludes that for problem
(3.5) the necessary conditions (in particular, the size condition when ↵0 = 0) only
concern f +.

In the proof of Theorem 3.1 we need to distinguish the case p�1+ p
N < q < p

from the limiting value q = p � 1+
p
N .

Proof of Theorem 3.1 in the case p � 1+
p
N < q < p. Let Gk(s) be defined from

(2.9). We wish to take |Gk(u)|��1Gk(u) as test function in (3.1), where

� =

(p � 1)N (m � 1)
N � mp

=

N (q � (p � 1)) � q
(p � q)

. (3.6)

Observe that since p � 1 +
p
N < q < p we have 1 < � < +1. However,

this test function is not allowed, a priori, in (3.1): so we actually multiply by
|Tn(Gk(u))|��1Tn(Gk(u)) and then we let n tend to infinity. To this purpose, we
first apply (2.2), (2.5) and (2.6) to obtain

↵ �

Z
�

|DTn(u)|p |Tn(Gk(u))|��1dx + ↵0

Z
�
h(|u|)|Tn(Gk(u))|�dx

 �

Z
�

|Du|q |Tn(Gk(u))|�dx +

Z
�

| f ||Tn(Gk(u))|�dx

+ �

Z
�

|g| |Tn(Gk(u))|��1 dx ,

(3.7)

and then we let n tend to infinity, using Fatou’s lemma in the left-hand side and
Lebesgue theorem in the right-hand side. Indeed, since u belongs to (3.3), we
have |u|��1

|Du| 2 L2(�) and |u|� 2 L2⇤(�); hence a standard application of
Hölder inequality ensures that |Du|q |Gk(u)|� 2 L1(�), and since f 2 Lm(�) and
g 2 Lr (�) with the values of m and r given by (2.7), we have f |Gk(u)|� and
g |Gk(u)|��1 2 L1(�) as well. Therefore we obtain

↵ �

Z
�

|Du|p |Gk(u)|��1dx + ↵0

Z
�
h(|u|)|Gk(u)|�dx

 �

Z
�

|Du|q |Gk(u)|�dx +

Z
�

| f ||Gk(u)|�dx

+ �

Z
�

|g| |Gk(u)|��1 dx .

(3.8)
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We have

↵�

Z
�

|Du|p |Gk(u)|��1dx = ↵C
Z
�

��D(|Gk(u)|� )
��pdx , (3.9)

where
� =

�� 1
p

+ 1 =

(N � p)(q � (p � 1))
p(p � q)

, (3.10)

and C denote constants only depending on p, N , q (recall that � is also defined in
terms of p, N , q).

Similarly, by Hölder’s inequality and the definition of �

�

Z
�

|Du|qGk(u)�dx  �

✓Z
�

|Du|pGk(u)��1dx
◆ q

p
✓Z

�
|Gk(u)|�+

q
p�q dx

◆1� q
p

= �C
✓Z

�

��D(|Gk(u)|� )
��pdx

◆ q
p
✓Z

�
|Gk(u)|�+

q
p�q dx

◆1� q
p
.

But the definition of � and � imply that

�+

q
p � q

= � p⇤ ,

hence by Sobolev’s embedding theorem we obtain

�

Z
�

|Du|qGk(u)� dx  �C
✓Z

�

��D(|Gk(u)|� )
��pdx

◆ q
p+(1� q

p ) p
⇤

p
. (3.11)

Concerning the second term of the right-hand side of (3.8) we haveZ
�

| f ||Gk(u)|�dx =

Z
{| f | ↵0

2 h(|u|)}

| f ||Gk(u)|�dx +

Z
{| f |> ↵0

2 h(|u|)}

| f ||Gk(u)|�dx



↵0
2

Z
�
h(|u|) |Gk(u)|�dx +

Z
{| f |> ↵0

2 h(k)}

| f ||Gk(u)|�dx .
(3.12)

The first term of the right-hand side of (3.12) is absorbed by the second term of the
left-hand side of (3.8). Using Hölder’s inequality, and since

�m0

=

(p � 1)Nm
N � mp

= � p⇤ ,

we estimate the second term byZ
{| f |> ↵0

2 h(k)}

| f ||Gk(u)|�dx  k f �
{| f |> ↵0

2 h(k)}
kLm(�)k|Gk(u)|�kLm0

(�)

 Ck f �
{| f |> ↵0

2 h(k)}
kLm(�)kD(|Gk(u)|� )k

p⇤
m0

L p(�).

(3.13)
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Similarly, we haveZ
�

|g| |Gk(u)|��1 dx

=

Z
{|g| ↵0

2 h(|u|)|Gk(u)|}

|g||Gk(u)|��1dx +

Z
{|g|> ↵0

2 h(|u|)|Gk(u)|}

|g||Gk(u)|��1dx



↵0
2

Z
�
h(|u|) |Gk(u)|�dx +

Z
{|g|> ↵0

2 h(|u|)|Gk(u)|}

|g||Gk(u)|��1dx .

The latest term can be furtherly split asZ
{|g|> ↵0

2 h(|u|)|Gk(u)|}

|g||Gk(u)|��1dx =

Z
{|g|> ↵0

2 h(|u|)|Gk(u)|}

|g||Gk(u)|��1 �{|Gk(u)|�k}dx

+

Z
{|g|> ↵0

2 h(|u|)|Gk(u)|}

|g||Gk(u)|��1 �{|Gk(u)|>�k}dx

 ���1k kgkL1(�) +

Z
{|g|> ↵0

2 h(k)�k}

|g||Gk(u)|��1dx .

Let us choose for instance �k =
↵0

p

h(k) : with this choice we emphasize that �k can
be taken to be zero if ↵0 = 0, since in that case we do not need this technicality. We
obtain Z

�
|g| |Gk(u)|��1 dx 

↵0
2

Z
�
h(|u|) |Gk(u)|�dx

+

✓
↵0

p

h(k)

◆��1
kgkL1(�) +

Z

{|g|>
↵20
2

p

h(k)}

|g||Gk(u)|��1dx .
(3.14)

Moreover by Hölder inequality we get
Z

{|g|>
↵20
2

p

h(k)}

|g| |Gk(u)|��1 dx  kg �
{|g|>

↵20
2

p

h(k)}
kLr (�)

✓Z
�

|Gk(u)|(��1)r
0

dx
◆1� 1

r
,

and since (�� 1)r 0
=

N (p�1)m
N�mp = � p⇤, Sobolev inequality implies

Z

{|g|>
↵20
2

p

h(k)}

|g| |Gk(u)|��1 dx  kg�
{|g|>

↵20
2

p

h(k)}
kLr (�) kD(|Gk(u)|� )k

p⇤
r 0
L p(�) . (3.15)
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Set
Yk = kD(|Gk(u)|� )kL p(�) .

From (3.8), (3.9), (3.11), (3.13), (3.14) and (3.15), we now deduce that there exist
positive constants C1 and C2 such that

↵C1 Y
p
k  � C2 Y

q+(1� q
p )p⇤

k + k f �
{| f |> ↵0

2 h(k)}
kLm(�)Y

p⇤
m0

k

+

✓
↵0

p

h(k)

◆��1
kgkL1(�) + kg�

{|g|>
↵20
2

p

h(k)}
kLr (�)Y

p⇤
r 0
k .

Then, using that p
⇤

m0
and p⇤

r 0
are both less than p, Young’s inequality implies

↵C1
2

Y p
k  � C2 Y

q+(1� q
p )p⇤

k + C3 ↵
�

p⇤
pm0

�p⇤
k f �

{| f |> ↵0
2 h(k)}

k

pm0

pm0
�p⇤

Lm(�)

+

✓
↵0

p

h(k)

◆��1
kgkL1(�) + C4 ↵

�
p⇤

pr 0�p⇤
kg�

{|g|>
↵20
2

p

h(k)}
k

pr 0
pr 0�p⇤
Lr (�) .

Thus we finally obtain, for positive constants C5, C6:

8k�0, C5↵Y
p
k ��C6Y

p+(1� q
p )(p⇤

�p)
k ↵

�
p⇤

pm0
�p⇤

k f �
{| f |> ↵0

2 h(k)}
k

pm0

pm0
�p⇤

Lm(�)

+

✓
↵0

p

h(k)

◆��1
kgkL1(�) + ↵

�
p⇤

pr 0�p⇤
kg�

{|g|>
↵20
2

p

h(k)}
k

pr 0
pr 0�p⇤
Lr (�) .

(3.16)

Define the function F : R+
! R by

F(Y ) = C5 ↵ Y p
� � C6 Y p+(1� q

p )(p⇤
�p)

. (3.17)

Then (3.16) is equivalent to

8k � 0, F(Yk)  Mk , (3.18)

where

Mk := ↵
�

p⇤
pm0

�p⇤
|| f �

{| f |> ↵0
2 h(k)}

||

pm0

pm0
�p⇤

Lm(�) +

✓
↵0

p

h(k)

◆��1
kgkL1(�)

+ ↵
�

p⇤
pr 0�p⇤

kg�
{|g|>

↵20
2

p

h(k)}
k

pr 0
pr 0�p⇤
Lr (�) .

(3.19)

Since q < p, F is a concave function with a unique maximizer Z⇤
= C7

⇣
↵
�

⌘ N
p⇤(p�q)

and maximum value

F⇤

= F(Z⇤) = C⇤ ↵
N�q
p�q �

�
N�p
p�q . (3.20)
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Inequality (3.18) is non trivial only if its right-hand side is strictly smaller than F⇤.
Indeed, for any M such that 0  M < F⇤, the equation

F(Y ) = M

has two roots that we denote by Z�(M) and Z+(M), with

0  Z�(M) < Z⇤ < Z+(M) .

Here we split the proof into two cases.
(i) If ↵0 = 0, note that Mk defined in (3.19) does not depend on k and inequality

(3.18) becomes F(Yk)  M0 where

M0 = ↵
�

p⇤
pm0

�p⇤
|| f ||

pm0

pm0
�p⇤

Lm(�) + ↵
�

p⇤
pr 0�p⇤

kgk
pr 0

pr 0�p⇤
Lr (�) .

Here we use assumption (3.2), which is nothing but

M0 < F⇤ . (3.21)

Therefore, inequality (3.18) is equivalent to

8k � 0, either Yk  Z�(M0) or Yk � Z+(M0). (3.22)

But since |u|��1u 2 W 1,p
0 (�), the function k ! Yk = kD(|Gk(u)|� )kL p(�) is

continuous and tends to zero when k tends to infinity. Then, by continuity, the
alternative (3.22) implies that Yk  Z�(M0) for every k; in particular, one has

Y0 = kD(|u|� )kL p(�)  Z�(M0) < Z⇤ . (3.23)

(ii) If ↵0 > 0, we define k⇤ as

k⇤

= inf {k > 0 : Mk < F⇤

}, (3.24)

where Mk is defined in (3.18).
Since Mk is nonincreasing with respect to k, this means that for every k > k⇤

we have Mk < F⇤, hence the equation F(Y ) = Mk has two roots Z�(Mk) and
Z+(Mk), with 0 < Z�(Mk) < Z⇤ < Z+(Mk). Therefore inequality (3.18) implies
that either Yk  Z�(Mk) or Yk � Z+(Mk), which means in particular that Yk
belongs either to (0, Z⇤) or to (Z⇤,1) for every k > k⇤. Since the function k ! Yk
is continuous and tends to zero when k tends to infinity, we deduce by continuity
that Yk < Z⇤ for every k > k⇤, and therefore we have

Yk  Z�(Mk) 8k > k⇤ . (3.25)

In both cases, we deduce from either (3.23) or (3.25) that

kD(|Gk⇤(u)|� )kL p(�)  Z⇤ (3.26)

where k⇤
= 0 when ↵0 = 0, and where k⇤ is defined by (3.24) when ↵0 > 0.
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Note that the constant Z⇤ depends only on N , q, ↵ and � , but that k⇤ depends
also on the functions f and g.

Clearly, estimate (3.26) provides an estimate of kDGk⇤

1
(u)kL p(�) for k⇤

1 =

k⇤
+ 1. We then use v = Tk⇤

1
(u) in (2.1) and we get

↵

Z
�

|DTk⇤

1
(u)|pdx 

Z
�
(� |Du|q + f )| Tk⇤

1
(u)| dx

 � k⇤

1

Z
�

|DTk⇤

1
(u)|qdx + � k⇤

1

Z
�

|DGk⇤

1
(u)|qdx

+ k⇤

1k f kL1(�),

from which we deduce, using q < p and the estimate on kDGk⇤

1
(u)kL p(�), an

estimate on kDTk⇤

1
(u)kL p(�), with a constant which depends on k⇤. This yields

an estimate for kDTk⇤

1
(|u|� )kL p(�) and this concludes the proof of the estimate

(3.4).

Remark 3.5. In the case ↵0 > 0, estimate (3.25), together with the definition (3.19)
of Mk , implies that

lim
k!+1

kD(|Gk(u)|� )kL p(�) = 0

uniformly when f and g vary in sets that are bounded and equi-integrable in Lm(�)
and Lr (�), respectively.

Then, when f and g vary in such sets, Sobolev inequality implies that, uni-
formly,

lim
k!+1

kGk(u)kL� p⇤ (�) = 0

which is the equi-integrability of u in L� p⇤

(�).
Remark 3.6. A variant of the above proof consists in keeping from the beginning
the information that all integrals are restricted where |u| > k. Then (3.18) is re-
placed by

8k � 0, F(Yk)  M̃k

where (compare with (3.19))

M̃k := ↵
�

p⇤
pm0

�p⇤
�� f �

{| f |> ↵0
2 h(k) , |u|>k}

�� pm0

pm0
�p⇤

Lm(�) +

✓
↵0

p

h(k)

◆��1
kgkL1(�)

+ ↵
�

p⇤
pr 0�p⇤

kg�
{|g|>

↵20
2

p

h(k) , |u|>k}
k

pr 0
pr 0�p⇤
Lr (�) .

In particular, if ↵0 = 0, we have

M̃k := ↵
�

p⇤
pm0

�p⇤
�� f �|u|>k}

�� pm0

pm0
�p⇤

Lm(�) + ↵
�

p⇤
pr 0�p⇤

��g�{|u|>k}
�� pr 0
pr 0�p⇤
Lr (�) . (3.27)
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Then, if we define
k̃⇤

= inf {k > 0 : M̃k < F⇤

},

proceeding like in the above proof we obtain estimate (3.25) with M̃k instead of
Mk , and for every k > k̃⇤. Note that now k̃⇤ depends on the level sets of u, the
measure of which is controlled by kukL1(�).

Therefore, in this variant we obtain estimate (3.4) with a constant M depending
also on kukL1(�). This constant remains bounded when kukL1(�) is bounded and
when f and g vary in sets which are bounded and equi-integrable in Lm(�) and
Lr (�) respectively.

Moreover, as in the previous Remark, we also obtain that

lim
k!+1

kGk(u)kL� p⇤ (�) = 0

uniformly whenever kukL1(�) is bounded and f and g vary in sets which are
bounded and equi-integrable in Lm(�) and Lr (�), respectively.

This variant may have some interest if ↵0 = 0 when the size condition (3.21)
does not hold, and we will use it in this spirit in the regularity result of Theorem 3.8.

Proof of Theorem 3.1 in the case q = p � 1+
p
N . This case corresponds to f 2

Lm(�), m = (p⇤)0, g 2 Lr (�), r = 1 and � = � = 1; this means that solutions
are expected to belong precisely to the energy space W 1,p

0 (�). The above proof
remains unchanged in the case ↵0 = 0. However, if ↵0 > 0, it needs to be slightly
modified, because of the term g(x) which appears in (2.2). In fact, in the previous
situation we used � > 1 to deduce, from (3.19), that Mk is small enough for large
k. Since now � = 1, we refine a bit the previous proof, by slightly changing our
test function near u = k. So, we choose now

v = Gk(u)
|Gk(u)|

" + |Gk(u)|

as test function, where " will be chosen later. Actually, as in the proof of the previ-
ous case, we need to start with bounded test functions in (3.1). So we take in (3.1)
' = Tn(Gk(u)) |Tn(Gk(u))|

"+|Tn(Gk(u))| and we use assumptions (2.2), (2.5), (2.6) to obtain

↵

Z
�

|DTn(u)|p
Tn(Gk(u))2+ 2"|Tn(Gk(u))|

(" + |Tn(Gk(u))|)2
dx+ ↵0

Z
�
h(|u|)

Tn(Gk(u))2

"+ |Tn(Gk(u))|
dx

 �

Z
�

|Du|q
Tn(Gk(u))2

"+ |Tn(Gk(u))|
dx +

Z
�
f

Tn(Gk(u))2

" + |Tn(Gk(u))|
dx

+

Z
�

|g|
Tn(Gk(u))2 + 2"|Tn(Gk(u))|

(" + |Tn(Gk(u))|)2
dx .
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Then we pass to the limit in n, and we get, after using |t |
"+|t | 

t2+2"|t |
("+|t |)2 

2|t |
"+|t | :

↵

Z
�

|Du|p
|Gk(u)|

" + |Gk(u)|
dx + ↵0

Z
�
h(|u|)

Gk(u)2

" + |Gk(u)|
dx

 �

Z
�

|Du|q
Gk(u)2

" + |Gk(u)|
dx +

Z
�
f

Gk(u)2

" + |Gk(u)|
dx

+ 2
Z
�

|g|
|Gk(u)|

" + |Gk(u)|
dx .

(3.28)

We have

↵

Z
�

|Du|p
|Gk(u)|

" + |Gk(u)|
dx = ↵

Z
�

��D('"(Gk(u))
��pdx , (3.29)

where

'"(s) =

Z s

0

✓
|⇠ |

" + |⇠ |

◆ 1
p
d⇠ .

We have, using that p
p�q = p⇤ since q = p � 1+

p
N ,

Z
�

|Du|q
Gk(u)2

" + |Gk(u)|
dx =

Z
�

|D'"(Gk(u))|q |Gk(u)|
✓

|Gk(u)|
" + |Gk(u)|

◆1� q
p
dx



✓Z
�

|D'"(Gk(u))|pdx
◆ q

p
✓Z

�
|Gk(u)|p

⇤

dx
◆1� q

p
.

Since we have s  c('"(s) + "), we deduce
Z
�
|Du|q

Gk(u)2

"+|Gk(u)|
dxC

✓Z
�
|D'"(Gk(u))|pdx

◆q
p
✓Z

�
('"(Gk(u))+")p

⇤

dx
◆1� q

p
.

(3.30)
We deal with the term containing f exactly as in (3.13), obtaining, since now m =

(p⇤)0,
Z
�
f

Gk(u)2

" + |Gk(u)|
dx 

↵0
2

Z
�
h(|u|)

Gk(u)2

" + |Gk(u)|
dx

+ Ck f �
{ f> ↵0

2 h(k)}
kLm(�)

0
@Z

�

 
Gk(u)2

" + |Gk(u)|

!p⇤

dx

1
A

1
p⇤

.

Now observe that

t2

1+ t
 c

Z t

0

✓
⇠

1+ ⇠

◆ 1
p
d⇠ ()

s2

" + s
 c '"(s) ,
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so that we conclude
Z
�
f

Gk(u)2

" + |Gk(u)|
dx 

↵0
2

Z
�
h(|u|)

Gk(u)2

" + |Gk(u)|
dx

+ C k f �
{ f> ↵0

2 h(k)}
kLm(�)k'"(Gk(u))kL p⇤ (�) .

(3.31)

The term containing g is also dealt with as we did in (3.14)-(3.15); we obtain

2
Z
�

|g|
Gk(u)

" + |Gk(u)|
dx 

↵0
2

Z
�
h(|u|)

Gk(u)2

" + |Gk(u)|
dx

+ 2
�k

" + �k
kgkL1(�) + 2

Z
{|g|> ↵0

4 h(k)�k}

|g|dx ,

and choosing �k =
↵0

p

h(k) , we get

2
Z
�

|g|
Gk(u)

" + |Gk(u)|
dx 

↵0
2

Z
�
h(|u|)

Gk(u)2

" + |Gk(u)|
dx

+

2
"

↵0
p

h(k)
kgkL1(�) + 2k|g|�

{|g|>
↵20
4

p

h(k)}
kL1(�) .

(3.32)
We have obtained, from (3.28)-(3.32),

↵k'"(Gk(u))k
p
W 1,p
0 (�)

 � Ck'"(Gk(u))k
q
W 1,p
0 (�)

✓
k'"(Gk(u))k

p⇤(1� q
p )

W 1,p
0 (�)

+ "
p⇤(1� q

p )
◆

+ Ck f �
{ f> ↵0

2 h(k)}
kLm(�)k'"(Gk(u))kW 1,p

0 (�)

+

2
"

↵0
p

h(k)
kgkL1(�) + 2k|g|�

{|g|>
↵20
2

p

h(k)}
kL1(�) ,

which yields, using Young’s inequality,

↵

2
k'"(Gk(u))k

p
W 1,p
0 (�)

 � Ck'"(Gk(u))k
q
W 1,p
0 (�)

✓
k'"(Gk(u))k

p⇤(1� q
p )

W 1,p
0 (�)

+ "
p⇤(1� q

p )
◆

+ C ↵�
1
p�1

k f �
{ f> ↵0

2 h(k)}
k
p0

Lm(�)

+

2
"

↵0
p

h(k)
kgkL1(�) + 2k|g|�

{|g|>
↵20
2 .

p

h(k)}
kL1(�)
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Set now
Yk = k'"(Gk(u))kW 1,p

0 (�)
.

Then, the previous inequality implies, for some constants C1, C2 > 0,

C1↵Y
p
k � �C2Y

q
k

✓
Y
p⇤(1� q

p )

k + "
p⇤(1� q

p )
◆

 ↵
�

1
p�1

k f �
{ f> ↵0

2 h(k)}
k
p0

Lm(�)

+

2
"

↵0
p

h(k)
kgkL1(�)

+ 2k|g|�
{|g|>

↵20
2

p

h(k)}
kL1(�) .

(3.33)

Note that if either g = 0 or ↵0 = 0 we could have taken " = 0 and in that case
(3.33) is nothing but the inequality (3.16) with m = (p⇤)0 and r = 1, namely this
is the proof given in the previous case. Otherwise, (3.33) should be seen as an
"-perturbation of (3.16). In particular, using Young’s inequality we get

C1 ↵ Y
p
k � � C3 Y

q+p⇤(1� q
p )

k  � C4"q+p⇤(1� q
p )

+ ↵
�

1
p�1

k f �
{ f> ↵0

2 h(k)}
k
p0

Lm(�)

+

1
"

↵0
p

h(k)
kgkL1(�) + k|g|�

{|g|>
↵20
2

p

h(k)}
kL1(�) .

Here we take " small, and then choose k large enough, so that the right-hand side
is smaller than F⇤

= max
Y2(0,1)

C1 ↵ Y p
� � C3 Yq+p⇤(1� q

p ). Then, we conclude

following the previous proof.
Note that both Remarks 3.5 and 3.6 remain true as well.

As a consequence of the previous estimates, we can obtain an existence result
for problem (2.1). However, to this purpose we need to make some extra assump-
tions to control the growth of the lower order terms. We will assume that

8L > 0 9 �L 2 L1(�) : |a0(x, s)|  �L(x) 8s : |s|  L , (3.34)

and we strengthen hypothesis (2.6) assuming that
(

|H(x, s, ⇠)|  � |⇠ |q + f (x)
� > 0 , p � 1 < q < p , f 2 Lm(�) , m � 1 ,

(3.35)

where the exponents q and m still satisfy (2.7).

Let us point out that (3.35) is not the most general assumption we could choose.
Indeed, the previous a priori estimate only requires (2.6), which can be comple-
mented by assuming that H(x, u, Du)sign(u) has natural growth from below (e.g.
H(x, u, Du)sign(u) � ��(u)|Du|p � f (x) for some continuous function �(s)).
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However, such generality would require some more (technical though nowadays
well known) compactness arguments in the proof below, which is beyond the goals
of this paper. The interested reader is referred to [7] and to its subsequent extensions
for what concerns lower order terms with natural growth and “good sign”.

Theorem 3.7. Assume (2.2)–(2.7) and (3.34), (3.35), with p � 1 +
p
N  q < p,

and that either
(i) ↵0 > 0,

or
(ii) ↵0 = 0 and (3.2) holds true.

Then there exists u 2 W 1,p
0 (�), satisfying (3.3), which is a weak solution of (2.1)

in the sense of (3.1).

Proof. We consider a suitable approximate problem, replacing H(x, s, ⇠) with its
truncation Tn(H(x, s, ⇠)). By classical results (e.g. [33]), there exists a solution
un 2 W 1,p

0 (�) of the problem
⇢

�div(a(x, un, Dun)) + a0(x, un) = Tn(H(x, un, Dun)) in �,
un = 0 on @� .

(3.36)

First of all, at n fixed we show that un satisfies (3.3). Note that the only case to be
considered is that q > p � 1 +

p
N , where � > 1 and (3.3) is a stronger condition

than un 2 W 1,p
0 (�). The proof that (3.3) is satisfied by any solution un 2 W 1,p

0 (�)
follows the lines of the classical regularity results by Stampacchia ( [41]); for the
sake of clarity, we prove this claim here. Let us take |Tk(un)|��1Tk(un) as test
function in (3.36), where � is the same exponent given by (3.6). Using assumptions
(2.2) and (2.5) we get

↵ �

Z
�

|DTk(un)|p |Tk(un)|��1dx



Z
�
Tn(H(x, un, Dun))|Tk(un)|��1Tk(un)dx + �

Z
�

|g| |Tk(un)|��1 dx ,

which yieldsZ
�

|DTk(un)|p |Tk(un)|��1dx

 C n
Z
�

|Tk(un)|�dx + CkgkLr (�)

✓Z
�

|Tk(un)|(��1)r
0

dx
◆ 1

r 0
.

Using that (��1)
p + 1 = � (see (3.10)), we have
Z
�

|DTk(un)|p |Tk(un)|��1dx = C
Z
�

|D|Tk(un)|� |
p dx
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and due to Sobolev embedding we obtain
✓Z

�
|Tk(un)|� p

⇤

dx
◆ p

p⇤

 C
Z
�

|D|Tk(un)|� |
p dx

 C n
Z
�

|Tk(un)|�dx

+ CkgkLr (�)

✓Z
�

|Tk(un)|(��1)r
0

dx
◆ 1

r 0
,

hence
✓Z

�
|Tk(un)|� p

⇤

dx
◆ p

p⇤

 C
Z
�

|D|Tk(un)|� |
p dx

 C n
✓Z

�
|Tk(un)|� p

⇤

dx
◆ �
� p⇤

+ CkgkLr (�)

✓Z
�

|Tk(un)|(��1)r
0

dx
◆ 1

r 0
.

(3.37)

One can check that the values of r and � imply (as already used in Theorem 3.1)
that (� � 1)r 0

= � p⇤ and, moreover, we have �
� p⇤

< p
p⇤
(because � =

(��1)
p + 1)

and 1
r 0

< p
p⇤
(because r < N

p ). Therefore, (3.37) implies an estimate on |Tk(un)|�

in W 1,p
0 (�) which is uniform in k; letting k tend to infinity we deduce that |un|� 2

W 1,p
0 (�). Thus, we have proved that un satisfies (3.3) and now Theorem 3.1

applies, giving an estimate, which is uniform in n, both for un and for |un|� in
W 1,p
0 (�).
In particular, |Dun|q is bounded in L

p
q (�), hence, thanks to the growth con-

dition (3.35), we deduce that Tn(H(x, un, Dun)) is bounded in L⌧ (�) with ⌧ =

min( pq ,m). Since un is bounded in W 1,p
0 (�) and the right-hand side is bounded

in L1(�), well-known compactness results (see [14]) imply that, up to extracting
a subsequence, un converges weakly to some u 2 W 1,p

0 (�) with Dun which con-
verges to Du almost everywhere in �. In turn this implies that a(x, un, Dun) con-
verges weakly to a(x, u, Du) in L p0

(�)N , and that Tn(H(x, un, Dun)) converges
to H(x, u, Du) strongly in L⌧ 0

(�) for every ⌧ 0 < min( pq ,m).
In particular, the term Tn(H(x, un, Dun)) strongly converges in L1(�), which

together with assumption (3.34) yields the compactness in L1(�) of a0(x, un). We
can therefore pass to the limit in the approximate equation. This proves the exis-
tence of a solution of (3.1) which also lies in the class (3.3).

In the Introduction we already pointed out, on account of Example 1.3, that
condition (3.3) is a threshold for a bootstrap argument to work. Indeed, we prove
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now that, when the solutions satisfy (3.3), then the classical regularity results known
in the “sublinear” case q  p � 1 can be recovered. Namely, if the data f in (2.6)
have more summability, then the solutions of (3.1) satisfying (3.3) have also better
summability.

Theorem 3.8. Assume (2.2), (2.3), (2.5), (2.6), (2.7) with p � 1 +
p
N  q < p.

Assume in addition that f belongs to Ls(�), with s > N (q�(p�1))
q and g belongs to

Lt (�), with t > N (q�(p�1))
p .

Let u 2 W 1,p
0 (�) be a solution of (3.1) which satisfies (3.3). Then we have

(i) If s > N
p and t > N

p , then u 2 L1(�) and

kukL1(�)  M . (3.38)

(ii) If s = t =
N
p , then u 2 Ld(�) for any d < 1 and

kukLd (�)  M . (3.39)

(iii) If s < N
p and t �

Ns(p�1)
p(N�s) , then |u|⌧ 2 W 1,p

0 (�), u 2 L(s⇤(p�1))⇤(�) and

k|u|⌧kW 1,p
0 (�)

+ kukL(s⇤(p�1))⇤ (�)  M , ⌧ =
s(N�p)(p�1)
p(N�sp) . (3.40)

In (3.38)-(3.40), the constant M depends on p, q, s, t , N , ↵0, ↵, � , |�|, d (in case
(3.39)) and on k f kLs(�) and kgkLt (�) and, in the case ↵0 = 0, on kukL1(�) as well.

Remark 3.9. The statement of the a priori estimates (3.38)-(3.40) differs from the
estimate in Theorem 3.1 in two points.

Firstly, here the constant M depends on f , g only through k f kLs(�) and
kgkLt (�). This is due to the fact that the exponents s and t are strictly bigger than
the limiting values (m =

N (q�(p�1))
q and r =

N (q�(p�1))
p respectively) considered

in Theorem 3.1, hence a bounded set in Ls(�) is also equi-integrable in Lm(�),
and the same for Lt (�) with respect to Lr (�).

Secondly, when ↵0 = 0, the constant M depends also on kukL1(�). This is
due to the fact that we did not require condition (3.2), and we stated the result
in the viewpoint of a bootstrap regularity. Of course, if we require in addition
the size condition (3.2) (concerning the norm of f in Lm(�) and of g in Lr (�)
respectively) then kukL1(�) can be estimated from Theorem 3.1 and the constant M
will be estimated in terms of f and g only.

Proof. If we choose ' = Gk(u) as test function in (3.1), and using (2.2), (2.5), (2.6)
we obtain

↵

Z
�

|DGk(u)|p dx  �

Z
�

|Du|q Gk(u) dx +

Z
�
f Gk(u) dx +

Z
{|u|>k}

g dx . (3.41)
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Let us remark again that the choice ' = Gk(u) is not admissible a priori in (3.1) and
that the previous inequality is justified using similar arguments as in the beginning
of the proof of Theorem 3.1. Using Hölder’s inequality we have

Z
�

|Du|q Gk(u) dx 

✓Z
�

|DGk(u)|p dx
◆ q

p
✓Z

�
|Gk(u)|

p
p�q dx

◆1� q
p

. (3.42)

Now observe that since p � 1+
p
N  q < p we have p⇤


p

p�q < � p⇤, where �
is the exponent in (3.3). More precisely, one can check that p

p�q = (1 �
p
N ) p⇤

+

p
N (� p⇤). By the interpolation inequality, and then by Sobolev embedding, we get

✓Z
�

|Gk(u)|
p

p�q dx
◆1� q

p


✓Z
�

|Gk(u)|p
⇤

dx
◆ p�q

p⇤
✓Z

�
|Gk(u)|� p⇤

dx
◆ p�q

N

 C
✓Z

�
|DGk(u)|pdx

◆ p�q
p
✓Z

�
|Gk(u)|� p⇤

dx
◆ p�q

N
.

Together with (3.42) we obtain then from (3.41):

↵

Z
�

|DGk(u)|p dx  �C
✓Z

�
|DGk(u)|pdx

◆✓Z
�

|Gk(u)|� p⇤

dx
◆ p�q

N

+

Z
�
f Gk(u) dx +

Z
{|u|>k}

g dx ,

which yields, since p�q
N =

q�(p�1)
� p⇤

,

⇣
↵ � � C kGk(u)k

q�(p�1)
L� p⇤ (�)

⌘ Z
�

|DGk(u)|p dx 

Z
�
f Gk(u) dx +

Z
{|u|>k}

g dx .

Let k0 be such that

� C kGk(u)k
q�(p�1)
L� p⇤ (�)



↵

2
8k � k0 . (3.43)

Then we get

↵

2

Z
�

|DGk(u)|p dx 

Z
�
f Gk(u) dx +

Z
{|u|>k}

g dx 8k > k0 . (3.44)

Now, if f , g 2 L
N
p +�

(�) for some � > 0, we obtain from (3.44) that u 2 L1(�)
by applying the method of G. Stampacchia (see [41]).



ELLIPTIC EQUATIONS WITH GRADIENT DEPENDENT TERMS 163

If f 2 Ls(�) with (p⇤)0 < s < N
p , g 2 Lt (�) with t =

Ns(p�1)
(N�s)p , we take as

test function (after the usual approximation)  (Gk(u)), where

 (s) =

Z s

0
Tn(⇠)(⌧�1)pd⇠

where ⌧ > 1 will be chosen later. Let us stress that the truncation Tn is used here
because we give a regularity result and not only a priori estimates.

Using (2.2), (2.5), (2.6), we obtain:

↵

Z
�

|DGk(u)|p Tn(Gk(u))(⌧�1)pdx  �

Z
�

|Du|q  (Gk(u)) dx

+

Z
�
f  (Gk(u)) dx

+

Z
{|u|>k}

g Tn(Gk(u))(⌧�1)pdx .

(3.45)

Since we have

 (s) =

Z s

0
Tn(⇠)(⌧�1)pd⇠  Tn(s)(⌧�1)q

Z s

0
Tn(⇠)(⌧�1)(p�q)d⇠

 Tn(s)(⌧�1)q
✓Z s

0
Tn(⇠)⌧�1d⇠

◆p�q
sq�(p�1) ,

we get
Z
�

|Du|q  (Gk(u)) dx



Z
�

|Du|q Tn(Gk(u))(⌧�1)q
 Z Gk(u)

0
Tn(⇠)⌧�1d⇠

!p�q

Gk(u)q�(p�1) dx .

Using Hölder inequality with the three exponents p
q ,

p⇤

p�q ,
N
p�q we obtain

Z
�

|Du|q  (Gk(u)) dx 

✓Z
�

|Du|p Tn(Gk(u))(⌧�1)pdx
◆ q

p

⇥

0
@Z

�

 Z Gk(u)

0
Tn(⇠)⌧�1d⇠

!p⇤

dx

1
A

1
p⇤ (p�q) ✓Z

�
Gk(u)

N (q�(p�1))
p�q dx

◆ p�q
N

,
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and we conclude, using Sobolev embedding and recalling (see (3.3)) the value of
� =

(N�p)(q�(p�1))
p(p�q) :

Z
�

|Du|q  (Gk(u)) dx  C
✓Z

�
|Du|p Tn(Gk(u))(⌧�1)pdx

◆
kGk(u)k

q�(p�1)
L� p⇤ (�)

.

We obtain then from (3.45)

(↵ � �CkGk(u)k
q�(p�1)
L� p⇤ (�)

)

Z
�

|DGk(u)|p Tn(Gk(u))(⌧�1)pdx



Z
�
f  (Gk(u)) dx +

Z
{|u|>k}

g Tn(Gk(u))(⌧�1)pdx .

Choosing k0 as in (3.43) yields
↵

2

Z
�

|D8(Gk(u))|p dx 

Z
�
f  (Gk(u)) dx +

Z
{|u|>k}

g Tn(Gk(u))(⌧�1)pdx ,

where 8(s) =

R s
0 Tn(⇠)

⌧�1d⇠ . Now, since 8(s) �
1
⌧ Tn(u)

⌧�1u, we have

Tn(s)(⌧�1)p  Tn(s)(⌧�1)p
✓

s
Tn(s)

◆ (⌧�1)p
⌧

 C8(s)
(⌧�1)p
⌧ ,

and in a similar way we get

 (s) =

Z s

0
Tn(⇠)(⌧�1)pd⇠  C8(s)

(⌧�1)p+1
⌧ .

Therefore we have
↵

2

Z
�

|D8(Gk(u))|p dx



Z
�

| f | |8(Gk(u))|
(⌧�1)p+1

⌧ dx +

Z
{|u|>k}

|g| |8(Gk(u))|
(⌧�1)p
⌧ dx ,

and using Hölder and Sobolev inequality we obtain

↵

2
C
✓Z

�
|8(Gk(u))|p

⇤

dx
◆ p
p⇤



↵

2

Z
�

|D8(Gk(u))|p dx

 k f kLs(�)

✓Z
�

|8(Gk(u))|[
(⌧�1)p+1

⌧ ]s0 dx
◆1
s0

+ kgkLt (�)

✓Z
�

|8(Gk(u))|[
(⌧�1)p
⌧ ]t 0 dx

◆1
t 0
,

(3.46)



ELLIPTIC EQUATIONS WITH GRADIENT DEPENDENT TERMS 165

where t =
Ns(p�1)
(N�s)p . We choose now ⌧ such that [

(⌧�1)p+1
⌧ ]s0 = p⇤. The reader can

check that the values of t and ⌧ also imply [
(⌧�1)p
⌧ ]t 0 = p⇤. Therefore we obtain an

estimate on 8(Gk(u)) in L p
⇤

(�), which means, by definition of 8, an estimate on
Tn(u) in L⌧ p

⇤

(�). Finally letting n tend to infinity one obtains that u 2 L⌧ p⇤

(�)

and actually, from (3.46), that u⌧ 2 W 1,p
0 (�).

Note that, since (s⇤(p � 1))⇤ =
Ns(p�1)
N�ps tends to infinity as s tends to N

p , we
can deduce case (ii) from case (iii).

Moreover, in all cases (i)-(iii), we also obtain from the above proof correspond-
ing estimates on u depending on k f kLs(�), kgkLt (�) and on the value k0 given by
(3.43).

On the other hand, if ↵0 > 0, Remark 3.5 implies that k0 only depends on
the bound and on the equi-integrability of f in Lm(�) and of g in Lr (�), where
m =

N (q�(p�1))
q , r =

N (q�(p�1))
p . Since s > m and t > r , we deduce that k0 can

be estimated in terms of k f kLs(�) and kgkLt (�) only.
If ↵0 = 0, using Remark 3.6 we have that k0 can be estimated in terms of

k f kLs(�), kgkLt (�) and kukL1(�) as well.

4. The case N( p�1)
N�1  q < p� 1+

p
N

In this section we consider the range of values N (p�1)
N�1  q < p � 1 +

p
N . In that

case, it follows from (2.6)-(2.8) that it is possible to take data f 2 Lm(�) with
m < (p⇤)0, so that they may not belong to W�1,p0

(�). Therefore, we expect to find
solutions which are not inW 1,p

0 (�). In this case, the usual energy formulation (3.1)
can not be used, and, on the other hand, the simple distributional setting is usually
not strong enough to obtain estimates (or uniqueness, if ever). We will adopt a so-
called renormalized formulation (see [11,22]), which relies on the requirement that
the truncations Tk(u) belong to W 1,p

0 (�) for every k > 0. More precisely, we call
u a renormalized solution if it satisfies the following definition.
Definition 4.1. A function u : � ! R which is finite almost everywhere is a
renormalized solution of (2.1) if it satisfies38>>>>><
>>>>>:

Tk(u)2W
1,p
0 (�) 8 k > 0 , a0(x, u)2L1(�) , H(x, u, Du)2L1(�) ,Z

�
a(x,u,Du)D(S(u)') dx+

Z
�
a0(x, u)S(u)' dx=

Z
�
H(x,u,Du)S(u)' dx

for any Lipschitz function S : R ! R having compact support
and for any ' 2 W 1,p(�) \ L1(�) such that S(u)' 2 W 1,p

0 (�).
(4.1)

3 By Du we denote here the generalized gradient of u (see [6, 22]) which is defined, roughly
speaking, as Du = DTk(u)�{|u|<k}, for any k > 0.
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Remark 4.2. We warn the reader that in the notion of renormalized solution which
is currently used in case of L1-data (see e.g. [22]) (4.1) is usually complemented
with some requirement concerning the behaviour of the energy in the set where
|u| = +1, for example by requiring that

lim
n!1

1
n

Z
{n<|u|<2n}

a(x, u, Du)Du dx = 0 . (4.2)

However, in the range of the present section we deal with data f in Lm(�), m > 1,
and with solutions satisfying the regularity condition (4.4) below. Since condition
(4.2) is an obvious consequence of (4.4), we do not need here to add such a con-
dition in our definition of renormalized solution. This is the same spirit adopted
in [11], where the notion of renormalized solution was introduced for elliptic prob-
lems requiring only (4.1) (and not also (4.2)) to hold.

Up to this change of setting due to the fact that solutions can possibly have
infinite energy, our result concerning a priori estimates sounds like Theorem 3.1 in
the previous section.

Theorem 4.3. Assume (2.2), (2.3), (2.5), (2.6), (2.7), with N (p�1)
N�1 < q < p�1+ p

N
(hence in (2.7) we have m =

N (q�(p�1))
q , r = 1). Assume further that either

(i) ↵0 > 0,
or

(ii) ↵0 = 0 and

↵
�

p⇤
pm0

�p⇤
k f k

pm0

pm0
�p⇤

Lm(�) + 0 kgk1�✓L1(�)
� ✓  C⇤ ↵

N�q
p�q �

�
N�p
p�q (4.3)

where ✓ =
p(1�� )
q+1 > 0, and 0, C⇤ are constants depending only on p, N , q which

will be defined in (4.14), (4.13) below.

Let u be a renormalized solution, in the sense of Definition 4.1, which satisfies
the regularity condition

(1+ |u|)��1u 2 W 1,p
0 (�) , � =

(N�p)(q�(p�1))
p(p�q) . (4.4)

Then we have

k(1+ |u|)��1ukW 1,p
0 (�)

+ k|Du|p�1k
L
N (q�(p�1))

p�1 (�)
 M , (4.5)

where M depends on p, q, N , ↵0, ↵, � , |�| and the data f and g. When ↵0 = 0 the
constant M does not depend on |�|; it depends on f and g only through k f kLm(�)

and kgkL1(�) (in particular through the gap in (4.3)). When ↵0 > 0, the constant
M does not depend only on k f kLm(�) and kgkL1(�) but remains bounded when f
and g vary in sets which are bounded and equi-integrable, respectively, in Lm(�)
and in L1(�).
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Remark 4.4. Recall that since assumption (2.7) implies that m =
N (q�(p�1))

q , one
has N (q�(p�1))

(p�1) = m⇤. Thus (4.5) gives an estimate for |Du|p�1 in Lm⇤

(�).
Remark 4.5. Remarks 3.2 and 3.3 remain valid as far as Theorem 4.3 is concerned.
The same holds for Remark 3.4 if one considers nonnegative renormalized subso-
lutions.

Note that the energy requirement (4.4) implies, by itself, that the truncations
Tk(u) belong toW 1,p

0 (�), which is needed to give sense to the renormalized formu-
lation. We also stress that uniqueness results for solutions in the previous setting,
i.e. satisfying (4.1) and (4.4), have been proved in [5, 40].

Proof of Theorem 4.3. Using standard arguments in the renormalized setting and
the regularity (4.4), one can justify the choice in (4.1) of the test functions Sn , '
given by

Sn(u) =

Z Tn(Gk(u))

0
(" + |t |)p(��1) |t |

↵0" + |t |
dt and ' = 1 ,

even if Sn has not compact support. Note that we have stressed the difference
between the case ↵0 > 0 and ↵0 = 0, since in this latter case Sn has a simpler form.

We obtain, using (2.2), (2.5) and (2.6),

↵

Z
�

|DTn(u)|p (" + |Tn(Gk(u))|)p(��1) |Tn(Gk(u))|
↵0" + |Tn(Gk(u))|

dx

+ ↵0

Z
�
h(|u|)|Sn(u)|dx  �

Z
�

|Du|q |Sn(u)|dx

+

Z
�

| f ||Sn(u)|dx +

Z
�
g (" + |Tn(Gk(u))|)p(��1) |Tn(Gk(u))|

↵0" + |Tn(Gk(u))|
dx .

Then we let n tend to infinity, which is allowed thanks to (4.4) and since f 2

Lm(�), with m given by (2.7). We end up with

↵

Z
�

|Du|p (" + |Gk(u)|)p(��1) |Gk(u)|
↵0" + |Gk(u)|

dx + ↵0

Z
�
h(|u|)|S(u)|dx

 �

Z
�

|Du|q |S(u)|dx +

Z
�

| f ||S(u)|dx

+

Z
�
g (" + |Gk(u)|)p(��1) |Gk(u)|

↵0" + |Gk(u)|
dx,

(4.6)

where S(u) =

Z Gk(u)

0
(" + |t |)p(��1) |t |

↵0" + |t |
dt . Now we have

↵

Z
�
|Du|p ("+|Gk(u)|)p(��1) |Gk(u)|

↵0"+|Gk(u)|
dx=↵

Z
�

��D('"(Gk(u))
��pdx , (4.7)
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where

'"(s) =

Z s

0
(" + |⇠ |)��1

✓
|⇠ |

↵0" + |⇠ |

◆ 1
p
d⇠ .

Using that q < p, we have

Z
�

|Du|q |S(u)|dx =

Z
�

|D'"(Gk(u))|q |S(u)|
(" + |Gk(u)|)q(��1)

✓
|Gk(u)|

↵0" + |Gk(u)|

◆
�
q
p
dx



✓Z
�

|D'"(Gk(u))|pdx
◆ q

p

⇥

 Z
�


|S(u)|

(" + |Gk(u)|)q(��1)

� p
p�q

✓
|Gk(u)|

↵0" + |Gk(u)|

◆
�

q
p�q

dx

!1� q
p

.

Now we observe that we have, for some number c,


|S(u)|

(" + |Gk(u)|)q(��1)

� p
p�q

✓
|Gk(u)|

↵0" + |Gk(u)|

◆
�

q
p�q

 c ('"(Gk(u))p
⇤

+ "� p⇤

) .

Indeed, scaling ", and using that p(� � 1) +
p

p�q = � p⇤, the previous inequality
reduces to


(1+ ⇠)q(1�� )

Z ⇠

0
(1+ t)p(��1) t

↵0 + t
dt
� p
p�q ✓ ⇠

↵0 + ⇠

◆
�

q
p�q

 c

8<
:
"Z ⇠

0
(1+ t)��1

✓
t

↵0 + t

◆ 1
p
dt

#p⇤

+ 1

9=
; 8⇠ � 0 ,

which is clearly true (again since p(� � 1) +
p

p�q = � p⇤) for some c > 0.
Therefore we obtain

Z
�
|Du|q |S(u)|dx C

✓Z
�

|D'"(Gk(u))|pdx
◆q
p
✓Z

�
'"(Gk(u))p

⇤

+"� p⇤

◆1� q
p

 Ck'"(Gk(u))k
q
W 1,p
0 (�)

✓
k'"(Gk(u))k

p⇤(1� q
p )

W 1,p
0 (�)

+ "
� p⇤(1� q

p )
◆

.

(4.8)
We split the term containing f as in (3.13), obtaining

Z
�

| f ||S(u)|dx 

↵0
2

Z
�
h(|u|)|S(u)|dx +

Z
{| f |> ↵0

2 h(k)}

| f | |S(u)|dx .



ELLIPTIC EQUATIONS WITH GRADIENT DEPENDENT TERMS 169

Here we use the inequality

S(s) =

Z s

0
(" + |t |)p(��1) |t |

↵0" + |t |
dt  c '"(s)

p⇤
m0 ,

which, rescaling " and using that p(� � 1) + 1 =
� p⇤

m0
, is equivalent to

Z ⇠

0
(1+ |t |)p(��1) |t |

↵0 + |t |
dt  c

"Z ⇠

0
(1+ |t |)��1

✓
|t |

↵0 + |t |

◆ 1
p
d⇠

# p⇤
m0

,

which holds because (1+
1
p )

p⇤

m0
 1+

1
p < 2 and p(� � 1) + 1 =

� p⇤

m0
.

Therefore, using the Hölder and Sobolev inequalities, we have
Z
�

| f ||S(u)| dx 

↵0
2

Z
�
h(|u|)|S(u)| dx

+ C
Z

{| f |> ↵0
2 h(k)}

| f |'"(Gk(u))
p⇤
m0 dx



↵0
2

Z
�
h(|u|)|S(u)| dx

+ Ck f �
{| f |> ↵0

2 h(k)}
kLm(�)k'"(Gk(u))k

p⇤
m0

W 1,p
0 (�)

.

(4.9)

The term containing g is dealt with similarly as in (3.14)-(3.15); since

(" + |Gk(u)|)p(��1) |Gk(u)|
↵0" + |Gk(u)|

 2
|S(u)|
|Gk(u)|

,

we have
Z
�

|g| (" + |Gk(u)|)p(��1) Gk(u)
↵0" + Gk(u)

dx 

↵0
2

Z
�
h(|u|) |S(u)|dx

+

Z
{|g|� ↵0

4 h(|u|)|Gk(u)|}

|g| (" + |Gk(u)|)p(��1) Gk(u)
↵0" + Gk(u)

dx



↵0
2

Z
�
h(|u|) |S(u)|dx +

�k

↵0 " p(1�� )+1 kgkL1(�) +

1
" p(1�� )

Z
{|g|> ↵0

4 h(k)�k}

|g|dx .
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Choosing, for instance, �k =

↵20
p

h(k) , we obtainZ
�

|g| (" + |Gk(u)|)p(��1) Gk(u)
↵0" + Gk(u)

dx 

↵0
2

Z
�
h(|u|) S(|u|)dx

+

1
" p(1�� )+1

↵0
p

h(k)
kgkL1(�) +

1
" p(1�� )

kg�
{|g|>

↵30
4

p

h(k)}
kL1(�) .

(4.10)

We have obtained, from (4.6)-(4.10),

↵k'"(Gk(u))k
p
W 1,p
0 (�)

 � Ck'"(Gk(u))k
q
W 1,p
0 (�)

✓
k'"(Gk(u))k

p⇤(1� q
p )

W 1,p
0 (�)

+ "
� p⇤(1� q

p )
◆

+ Ck f �{| f |>ak}kLm(�)k'"(Gk(u))k
p⇤
m0

W 1,p
0 (�)

+

1
" p(1�� )+1

↵0
p

h(k)
kgkL1(�) +

1
" p(1�� )

kg�{|g|>bk}kL1(�) ,

where both ak =
↵0
2 h(k) and bk =

↵30
4

p

h(k) tend to infinity as k tends to infinity.
Then we use Young’s inequality to obtain

↵

2
k'"(Gk(u))k

p
W 1,p
0 (�)

 � Ck'"(Gk(u))k
q+p⇤(1� q

p )

W 1,p
0 (�)

+ C � "� (q+p⇤(1� q
p ))

+ ↵
�

p⇤
pm0

�p⇤
k f �{| f |>ak}k

pm0

pm0
�p⇤

Lm(�)

+

1
" p(1�� )+1

↵0
p

h(k)
kgkL1(�)+

1
" p(1�� )

kg�{|g|>bk}kL1(�).

If we set now
Yk = k'"(Gk(u))kW 1,p

0 (�)
, (4.11)

we obtain, for some constants C1, C2 > 0,

↵C1Y
p
k � � C2Y

q+p⇤(1� q
p )

k  � "
� (q+p⇤(1� q

p ))
+ ↵

�
p⇤

pm0
�p⇤

k f �{| f |>ak}k
pm0

pm0
�p⇤

Lm(�)

+

1
" p(1�� )+1

↵0
p

h(k)
kgkL1(�)

+

1
" p(1�� )

kg�{|g|>bk}kL1(�) ,

which we can rewrite, as in Theorem 3.1, as

F(Yk)  M",k , (4.12)
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where
F(Y ) = ↵C1Y p

� � C2Yq+p⇤(1� q
p )

,

and

M",k = � "
� (q+p⇤(1� q

p ))
+ ↵

�
p⇤

pm0
�p⇤

k f �{| f |>ak}k
pm0

pm0
�p⇤

Lm(�)

+

1
" p(1�� )+1

↵0
p

h(k)
kgkL1(�) +

1
" p(1�� )

kg�{|g|>bk}kL1(�) ,

being ak =
↵0
2 h(k) and bk =

↵30
4

p

h(k).
Note that, as in Theorem 3.1, the function F is concave and has a maximum

F⇤ which can be computed, obtaining, for a constant C⇤ which only depends on p,
q, N :

F⇤

:= max F(Y ) = C⇤ ↵
N�q
p�q �

�
N�p
p�q . (4.13)

Again we distinguish between two cases:
(i) if ↵0 = 0, then M",k does not depend on k and becomes

M" = � "
� (q+p⇤(1� q

p ))
+ ↵

�
p⇤

pm0
�p⇤

k f k
pm0

pm0
�p⇤

Lm(�) +

1
" p(1�� )

kgkL1(�) .

We choose now " = "0 as the minimum point of M". After some computations that

we skip and using the value of � , it turns out that "0 '

⇣
kgkL1(�)

�

⌘ 1
q+1 and

M0 = M"0 = min
"

M" = ↵
�

p⇤
pm0

�p⇤
k f k

pm0

pm0
�p⇤

Lm(�) + 0 kgk1�✓L1(�)
� ✓ , (4.14)

being ✓ =
p(1�� )
q+1 > 0 and 0 > 0 a number depending only on p, q, N . Inequality

(4.12) then becomes
F(Yk)  M0 ,

where Yk is defined in (4.11) with " = "0. We use now assumption (4.3) which is
nothing but

M0 < F⇤

= max F(Y ) . (4.15)

Then, with the same continuity argument used in Theorem 3.1, we end up with
the estimate Yk  Z�(M0) for every k � 0, where Z�(M0) is the first root of
F(Y ) = M0. For k = 0 this gives the desired estimate for '"0(u) in W

1,p
0 (�), i.e.

for
R u
0 ("0+|⇠ |)��1d⇠ , where "0 is the minimum point of M". Since "0 only depends

on kgkL1(�), we deduce an estimate on (1 + |u|)��1u in W 1,p
0 (�) depending on

k f kLm(�), kgkL1(�) and of course on p, N , q.
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(ii) if ↵0 > 0, we write " = "1 + "2 and we have

M",k  ↵
�

p⇤
pm0

�p⇤
k f �{| f |>ak}k

pm0

pm0
�p⇤

Lm(�)

+ C � "
� (q+p⇤(1� q

p ))

1 +

1
"
p(1�� )+1
1

↵0
p

h(k)
kgkL1(�)

+ C � "
� (q+p⇤(1� q

p ))

2 +

1
"
p(1�� )
2

kg�{|g|>bk}kL1(�) .

Now we choose "1 as the value which minimizes the second line and "2 as the one
which minimizes the third line. In that way we find

M"1+"2,k  ↵
�

p⇤
pm0

�p⇤
k f �{| f |>ak}k

pm0

pm0
�p⇤

Lm(�)

+ c1� ✓1
✓

↵0
p

h(k)
kgkL1(�)

◆1�✓1

+ c2 � ✓2 kg�{|g|>bk}k
1�✓2
L1(�)

,

where c1, c2 are constants depending only on p, q, N and 0 < ✓1, ✓2 < 1 (the
computations show that ✓1 =

p(1�� )+1
q+2 and ✓2 =

p(1�� )
q+1 , but the precise values of

✓1 and ✓2 are inessential in the following).
Note that "1, "2 depend on k, and actually we have

"1 '

✓
↵0

p

h(k)
kgkL1(�)

�

◆ 1
q+2

, "2 '

✓
kg�{|g|>bk}kL1(�)

�

◆ 1
q+1

.

We fix henceforth the value of " and we denote it by "k = "1 + "2. In particular,
observe that "k tends to 0 as k tends to 1. After such a choice, inequality (4.12)
only depends on k and becomes

F(Yk)  M̃k ,

where

M̃k = ↵
�

p⇤
pm0

�p⇤
k f �{ f>ak}k

pm0

pm0
�p⇤

Lm(�)

+ c1� ✓1
✓

↵0
p

h(k)
kgkL1(�)

◆1�✓1

+ c2 � ✓2 k|g|�{|g|>bk}k
1�✓2
L1(�)

.
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Using that ak and bk tend to infinity as k tends to infinity, M̃k will be smaller than
F⇤ for k sufficiently large. Since we also have that "k tends to zero when k goes to
infinity, we are allowed to define

k⇤

= inf{k > 0 : "k  1 , M̃k < F⇤

} ,

and we can apply the same argument as in Theorem 3.1 for k > k⇤. We obtain in
this way an estimate for k'"k (Gk(u))kW 1,p

0 (�)
for every k > k⇤. Since the choice of

k⇤ implies that "k  1, and since by definition of '" we have k'"(Gk(u))kW 1,p
0 (�)

�

k'1(Gk(u))kW 1,p
0 (�)

for any "  1, we have obtained an estimate for '1(Gk(u)) in

W 1,p
0 (�) for every k > k⇤. In particular, since

k'1(Gk(u))k
p
W 1,p
0 (�)

=

Z
�

|DGk(u)|p(1+ |Gk(u)|)p(��1)
✓

|Gk(u)|
↵0 + |Gk(u)|

◆
dx

�

1
↵0 + 1

Z
�

|DGk+1(u)|p(2+ |Gk+1(u)|)p(��1) dx ,

we deduce an estimate on k(1 + |Gk(u)|)��1Gk(u)kW 1,p
0 (�)

for k > k⇤
+ 1, more

precisely we get

k(1+ |Gk(u)|)��1Gk(u)kW 1,p
0 (�)

 C Z�(M̃k) , (4.16)

where Z�(M̃k) is the first root of the equation F(Y ) = M̃k .
Finally, using the truncation function, we complete the estimate when |u| is

small as in Theorem 3.1, obtaining the first estimate in (4.5).

The estimate on (1 + |u|)��1u in W 1,p
0 (�), with � < 1, yields in turn the

estimate for |Du|p�1 in some space Ls(�)with s depending on � : this is a classical
result proved by L. Boccardo and T. Gallouët in [12] (at least when p > 2�

1
N , but

the proof can be adapted for all p > 1). Indeed, when specialized to our case (i.e.
for the precise value of � ), one hasZ
�

|ru|N (q�(p�1)) dx  k(1+ |u|)��1ukN (q�(p�1))
W 1,p
0 (�)

k(1+ |u|)�k

p⇤(1� N (q�(p�1))
p )

L p⇤ (�)
,

(4.17)
which gives an estimate for |Du|p�1 in L

N (q�(p�1))
p�1 (�).

Remark 4.6. When ↵0 > 0, thanks to estimate (4.16), we deduce, as in Remark
3.5, that k|Gk(u)|�kL p⇤ (�) tends to zero when k tends to infinity, uniformly when
f and g vary in sets that are bounded and equi-integrable in Lm(�) and L1(�)
respectively. Then (4.17) (used with Gk(u)) implies that

lim
k!1

k|DGk(u)|p�1k
L
N (q�(p�1))

p�1 (�)
= 0

uniformly when f and g vary in such sets.
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When ↵0 = 0, a similar equi-integrability result can be proved if kukL1(�)
remains bounded. This can be obtained by using a variant of the above proof in the
same way as explained in Remark 3.6.

We apply Theorem 4.3 to extend the existence result of Theorem 3.7 to this
range of q and m.

Theorem 4.7. Assume (2.2)–(2.7) and (3.34), (3.35), with N (p�1)
N�1 < q < p � 1+

p
N , and that either

(i) ↵0 > 0,
or

(ii) ↵0 = 0 and (4.3) holds true.

Then there exists u satisfying (4.4) which is a renormalized solution of (2.1) in the
sense of Definition 4.1. Moreover, |Du|p�1 2 L

N (q�(p�1))
p�1 (�).

Proof. As in the proof of Theorem 3.7, we consider the sequence of approximating
solutions un 2 W 1,p

0 (�) of problem (3.36). Since un 2 W 1,p
0 (�), weak solutions

are also renormalized solution in the sense of Definition 4.1. Applying Theorem
4.3 we have that (1 + |un|)��1un is bounded in W 1,p

0 (�), which implies that, for
fixed k > 0, the truncation Tk(un) is bounded in W 1,p

0 (�). Moreover |Dun|q is

bounded in L
N (q�(p�1))

q (�) (note that since q > N (p�1)
N�1 , we have

N (q�(p�1))
q > 1).

Therefore, using (3.35), we deduce that Tn(H(x, un, Dun)) is bounded in L⌧ (�)

with ⌧ = min( N (q�(p�1))
q ,m). Since the right-hand side of (3.36) is bounded in

L1(�), again we can use compactness results in the literature (firstly due to [12],
see also the proofs in [9, 39]) to deduce that, up to extracting a subsequence, un
converges almost everywhere to some u such that (1 + |u|)��1u 2 W 1,p

0 (�), and

Dun converges to Du almost everywhere in � with |Du|p�1 2 L
N (q�(p�1))

p�1 (�). As
a consequence, the term Tn(H(x, un, Dun)) strongly converges in L1(�). Together
with (3.34), this yields the compactness of a0(x, un) in L1(�). Moreover, since the
lower order terms are compact in L1(�), we deduce the compactness of Tk(un) in
W 1,p
0 (�) for any k > 0 (see [32], [38]). Thanks to this latter fact, it is possible to

pass to the limit in the renormalized formulation, proving that u satisfies (4.1).

Remark 4.8. Since |Du|p�1 2 L
N (q�(p�1))

p�1 (�), then |Du|q�(p�1)
2 LN (�). As a

consequence, we can write

|Du|q = B(x)|Du|p�1 with B(x) 2 LN (�).

In this case one can look at problem (2.1) as a problem where the Hamiltonian term
has “linear” growth (or rather, p�1-growth, referring to the p-Laplace operator)
weighted with a LN potential. This sort of “linearization” approach is very useful
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for further results (see e.g. the uniqueness results in [5, 40], or the bootstrap result
of the next Theorem 4.9).

Thanks to Remark 4.8, it is easier in this case to prove the analogue of the
bootstrap regularity result of Theorem 3.8.

Theorem 4.9. Assume (2.2), (2.3), (2.5), (2.6), (2.7) with N (p�1)
N�1 < q < p�1+ p

N .
Assume in addition that f belongs to Ls(�), with s > N (q�(p�1))

q and g belongs to
Lt (�), with t � 1.

Let u satisfy (4.1) and (4.4). Then we have
(i) If s > N

p and t > N
p , then u 2 L1(�) and

kukL1(�)  M . (4.18)

(ii) If s = t =
N
p , then u 2 Ld(�) for any d < 1 and

kukLd (�)  M . (4.19)

(iii) If (p⇤)0 < s < N
p and t �

Ns(p�1)
p(N�s) , then |u|⌧ 2 W 1,p

0 (�), u 2 L(s⇤(p�1))⇤(�)

and

k|u|⌧kW 1,p
0 (�)

+ kukL(s⇤(p�1))⇤ (�)  M , ⌧ =
s(N�p)(p�1)
p(N�sp) . (4.20)

(iv) If N (q�(p�1))
q < s  (p⇤)0 and t � 1, then (1+ |u|)⌧ 2 W 1,p

0 (�), |Du|p�1 2

Ls⇤(�) and

k(1+ |u|)⌧�1ukW 1,p
0 (�)

+ k|Du|p�1kLs⇤ (�)  M , ⌧ =
s(N�p)(p�1)
p(N�sp) . (4.21)

In (4.18)-(4.21), the constant M depends on p, q, s, t , N , ↵0, ↵, � , |�|, d (in case
(4.19)) and on k f kLs(�) and kgkLt (�); in the sole case (iv), M depends also on the
equi-integrability of g in L1(�). Moreover, when ↵0 = 0, M depends on kukL1(�)
as well.

Proof. We only sketch the main arguments. Using (2.2), (2.5) and (2.6), one obtains
from the renormalized equation (4.1):

↵

Z
�
|DGk(u)|p80(Gk(u)) dx  �

Z
�
|DGk(u)|q 8(Gk(u)) dx

+

Z
�

| f | |8(Gk(u))| dx

+

Z
�

|g| |80(Gk(u))| dx .

(4.22)



176 NATHALIE GRENON, FRANÇOIS MURAT AND ALESSIO PORRETTA

However, in order that the function 8 be justified in (4.22), one needs, in virtue of
(4.4), that

0  80(s)  L (1+ s)(��1)p (4.23)

for some constant L , where � is defined in (4.4). We also require that

8(s)

80(s)
1
p0

 C
Z s

0
80(⇠)

1
p d⇠ , (4.24)

and so we haveZ
�
|DGk(u)|q 8(Gk(u)) dx

 C
Z
�

|DGk(u)|q�(p�1)
|DGk(u)|p�180(Gk(u))

1
p0

 Z Gk(u)

0
80(⇠)

1
p d⇠

!
dx .

From Hölder inequality with exponents N , p0, p⇤, and Sobolev inequality, we get
Z
�
|DGk(u)|q 8(Gk(u)) dx

 Ck|DGk(u)|q�(p�1)
kLN (�)

✓Z
�

|DGk(u)|p80(Gk(u))dx
◆

.

Choose now k0 such that

�Ck|DGk(u)|q�(p�1)
kLN (�) <

↵

2
8k � k0 . (4.25)

Note that this makes sense by means of Remark 4.8. Then (4.22) implies

↵

2

Z
�
|DGk(u)|p80(Gk(u)) dx 

Z
�

| f | |8(Gk(u))| dx +

Z
�

|g| |80(Gk(u))| dx .

(4.26)
In order to obtain the regularity and the estimates in the statement we only need to
choose a suitable 8 here. For instance, (4.20) (and then (4.19)) follow by choosing

8(s) =

Z s

0
(1+ |⇠ |)p(��1)

|Tn(⇠)|p(⌧�� ) d⇠

where ⌧ > � is chosen so that ⌧ p⇤
= ((⌧ � 1)p + 1)s0 (as in Theorem 3.8). One

can easily verify that8 satisfies (4.23)-(4.24). Then, from (4.26), one can conclude
reasoning as in Theorem 3.8.

Finally, the estimates found will depend on k f kLs(�), kgkLt (�) and on the
number k0 defined in (4.25). Thanks to Remark 4.6, the number k0 depends on
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the bound and the equi-integrability of f and g in L
N (q�(p�1))

q (�) and in L1(�),
respectively, and, only when ↵0 = 0, on kukL1(�) as well. As in Theorem 3.8, this
explains the statement concerning the dependence of the constant M in estimates
(4.18)-(4.21). Observe that in cases (i)-(iii) one has s > N (q�(p�1))

q and t > 1, and
so a bound on f and g in Ls(�) and Lt (�) is enough to imply both a bound and the
equi-integrability of f and g required to estimate k0; on the other hand, in case (iv)
we may possibly have t = 1 and we need to require explicitly the equi-integrability
of g in L1(�).

Let us conclude this section by looking briefly at the case q =
N (p�1)
N�1 . Observe

that this limiting value of q corresponds, through (2.7), to m = 1 and r = 1.
Nevertheless, it is not possible to consider general data in L1(�) for this situation,
as explained by the following example.
Example 4.10. Assume that f 2 L1(�), f � 0, and that there exists a renormal-
ized solution u of the problem

(
�1pu = |Du|

N (p�1)
N�1 + f in �,

u = 0 on @�.
(4.27)

In particular, we have that |Du| 2 L
N (p�1)
N�1 (�) (for simplicity let assume here that

p � 2 �
1
N , so that

N (p�1)
N�1 � 1). Then, by Sobolev embedding, u 2 L

N (p�1)
N�p (�).

By comparison, the (unique renormalized) solution of
(

�1pv = f in �,

v = 0 on @�,

satisfies 0  v  u, hence v also belongs to L
N (p�1)
N�p (�). However, it is well-known

that this is not true if one takes a general function f 2 L1(�).

In view of the above example, the assumption f 2 L1(�) is not enough to have
existence of solutions when q =

N (p�1)
N�1 . On the other hand, using our previous

results, we can prove estimates assuming that

f 2 Lm̂(�) for some m̂ > 1.

Indeed, if H(x, s, ⇠) satisfies the growth condition (3.35), we have, thanks to
Young’s inequality,

|H(x, s, ⇠)|  � |⇠ |
N (p�1)
N�1 + f (x)  �̃ |⇠ |q̃ + f̃ (x)

for any q̃ such that q̃ > N (p�1)
N�1 and m̂ > N (q̃�(p�1))

q̃ . In this way we can apply
the results in Theorem 4.3 and Theorem 4.9; since any bounded sequence in Lm̂(�)
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is equi-integrable in L
N (q̃�(p�1))

q̃ (�), we obtain an a priori bound for u depending
only on k f kLm̂(�). This allows us to get estimates and the existence of a solution.
Of course, in case ↵0 = 0 some size condition on k f kLm(�) and kgkL1(�) are
still needed; in this approach it would sound as in (4.3) for the q̃ used above. For
simplicity, in the next statement with ↵0 = 0 we only give a vague form of this
condition by saying that k f kLm(�) and kgkL1(�) should be taken sufficiently small.

Theorem 4.11. Assume (2.2)–(2.6), with q =
N (p�1)
N�1 , m > 1, r = 1, and that

either
(i) ↵0 > 0,

or
(ii) ↵0 = 0 and k f kLm(�) and kgkL1(�) are small enough.

Let u be a renormalized solution of (2.1), in the sense of Definition 4.1, which
satisfies the regularity condition

(1+ |u|)��1u 2 W 1,p
0 (�) for some � > p�1

p . (4.28)

Then we have, for ⌧ =
m(N�p)(p�1)
p(N�mp)

k(1+ |u|)⌧�1ukW 1,p
0 (�)

+ k|Du|p�1kLm⇤

(�)  M , (4.29)

where M depends on p, q, N , ↵0, ↵, � , |�| and remains bounded when f and
g vary in sets which are, respectively, bounded in Lm(�) and equi-integrable in
L1(�). Moreover, under the above assumptions together with (3.34) and (3.35),
there exists at least one renormalized solution u of (2.1) (in the sense of Definition
4.1) satisfying (4.29).

Remark 4.12. As already mentioned, the result in Theorem 4.11 is not optimal:
indeed, a sharp assumption on f should consider some interpolation space between
L1 and Lm(�) for any m > 1. By looking a bit at the radial case, it seems possible
to conjecture that an optimal assumption could be the Orlicz space

f 2 L1
⇣
(Log L)N�1

⌘
.

However, a priori estimates and eventually existence of solutions under this con-
dition is, to our knowledge, an open problem, and certainly this borderline case
should deserve further investigation.

5. The case q < N( p�1)
N�1

In this section we assume (2.2)–(2.6) with r = 1, m = 1 and p � 1 < q < N (p�1)
N�1 .

In this range the growth of the Hamiltonian allows us to consider data in L1(�), and
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even more generally, source terms which are bounded Radon measures. Therefore,
we consider the problem

(
�div(a(x, u, Du)) + a0(x, u) = H(x, u, Du) + µ in �,

u = 0 on @� ,
(5.1)

where µ is a bounded Radon measure on �.
We recall (see [13, 28]) that any bounded Radon measure µ admits a unique

decomposition as µ = µ0 + µs , where µs is concentrated on a set of null p-
capacity (the p-capacity is the usual notion of capacity defined in W 1,p

0 (�)) and
µ0 2 L1(�) + W�1,p0

(�). By saying that µs is concentrated on a set of null
capacity we mean, precisely, that there exists a set E which has p-capacity zero and
such that

µs(B) = µs(B \ E)

for any Borelian set B.

Remark 5.1. Observe that, writing µ0 = h + div(H), with h 2 L1(�) and H 2

L p0

(�)N , in (5.1) we can reduce µ to its singular part µs up to replacing f with
f + |h| in assumption (2.6) and g with g + |H |

p0 in (2.2).

In order to study problem (5.1), we still adopt the framework of renormal-
ized solutions, following the definition developed in [22] for the case of general
measures as data. For more details concerning the origin and motivation of such
definition, the role of capacity and fine properties of solutions and other related top-
ics, we refer the reader to [22]. Here, without much more explanation, we make use
of this setting in order to have proper statements of existence and a priori estimates
similar to those given in the previous sections.

We define T 1,p0 (�) as the set of all measurable functions u : � ! R almost
everywhere finite and such that the truncations Tk(u) belong to W 1,p

0 (�) for all
k > 0. For functions in T 1,p0 (�), a notion of generalized gradient can be defined
(see [6], [22]).

Definition 5.2. A function u 2 T 1,p0 (�) is a renormalized solution of (5.1) if it
satisfies Z

�
a(x, u, Du)D(S(u)') dx +

Z
�
a0(x, u)S(u)' dx

=

Z
�
H(x, u, Du)S(u)' dx +

Z
�
S(u)' dµ0 ,

(5.2)

for any Lipschitz function S having compact support and for any ' 2 W 1,p(�) \
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L1(�) such that S(u)' 2 W 1,p
0 (�), and moreover

lim
n!1

1
n

Z
{n<u<2n}

a(x, u, Du)Du ' dx =

Z
�
'dµ+

s ,

lim
n!1

1
n

Z
{�2n<u<�n}

a(x, u, Du)Du ' dx =

Z
�
'dµ�

s ,

(5.3)

for every ' 2 Cb(�), i.e. ' continuous and bounded in �.

If r > 1, we also denote by Mr (�) the Marcinkiewicz space of order r (also
called in the literature weak Lebesgue space), with the norm given by

kukrMr (�) = sup
k>0

⇥
kr meas{x 2 � : |u(x)| > k}

⇤
.

Theorem 5.3. Assume (2.2), (2.3), (2.5), (2.6), with r = 1,m = 1 and q < N (p�1)
N�1 .

Assume further that either

(i) ↵0 = 0 and

↵
�
1
p
�
k f kL1(�) + kµkMb(�)

�
+ kgk

1
p0

L1(�)
< C⇤↵

q+1
(q�(p�1))p0 �

�
p�1

q�(p�1) (5.4)

where C⇤ is a constant depending only on p, q, N which will be defined in (5.12),
or

(ii) ↵0 > 0 and

kµskMb(�) < C⇤ ↵
q

q�(p�1) �
�

p�1
q�(p�1) . (5.5)

Let u be a renormalized solution of (5.1). Then we have

k|u|p�1k
M

N
N�p (�)

+ k|Du|p�1k
M

N
N�1 (�)

 M (5.6)

where M depends on p, q, N , ↵0, ↵, � , |�| and f , g, µ. When ↵0 = 0 the constant
M depends on f , g,µ only through k f kL1(�), kgkL1(�) and kµkMb(�). When ↵0 >
0, the constant M does not depend only on k f kL1(�), kgkL1(�), kµkMb(�), but
remains bounded when f and g vary in sets which are bounded and equi-integrable
in L1(�) and µ0 varies in a compact set of L1(�) + W�1,p0

(�).

Remark 5.4. The content of Remarks 3.2 and 3.3 is also valid as far as Theorem 5.3
is concerned. The same holds for Remark 3.4 up to considering now nonnegative
renormalized subsolutions.
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Proof. By standard renormalization arguments (see [22]), it is possible to consider
in (5.2) test functions S(u) such that S0 has compact support and S(0) = 0. With
an approximation argument with compactly supported functions, and taking ' = 1,
one obtains the inequalityZ

�
a(x, u, Du)Du S0(u) dx +

Z
�
a0(x, u)S(u) dx



Z
�
H(x, u, Du)S(u) dx + kSk1 kµkMb(�).

We take here
S(u) = Tj (Gk(u))

|Tj (Gk(u))|
" + |Tj (Gk(u))|

,

and then we get, thanks to (2.2), (2.5) and (2.6),

↵

Z
�

|DTj (Gk(u))|p
|Tj (Gk(u))|

" + |Tj (Gk(u))|
dx + ↵0

Z
�
h(|u|)

Tj (Gk(u))2

" + |Tj (Gk(u))|
dx

 �

Z
�

|Du|q
Tj (Gk(u))2

" + |Tj (Gk(u))|
dx +

Z
�

| f |
Tj (Gk(u))2

" + |Tj (Gk(u))|
dx

+ 2
Z
�

|g|
|Tj (Gk(u))|

" + |Tj (Gk(u))|
dx + jkµkMb(�).

(5.7)

Set

'"(s) =

Z s

0

✓
|⇠ |

" + |⇠ |

◆ 1
p
d⇠ .

Then we haveZ
�

|DTj (Gk(u))|p
|Tj (Gk(u))|

" + |Tj (Gk(u))|
dx =

Z
�

��D('"(Tj (Gk(u)))
��pdx

=

Z
�

��DT'"( j)('"(Gk(u))
��pdx ,

(5.8)

where we used that '" is an odd increasing function.
Moreover, using that |Gk(u)|

"+|Gk(u)| �

|Tj (Gk(u))|
"+|Tj (Gk(u))| , and since

s2
'0

"(s)q ("+|s|)  |s|, we
haveZ

�
|Du|q

Tj (Gk(u))2

" + |Tj (Gk(u))|
dx =

Z
�

|D'"(Gk(u))|q

'0

"(Gk(u))q
Tj (Gk(u))2

" + |Tj (Gk(u))|
dx



Z
�

|D'"(Gk(u))|q

'0

"(Tj (Gk(u)))q
Tj (Gk(u))2

" + |Tj (Gk(u))|
dx

 j
Z
�

|D'"(Gk(u))|q dx .

(5.9)



182 NATHALIE GRENON, FRANÇOIS MURAT AND ALESSIO PORRETTA

As we estimated in previous sections, we have

Z
�

| f |
Tj (Gk(u))2

" + |Tj (Gk(u))|
dx + 2

Z
�

|g|
|Tj (Gk(u))|

" + |Tj (Gk(u))|
dx

 ↵0

Z
�
h(|u|)

Tj (Gk(u))2

" + |Tj (Gk(u))|
dx +

Z
{| f |> ↵0

2 h(k)}

| f |
Tj (Gk(u))2

" + |Tj (Gk(u))|
dx

+ 2
Z

{|g|> ↵0
4 h(|u|)|Tj (Gk(u))|}

|g|
|Tj (Gk(u))|

" + |Tj (Gk(u))|
dx

 ↵0

Z
�
h(|u|)

Tj (Gk(u))2

" + |Tj (Gk(u))|
dx + jk f �

{| f |> ↵0
2 h(k)}

kL1(�)

+ 2
�k
"

||gkL1(�) + 2||g�
{|g|> ↵0

4 h(k)�k}
kL1(�) ,

(5.10)

so that, choosing for instance �k =
↵0

p

h(k) , we get, collecting (5.7), (5.8), (5.9) and
(5.10),

↵

Z
�

��DT'"( j)('"(Gk(u))
��pdx

 j
✓
�

Z
�

|D'"(Gk(u))|q dx + k f �{| f |>ak}kL1(�) + kµkMb(�)

◆

+

2↵0
"
p

h(k)
||gkL1(�) + 2||g�{|g|>bk}kL1(�) ,

where ak =
↵0
2 h(k) and bk =

↵20
4

p

h(k).

Set l = '"( j): since '" is an increasing one-to-one bijection, and since '�1
" (s) 

c(s + "), we deduce that

↵

Z
�

��DTl('"(Gk(u))
��pdx

 (l + ")
�
� k|D'"(Gk(u))|qkL1(�) + k f �{| f |>ak}kL1(�) + kµkMb(�)

�
+

2↵0
"
p

h(k)
||gkL1(�) + 2||g�{|g|>bk}kL1(�) , 8 l > 0 .

We apply now the well-known regularity lemma in Marcinkiewicz spaces due to [6]
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(see also the precised form in [8]), which gives

k|D'"(Gk(u))|p�1k
M

N
N�1 (�)

 C ↵�1 �� k|D'"(Gk(u))|qkL1(�) + k f �{| f |>ak}kL1(�) + kµkMb(�)

�
+ ↵

�
1
p0 "

1
p0
�
� k|D'"(Gk(u))|qkL1(�) + k f �{| f |>ak}kL1(�) + kµkMb(�)

� 1
p0

+ ↵
�
1
p0


2↵0
"
p

h(k)
||gkL1(�) + 2||g�{|g|>bk}kL1(�)

� 1
p0

.

Since q < N (p�1)
N�1 we have that L

q
p�1 (�) ⇢ M

N
N�1 (�), therefore we conclude,

using also Young’s inequality in the right-hand side,

k|D'"(Gk(u))|qk
p�1
q

L1(�)

 C↵�1 �� k|D'"(Gk(u))|qkL1(�) + k f �{| f |>ak}kL1(�) + kµkMb(�)

�

+ C" p�1 + ↵
�
1
p0


2↵0
"
p

h(k)
||gkL1(�) + 2||g�{|g|>bk}kL1(�)

� 1
p0

.

The last inequality still implies, for some constants C1, C2:

C1↵ Y
p�1
k � C2 � Y

q
k 

�
k f �{| f |>ak}kL1(�) + kµkMb(�)

�
+ ↵ " p�1

+ ↵
1
p


↵0

"
p

h(k)
||gkL1(�) + ||g�{|g|>bk}kL1(�)

� 1
p0

,
(5.11)

where
Yk = k|D'"(Gk(u))|qk

1
q
L1(�)

.

The conclusion follows as in the previous sections: we define the function

F(Y ) = C1↵ Y p�1
� C2 � Yq ,

and we note that, since q > p � 1, the function F is concave with a maximum

F⇤

= max F(Y ) = C⇤ ↵
q

q�(p�1) �
p�1

q�(p�1) , (5.12)

for a constant C⇤ which only depends on p, q, N . Then we distinguish between the
two cases.

(i) If ↵0 = 0 we have ak = bk = 0. Taking " = 0 the inequality (5.11) has the
simpler form

C1↵ Y
p�1
k � C2 � Y

q
k  k f kL1(�) + kµkMb(�) + ↵

1
p
||gk

1
p0

L1(�)
,
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where now Yk = k|DGk(u)|qk
1
q
L1(�)

since '0(s) = s. Here we use condition (5.4)
which is nothing but

k f kL1(�) + kµkMb(�) + ↵
1
p
||gk

1
p0

L1(�)
< F⇤

= max F(Y ) .

Then, with the usual continuity argument, we deduce an estimate for Y0, i.e. for
k|Du|qkL1(�), depending only on k f kL1(�), kgkL1(�), kµkMb(�).

(ii) If ↵0 > 0 we use the Remark 5.1, i.e. we replace µ with its singular part
µs up to changing f and g. Then inequality (5.11) takes the form

C1↵Y
p�1
k � C2�Y

q
k  k(| f | + |h|)�{| f |+|h|>ak}kL1(�)+kµskMb(�) + ↵

1
p " p�1

+ ↵
1
p


↵0

"
p

h(k)
||g + |H |

p0

kL1(�) + ||(g + |H |
p0

)�
{|g+|H |

p0
|>bk}kL1(�)

� 1
p0

,

(5.13)

where we wrote the regular part of µ as µ0 = h + div(H) 2 L1(�) + W�1,p0

(�).
Here we use (5.5), which is nothing but

kµskMb(�) < F⇤ .

Then we fix, successively, a small " and a large k⇤ so that the right-hand side in
(5.13) is still smaller than F⇤. The continuity argument implies an estimate on
k|DGk(u)|qkL1(�) for any k > k⇤. An estimate on Tk(u) in W 1,p

0 (�) is then ob-
tained as usual, and finally, once the term H(x, u, Du) is estimated in L1(�), all
the standard estimates for equations with measure data follow.

In case ↵0 > 0, the previous result is not optimal, since we expect the size
condition (5.5) required on kµskMb(�) to be not necessary.

In this spirit, we give the following improved result in case a(x, s, ⇠) does not
depend on s and replacing assumptions (2.2)-(2.4) with the stronger conditions:

(a(x, ⇠) � a(x, ⇠ 0))(⇠ � ⇠ 0) � ↵ (|⇠ |2 + |⇠ 0

|
2)

p�2
2 |⇠ � ⇠ 0

|
2 , ↵ > 0, (5.14)8<

:
|a(x, ⇠)|  � [|⇠ |p�1 + g(x)

1
p0

] ,

� > 0, g(x) 2 L1(�),
(5.15)

for almost every x 2 � and for every ⇠, ⇠ 0
2 RN .

Note that (5.15) is the same as (2.3) when a(x, s, ⇠) does not depend on s; the
function ⌘ has now been called g(x)

1
p0 because in this way (5.14)-(5.15) imply

a(x, ⇠) · ⇠ � ↵|⇠ |p + a(x, 0) · ⇠ �

↵

2
|⇠ |p � C g(x) ,

hence we recover (2.2) with a consistent notation.
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Actually, (5.14)-(5.15) are not the most general assumptions under which the
following result can be proved, but they allow us for a few simplifications in some
technical details.

Theorem 5.5. Assume (5.14), (5.15) with p � 2, and (2.5), (2.6), with m = 1 and
p � 1 < q < N (p�1)

N�1 , and with ↵0 > 0. Let u be a renormalized solution of

⇢
�div(a(x, Du)) + a0(x, u) = H(x, u, Du) + µ in �,
u = 0 on @� ,

(5.16)

where µ 2Mb(�) and belongs to L1(�) + W�1,p0

(�). Then we have

k|u|p�1k
M

N
N�p (�)

+ k|Du|p�1k
M

N
N�1 (�)

 M (5.17)

where M depends on p, q, N , ↵0, |�|, ↵, � , � and f , g, kµkMb(�). The constant
M remains bounded when f and g vary in sets F , G which are bounded and equi-
integrable in L1(�).

Remark 5.6. In the above statement, the measure µ is assumed to belong to
L1(�)+W�1,p0

(�); however, the estimate only depends on kµkMb(�). Therefore,
the previous result can be used as an a priori estimate in case of approximating data
converging to singular measures.

Proof.
Step 1: using the auxiliary function v.

Consider the (unique) renormalized solution v of
(

�div(a(x, Dv) � a(x, 0)) = µ+ in �,

v = 0 on @� .
(5.18)

Since (5.14) implies (a(x, ⇠)�a(x, 0))·⇠ � ↵|⇠ |p, one can easily prove that v � 0.
Let now  (t) be a nondecreasing Lipschitz function such that  (0) = 0 and  0 has
compact support. Then we have

Z
�
(a(x, Du) � a(x, Dv))D[ (Gk(u � v)+)]dx

+

Z
�
a0(x, u) (Gk(u � v)+) dx

=

Z
�
H(x, u, Du) (Gk(u � v)+)dx

�

Z
�
a(x, 0)D[ (Gk(u � v)+)] dx .

(5.19)
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Actually, it is not obvious that  (Gk(u � v)+) can be taken as test function in
(both) the equations of u and v. However, since  is bounded and since µ 2

L1(�) + W�1,p0

(�), this can be justified by some truncation arguments.
Observe that (since  (0) = 0) all the integrals in (5.19) are restricted where

u > v + k, in particular where u is positive. This implies, thanks to (2.5),
Z
�
a0(x, u) (Gk(u � v)+) dx � ↵0

Z
�
h(|u|) (Gk(u � v)+) dx .

For the same reason we can use (2.6) to get
Z
�
H(x, u, Du) (Gk(u�v)+)dx 

Z
�

⇥
� |Du|q + f (x)

⇤
 (Gk(u � v)+)dx

 C �
Z
�

|DGk(u � v)+|
q  (Gk(u � v)+)dx

+ C �
Z
�

|Dv|
q  (Gk(u � v)+) dx

+

Z
�
f  (Gk(u � v)+)dx .

Moreover, (5.15) and Young’s inequality imply
����
Z
�
a(x,0)D[ (Gk(u�v)+)] dx

���� �

Z
�
|g|

1
p0

|DGk(u�v)+)| 0(Gk(u�v)+) dx

 C
Z
�

|g| 0(Gk(u � v)+) dx

+ �

Z
�

|DGk(u � v)+)|p 0(Gk(u�v)+) dx,

where � is a small number to be fixed later.
Therefore, if we set w := (u � v)+, we obtain from (5.19), using also (5.14)

in the first term,

↵

Z
�
(|Du|2 + |Dv|

2)
p�2
2 |D(Gk(w))|2  0(Gk(w)) dx + ↵0

Z
�
h(|u|) (Gk(w)) dx

 C �
Z
�

|DGk(w)|q  (Gk(w))dx

+ C �
Z
�

|Dv|
q  (Gk(w)) dx +

Z
�
f  (Gk(w))dx

+ C
Z
�

|g| 0(Gk(w)) dx + �

Z
�

|DGk(w)|p 0(Gk(w)) dx .
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We choose here as in the previous theorem

 (t) = Tj (t)
|Tj (t)|

" + |Tj (t)|
,

and we obtain, after obvious simplifications,

↵

Z
�
(|Du|2 + |Dv|

2)
p�2
2 |DTj (Gk(w))|2

Tj (Gk(w))

" + Tj (Gk(w))
dx

+ ↵0

Z
�
h(|u|)

Tj (Gk(w))2

" + Tj (Gk(w))
dx

 C �
Z
�

|DGk(w)|q
Tj (Gk(w))2

" + Tj (Gk(w))
dx

+ C �
Z
�

|Dv|
q Tj (Gk(w))2

" + Tj (Gk(w))
dx +

Z
�

| f |
Tj (Gk(w))2

" + Tj (Gk(w))
dx

+ 2C
Z
�

|g|
Tj (Gk(w))

" + Tj (Gk(w))
dx + 2�

Z
�

|DTj (Gk(w))|p
Tj (Gk(w))

" + Tj (Gk(w))
dx .

Since v � 0, we have {w > k} ⇢ {u > k}, hence we split the term with f as usual

Z
�

| f |
Tj (Gk(w))2

" + Tj (Gk(w))
dx 

↵0
4

Z
�
h(u)

Tj (Gk(w))2

" + Tj (Gk(w))
dx

+

Z
{| f |> ↵0

4 h(u)}

| f |
Tj (Gk(w))2

" + Tj (Gk(w))
dx



↵0
4

Z
�
h(|u|)

Tj (Gk(w))2

" + Tj (Gk(w))
dx + j

Z
Ek

| f | dx ,

where Ek = {| f | > ↵0
4 h(k)}. Similarly we deal with the term |Dv|

q , obtaining

C �
Z
�

|Dv|
q Tj (Gk(w))2

" + Tj (Gk(w))
dx 

↵0
4

Z
�
h(|u|)

Tj (Gk(w))2

" + Tj (Gk(w))
dx

+ C � j
Z
Fk

|Dv|
q dx ,

where Fk = {C� |Dv|
q > ↵0

4 h(k)}.
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The term with g can also be dealt with as in the previous theorem, hence we get

C
Z
�

|g|
Tj (Gk(w))

" + Tj (Gk(w))
dx 

↵0
2

Z
�
h(|u|)

Tj (Gk(w))2

" + Tj (Gk(w))
dx

+ C
↵0

"
p

h(k)
kgkL1(�) + C

Z
Gk

|g| dx ,

where Gk = {|g| >
↵20
4

p

h(k)}. We then deduce the inequality

↵

Z
�
(|Du|2 + |Dv|

2)
p�2
2 |DTj (Gk(w))|2

Tj (Gk(w))

" + Tj (Gk(w))
dx

 C �
Z
�

|DGk(w)|q
Tj (Gk(w))2

" + Tj (Gk(w))
dx

+ C j
✓Z

Ek
| f |dx +

Z
Fk

|Dv|
q dx

◆

+ C
↵0

"
p

h(k)
kgkL1(�) + C

Z
Gk

|g| dx

+ 2�
Z
�

|DTj (Gk(w))|p
Tj (Gk(w))

" + Tj (Gk(w))
dx .

(5.20)

Step 2: Marcinkiewicz estimate for |DGk(u � v)+|.

Since p � 2, we have (|⇠ |2 + |⌘|2)
p�2
2 |⇠ � ⌘|2 �

⇣
1
2

⌘ p�2
2

|⇠ � ⌘|p hence we
obtain from (5.20), choosing a suitable small �,
Z
�

|DTj (Gk(w))|p
Tj (Gk(w))

" + Tj (Gk(w))
dx  C

Z
�

|DGk(w)|q
Tj (Gk(w))2

" + Tj (Gk(w))
dx

+ C j
✓Z

Ek
| f |dx +

Z
Fk

|Dv|
q dx

◆

+ C
↵0

"
p

h(k)
kgkL1(�) + C

Z
Gk

|g| dx .

We proceed henceforth as in the previous proof to obtain an estimate on |DGk(w)|
in Lq(�) for k � k⇤, where k⇤ depends on (the equi-integrability of) f , g and
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|Dv|
q . On the other hand, the norm of |Dv|

p�1 in the Marcinkiewicz space M
N

N�1

only depends on kµkMb(�), and so is the equi-integrability of |Dv|
q , since q <

N (p�1)
N�1 . We deduce from that an estimate on |DGk(w)| = |DGk(u � v)+| in

Lq(�) for k � k⇤, where k⇤ depends on kµkMb(�), and on the equi-integrability
of f and g.

Step 3: estimate when 0 < u < v.
Now we multiply the equation of u by 1� (1+ u+)�� obtaining

�

Z
�
a(x, Du)Du+ (1+ u+)���1dx +

Z
�
a0(x, u)[1� (1+ u+)��] dx

=

Z
�
H(x, u, Du)[1� (1+ u+)��]dx + kµkMb(�) .

Observe that this test function only charges where u � 0, hence we get, using
(5.14)-(5.15),

↵ �

Z
�

|Du+

|
p (1+ u+)���1dx  �

Z
�

|Du+

|
qdx

+ (k f kL1(�) + kµkMb(�))

+ �

Z
�

|g|
1
p0

|Du+

|(1+ u+)���1 ,

which yields

↵�

2

Z
�

|Du+

|
p (1+ u+)���1dx

 C
Z

{uv+k}

|Du+

|
q dx + C

Z
�

|DGk(u � v)+|
qdx

+C
Z
�

|Dv|
q dx + (k f kL1(�) + kµkMb(�)) + C

Z
�

|g| dx .

Since

C
Z

{uv+k}

|Du+

|
q dx 

↵�

4

Z
�

|Du+

|
p (1+ u+)���1dx

+ C
Z

{0uv+k}

(1+ u+)
(�+1) q

p�q dx
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and since in the last integral we can use that u  v + k we obtain

↵�

4

Z
�

|Du+

|
p (1+ u+)���1dx

 C
Z
�
(1+ v + k)(�+1)

q
p�q dx + C

Z
�

|DGk(u � v)+|
qdx

+C
Z
�

|Dv|
q dx + (k f kL1(�) + kµkMb(�)) + C

Z
�

|g| dx .

Since q < N (p�1)
N�1 we have (� + 1) q

p�q < N (p�1)
N�p for any positive � close to

zero. Therefore the first integral in the right-hand side is bounded because of the
estimates on v. Taking k = k⇤ the second integral is also bounded by the pre-
vious step, and so all the right-hand side is bounded by constants only depending
on kµkMb(�), k f kL1(�), kgkL1(�) and on the equi-integrability of f and g. We
conclude an estimate for Z

�
|Du+

|
p (1+ u+)���1dx

for any positive � close to zero; which implies (this is the classical argument in [12])
an estimate of |Du+

|
p�1 in Lr (�) for any r < N

N�1 . In particular we conclude that
|Du+

|
q is estimated in L1(�).

Step 4: conclusion.
Reasoning on u� in the same way we obtain an estimate for |Du�

|
q , hence we

conclude that |Du|q satisfies an estimate in L1(�). Thanks to (2.6), we conclude
by the usual theory with measure data all the desired estimates.

In consequence of the previous estimates, we can prove the existence of so-
lutions to problem (5.1). To this purpose, we need to take care of the growth of
a0(x, u) in case µ contains a singular part µs 6= 0, by requiring, for some constant
C > 0:

|a0(x, u)|  C(ã0(x) + |u|s) with s < N (p�1)
N�p , ã0(x) 2 L1(�). (5.21)

Corollary 5.7. Assume (2.2)–(2.6), with r = 1, m = 1 and q < N (p�1)
N�1 , and

(3.34), (3.35). Moreover assume that one of the following assumptions is satisfied:

(i) ↵0 = 0 and (5.4) holds true.
(ii) ↵0 > 0 and (5.5) holds true.
(ii) ↵0 > 0 and (5.14)-(5.15) hold true, with p � 2.

Furthermore, in case that µs 6= 0, let (5.21) hold true. Then there exists a renor-
malized solution u of (5.1).
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Proof. Take a sequence of approximating solutions un 2 W 1,p
0 (�) of the problem

⇢
�div(a(x, un, Dun)) + a0(x, un) = H(x, un, Dun) + µn in �,
un = 0 on @� ,

(5.22)

where µn is a suitable approximation of µ constructed by convolution, as in [22].
Applying Theorem 5.3 or Theorem 5.5, we deduce the estimates on un and

|Dun| in Marcinkiewicz spaces, hence (3.35) implies that Tn(H(x, un, Dun)) is
bounded in L1(�). Using the compactness and stability results of the theory of
elliptic equations with measure data (see [12, 22] and references therein) we obtain
that, up to extracting a subsequence, un converges a.e. to some u 2 T 1,p0 (�),
and Dun converges to Du almost everywhere in �. As a consequence of (3.35),
since q < N (p�1)

N�1 , the term Tn(H(x, un, Dun)) strongly converges in L1(�) to
H(x, u, Du). Ifµs =0, since the right-hand side is compact in L1(�)+W�1,p0

(�),
we also deduce that a0(x, un) converges in L1(�) to a0(x, u) using (3.34); if µs 6=

0, we use the growth condition (5.21) to deduce such a convergence. Still using the
results in [22], we have that the truncations Tk(un) strongly converge to Tk(u) in
W 1,p
0 (�) for any k > 0 and we conclude that passing to the limit u satisfies (5.2)

and (5.3), i.e. it is a renormalized solution.

We conclude this section with the statement of a regularity result as in Theorem
4.9. Indeed, the same regularity as in this latter theorem can be proved to hold when
q < N (p�1)

N�1 ; the only difference is that now we do not ask more regularity on the
solutions than what is needed in the definition of renormalized solutions. Actually,
when q < N (p�1)

N�1 , the bootstrap argument works as if the equation does not contain
the term H(x, u, Du). We omit the details of the proof, which follows the steps of
Theorem 4.9.

Theorem 5.8. Assume (2.2), (2.3), (2.5), (2.6) with q < N (p�1)
N�1 . Assume in addi-

tion that f belongs to Ls(�), with s > 1 and g belongs to Lt (�), with t � 1. Let u
be a renormalized solution of (5.1). Then the conclusion of Theorem 4.9 holds true.

6. The case p � N

Let us consider here the case that p � N . First of all, we observe that the case
p = N can be dealt with as in the previous section. Indeed, when p = N we have
N (p�1)
N�1 = (p � 1) +

p
N = p, hence assuming q < p implies that q < N (p�1)

N�1 ; we
obtain then the following

Theorem 6.1. Let p = N . Assume (2.2), (2.3), (2.5), (2.6), with r = 1, m = 1 and
p � 1 < q < p. Assume further that one of the following assumptions is satisfied

(i) ↵0 = 0 and (5.4) holds true.
(ii) ↵0 > 0 and (5.5) holds true.
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(ii) ↵0 > 0 and (5.14)-(5.15) hold true.

Let u be a renormalized solution of (5.1). Then, given any s < 1 and t < N we
have

kukMs(�) + k|Du|kMt (�)  M (6.1)
where M depends on s, t , p, q, ↵0, ↵, � , �, |�| and f , g, µ. When ↵0 = 0 the
constant M depends on f , g, µ only through k f kL1(�), kgkL1(�) and kµkMb(�).
When ↵0 > 0, the constant M does not depend only on k f kL1(�), kgkL1(�),
kµkMb(�), but remains bounded when f and g vary in sets which are bounded and
equi-integrable in L1(�) and µ0 varies in a compact set of L1(�) + W�1,p0

(�).
Moreover, assume in addition (3.34)-(3.35) and, if µs 6= 0, also that

|a0(x, u)|  C(ã0(x) + |u|s) for some s < 1, ã0(x) 2 L1(�).

Then there exists a renormalized solution u of (5.1).
We are left with the case p > N . Note that this implies that Mb(�) ⇢

W�1,p0

(�), hence data in Lebesgue spaces, or even measure data, always yield
finite energy solutions, in the sense of (3.1). Moreover, in this situation solutions in
W 1,p
0 (�) are bounded as well, and the case q < p does not really differ from the

case q = p.
Theorem 6.2. Assume (2.2), (2.3), (2.5), (2.6) with p � 1 < q  p, m = 1 and
r = 1. Assume further that either

(i) ↵0 > 0,
or

(ii) ↵0 = 0 and

↵
�

1
p�1

k f kp
0

L1(�)
+ kgkL1(�) < C⇤ ↵

q+1
q�(p�1) �

�
p

q�(p�1) (6.2)

where C⇤ is a constant depending only on p, q, N which will be defined in (6.6).
Let u 2 W 1,p

0 (�) be a solution of (2.1). Then

kukW 1,p
0 (�)

 M (6.3)

where M depends on p, q, N , ↵0, ↵, � , � and the data f , g. When ↵0 = 0
the constant M depends on f and g only through k f kL1(�) and kgkL1(�). When
↵0 > 0, the constant M does not depend only on k f kL1(�) and kgkL1(�) but re-
mains bounded when f and g vary in sets which are bounded and equi-integrable
in L1(�).

Proof. We proceed as in the proof of Theorem 3.1 for the case q = p � 1+
p
N . If

↵0 = 0 it would be enough to choose as test function v = Gk(u) in (2.1). In order
to treat the case ↵0 > 0, we choose the test function

v = Gk(u)
|Gk(u)|

" + |Gk(u)|
.
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We obtain, using (2.6), (2.2) and (2.5),

↵

Z
�

|Du|p
|Gk(u)|

" + |Gk(u)|
dx + ↵0

Z
�
h(|u|)

Gk(u)2

" + |Gk(u)|
dx

 �

Z
�

|Du|q
Gk(u)2

" + |Gk(u)|
dx +

Z
�

| f |
Gk(u)2

" + |Gk(u)|
dx

+2
R
� |g| Gk(u)

"+|Gk(u)| dx .

(6.4)

Then, splitting the terms with f and g as usual we get

↵

Z
�

|Du|p
|Gk(u)|

" + |Gk(u)|
dx  �

Z
�

|Du|q
Gk(u)2

" + |Gk(u)|
dx

+

Z
{| f |> ↵0

2 h(k)}

| f |
Gk(u)2

" + |Gk(u)|
dx

+

2↵0
"
p

h(k)
kgkL1(�) + 2

Z

{|g|>
↵20
4

p

h(k)}

|g|dx .

We introduce the function

'"(s) =

Z s

0

✓
|⇠ |

" + |⇠ |

◆ 1
p
d⇠ ,

hence we obtain

↵

Z
�

��D('"(Gk(u))
��pdx  �

Z
�

|D'"(Gk(u))|qGk(u)
✓

|Gk(u)|
" + |Gk(u)|

◆1� q
p
dx

+

Z
{| f |> ↵0

2 h(k)}

| f |
Gk(u)2

" + |Gk(u)|
dx +

2↵0
"
p

h(k)
kgkL1(�)

+ 2
Z

{|g|>
↵20
4

p

h(k)}

|g|dx .

Recall that

s  c('"(s) + ") ,
s2

" + s
 c '"(s) ,
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so that we get

↵

Z
�

��D('"(Gk(u))
��pdx  � C

Z
�

|D'"(Gk(u))|q(|'"(Gk(u))| + ")dx

+ C
Z

{| f |> ↵0
2 h(k)}

| f | |'"(Gk(u))|dx

+

2↵0
"
p

h(k)
kgkL1(�) + 2

Z

{|g|>
↵20
4

p

h(k)}

|g|dx

 C � kD'"(Gk(u))k
q
L p(�)(k'"(Gk(u))kL1(�) + ")

+ Ck f �
{| f |> ↵0

2 h(k)}
kL1(�)k'"(Gk(u))kL1(�)

+

2↵0
"
p

h(k)
+ 2 kg �

{|g|>
↵20
4

p

h(k)}
kL1(�) .

Recalling that W 1,p
0 (�) ⇢ L1(�), we end up with

↵k'"(Gk(u))k
p
W 1,p
0 (�)

 C � k'"(Gk(u))k
q
W 1,p
0 (�)

⇣
k'"(Gk(u))kW 1,p

0 (�)
+ "

⌘

+ C k f �{| f |>ak}kL1(�)k'"(Gk(u))kW 1,p
0 (�)

+

2
"

↵0
p

h(k)
kgkL1(�) + 2 k|g|�{|g|>bk}kL1(�) ,

where ak =
↵0
2 h(k) and bk =

↵20
4

p

h(k). Using Young’s inequality we obtain, for
some constants C0, C1:

↵C0 k'"(Gk(u))k
p
W 1,p
0 (�)

� � C1 k'"(Gk(u))k
q+1
W 1,p
0 (�)

 � "q+1
+ ↵

�
1
p�1

k f �{| f |>ak}k
p0

L1(�)
+

1
"

↵0
p

h(k) kgkL1(�) + k|g|�{|g|>bk}kL1(�) .

Set now
Yk = k'"(Gk(u))kW 1,p

0 (�)
.

Then, the inequality takes the form

F(Yk)  � "q+1
+ ↵

�
1
p�1

k f �{| f |>ak}k
p0

L1(�)

+

1
"

↵0
p

h(k)
kgkL1(�) + k|g|�{|g|>bk}kL1(�) ,

(6.5)
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where
F(t) = ↵C0 t p � � C1 tq+1.

Note that p � 1 < q, so that F is a concave function with a unique maximum

F⇤

= max F(Y ) = C⇤ ↵
q+1

q�(p�1) �
�

p
q�(p�1) . (6.6)

(i) If ↵0 = 0 we can take " = 0 and (since we also have ak = bk = 0) we obtain
the simpler inequality

↵C0kGk(u)k
p
W 1,p
0 (�)

�� C1 kGk(u)k
q+1
W 1,p
0 (�)

 ↵
�

1
p�1

k f kp
0

L1(�)
+kgkL1(�) . (6.7)

We use (6.2) which is nothing but

↵
�

1
p�1

k f kp
0

L1(�)
+ kgkL1(�) < F⇤ .

Then the usual continuity argument implies the estimate for kGk(u)kW 1,p
0 (�)

up to
k = 0, i.e. for kukW 1,p

0 (�)
.

(ii) If ↵0 > 0 we fix " = "0 as the minimum point of the right-hand side in (6.5),
which gives

F(Yk)  Mk ,

where

Mk = C �
1

q+2
⇣
↵0 kgkL1(�)

p

h(k)

⌘ q+1
q+2

+ ↵
�

1
p�1

k f �{| f |>ak}k
p0

L1(�)
+ kg�{|g|>bk}kL1(�) .

Then we define k⇤ so that Mk < F⇤ for every k > k⇤. Now either we have
kuk1  k⇤, which means an estimate of u in L1(�); in that case we obtain soon
from the equation an estimate on u in W 1,p

0 (�) and we conclude. Otherwise we
have k⇤ < kukL1(�) and the inequality

F(Yk) < Mk 8k 2 (k⇤, kukL1(�)) ,

implies, with the continuity argument, an estimate on Yk⇤ , hence we estimate
kGk⇤

+1(u)kW 1,p
0 (�)

. We deduce then an estimate for kukL1(�), and then from the

equation we easily complete the estimate on u in W 1,p
0 (�).

Remark 6.3. Note that the above result includes the case of measure data µ as
right-hand side in the equation. Since p > N , we have µ 2 W�1,p0

(�) and this
term can be included in the operator div(a(x, s, ⇠)).
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7. Further remarks

7.1. Other boundary conditions

The same method introduced above also applies to problems with different bound-
ary conditions. Here, we assume that � is a smooth bounded set, and we consider
the equation

⇢
�div(a(x, u, Du)) + a0(x, u) = H(x, u, Du) in �,
a(x, u, Du) · ⌫ + µ u = ! on @� ,

(7.1)

where ⌫(x) is the outward unit normal at @�, µ is a nonnegative constant, and
! 2 W 1� 1

m ,m(@�). This means that

9 w 2 W 1,m(�) : ! = �@�(w) , (7.2)

where �@� is the trace operator in the Sobolev space. Problem (7.1) includes both
Neumann boundary conditions (when µ = 0) and mixed (otherwise called Robin)
boundary conditions (if µ 6= 0).

For the sake of simplicity, we only consider the case of finite energy solutions,
so we restrict to the range p � 1 +

p
N  q < p. The weak formulation of (7.1) is

the following:
8>>>>><
>>>>>:

u 2 W 1,p(�) , a0(x, u) 2 L1(�) , H(x, u, Du) 2 L1(�) ,

µ

Z
@�
u ' dx +

Z
�
a(x, u, Du)D' dx +

Z
�
a0(x, u)' dx

=

Z
�
H(x,u,Du)' dx+

Z
@�
! ' dx for every '2W 1,p(�) \ L1(�),

(7.3)

where, with a slight abuse of notation, we still denote by ' the trace of the test
function on @�.

Besides the assumptions (2.2)-(2.7), we assume that (7.2) holds with m =

N (q�(p�1))
q . Then, the conclusion of Theorem 3.1 remains true if ↵0 > 0, namely

Theorem 7.1. Assume (2.2), (2.3), (2.5), (2.6), (2.7) with p� 1+
p
N  q < p and

that (7.2) holds with m =
N (q�(p�1))

q . Assume further that either
(i) ↵0 > 0

or
(ii) ↵0 = 0, µ > 0 and k f kLm(�), kgkLr (�) are sufficiently small.

Let u be a solution of (7.1), in the sense of (7.3), such that |u|� 2 W 1,p(�), � =

(N�p)(q�(p�1))
p(p�q) . Then we have

kukW 1,p(�) + k|u|�kW 1,p(�)  M
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where M depends on p, q, N , ↵0, ↵, � , |�| and the data f , g, ! and remains
bounded when f , g, ! vary in sets which are bounded and equi-integrable, respec-
tively, in Lm(�), Lr (�) and W 1� 1

m ,m(@�). In the case that ↵0 = 0 and µ > 0, M
depends on f and g only through their norms in Lm(�) and Lr (�).

Proof. We follow the proof of Theorem 3.1 with the following variations. We use
the test function |Tn(Gk(u))|��1Tn(Gk(u)) and we let n go to infinity, obtaining
now, instead of (3.8), that

µ

Z
@�

|u||Gk(u)|�d� + ↵ �

Z
�

|Du|p |Gk(u)|��1dx

+↵0
R
� h(|u|)|Gk(u)|�dx

 �

Z
�

|Du|q |Gk(u)|�dx +

Z
�

| f ||Gk(u)|�dx

+�

Z
�

|g| |Gk(u)|��1 dx +

Z
@�

|!||Gk(u)|�d� .

(7.4)

Since
R
@� |z|d�  C

R
�(|z|+ |Dz|) dx for any z 2 W 1,1(�), we obtain, using also

Young’s inequality,

Z
@�

|!||Gk(u)|�d�  C
Z
�
(|Dw| + |w|)|Gk(u)|� dx

+ C �
Z
�

|w|
p0

|Gk(u)|��1 dx

+

1
2
↵ �

Z
�

|Du|p |Gk(u)|��1dx .

(7.5)

Therefore, we deduce from (7.4)

1
2
↵ �

Z
�

|Du|p |Gk(u)|��1dx + ↵0

Z
�
h(|u|)|Gk(u)|�dx

 �

Z
�

|Du|q |Gk(u)|�dx + C
Z
�
f̃ |Gk(u)|�dx + C�

Z
�
g̃ |Gk(u)|��1 dx ,

where
f̃ = | f | + (|Dw| + |w|) , g̃ = |g| + |w|

p0

.

Assumption (7.2) implies that f̃ 2 Lm(�) and g̃ 2 Lr (�) (indeed, |w|
p0

2 Lr (�)

since m⇤

p0
=

N (q�(p�1))
p = r). Therefore, we proceed henceforth as in Theorem 3.1



198 NATHALIE GRENON, FRANÇOIS MURAT AND ALESSIO PORRETTA

to obtain

↵C
Z
�

|D(|Gk(u)|� )
��pdx +

↵0
2

Z
�
h(|u|)|Gk(u)|�dx

 �C
✓Z

�

��D(|Gk(u)|� )
��p◆

q
p
✓Z

�
|Gk(u)|� p

⇤

dx
◆1� q

p

+ k f̃ �
{ f̃> ↵0

4 h(k)}
kLm(�)

✓Z
�

|Gk(u)|� p
⇤

dx
◆ 1

m0

+

✓
↵0

p

h(k)

◆��1
kg̃kL1(�) + kg̃�

{g̃>
↵20
4

p

h(k)}
kLr (�)

✓Z
�

|Gk(u)|� p
⇤

dx
◆1
r 0

.

(7.6)

If, for some L > 0, we have h(s) � s p�1 for every s > L , then we can easily
conclude following Theorem 3.1. Indeed, since � + p � 1 = p� , up to taking
k > L we deduce in this case

↵C
Z
�

|D(|Gk(u)|� )
��pdx +

↵0
2

Z
�
h(|u|)|Gk(u)|�dx � C k|Gk(u)|�k

p
W 1,p(�)

.

Using the Sobolev inequality in the right-hand side we are reduced to the proof of
Theorem 3.1 up to defining now Yk = k|Gk(u)|�k

p
W 1,p(�)

.
If we have a general function h(s), we deduce from (7.6), by Young’s inequal-

ity, that

C
Z
�

|D(|Gk(u)|� )
��pdx +

↵0
2

Z
�
h(|u|)|Gk(u)|�dx

 C
Z
�

|Gk(u)|� p
⇤

dx + k f̃ �
{ f̃> ↵0

4 h(k)}
kLm(�)

✓Z
�

|Gk(u)|� p
⇤

dx
◆ 1

m0

+

✓
↵0

p

h(k)

◆��1
kg̃kL1(�) + kg̃�

{g̃>
↵20
4

p

h(k)}
kLr (�)

✓Z
�

|Gk(u)|� p
⇤

dx
◆ 1

r 0
.

Now we use the Poincaré-Wirtinger inequality, which implies

k|Gk(u)|�kL p⇤ (�) 

1
|�|

k|Gk(u)|�kL1(�) + CkD(|Gk(u)|� )kL p(�) , (7.7)

so that
Z
�

|D(|Gk(u)|� )
��pdx � Ck|Gk(u)|�k

p
L p⇤ (�)

� C
✓Z

�
|Gk(u)|� dx

◆p
.
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We then obtain

Ck|Gk(u)|�k
p
L p⇤ (�)

+

↵0
2

Z
�
h(|u|)|Gk(u)|�dx

 C
✓Z

�
|Gk(u)|� dx

◆p
+ C

Z
�

|Gk(u)|� p
⇤

dx

+k f̃ �
{ f̃> ↵0

4 h(k)}
kLm(�)Ck|Gk(u)|�k

p⇤
m0

L p⇤ (�)

+

✓
↵0

p

h(k)

◆��1
kg̃kL1(�) + kg̃�

{g̃>
↵20
4

p

h(k)}
kLr (�)k|Gk(u)|�k

p⇤
r 0

L p⇤ (�)
,

which implies, after using Young’s inequality,

Ck|Gk(u)|�k
p
L p⇤ (�)

+

↵0
2

Z
�
h(|u|)|Gk(u)|�dx

 C
✓Z

�
|Gk(u)|� dx

◆p
+ Ck|Gk(u)|�k

p⇤

L p⇤ (�)
+ Mk ,

where

Mk = Ck f̃ �
{| f̃ |> ↵0

2 h(k)}
k

pm0

pm0
�p⇤

Lm(�)

+

✓
↵0

p

h(k)

◆��1
kg̃kL1(�) + Ckg̃�

{|g̃|>
↵20
2

p

h(k)}
k

pr 0
pr 0�p⇤
Lr (�) .

Since � � � we deduce

Ck|Gk(u)|�k
p
L p⇤ (�)

+
↵0
2 h(k)

R
� |Gk(u)|�dx

 C
✓Z

�
|Gk(u)|� dx

◆ p�
�

+ Ck|Gk(u)|�k
p⇤

L p⇤ (�)
+ Mk .

(7.8)

Here we set
Yk = k|Gk(u)|�k

p
L p⇤ (�)

+ k|Gk(u)|�kL1(�) ,

and the above inequality implies

C1Yk  C2Y
p�
�

k + C3Y
p⇤
p

k + Mk .

Since p� > �, the function F̃(Y ) = C1Y � C2Y
p�
� � C3Y

p⇤
p is concave with

maximum F⇤
= F(Z⇤); the continuity argument allows us to conclude that
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Yk  Z⇤ 4. With this information in hand, going back we deduce the estimate on
kD(|Gk(u)|� )kL p(�), hence, thanks to (7.7), the estimate of |Gk(u)|� in W 1,p(�);
then we can proceed as in Theorem 3.1 to conclude.

Let us now assume that ↵0 = 0 and µ > 0. In this case, first we split ! =

Tk̂(!) + Gk̂(!) so thatZ
@�

|!||Gk(u)|�d� 

Z
@�

|Gk̂(!)||Gk(u)|�d� + k̂
Z
@�

|Gk(u)|�d� .

and choosing k̂ =
1
2µ k we haveZ

@�
|!||Gk(u)|�d� 

Z
@�

|Gk̂(!)||Gk(u)|�d� +

µ

2

Z
@�

|u| |Gk(u)|�d� .

Therefore (7.4) implies
µ

2

Z
@�

|u||Gk(u)|�d� + ↵ �

Z
�

|Du|p |Gk(u)|��1dx

 �
R
� |Du|q |Gk(u)|�dx +

R
� | f ||Gk(u)|�dx

+�

Z
�

|g| |Gk(u)|��1 dx +

Z
@�

|Gk̂(!)||Gk(u)|�d� .

Using now (7.5) with Gk̂(!) instead of !, we obtain
µ

2

Z
@�

|u||Gk(u)|�d� +

↵

2
�

Z
�

|Du|p |Gk(u)|��1dx

 �

Z
�

|Du|q |Gk(u)|�dx +

Z
�

| f̃ ||Gk(u)|�dx + C�
Z
�

|g̃| |Gk(u)|��1 dx ,

where now
f̃ = | f | + (|DGk̂(w)| + |Gk̂(w)|) , g̃ = |g| + |Gk̂(w)|p

0

.

Then, we proceed as before and we get
µ

2

Z
@�

|u||Gk(u)|�d� + C
Z
�

|D(|Gk(u)|� )
��pdx

 C
Z
�

|Gk(u)|� p
⇤

dx + k f̃ kLm(�)

✓Z
�

|Gk(u)|� p
⇤

dx
◆ 1

m0

+kg̃kLr (�)

✓Z
�

|Gk(u)|� p
⇤

dx
◆ 1

r 0
.

(7.9)

4 In particular, this implies that kGk(u)�kL1(�)  Z⇤. Hence, using the fact that h(k) ! 1

as k ! 1, we could now get rid of the first term in the right-hand side of (7.8) and recover our
usual inequality

C1k|Gk(u)|� k

p
L p⇤ (�)

 C3k|Gk(u)|� k

p⇤

L p⇤ (�)
+ Mk .
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We can now use another Poincaré-type inequality, namely that

kzkLs(�)  C
�
kDukLs(�) + kukLs(@�)

�
. (7.10)

Using (7.10) with s = 1 and combined with the Poincaré-Wirtinger inequality this
implies

kzkL p(�)  C
�
kDzkL p(�) + kzkL1(�)

�
 C

�
kDzkL p(�) + kzkL1(@�)

�
.

Applied to z = |Gk(u)|� , and together with the Sobolev inequality, it gives

k|Gk(u)|�kL p⇤ (�)  Ck|Gk(u)|�kL1(@�) + CkD|Gk(u)|�kL p(�) ,

so thatZ
�

|D(|Gk(u)|� )
��pdx � Ck|Gk(u)|�k

p
L p⇤ (�)

� C
✓Z

@�
|Gk(u)|� d�

◆p
.

Therefore, (7.9) implies

µ

2
k
Z
@�

|Gk(u)|�d� + Ck|Gk(u)|�k
p
L p⇤ (�)

 C
✓Z

@�
|Gk(u)|� d�

◆p
+ C

Z
�

|Gk(u)|� p
⇤

dx

+k f̃ kLm(�)

✓Z
�

|Gk(u)|� p
⇤

dx
◆ 1

m0

+ kg̃kLr (�)

✓Z
�

|Gk(u)|� p
⇤

dx
◆ 1

r 0
.

Henceforth, we conclude as in the previous case, using that � � � , and defining
now

Yk =

Z
@�

|Gk(u)|�d� + k|Gk(u)|�k
p
L p⇤ (�)

.

Observe that k f̃ kLm(�) and kg̃kLr (�) are sufficiently small provided k f kLm(�) and
kgkLr (�) are sufficiently small and k̂ is large enough, i.e. k is large enough. In
this way no smallness condition is assumed on !. Then, we conclude the a priori
estimate in the usual way.

Let us notice that, as in Section 3, the proof should be slightly modified if
↵0 > 0 and µ > 0 in order to deal with the limiting case q = p � 1+

p
N ; however

the boundary term can be dealt with in a similar way as above and this case is also
reduced to the proof given for Theorem 3.1.

Remark 7.2. With the same arguments, it is possible to deal with the case where
the boundary condition is in the form

a(x, u, Du) · ⌫ + µ�(x, u) = ! on @�,

where �(x, s) is nondecreasing with respect to s and tends to infinity as |s| ! 1.
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Finally, once we have established an a priori estimate, we can also deduce an
existence result as in Theorem 3.7. Namely, assuming (2.2)-(2.7) and (3.34), (3.35),
with p � 1 +

p
N  q < p, and in addition that (7.2) holds true, then there exists a

solution u of (7.1) in the sense of (7.3) satisfying the condition |u|� 2 W 1,p(�) if
either ↵0 > 0, or ↵0 = 0, µ > 0 and k f kLm(�), kgkLr (�) are sufficiently small.

7.2. Data in Lorentz spaces

Without significant changes, one can extend Theorem 3.1 to the case that f and
g belong to suitable Lorentz spaces L p,q(�). Recall that v 2 L p,q(�) if (see
e.g. [31]) Z

1

0
(v⇤(s)s

1
q )p

ds
s

< 1 ,

where v⇤ is the decreasing rearrangement of v.
In the case when p � 1+

p
N  q < p, one can take

f 2 Lm,s(�) with m =
N (q�(p�1))

q and s =
m(N�p)
N�pm ,

g 2 Lr,t (�) with r =
N (q�(p�1))

p and t =
r(N�p)
N�pr .

(7.11)

The only change in the proof is that we use the improved Sobolev inequality

kvkL p⇤,p(�)  CSkDvkL p(�) , 8v 2 W 1,p
0 (�) .

Therefore we estimateZ
�

| f ||Gk(u)|�dx  || f ||Lm,s(�)|| |Gk(u)|� ||Lm0,s0 (�)

= || f ||Lm,s(�)|| |Gk(u)| ||L�m0,� s0 (�)

 || f ||Lm,s(�)||Gk(u)� ||W 1,p
0 (�)

,

as soon as �m0
= p⇤ and � s0 = p. This gives the link m =

N (q�(p�1)
q already

known, and, since m0

s0 =
p⇤

p , the value for s. Similarly one hasZ
�

|g||Gk(u)|��1dx  ||g||Lr,t (�)|| |Gk(u)|��1 ||Lr 0,t 0 (�)

= ||g||Lr,t (�)||Gk(u)� ||

��1
�

L
(��1)
� r 0, (��1)

� t 0
(�)

 ||g||Lr,t (�)||Gk(u)� ||

��1
�

W 1,p
0 (�)

,

as soon as (��1)
� r 0

= p⇤ and (��1)
� t 0 = p. This gives the values of r , t in (7.11)

above.
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Note that, as expected, when q = p � 1 +
p
N , i.e. m = (p⇤)0 and r = 1, we find

s = p0 ( f 2 L(p⇤)0,p0

(�)) and t = 1 (g 2 L1(�)).
In the case that ↵0 > 0, the inequalities above are used with f and g replaced,

as usual, by f �{| f |>ak} and g�{|g|>bk} for some ak , bk ! 1. Since all the expo-
nents are finite, the Lorentz norm of v�{|v|>k} becomes small as k ! 1, and we
can still follow the steps of Theorem 3.1.

In the case when N (p�1)
N�1 < q < p � 1 +

p
N , the term g should always be

taken in L1(�), and one cannot improve this regularity in Lorentz spaces, while f
could be taken again in Lm,s(�) with m =

N (q�(p�1))
q and s =

m(N�p)
N�pm . Note that

both exponents are still strictly larger than 1. However, let us recall that solutions
have not finite energy in this range of growth and one should suitably modify the
statements and the proofs as we did in Section 4.
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[12] L. BOCCARDO and T. GALLOUËT, Nonlinear elliptic equations with right-hand side mea-
sures, Comm. Partial Differential Equations 17 (1992), 641–655.
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