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On the vanishing-viscosity limit in parabolic systems
with rate-independent dissipation terms

ALEXANDER MIELKE AND SERGEY ZELIK

Abstract. We consider semilinear and quasilinear parabolic systems with a non-
smooth rate-independent and a viscous dissipation term in the limit of very slow
loading rates, or equivalently with fixed loading and vanishing viscosity " > 0.
Because for nonconvex energies the solutions will develop jumps, we consider
the vanishing-viscosity limit for the graphs of the solutions in the extended state
space in arclength parametrization. Here the choice of the viscosity norm for
parametrization is crucial to keep the subdifferential structure of the problem. A
crucial point in the analysis are new a priori estimates that are rate independent
and that allow us to show that the total length of the graph remains bounded in
the vanishing-viscosity limit. To derive these estimates we combine parabolic
regularity estimates with ideas from rate-independent systems.

Mathematics Subject Classification (2010): 35K55 (primary); 34E15 (sec-
ondary).

1. Introduction

In this paper we are interested in special solution classes for rate-independent sys-
tems that arise as vanishing-viscosity limits. In abstract form, we consider doubly
nonlinear problems of the following type:

"u̇ + @e9(u̇) + Bu +80

u(t, u) 3 0, u(0) = u0, (1.1)

where " is a small positive parameter. Here u is considered to lie in a Hilbert
space H and B is a positive definite self-adjoint operator generating the scale H↵ =

D(B↵/2) of Hilbert spaces. The dissipation potential e9 : H ! [0,1) is assumed
to be positively homogeneous of degree 1, such that (1.1) is rate-independent for
" = 0 and " > 0 plays the role of a small regularizing viscosity.

For " > 0 the existence of solutions u" 2 H1([0, T ], H) is rather standard
using suitable assumptions on the nonlinear potential 8, see e.g. [6, 25]. Under
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weak hypotheses it is possible to show that these solutions satisfy the basic energy
equality

E(t, u"(t))+

Z t

0
e9(u̇"(r))+ "ku̇"(r)k2 dr = E(0, u0)+

Z t

0
80

r (r, u(r)) dr, (1.2)

where E(t, u) =
1
2 (Bu, u) + 8(t, u) is the total energy. See also [11, 12, 23, 26]

and references therein for investigations of the long-time behavior of such problems
using the attractors theory.

As in [10, 19, 20] we are interested in the limiting behavior of the solutions
u" for " ! 0. The problem is that in this vanishing-viscosity limit the solutions
may develop jumps, and we cannot guarantee that the limit functions or any other
solutions is absolutely continuous. Thus, it is not sufficient to impose (1.1) a.e. in
[0, T ], since we need additional information in jump points.

In [15, 17, 22] there was developed a fairly general existence theory for so-
called energetic solutions to rate-independent systems (H,E,e9) that allows for
solutions having jumps. However, these solutions have to satisfy the energy balance
(1.2) with " = 0, where

R t
0
e9(u̇(r)) dr has to be replaced by the total variationR t

0
e9(du). It turns out that these solutions are in general not obtained as vanishing-

viscosity limits, see the discussion in [13,16,19].
Here we follow the ideas in [10, 20] by taking the limit " ! 0 not for the

functions u" : [0, T ] ! H but for the trajectories { (t, u"(t)) : t 2 [0, T ] } ⇢

[0, T ] ⇥ H . For this we introduce an arc-length parametrization via

s"(t) = t +

Z t

0
ku̇"(r)k dr.

Using the inverse t" of s" we can define ũ"(s) = u"(t"(s)) and find the equivalent
system

8><
>:
@e9(ũ0(s)) +

"
1�kũ0(s)k ũ

0(s) + Bũ(s) +80

u(t (s), ũ(s)) 3 0,
t 0(s) + kũ0(s)k = 1,
u(0) = u0, t (0) = 0,

(1.3)

where 0
=

d
ds . The general aim of this paper is to show that a limit (t (s), ũ(s)) of

solutions (t"(s), ũ"(s)) of (1.3) satisfies the corresponding limit problem
8><
>:
@e9(ũ0(s)) + @C0(ũ0(s)) + Bũ(s) +80

u(t (s), ũ(s)) 3 0,
t 0(s) + kũ0(s)k = R(s) > 0,
u(0) = u0, t (0) = 0,

(1.4)

where C0(v) = 0 for kvk  1 and 1 otherwise. This will in fact be established in
various cases, but we cannot guarantee that the parametrization function R in (1.4)
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is equal to 1. However, we will show certain lower bounds for R, see Sections 2.4,
2.5, and 4.3.

The analysis relies heavily on parabolic regularity theory, which implies that
so-called weak energetic solutions u" 2 L1([0, T ], H1) \ H1([0, T ], H) of (1.1)
are in fact strong solutions satisfying

u" 2 L1([t, T ], H2) \ H1([t, T ], H1) \ H2([t, T ], H) for all t 2 (0, T ).

However, the norms are not bounded independently of ". To find suitable uniform
estimates we derive the higher-order energy equality

"

2
d
dt

ku̇"k2 + (Bu̇", u̇") +

�
f 0

u(t, u)u̇, u̇
�
+

�
f 0

t (t, u), u̇
�

= 0. (1.5)

It is interesting to note that this balance holds independently of the specific choice
of the rate-independent dissipation potential e9. Because of the nonsmoothness ofe9 the derivation of this energy balance needs special care. From this we find the a
priori estimate

ku(t)k22 + "2ku̇(t)k2 + "

Z t+1

t
ku̇(r)k21 dr  Q(ku(0)k2) e�↵t/" +C⇤,

where C⇤, ↵ and the monotone function are independent of ", u, and t � 0.
To do the vanishing-viscosity limit " ! 0, it is necessary to control the integralR T

0 ku̇"(t)k dt . Again using (1.5) it is possible to derive the estimate
Z t2

t1
ku̇"(t)k1 dt  C(1+ t2 � t1),

where the constant C depends on ku0k2, but is independent of ", t1 and t2. For
this we use some special weighted energy estimates in Section 2.4 or a specially
adapted version of Gronwall’s estimate in Section 3.4. Both arguments employ an
interpolation result that forms a basic assumption in our theory, namely

9 ✓ 2 (0, 1) 9C > 0 : kuk  Ce9(u)✓kuk1�✓1 for all u 2 H1.

This estimate says that the rate-independent dissipation is not too small, such that
the trivial a priori estimate for

R T
0
e9(u̇"(t)) dt obtained from (1.2) can be employed.

The paper is organized as follows. In Section 2 we treat a concrete situation,
where H = L2(�)m , B is a second-order elliptic operator, and e9 and 8 are classi-
cal integral functionals. There we are able to make quite general assumptions and
use classical arguments from parabolic regularity. In Section 3 we give the details
of the abstract situation as discussed here. Finally, Section 4 treat the more diffi-
cult situation where B is a quasilinear monotone, elliptic operator. In Section 5 we
give an application of the theory to a material model involving a coupling between
elastic and magnetic behavior, the latter displaying rate-independent hysteresis.
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The parallel developments in the three Sections 2, 3, and 4 hopefully illustrate
the different facets of the general approach. While the abstract Section 3 is studied
by analogy to the previous section, the other two sections are selfcontained up the
following two points. On the one hand, the proof of the semilinear Theorem 2.17
can be obtained by following exactly the steps of the proof of Theorem 4.16. On
the other hand, the proof of Proposition 4.11 follows along the lines of the proof of
Proposition 2.11.

The method of vanishing viscosity is well-known in many areas of mathemat-
ics. For rate-independent systems this approach was studied in several applications,
like in crack propagation [13, 14, 27], for fracture [5], for plasticity [7, 8]. How-
ever, only recently the limiting solutions are characterized sufficiently well along
the jumps. In [19, 20] a notion of BV solutions was introduced that avoids the arc-
length parametrization employed here. Moreover, from the results there it seems
reasonable to expect that limit points of the unscaled solution u" : [0, T ] ! H are
BV solutions. Some first results are obtained in [19, 20] in the finite-dimensional
setting, while the infinite-dimensional case will be studied in [21]; see also [16] for
some preliminary results.

In Section 3.6 it is shown that the solutions constructed here are BV solutions
in the sense of [20, 21]. However, our parametrization with the viscous norm k · k

of H needs stronger assumptions on the energy functional compared to the more
general notion of BV solutions. In return, we obtain a better characterization of of
the limiting solutions; in particular, we maintain the subdifferential structure (1.4)
matching the original subdifferential form (1.1) of the problem.

A different reparametrization is chosen in [4, 8] for nonconvex elastoplastic
models and in [19–21] for general systems. There the dissipated energy is used to
define arclength, namely

s"(t) = t +

Z t

0
k
e9(u̇"(⌧ ))k + distk·k⇤

⇣
�Bu"(⌧ )�80

u
�
⌧, u"(⌧ )

�
,K⇤

⌘
d⌧,

where K⇤
= @e9(0) ⇢ H⇤. The last term involving the distance from K⇤ was

introduced in [19, Eqn. (33)] for characterizing BV solutions (cf. the term ⌫(⇠�1)+
in M0(↵, ⌫, ⇠) there). It also appears in the vanishing-viscosity potential p in [16,
Def. 4.20] and in the term J in Section 3.6 on BV solutions, see (3.25e).

ACKNOWLEDGEMENTS. The authors are grateful to Riccarda Rossi and Giuseppe
Savaré for helpful discussions. They also thank two unknown referees for spotting
several inconsistencies.

2. The semi-linear case

This chapter is devoted to the study of the semi-linear case of equations (1.1) where
the leading part Bu is a linear second order differential operator. The rigorous
formulation of the problem, assumptions on 9, B and F and some preliminary
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facts are collected in Section 2.1. The uniform with respect to " ! 0 estimates
for (1.1) together with the existence and uniqueness of a solution are proved in
Section 2.2. In particular, the crucial higher energy identity (1.5) is verified there.
The passage to the rate-independent limit " ! 0 in equations (1.3) is justified in
Section 2.4 and the strict positivity of the scaling factor R(s) in the limit problem
(1.4) is verified in Section 2.5.

The example of a problem in the form (1.1) for which R(s) is strictly positive
is constructed in Section 2.6. We have to mention that this example is not entirely
satisfactory since the nonlinearity in it has the additional small non-gradient part,
however, all of the above theory works for that case as well.

Finally, the abstract semilinear case is briefly discussed in Section 3. In par-
ticular, the alternative approach to establishing the higher energy estimates which
does not require the approximation of the non-smooth functional9 by smooth ones
is indicated here.

2.1. Assumptions and preliminaries

In this section we start to study the semi-linear version of our main equation which
has the following form:

(
"@t u + @9(@t u) + Bu + f (t, u) 3 0,
u
��
@�

= 0, u(0, ·) = u0,
(2.1)

where u(t, x) = (u1(t, x), · · · , um(t, x)) is an unknown vector-valued function,
� b Rn is a bounded smooth domain inRn and " > 0 is a small positive parameter.

We assume that B is a linear second order self-adjoint elliptic operator in
[L2(�)]m satisfying

B⇤

= B, (Bu, u)L2 � kuk2H1 for all u 2 H10 (�) = W 1,2
0 (�) (2.2)

for some positive constant  . Here and below, Wl,p(�) is a Sobolev space of func-
tions whose distributional derivatives up to order l belong to L p(�), Wl,p

0 (�) is
the closure of C1

0 (�) in the space Wl,p(�) and (u, v)L2 is a usual inner product
in L2(�) (we will also use this notation for the duality between the Sobolev spaces
Wl,p
0 (�) and W�l,q(�) = [Wl,p

0 (�)]⇤, 1p +
1
q = 1). Moreover, the spaces Hs(�)

denote the Hilbert spacesWs,2(�). We will further use k·kL p and k·kHs to indicate
the norms in L p(�) and Hs(�), respectively.

The dissipation potential9 : Rm
! [0,1) is assumed to be coercive, convex,

and positively homogeneous of degree 1, namely

9�1,�2 > 0 : �1|v|  9(v)  �2|v| for all v 2 Rm, (2.3a)
9(↵v) = ↵9(v) for all ↵ � 0 and v 2 Rm, (2.3b)
9(v + w)  9(v) +9(w) for all v,w 2 Rm . (2.3c)
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By @9(v) we denote the multivalued subdifferential of 9, i.e.,

@9(v) = { ⌘ 2 Rm
|9(w + v) � 9(v) + ⌘.w for all w 2 Rm

}.

Here and below u.v means the inner product in Rm .
Finally the nonlinearity f : R ⇥ Rm

! Rm is supposed to be potential, i.e.,

f (t, u) := F 0

u(t, u) for some F 2 C2(R ⇥ Rm, R), (2.4)

and to satisfy the growth restrictions

|u| · | f 0

u(t, u)| + | f 0

t (t, u)|  C(1+ |u|r+1), (2.5)

where 0 < r < rmax :=
4

n�2 for n � 3 and rmax = 1 otherwise, and the dissipa-
tivity assumption

f (t, u).u � �K + 1|u|r+2. (2.6)

Assumption of (2.6) is a standard (parabolic) dissipativity condition, see e.g. [2]. In
particular, the growth restrictions (2.5) and the dissipativity assumption (2.6) imply

f (t, u).u � �C, (2.7a)
F(t, u)  3 f (t, u).u + C(1+ |u|2), (2.7b)
F 0

t (t, u)  3 f (t, u).u + C(1+ |u|2), 3 > 0. (2.7c)

In order to simplify the passage to the abstract semilinear case, we collect all nec-
essary analytic properties of the nonlinearity f in the next lemma. It quantifies the
fact that f (t, ·) is subordinated to the main elliptic part Bu.

Lemma 2.1. Let the function f satisfy growth restrictions (2.5). Then, there exists
� > 0 and a monotone function Q : [0,1) ! [0,1) such that the following
holds:

(1) The operators u 7! f (t, u) and u 7! f 0

t (t, u) are continuous operators from
H1�� to H�1+� satisfying the estimate

k f (t, u)kH�1+� + k f 0

t (t, u)kH�1+�  Q(kukH1�� ); (2.8)

(2) The functionals u 7! 8(t,u) :=(F(t,u),1)L2 and u 7! 80

t (t,u)=(F 0

t (t,u),1)L2
are continuous on H1�� and satisfy the estimate

|8(t, u)| + |80

t (t, u)|  Q(kukH1�� ); (2.9)

(3) The functional (u, v) 7! ( f 0

u(t, u)v, v)L2 is continuous on H1�� ⇥ H1�� with

|( f 0

u(t, u)v, v)L2 |  Q(kukH1�� )kvk
2
H1�� ; (2.10)
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(4) Let, in addition, n  6, then for u 2 H2(�) the following estimates hold:

k f (t, u)kL2  Q(kukH1)kuk
1��
H2 , (2.11a)

k f 0

u(t, u)vkL2  Q(kukH1)(1+ kukH2)kvkH1, (2.11b)
k f 0

t (t, u)kL2  Q(kukH2). (2.11c)

Proof. The assertions of this lemma are more or less standard, thus we leave the
rigorous proof to the reader, more details can be found in the proof of Lemma
4.1. We just indicate how the additional restriction n  6 appears for establishing
(2.11b). Moreover, without loss of generality, we consider the case n � 3 only
(the case n  2 is trivial since H1 ⇢ L p for every p) and assume even the weaker
condition on r : r =

4
n�2 (which is sufficient for proving that estimate).

Indeed, due to the growth restriction on f 0

u and Hölder inequality with expo-
nents n/2 and n/(n � 2), we have

k f 0

u(t, u)vk
2
L2  C(1+ kuk8/(n�2)L4n/(n�2) )kvk

2
L2n/(n�2) .

Using now the Sobolev’s embedding theorem Hs
⇢ L p(s) where 1/p(s) = 1/2 �

s/n (actually, we use it twice with s = 1, p = 2n/(n � 2) and s = 1/2+ n/4 and
p = 4n/(n � 2)), we arrive at

k f 0

u(t, u)vk
2
L2  C(1+ kuk8/(n�2)H1/2+n/4)kvk

2
H1 .

We see that the condition n  6 guarantees that the exponent 1/2 + n/4 will not
exceed 2 and the interpolation

kukH1/2+n/4  Ckuk(6�n)/4
H1 kuk(n�2)/4

H2

gives the desired estimate (2.11b). Lemma 2.1 is proved.

Remark 2.2. It worth to mention that the restriction n  6 is necessary only if the
exponent r is close to rmax; it can be relaxed otherwise. In particular, in the case
r 

2
n�2 , estimate (2.11b) holds for all n.
In order to study the dependence of solutions of problem (2.1) on ", it is how-

ever more convenient to scale time ⌧ = "t and rewrite the problem in the equivalent
form with respect to the function ũ(⌧ ) := u("⌧ ). In order to simplify the notations,
we will write below u(⌧ ) instead of ũ(⌧ ). We essentially use that 9 is positively
homogeneous of order 1 and, consequently, @9 is positively homogeneous of order
0. Equation (2.1) reads(

@⌧u + @9(@⌧u) + Bu + f"(⌧, u) 3 0,
u
��
@�

= 0, u
��
⌧=0 = u0,

(2.12)

where, by f"(⌧, u) := f ("⌧, u).
We are now ready to recall the definition of weak energy solutions for problem

(2.12).
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Definition 2.3. Let the functions 9 and f and the operator B satisfy the above
assumptions. A function u : [0, R] ! L2(�) is an energy solution of problem
(2.12), if

u 2 L1([0, R], H10 (�)) and @⌧u 2 L2([0, R], L2(�)) (2.13)

and if it satisfies equation (2.12) in the sense of distributions.
The next lemma gives some immediate additional regularity of energy solu-

tions which is necessary to establish the uniqueness.

Lemma 2.4. Let the above assumptions hold. Then, every energy solution u of
problem (2.12) satisfies

(a) u 2 L2([0, R], H2(�)), (b) f"(·, u) 2 L2([0, R], L2(�)) (2.14)

and, in particular, equation (2.12) can be understood as an equality in L2([0, R],
L2(�)).

Proof. Indeed, since the term @9(@⌧u) is uniformly bounded in L1, condition
(2.13) gives

2u := �Bu � f"(·, u) 2 L2([0, R], L2(�)). (2.15)
Since B is elliptic and � is smooth, we have the H2-regularity result for B, namely

kukH2(�)  CkBukL2, (2.16)

see e.g., [28]. The presence of the additional subordinated term f"(⌧, u) does not
destroy the maximal regularity estimate (2.16). Indeed, due to (2.11a) we obtain
the interpolation estimate k f"(⌧, u)kL2  Q�(kukH1) + �kukH2(�), where � > 0
is arbitrary and Q� is an appropriate monotone function. Applying the elliptic reg-
ularity estimate (2.16) together with the last estimate to equation (2.15) and taking
� > 0 being small enough, we have

ku(⌧ )kH2(�)  Ck2u(⌧ )kL2 + Q(ku(⌧ )kH1). (2.17)

Employing (2.13) the assertion (2.14)(a) follows. It only remains to note that
(2.14)(b) is an immediate consequence of (2.11a) and (2.14)(a).

Corollary 2.5. Every weak energy solution of problem (2.12) satisfies the so-called
energy equality, i.e., for all 0  ⌧1 < ⌧2  R we have

1
2
(Bu(⌧2), u(⌧2))L2 �

1
2
(Bu(⌧1)), u(⌧1))L2

+

Z ⌧2

⌧1

k@⌧u(⌧ )k2L2 + (9(@⌧u(⌧ )), 1)L2 d⌧

= �

Z ⌧2

⌧1

( f"(⌧, u(⌧ )), @⌧u(⌧ ))L2 d⌧.

(2.18)
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Indeed, multiplying equation (2.12) by @⌧u (which is possible to do since all of
the terms in (2.12) belongs to L2([0, R] ⇥ �) and @⌧u also belongs to that space),
integrating over (⌧, x) 2 [0, R] ⇥� and using the standard fact that

@9(u).u = 9(u),

we end up with identity (2.18). Moreover, using the potential F from (2.4) we may
introduce the stored energy functional E : [0, T ] ⇥ H2(�) ! R via E(t, u) =

1
2 (Bu, u) + (F(t, u), 1). By e9 : v 7! (9(v), 1) =

R
� 9(v(x)) dx we denote the

dissipation potential associated with9. With this the energy equation (2.18) can be
rewritten as

E(⌧2, u(⌧2))+
Z ⌧2

⌧1

⇣e9(@⌧u)+k@⌧uk2L2
⌘
d⌧ = E(⌧1, u(⌧1))+

Z ⌧2

⌧1

@⌧E(⌧, u(⌧ )) d⌧,

where @⌧E(⌧, u(⌧ )) := ( f 0

",⌧ (⌧, u(⌧ )), 1). This is the form used in [15,19].
It is well-known that, under the above assumptions, there exists at least one

weak energy solution of problem (2.12) (see e.g., [6]). Moreover, as we will see in
the next section, this solution is unique. However, the regularity (2.13) and (2.14)
seem insufficient to pass to the rate independent limit " ! 0 and we need a stronger
notion of solutions for problem (2.12).
Definition 2.6. We say that a function u = u(⌧, x) is a strong solution of (2.12) if,
for every R > 0,

(a) u 2 L1([0, R], H2(�)),

(b) @⌧u 2 L1([0, R], L2(�)) \ L2([0, R], H1(�))
(2.19)

and u satisfies equation (2.12) in the sense of distributions.
Let us now briefly explain how to obtain the additional regularity (2.19), this

derivation will be justified in the next section. Let us (formally) differentiate equa-
tion (2.12) by ⌧ and denote v = @⌧u. Then, we have

@⌧v + @29(v)@⌧v = Bv � f 0

",u(⌧, u)v � f 0

",⌧ (⌧, u). (2.20)

Furthermore, Euler’s identity for one-homogeneous functions gives (again formally)

@29(v)@⌧v.v = @⌧ [@9(v).v] � @9(v).@⌧v = @⌧ [@9(v).v �9(v)] = 0. (2.21)

Multiplying now equation (2.20) by v and integrating over x 2 �, we have

1
2
d
d⌧

kv(⌧ )k2L2+(Bv(⌧ ), v(⌧ ))L2+( f 0

",u(⌧, u(⌧ ))v(⌧ )+ f 0

",⌧ (⌧, u(⌧ )), v(⌧ ))L2 = 0.
(2.22)

The main observation is that the terms containing 9 disappears in all the estimates.
This is due to the homogeneity of 9 leading to the identity (2.21). Thus, we obtain
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the same equations as estimates as in the case 9 = 0, which would be a smooth
partial differential equation.

Integrating this identity by ⌧ and using estimates (2.9) and (2.10) one can
deduce the desired estimate for the function v in L2([0, R], H1(�)) and L1([0, R],
L2(�)). Finally, the estimate for u in L1([0, R], H2(�)) follows using elliptic
regularity estimate applied to equation (2.15).

Of course, the above formal arguments are far from being a rigorous proof,
since the possibility to differentiate equation (2.12) by ⌧ and identity (2.21) are not
evident especially due to the presence of the non-smooth term 9 (we recall that
one-homogeneous functional9(v) is even not C1 at v = 0) and require an accurate
justification. Nevertheless, as we will see below, every weak energy solution is
automatically a strong solution of (2.12) if u0 2 H2(�).

2.2. Classical a priori estimates, existence and uniqueness

The aim of this section is to study energy solutions and strong solutions for prob-
lem (2.12) and to verify a number of uniform estimates with respect to ". They
are necessary for passing to the rate independent limit " ! 0. We start with the
uniqueness of energy solutions.
Proposition 2.7. Let the functions9 and f and the operator B satisfy the assump-
tions of the previous section (in particular, assume (2.11b)) and let u0 2 H10 (�).
Then, the energy solution of problem (2.12) is unique and, for every two energy
solutions u1 and u2 (with different initial data belonging to H10 (�)) the following
Lipschitz continuity holds:

ku1(⌧ ) � u2(⌧ )kH1  C eK ⌧ ku1(0) � u2(0)kH1 (2.23)

where the constants C and K depends only on the energy norms of u1 and u2.
Proof. For two energy solutions u1 and u2 of (2.12) let w(⌧ ) := u1(⌧ ) � u2(⌧ ).
Then,

[@9(@⌧u1) � @9(@⌧u2)] + @⌧w = �Bw � [ f"(u1) � f"(u2)].

Multiplying this equation by @⌧w(⌧ ), integrating over� and using the monotonicity
of @9 (i.e., (@9(@⌧u1) � @9(@⌧u2), @⌧u1 � @⌧u2)L2 � 0), we obtain

d
d⌧

(Bw(⌧ ), w(⌧ ))L2  k f"(⌧, u1(⌧ )) � f"(⌧, u2(⌧ ))k2L2 . (2.24)

Thus, we only need to estimate the L2 norm in the right-hand side. To this end we
note that, due to estimate (2.11b),

k f"(u1(⌧ )) � f"(u2(⌧ ))kL2



Z 1

0
k f",u(su1(⌧ ) + (1� s)u2(⌧ ))wkL2 ds

 Q(ku1(⌧ )kH1 + ku2(⌧ )kH1)(1+ ku1(⌧ )kH2 + ku2(⌧ )kH2)kwkH1

:= L(⌧ )kwkH1 .

(2.25)
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Inserting (2.25) into (2.24) and using (2.2) for operator B, we infer

d
d⌧

(Bw(⌧ ), w(⌧ ))L2  CL2(⌧ )(Bw(⌧ ), w(⌧ ))L2 . (2.26)

Taking now into account (2.13) and (2.14), we see that
R ⌧
0 L(r)2 dr  C(⌧ + 1),

where the constantC depends only on the energy norms of u1 and u2. The Gronwall
estimate applied to (2.26) gives now the required estimate (2.23) and finishes the
proof.

Our next task is to construct a strong solution of problem (2.12) and to justify
the formal derivation of estimate (2.22) given in a previous subsection. To this end,
we approximate the function 9 by smooth ones, namely 9� with

9�(v) :=

Z
Rm
��m'(r/�)9(v � r) dr,

where ' is a standard smoothing kernel in Rm , see Appendix A for the detailed
study of the approximating functions 9� . We consider the smoothed version of
problem (2.12) (

@⌧u +9 0

�(@⌧u) + Bu + f"(⌧, u) = 0,
u
��
@�

= 0, u(0, ·) = u0.
(2.27)

Our task now is to obtain estimates for the solutions of this auxiliary problem, which
are uniform with respect to " and �. The required strong solution u(⌧ ) of the initial
problem (2.12) will then be obtained in the limit � ! 0. The next theorem gives
the existence of strong solutions for that auxiliary problem.

Theorem 2.8. Let the assumptions of Proposition 2.7 hold and let u0 2 H2(�).
Then, for every � > 0, there exists a unique strong solution u = u� of problem
(2.27). This solution belongs to AC(R+, H10 (�)), satisfies the energy identity

1
2
(Bu(⌧2), u(⌧2))L2 �

1
2
(Bu(⌧1)), u(⌧1))L2

+

Z ⌧2

⌧1

k@⌧u(⌧ )k2L2 + (9 0

�(@⌧u(⌧ )), @⌧u(⌧ ))L2 d⌧

= �

Z ⌧2

⌧1

( f"(⌧, u(⌧ )), @⌧u(⌧ ))L2 d⌧

(2.28)

for all 0  ⌧1  ⌧2 and the dissipative estimate

ku(⌧ )k2H2(�)
+ k@⌧u(⌧ )k2L2 +

Z ⌧+1

⌧
k@⌧u(r)k2H1 dr  Q(ku(0)kH2(�)) e�k⌧ +C f ,

(2.29)
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where the positive constants k and C f and the monotone function Q are indepen-
dent of ⌧ , " and �. In addition, the solution u satisfies the following integrated
version of (2.22):

k@⌧u(⌧2)k2L2 � k@⌧u(⌧1)k2L2 + 2
Z ⌧2

⌧1

k@⌧u(⌧ )k2H1 d⌧

+ 2
Z ⌧2

⌧1

( f 0

",⌧ (⌧, u(⌧ )) + f 0

",u(⌧, u(⌧ ))@⌧u(⌧ ), @⌧u(⌧ ))L2] d⌧  C� (2.30)

for all 0  ⌧1  ⌧2, where  > 0 is the same as in (2.2) and C is independent of
�, ⌧1, ⌧2 and u. Finally, @⌧u 2 L1((⌧, R], H1(�)) and @2⌧ u 2 L2((⌧, R] ⇥�)) for
every ⌧ > 0 and the following estimate holds

k@⌧u(⌧ )k2H1 +

Z ⌧+1

⌧
k@2⌧ u(r)k

2
L2 dr 

⌧ + 1
⌧

Q(ku(0)kH2) e�k⌧ +C f , (2.31)

where Q, C f > 0, and k are independent of �, ⌧ and u.

Proof. The energy equality (2.28) can be obtained multiplying equation (2.27) by
@⌧u exactly as in Corollary 2.5. So, we only need to verify estimates (2.29) and
(2.30). We give below only the formal derivation of that estimates which can be
easily justified using, e.g., the Galerkin approximation method (see also Section 4.2
for more details), since now 9� is smooth.

We start with the dissipative estimate for the H1 norm. Recall that (2.4) states
that F(t, ·) is the potential for f (t, ·). The energy estimate gives

d
d⌧

✓
1
2
(Bu(⌧ ), u(⌧ ))L2 + (F("⌧, u(⌧ )), 1)L2

◆
+ 1/2k@⌧u(⌧ )k2L2

+ (9 0

�(@⌧u(⌧ )), @⌧u(⌧ ))L2 = "(F 0

t ("⌧, u(⌧ )), 1)L2,
(2.32)

where we used the chain rule

d
d⌧

(F("⌧, u(⌧ )), 1)L2 = ( f"(⌧, u(⌧ )), @⌧u(⌧ ) + "(F 0

t ("⌧, u(⌧ )), 1)L2 .

Furthermore, we multiply equation (2.27) by u(⌧ ) and integrate over x . Then, using
(2.2) and the boundedness of v 7! 9 0

�(v), see Lemma A.2, we have

d
d⌧

ku(⌧ )k2L2 + ku(⌧ )k2H1 + 2( f"(⌧, u(⌧ )), u(⌧ ))L2  C.

whereC is independent of ⌧ , " and �. Multiplying this by 2L , where L is sufficiently
large, adding this to (2.32) and using (2.7) and k9 0

�k  C we have

d
d⌧

E(⌧, u(⌧ )) + ✓ku(⌧ )k2H1 + ✓k@⌧u(⌧ )k2L2  C1 (2.33)
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with E(⌧, v) := Lkvk
2
L2 +

1
2 (Bv, v)L2 + (F("⌧, v), 1)L2 and positive constants ✓

and C1 independent of ", � and ⌧ . Due to (2.7), we have ⇢kvk
2
H1 �C  E(⌧, v) 

Q(kvkH1) for some positive ⇢ and monotone function Q. Applying the Gronwall-
type estimate (see [3, Lem. 2.7]) to equation (2.33), we obtain

ku(⌧ )k2H1 +

Z ⌧+1

⌧
k@⌧u(r)k2L2 dr  Q(ku(0)kH1) e�k⌧ +C⇤ (2.34)

for a proper monotone function Q and positive constants K and C⇤.
As the next step, we verify estimate (2.30). To this end, we differentiate equa-

tion (2.27) by ⌧ and denote v(⌧ ) = @⌧u(⌧ ). Then, the function v solves

@⌧v +9 00

� (v)@⌧v + Bv + f 0

",u(⌧, u)v + f 0

",⌧ (⌧, u) = 0. (2.35)

Introducing P�(v) = 9 0

�(v).v � 9�(v) we have d
d⌧ P�(v) = 9 00

� (v)@⌧v.v. Hence,
multiplication by v(⌧ ) and integration over x gives

d
d⌧

[(P�(v), 1)L2 + 1/2kvk
2
L2] + (Bv, v)L2 + ( f 0

",⌧ (⌧, u) + f 0

",u(⌧, u)v, v)L2  0.
(2.36)

Integrating over ⌧ 2 [⌧1, ⌧2] and using (2.3c) and (A.7), we deduce the desired
estimate (2.30). (As already mentioned, in order to justify this calculations, one
should first deduce this estimate for the Galerkin approximations and then pass to
the limit N ! 1.)

Moreover, using estimates (2.8) and (2.10), we deduce from (2.36) that

d
d⌧

[2(P�(v), 1)L2 + kvk
2
L2] + kvk

2
H1  C(1+ kvk

2
H1�� ). (2.37)

Applying the Gronwall estimate to this relation and using (A.7), which gives
|P�(v)|  C�, the interpolation estimate k · kH1��  Ck · k

�

L2k · k
1��
H1 , and (2.34)

for estimating the integral over the L2 norm of v, we find

kv(⌧ )k2L2 +

Z ⌧+1

⌧
kv(r)k2H1 dr  Ckv(0)k2L2 e

�k⌧
+C⇤, (2.38)

where k and C⇤ are independent of �, ⌧ and ". Furthermore, v(0) = @t u(0) can be
found from

v(0) +9 0

�(v(0)) = 2u(0) := �Bu(0) � f"(0, u(0)), (2.39)

Since u(0) 2 H2(�), analogously to Lemma 2.4, we conclude that 2u(0) lies in
L2(�). Multiplying now equation (2.39) by v(0) and using the monotonicity of9 0

� ,
we obtain kv(0)kL2  Q(ku(0)kH2). Combining this with (2.38) leads to

kv(⌧ )k2L2 +

Z ⌧+1

⌧
kv(r)k2H1 dr  Q(ku(0)kH2) e�k⌧ +C⇤, (2.40)
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where the constant C⇤ and monotone function Q are independent of T and ". To-
gether with (2.17), this provides the desired control of the H2 norm of u and finishes
the proof of the dissipative estimate (2.29).

Thus, we only need to verify (2.31). To this end, we multiply equation (2.35)
by @⌧v(⌧ ) and integrate over x . Then, using that 9� is convex, we conclude that

k@⌧v(⌧ )k2L2 +

d
d⌧

(Bv(⌧ ), v(⌧ ))L2  k f 0

",u(⌧, u)vk
2
L2 + k f 0

",⌧ (⌧, u)k
2
L2 . (2.41)

Moreover, due to (2.11b) and (2.11c), we have

k f 0

",u(⌧, u)vkL2  Q(kukH2)kvkH1, k f 0

",⌧ (⌧, u)kL2  Q(kukH2),

where the function Q is independent of ", ⌧ , u and v. Multiplying now estimate
(2.41) by (⌧ � ⌧1) and integrating over ⌧ 2 (⌧1, ⌧2), we arrive at

(⌧2 � ⌧1)kv(⌧2)k
2
H1 +

Z ⌧2

⌧1

(⌧ � ⌧1)k@⌧v(⌧ )k2L2 d⌧

 Q(kukL1([⌧1,⌧2],H2))(⌧2 � ⌧1 + 1)
Z ⌧2

⌧1

k@⌧u(⌧ )k2H1 d⌧

which together with estimate (2.6) give (2.31) and finishes the proof of Theo-
rem 2.8.

Our next task is to construct a strong solution of (2.12) by passing to the limit
� ! 0 in equations (2.27).

Theorem 2.9. Let the above assumptions hold and let u0 2 H2(�). Then, prob-
lem (2.12) possesses a (unique) strong solution u in the sense of Definition 2.6.
This solution satisfies the energy equality (2.18) and higher energy estimate (2.30)
(with � = 0). Moreover, u also satisfies the dissipative estimates (2.29) and (2.31)
uniformly with respect to " ! 0.

Proof. We will construct the required solution u of problem (2.12) as a limit � ! 0
of the solutions u� of the regularized problems (2.27). Indeed, using the dissipative
estimate (2.29), we see that the sequence u� is uniformly bounded in L1(R+,H2(�))
and the corresponding sequence of derivatives @⌧u� is uniformly bounded in
L1([0, R], L2(�)) \ L2([0, R], H10 (�)), for every R > 0. Thus, choosing a
subsequence (u�n )n2N with �n ! 0 we can assume that there exists a weak limit
u = limn!1 u�n such that

un!u weak* in L1([0,R], H2(�))\W 1,1([0,R], L2(�))\H1([0,R], H10 (�)).
(2.42)

Moreover, due to estimate (2.31), we may additionally assume that

un ! u weakly* in W 1,1
loc ((0, R], H1(�)) \ H2loc((0, R], L2(�)). (2.43)
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It remains to prove that u solves (2.12). To this end, we set

vn := @⌧un, 2n := 2un = 9 0

�n (vn) + vn. (2.44)

Since the sequence @t un is uniformly bounded in L1([0, R], L2(�)) and 9 0

� is
bounded in L1, the sequence 2n is uniformly bounded in L1([0, R], L2(�)).
Consequently, without loss of generality, we can assume that 2n ! 2 weakly*
in that space. We need to prove

(a) 2 = 2u := Bu � f"(⌧, u), (b) 2 2 @9(v) + v, (2.45)

where v = @⌧u. Furthermore, the first equality is obvious. Indeed, the operator B is
linear and, thus, Bun ! Bu weakly* in L1([0, R], L2(�)). In order to pass to the
limit in the term f"(⌧, un), it is sufficient to note that the weak convergence (2.42)
implies the strong convergence

un ! u strongly in C([0, R], H1�� (�)) (2.46)

for any � > 0 and use the first assertion of Lemma 2.1 to conclude that f"(un) !

f"(u) in C([0, R], H�1), and (2.45)(a) is established.
To check (2.45)(b) let A�(w) := 9�(w) + 1/2kwk

2 (cf. (A.12)). Then, multi-
plying (2.27) by vn , we find that, analogously to (2.18),

⌦
A0

�n (vn), vn
↵
>R +

1
2
(Bun(R), un(R))L2

=

1
2
(Bu(0)), u(0))L2 � h f"(⌧, un), vni >R,

(2.47)

where by h·, ·iR we denote the scalar product in L2([0, R] ⇥ �) and vn := @⌧un .
Passing now to the limit n ! 1 in that relation and using that f"(un) ! f"(u)
strongly in C([0, R], H�1) and that B is positive definite, we infer

lim sup
n!1

⌦
A0

�n (vn), vn
↵
R 

1
2
(Bu(0), u(0))L2 �

1
2
(Bu(R), u(R))L2

� h f"(⌧, u), viR .

(2.48)

Analogously, multiplying relation (2.45)(a) by v and integrating over (⌧, x), we get

h2, viR =

1
2
(Bu(0), u(0))L2 �

1
2
(Bu(R), u(R))L2 � h f"(⌧, u), viR , (2.49)

which, together with (2.48), gives

lim sup
n!1

⌦
A0

�n (vn), vn
↵
R  h2, viR . (2.50)



82 ALEXANDER MIELKE AND SERGEY ZELIK

Let us now consider the convex functional

A�(w) :=

Z
(⌧,x)2[0,R]⇥�

A�(w(⌧, x)) d⌧ dx

on the space L2([0, R] ⇥ �). Then, (2.45)(b) means that 2 2 @A0(v). Let now
(w, z) 2 [L2([0, R] ⇥�)]2 with z 2 @A0(w) be an arbitrary point of the graph of
maximal monotone operator @A0. Then, due to Lemma A.3, there exists a sequence
wn strongly convergent in L2([0, R] ⇥�) to w such that A0

�n
(wn) = z. Since A0

�n
is monotone, we have

⌦
A0

�n (vn)�z, vn�wn
↵
R =

⌦
A0

�n (vn) �A0

�n (wn), vn�wn
↵
R � 0. (2.51)

Passing to the limit n ! 1 in (2.51) and using (2.50), we finally have

h2�z, v�wiR � 0, w 2 L2([0, R] ⇥�), z 2 @A0(w).

Since (z, w) is an arbitrary point in the graph, maximal monotonicity of the subd-
ifferential @A0 implies 2 2 @A0(v). Thus, (2.45)(b) holds, and u solves the limit
problem (2.12).

We are now ready to check the remaining assertions of the theorem. Indeed,
the weak convergence (2.42) and (2.43) is sufficient to pass to the limit n ! 1 in
the dissipative estimates (2.29) and (2.31) for un and the energy equality for u was
verified in Corollary 2.5. To check the remaining higher energy estimate (2.30), we
need a strong convergence, namely

@⌧un ! @⌧u strongly in L2([0, R], L2(�)). (2.52)

To this end, we rewrite the energy equality (2.18) in the form

2 h9(vn), 1iR + 2
D
|vn|

2, 1
E
R

+ (Bun(R), un(R))L2 � (Bu(0), u(0))L2
= 2

⌦
9�n (vn) �9(vn), 1

↵
R � 2

⌦
P�n (vn), 1

↵
R � 2 h f"(⌧, un), vniR .

Using the fact that f" is relatively compact and estimates (A.4) and (A.7), passing
to the limit n ! 1 gives

lim
n!1

hD
29(vn) + 2|vn|2, 1

E
R

+ (Bun(R)), un(R))L2
i

= (Bu(0), u(0))L2 � 2 h f"(⌧, u), viR .

Together with the energy equality for the limit equation (2.12) gives

lim
n!1

hD
29(vn)+2|vn|2, 1

E
R

+ (Bun(R), un(R))L2
i

=

D
29(v)+2|v|

2, 1
E
R

+ (Bu(R), u(R))L2 .



RATE-INDEPENDENT LIMITS OF PARABOLIC EQUATIONS 83

Since the operators 9 and B are convex, this implies

lim
n!1

D
|vn|

2, 1
E
R

=

D
|v|
2, 1

E
R
and lim

n!1

(Bun(R), un(R))L2 =(Bu(R), u(R))L2 .

Since L2([0, R]⇥�) is uniformly convex, we deduce the strong convergence (2.52).
It is now not difficult to pass to the limit in (2.30). Indeed, the strong conver-

gence (2.52) together with weak convergence (2.42) imply that @⌧un!@⌧u strongly
in L2([0, R],W 1�� (�)), for every � > 0 and k@⌧un(⌧ )kL2 ! k@⌧u(⌧ )kL2 for al-
most all ⌧ 2 R+. These convergence, together with assertions 1) and 3) of Lemma
2.1 and convergence (2.46) allow us to pass to the limit � ! 0 in (2.30) and show
that the higher energy estimate holds for almost all 0  ⌧1  ⌧2 (including ⌧1 = 0).
In order to see that this estimate actually holds for all ⌧1 and ⌧2, it is sufficient
to recall that, due to estimate (2.31), @2⌧ u 2 L2([0, R] ⇥ �) and, consequently,
the function ⌧ 7! k@⌧u(⌧ )k2L2 is continuous (and even absolutely continuous) on
[0, R]. Thus, Theorem 2.9 is proved.

2.3. Rate-independent a priori estimates

Our next task now is to deduce several crucial estimates for @⌧u(⌧ ) based on the
energy equality and the higher order energy estimate (2.30). The emphasis here
is to obtain estimates that are suitable for the vanishing-viscosity limit, i.e., they
have be uniform for " ! 0. We start from the dissipation integral for solutions of
problem (2.12).

Corollary 2.10. Let the assumptions of Theorem 2.9 hold and let u be a solution of
problem (2.12). Then, for every ⌧1, ⌧2 2 R+, ⌧2 � ⌧1, one has
Z ⌧2

⌧1

k@⌧u(⌧ )kL1(�) + k@⌧u(⌧ )k2L2 d⌧  Q(ku(0)kH2(�))[1+ "(⌧2 � ⌧1)], (2.53)

where the monotone function Q is independent of ", ⌧1 and ⌧2.

Proof. Estimate (2.53) follows from energy equality (2.18) and the uniform bounds
for the H2-norm of the solution obtained above. Indeed, using (2.18) together with
(2.29), (2.9) and the obvious equality f"(⌧, u).@⌧u = @⌧ F("⌧, u) � "F 0

t ("⌧, u), we
get
Z ⌧2

⌧1

e9(@⌧u(⌧ )) +

1
2
k@⌧u(⌧ )k2L2 d⌧  Q(ku0kH1) +

Z ⌧2

⌧1

"(F 0

t ("⌧, u(⌧ )), 1)L2 d⌧.

Using estimates (2.9) and (2.29) in order to estimate the integral with F 0

t and esti-
mate (2.3)(1) and for estimating the term with 9, we obtain the required estimate
(2.53) and finish the proof of Corollary 2.10.
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We formulate now the L1([0, R], H1)-estimate for the derivative @⌧u which
is crucial for what follows. The important structure here is that the L1 norm with
respect to t 2 [0, T ] is scaling invariant. In fact, it would be enough to controlR ⌧2
⌧1

k@⌧u(⌧ )kL2 d⌧ , but we state the stronger result in terms of the H1 norm, as
this improvement comes for free from the parabolic regularity theory. The crucial
interpolation estimate is

kvkL2  Ce9(v)� kvk
1��
H1 for all v 2 H1(�). (2.54)

Since e9 is bounded from below by a multiple of the norm in L1(�), we obtain this
with � = 2/(n + 2) from standard Gagliardo-Nirenberg estimates.

Proposition 2.11. Let the assumptions of Section 2.1 hold and let u = u(⌧ ) be
a solution of problem (2.12) in the sense of Definition 2.6. Then, the following
estimate holds:

Z ⌧2

⌧1

k@⌧u(⌧ )kH1 d⌧  C(1+ "(⌧2 � ⌧1)), (2.55)

where C > 0 depends on ku(0)kH2 , but is independent of " > 0, ⌧1 � 0, and
⌧2 > ⌧1.

Proof. As we will see, the desired estimate is a corollary of estimate (2.30) and the
dissipation integral (2.53). Indeed, using f 0

",⌧ (⌧, u) = " f 0

t ("⌧, u), (2.8), (2.10), and
the dissipative estimate (2.29), one can transform estimate (2.30) into

kv(⌧2)k
2
L2 �kv(⌧1)k

2
L2 +

Z ⌧2

⌧1

kv(s)k2H1 ds  C
Z ⌧2

⌧1

⇣
"2 + kv(s)k2L2

⌘
ds, (2.56)

where v = @⌧u and C depends only on ku(0)kH2 . Moreover, according to Lemma
B.1, for every function � 2 C1(R+), we have

�(⌧2)kv(⌧2)k
2
L2 � �(⌧1)kv(⌧1)k

2
L2 + 

Z ⌧2

⌧1

�(r)kv(r)k2H1 dr

 C
Z ⌧2

⌧1

[�(r) + �0(r)]
⇣
"2 + kv(r)k2L2

⌘
dr.

(2.57)

We now fix ⌧1 = ⌧ , ⌧  ⌧2  ⌧ + 2 and �(r) = �⌧ (r) := (⌧ � r)N for ⌧ � r
and �(r) = 0 for ⌧  r where N > 1 is a sufficiently large exponent which will be
fixed below. Then, this function satisfies the estimate

|�0(r)|  N�(r)�N with �N :=

N � 1
N

.
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This and the interpolation estimate (2.54) allow us to estimate the integral in the
right-hand side of (2.57) via

Z ⌧2

⌧
[�(r) + �0(r)]kv(r)k2L2 dr  CN

Z ⌧2

⌧
��N (r)kv(r)k2L2 dr

 C 0

N

Z ⌧2

⌧
(�(r)1/2kv(r)kH1)

2�2� (�(r)�/2
kv(r)kL1(�))

2� dr

 C 0

N

✓Z ⌧2

⌧
�(r)kv(r)k2H1 dr

◆1�� ✓Z ⌧2

⌧
�(r)�kv(r)k2L1(�)

dr
◆�





2C

Z ⌧2

⌧
�(r)kv(r)k2H1 dr + C 00

N

Z ⌧2

⌧
�(r)�kv(r)k2L1 dr,

where � = (�N � 1+ � )/� = 1� (1� �N )/� . Clearly, � < 1, but we may fix N
such that � remains positive. Fixing now N =

2
� gives � =

1
2 and (2.57) takes the

form

�(⌧2)kv(⌧2)k
2
L2+

Z ⌧2

⌧
�(r)kv(r)k2H1 drC

✓
"2+

Z ⌧2

⌧
�(r)1/2kv(r)k2L1(�)

dr
◆

. (2.58)

Furthermore, we estimate the integral in the right-hand side via
Z ⌧2

⌧
�(r)1/2kv(r)k2L1(�)

drC sup
r2[⌧,⌧2]

{�(r)1/2kv(r)kL2}
Z ⌧2

⌧
kv(r)kL1 dr

1/(2C) sup
r2[⌧,⌧2]

{�(r)k@⌧u(r)k2L2}+C1
✓Z ⌧2

⌧
kv(r)kL1 dr

◆2
.

Inserting this estimate into (2.58) with ⌧2 = ⌧ + 2, we have

Z ⌧+2

⌧
�(r)kv(r)k2H1 dr  C

 
" +

Z ⌧+2

⌧
kv(r)kL1(�) dr

!2
.

Moreover, using �(r) � 1 for r � ⌧ + 1 we obtain
 Z ⌧+2

⌧+1
kv(r)kH1 dr

!2


Z ⌧+2

⌧+1
kv(r)k2H1 dr  C

Z ⌧+2

⌧
�(r)kv(r)k2H1 dr

and conclude
Z ⌧+2

⌧+1
kv(r)kH1 dr  C

 
" +

Z ⌧+2

⌧
kv(r)kL1(�) dr

!
, (2.59)

where the constant C depends on ku(0)kH2 but not on ⌧ � 0 and " > 0. This
estimate allows us to estimate the norm of v(⌧ ) for ⌧ � 1.
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For the interval ⌧ 2 [0, 1] we argue analogously, but without the usage of the
cut-off function �. Working on (2.56) directly we find

Z 1

0
kv(r)kH1 dr  C

 
" + kv(0)kL2 +

Z 1

0
kv(r)kL1(�) dr

!
. (2.60)

To finish the proof we sum the estimates (2.59) with ⌧ = ⌧1�1, ⌧1, ⌧1+1, · · · , ⌧1+
[⌧2�⌧1]. In the case ⌧1 < 1 use (2.60) for the first step instead of (2.59). This gives
Z ⌧2

⌧1

kv(⌧ )kH1 d⌧  C
✓
"(⌧2 � ⌧1) + 1+

Z ⌧2

max{⌧1�1,0}
kv(⌧ )kL1(�) d⌧

◆
. (2.61)

Employing the dissipation bound (2.53) gives the desired estimate (2.55).

We are now able to return back to the original time t = "⌧ and the associated
equation (2.1). The results obtained from this time rescaling read as follows.

Theorem 2.12. Let the assumptions of Section 2.1 hold. Then, for all " > 0, there
exists a unique strong solution u of problem (2.1). This solution satisfies the dissi-
pative estimate

ku(t)kH2 + "k@t u(t)kL2  Q(ku(0)kH2) e�↵t/" +C f , (2.62)

where ↵ > 0, C f > 0, and the monotone function Q are independent of " and t .
Moreover, we have Z T+1

T
k@t u(t)kH1 dt  C, (2.63)

where C depends on ku(0)kH2 , but not on " and T � 0.

Indeed, estimate (2.62) is an immediate corollary of estimates (2.29) and
estimates (2.63) follow from Proposition 2.11 taking into the account that the
L1([0, T ],Y )-norm of @t u is scaling invariant, where Y is any Banach space. This
means more precisely if u"(t)= ũ("t), then

R T
0 k@t u"(t)kY dt=

R T/"
0 k@⌧ ũ(⌧ )kY d⌧ .

Remark 2.13. As we see, the possibility to construct a strong solution of problem
(2.1) and to verify the crucial estimates (2.62) and (2.63) is strongly based on the
validity of the higher energy estimate (2.30) which is a weakened integrated form
of the equality (2.22). The method of proving (2.30) given above does not allow
to obtain the higher energy equality (2.22) since we do not know how to verify the
strong convergence of @⌧un in L2([0, R], H1(�)) in Theorem 2.9 (and even earlier,
in the proof of the existence of approximating solution via the Galerkin method).
By this reason, the equality may be lost under the passage to the limit and only the
higher energy estimate can be obtained.

We will see in Section 3, using an alternative direct method which does not
require the approximations, that the higher energy equality (2.22) holds for a.a.
⌧ > 0. However, it seems difficult to obtain (2.30) directly from (2.22) since the
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function ⌧ 7! @⌧u(⌧ ) 2 L2(�) is continuous for ⌧ > 0 only, and we do not
know how to verify even the weak continuity @⌧u 2 Cw([0, R], L2) at ⌧ = 0. By
this reason, we cannot deduce (2.30) with S = 0 directly from (2.22) and some
approximations are still required, see Section 3 for more details.
Remark 2.14. We also note that assumption (2.4) on the gradient structure of the
non-linearity f can be somehow relaxed. Indeed, it is not difficult to see that this as-
sumption has been used only in order to prove the dissipative estimate (2.53). Thus,
if this estimate is a priori known by some other arguments, then all of the results of
the paper will hold even without the gradient assumption (2.4). In particular, if the
nonlinearity f has the structure

f (t, u) = f0(t, u) + f1(t, u), (2.64)

where f0 is gradient and satisfies all of the assumptions of Section 2.1 and the
function f1 is uniformly bounded and subordinated to @9, i.e.

| f1(t, u)|  � < �1, (2.65)

where �1 is as in (2.3a). Then the dissipative estimate (2.53) holds, since we have
Z ⌧

⌧1

9(@⌧u(⌧ )) d⌧ +

Z ⌧2

⌧1

( f1("⌧, u), @⌧u)L2 d⌧ � (�1 � �)

Z ⌧2

⌧1

k@⌧u(⌧ )kL1(�) d⌧

and (2.53) can be obtained exactly as in the gradient case. Thus, all of the results of
the paper remain true in the slightly non-gradient case (2.64).

2.4. The vanishing-viscosity limit

The aim of this section is to clarify the limiting behavior of the solutions u"(t) of
(2.1) for " ! 0. We follow the approach in [10] (see also [19,20]) where solutions
are considered as curves in the extended state space [0, T ] ⇥ L2(�). Thus we hope
to understand the convergence of the whole graph rather than the function only.
In order to do so, we introduce an arc-length parametrization via the scaled time
variable

s(t) := t +

Z t

0
k@t u"(r)kL2 dr, (2.66)

where u"(t) solves (2.1). Then, dsdt = 1+ k@t u"(t)kL2 and, due to estimate (2.62),
we have

1 

ds
dt

 C/", (2.67)

where the constant C depends only on the initial data. Thus, we can define the
inverse function t"(s) to (2.66) and rewrite equation (2.1) with respect to new de-
pendent variable ũ"(s) := u"(t"(s)). To simplify the notations, we will write again
u"(s) instead of ũ"(s), since keeping the argument s indicates that we are dealing
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with the arc-length parametrization. As a consequence we are now looking for a
pair (u", t") : [0, S] ! L2(�) ⇥ R which has to satisfy the problem

@9(@su"(s)) +
"

1�k@su"(s)kL2
@su"(s) + Bu"(s) + f (t"(s), u"(s)) 3 0, (2.68a)

t 0"(s) + k@su"(s)kL2 = 1, (2.68b)
u"(0) = u0, t"(0) = 0. (2.68c)

In particular, again due to (2.62), we have

k@su(s)kL2 = k@t u"(t)kL2
✓
ds
dt

◆
�1

=

k@t u"(t)kL2
1+ k@t u"(t)kL2



C
C + "

< 1. (2.69)

Consequently, for " > 0 equation (2.68) is fully equivalent to (2.1) if the corre-
sponding rescalings are performed.

Following [10] we introduce the convex functional C" : L2(�) ! R+ via

C"(v) :=

(
"
⇣
ln
⇣

1
1�kvkL2

⌘
� kvkL2

⌘
for kvkL2 < 1,

1 for kvkL2 � 1.
(2.70)

A simple calculation shows that

@C"(v) =

(
"

1�kvkL2
v for kvkL2 < 1,

; for kvkL2 � 1.
(2.71)

Thus, system (2.68) can be rewritten in the following equivalent form:8><
>:
@9(@su"(s)) + @C"(@su"(s)) + Bu"(s) + f (t"(s), u"(s)) 3 0,
t 0"(s) + k@su"(s)kL2 = 1,
u"(0) = u0, t"(0) = 0.

(2.72)

It is easy to see that the functionals C" converge to C0 given by

C0(v) :=

(
0 for kvkL2  1,
1 for kvkL2 > 1.

(2.73)

Moreover, @C" converges to the limit operator @C0, see Appendix A. Thus, we can
expect that a subsequence of the solutions (u", t") converge, in a suitable sense, to
the solution (u, t) of the limit problem8><

>:
@9(@su(s)) + @C0(@su(s)) + Bu(s) + f (t (s), u(s)) 3 0,
t 0(s) + k@su(s)kL2 = 1,
u(0) = u0, t (0) = 0.

(2.74)

The rest of the current subsection is devoted to a rigorous justification of the passage
from (2.72) to (2.74). We start with a control of new time s = s"(t), which is
uniform with respect to " ! 0 .
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Lemma 2.15. Let the assumptions of Section 2.1 hold and let u = u"(t) is a strong
solution of problem (2.1). Then, the scaled time t"(s) satisfies estimate:

s � t"(s) � s/C � C, t"(0) = 0, t 0"(s) � 0, (2.75)

for some positive constant C , which is independent of ".

Indeed, estimate (2.75) follows immediately from the definition (2.66) of the
scaled time s and the uniform estimate (2.63) for the integral of @t u(t). The next
lemma interprets the uniform estimates obtained in the previous section in terms of
the solutions (u"(s), t"(s)) of problem (2.72).

Lemma 2.16. Let the above conditions hold. Then, the solution (u", t") of problem
(2.72) satisfy the following estimates:

ku"(s)kH2  C = C(ku0kH2),
Z S+1

S
k@su"(s)kH1 ds  C,

s � t"(s) � s/C � C, 1 � t 0"(s) � 0,
(2.76)

where C is independent of " ! 0, s � 0 and S � 0.

Indeed, first estimate of (2.76) is an immediate corollary of (2.62) and the
scaling invariance of the L1 norm. Analogously, the second estimate of (2.76)
follows from (2.63) and the scaling invariance of the L1-norm of the time derivative.
Finally, the third one is just repeats estimate (2.75). We are now ready to pass to the
limit " ! 0 and formulate the main result of this section.

Theorem 2.17. Let the assumptions of Section 2.1 hold and for " > 0 let (u", t") :

[0, S] ! L2(�) ⇥ R be solutions of problem (2.72) as constructed above. Then,
there exists a sequence "n ! 0 such that the associated solutions (un(s), tn(s)) :=

(u"n (s), t"n (s)) tend to the limit pair (u(s), t (s)), with t 0(s) + k@su(s)kL2  1 a.e.,
in the following sense:

un ! u weakly* in L1([0, S], H2(�)) \ W 1,1([0, S], L2(�)), (2.77a)
un ! u strongly in C([0, S],W 2�,2(�)),  > 0, (2.77b)
@sun ! @su weakly in L1/([0, S],W ,2(�)), 0   < 1, (2.77c)
tn ! t weakly* in W 1,1([0, S]), (2.77d)Z s1

s2
e9(@sun(s)) ds !

Z s1

s2
e9(@su(s)) ds, s1 � s2 � 0, (2.77e)

Z s2

s1
(@C"n (@sun(s), @sun(s))L2 ds !

Z s2

s1
('0(s), @su(s))L2 ds, (2.77f)

for a function '0 2 L2([0, S], L2(�)) with '0(s) 2 @C0(@su(s)) for almost all s.
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The limit (u, t) satisfies the following weakened version of (2.74):
8><
>:
@9(@su(s)) + @C0(@su(s)) + Bu(s) + f (t (s), u(s)) 3 0,
t 0(s) + k@su(s)kL2 = R(s),
u(0) = u0, t (0) = 0,

(2.78)

where the function R 2 L1(R+) satisfies 0  R(s)  1 a.e. and the scaled time
t (s) satisfies

s � t (s) � s/C � C, 1 � t 0(s) � 0. (2.79)

where the positive constant C is independent of s.

The proof of this theorem is similar to the proof of Theorem 2.9 and based on
the uniform estimates proved above and the convergence of subdifferentials estab-
lished in Lemma A.4. The only difference is that we do not have now any strong
convergence for @su(s) and, for this reason, cannot prove that R(s) ⌘ 1 by pass-
ing to the limit " ! 0 in (2.68b). (As we will see in Section 2.6, R(s) may be
really strictly less than 1 in some examples.) Instead of this, we can only claim that
R(s)  1 using the weak convergence. The detailed proof of this theorem will be
given in the next part for the more complicated quasi-linear case, see Theorem 4.16.

The next Corollary gives the straightforward lower bounds for the scaling fac-
tor R(s) which will be improved in the next section using more refined methods.

Corollary 2.18. Let the assumptions of Theorem 2.17 hold. Then, for every s2 �

s1 � 0, the following estimate is valid:
Z s1

s2
R(s) ds � min{(s1 � s2)/2, (s1 � s2)K /C}, for s1 � s2 � 0, (2.80)

where the positive constants C and K are independent of s1 and s2.

Proof. To prove (2.80), we will use the convergence (2.77e) and the interpolation
estimate (2.54). For all intervals I ⇢ [0, S] the latter combined with Hölder’s
inequality implies

kwkL1(I,L2)  Ckwk
�

L1(I,L1)kwk
1��
L1(I,H1)  C1k9(w)k

�

L1(I,L1)kwk
1��
L1(I,H1),

(2.81)
where �=

2
n+2 and n is the space dimension. Integrating (2.68b) over s2 I :=[s2,s1]

and using (2.81) together with the bound (2.76) for @sun in L1([s2, s1], H1(�)), we
infer

tn(s1) � tn(s2) = s1 � s2 �

Z s1

s2
k@sun(s)kL2 ds

� s1 � s2 � C
✓Z s1

s2
(9(@sun(s)), 1)L2 ds

◆�
,

(2.82)
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where the constantC is independent of s1, s2 and n. Finally, the convergence (2.77e)
allows us to pass to the limit n ! 1 in (2.82). Estimating the L1 norm by the L2
norm we obtain

t (s1) � t (s2) � s1 � s2 � C2
✓Z s1

s2
k@su(s)kL2 ds

◆�
. (2.83)

Using the second equation of (2.78) and 0  ⌫ =

R s1
s2 k@sukL2 ds 

R s1
s2 R(s) ds we

find
Z s1

s2
R(s) ds=⌫+t (s1)�t (s2) � s1�s2+⌫�C2⌫� � s1�s2�C2

✓Z s1

s2
R(s) ds

◆�
.

Now it is easy to see that (2.80) holds with K = 1/� and C = (2C2)K .

In the next section the lower bound (2.80) for R is improved to R(s) � ⇢⇤ > 0
a.e. by more delicate arguments, i.e., we show that we may choose K = 1 in (2.80).

Thus, due to Theorem 2.17, the vanishing-viscosity solution (u(s), t (s)) satisfy
the limit system (2.78) which differs from the intuitive limit equations (2.74) by the
presence of a factor R = R(s). However, systems (2.78) is, in a fact, not essentially
different from (2.74) and can be transformed to it by a rescaling as described in the
following remark.
Remark 2.19. We assume that (t, u) 2 W 1,1([0, S], R ⇥ L2(�)) satisfies (2.78)
and let

s̄(s) :=
Z s

0
R(s) ds, S̄ :=

Z S

0
R(s) ds, ū(s̄) := u(s(s̄)), and t̄(s̄) := t (s(s̄)). (2.84)

Due to (2.80), the function s̄ : [0, S] ! [0, S̄] is invertible, and the inverse function
s : [0, S̄] ! [0, S] is Hölder continuous. Using the second equation of (2.78) and
the regularity properties of (u(s), t (s)) obtained in Theorem 2.17, one can easily
verify that

(t̄,ū)2W 1,1([0, S̄], R⇥L2(�)) and t̄ 0(s̄)+k@s̄ ū(s̄)kL2 = 1 a.e. in [0, S̄]. (2.85)

Moreover, since @su(s) = R(s)@s̄ ū(s̄(s)) with R(s) 2 [0, 1] we can use the special
form of C0, which implies @C0(⇢v) ⇢ @C0(v) for all ⇢ 2 [0, 1] and v with kvkL2 .
Thus, we obtain

@C0(@su(s)) ⇢ @C0(@s̄ ū(s̄(s))) a.e. in [0, S].

Since the term @9(@su) is scaling invariant, then we can conclude that the scaled
functions (ū(s̄), t̄(s̄)) satisfies indeed (2.74). Therefore, the proved Theorem 2.17
gives, in particular, the existence of a solution of problem (2.74) belonging to the
class (2.85).



92 ALEXANDER MIELKE AND SERGEY ZELIK

The next result provides some further regularity property. The proof will be
given at the end of Section 2.5.
Corollary 2.20. Let the assumptions of Theorem 2.9 hold. Then, the solution
(ū(s̄), t̄(s̄)) of problem (2.74) constructed via the additional scaling (2.84) belongs
to the following class

ū 2 W 1,1([0, S], L2(�)) \ H1([0, S], H1(�)) \ L1([0, S], H2(�)) (2.86)
for all S > 0.

2.5. Strict positivity of the scaling factor R(s)

As we have seen at the end of the previous section, the convergence (2.77e) implies
the Hölder continuity (2.80). In this section, we will show that both convergences
(2.80)e) and (2.80)f) together with the higher energy estimate for problem (2.72)
allow us to conclude that K = 1 and, therefore the function R(s) is separated from
0 almost everywhere. To be more precise, the following result holds.
Theorem 2.21. Let the assumptions of Theorem 2.9 hold and let (un,tn) :=(u"n ,t"n )
be a sequence of solutions of (2.68) with "n ! 0 tending to the limit solution (u, t)
of problem (2.78) constructed in Theorem 2.17. Then, we additionally have

@sun ! @su weakly in L2([0, S], H1(�)) (2.87)
and the limit function R(s) in the second equation of (2.78) is strictly separated
from 0:

1 � R(s) � � > 0 for almost all s 2 R, (2.88)
where the constant � depends only on the H2-norm of the initial data u0.

The proof of this theorem is based on the following lemma which gives the
analog of the higher energy estimate (2.30) for the solutions of the rescaled problem
(2.68) (see also the proof of Theorem 4.17 below). In the proof we will use the
functional bC"(v) := (@C"(v), v)L2 � C"(v) = "ĝ(kvkL2) � 0
for a suitable function ĝ : [0, 1) ! [0,1). The construction of bC" is such that

d
ds
bC"(v(s)) = (D2C"(v(s))v0(s), v(s))L2, (2.89)

because of some cancellations.
Lemma 2.22. Let the above assumptions hold and let (t (s), u(s)) be a (unique
strong) solution of problem (2.68). Then, for 0  s1  s2 we have, with v(s) =

@su(s),

bC"(v(s2)) �
bC"(v(s1)) + 

Z s2

s1
kv(s)k2H1 ds

 �

Z s2

s1

�
t 0(s) f 0

t (t (s), u(s))+ f 0

u(t (s), u(s))v(s), v(s)
�
L2 ds.

(2.90)
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Estimate (2.90) can be verified exactly as we prove estimate (2.30) for solutions
of problem (2.12) (by approximating the non-smooth term @9(@su) by9 0

�(@su), es-
tablishing this estimate for the auxiliary approximating problem (by differentiating
the equation by s, multiplying it by @su, and employing (2.89)) and then passing to
the limit � ! 0. So, we leave the proof of this lemma to the reader.

Proof of Theorem 2.21. We denote the right-hand side of (2.90) by I"s1,s2 , when the
solutions (u", t") is inserted. Using (2.8) and (2.10) we find (analogously to (2.37))

I"s1,s2 

Z s2

s1

⇥
t 0"(s)kv"(s)kH1�� + kv"(s)k2H1��

⇤
ds



Z s2

s1

⇥
/2kv"(s)k2H1 + µt 0"(s)

2
+ Cµkv"(s)k2L2

⇤
ds,

where µ > 0 is arbitrary and Cµ depends only on µ and the H2-norm of u0.
Inserting this into (2.90) gives the estimate

bC"(v(s2))�bC"(v"(s1))+2
Z s2

s1
kv"(s)k2H1 ds

Z s2

s1
µ t 0(s)2+Cµkv"(s)k2L2 ds. (2.91)

Using t 0"(s)+k@su"(s)kL2  1 we deduce that

bC"(v(s2)) �
bC"(v"(s1))  C1(s2�s1) (2.92)

for 0  s1 < s2  S with C1 independent of ". Moreover, the explicit formula
(2.70) for C"(v) and the a priori estimate (2.62) yield

0  C"(v"(s))  C" ln
C
"

and 0 
bC"(v(s))  C (2.93)

with C depending only on the H2-norm of u0 (and is uniform with respect to
" ! 0).

Thus, s 7!
bC"(v(s)) � C1s is nonincreasing and uniformly bounded. Using

(2.91) for s1 = 0 and s2 = S and (2.93) provides uniform boundedness of @su" = v"
in L2([0, S], H1(�)). Thus, we are above to extract a subsequence "n ! 0 such
that, for (un, tn) = (u"n , t"n ) and vn = @sun , (2.87) holds and that

bC"(vn(s)) ! c0(s) for all s 2 [0, T ].

Using C"(v"(s)) ! 0 by (2.93), the definition of bC", and the convergence (2.77f)
we conclude

c0(s)=('0(s),@sv(s))L2 with '02L2([0, S], L2(�)) and '0(s)2@C0(v(s)). (2.94)
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To verify estimate (2.88) we deduce some special integral estimate involving R
and (u, t). For this we have to find a suitable estimate involving (un, tn) that allows
us to pass to the limit. We use estimate (2.91) to infer

Z s1

s1
kvn(s)k2H1 ds  C

�bC"(vn(s1)) �
bC"(vn(s2))�+ µ

Z s2

s1
t 0(s)2 ds

+ Cµ

Z s2

s1
kvn(s)k2L1(�)

ds,

where we have implicitly used the interpolation estimate in order to estimate the L2-
norm through L1 and H1 norms. Therefore, choosing µ = 1/2, using kvn(s)kL1 

Ckvn(s)kL2 , t 0n(s)+kvn(s)kL2  1, and assumptions (2.3a), we get

s2 � s1 = tn(s2)�tn(s1) +

Z s2

s1
kvn(s)kL2 ds

 tn(s2)�tn(s1) +

Z s2

s1
kvn(s)kH1 ds

 tn(s2) � tn(s1) +

1
2
(s2 � s1) +

1
2

Z s2

s1
kvn(s)k2H1 ds



1
2
(s2�s1) +

3
2
(tn(s2)�tn(s1)) + C

✓bC"(vn(s1)) +

Z s2

s1
e9(vn(s)) ds

◆
,

where C depends on the H2-norm of u0, but is independent of ". In this estimate
we may pass to the limit n ! 1, since all terms converge. After a simple rear-
rangement we find

s2 � s1  3(t (s2) � t (s1)) + 2Cc0(s1) + 2C
Z s2

s1
e9(v(s)) ds.

This estimate is now used to obtainZ s2

s1
R(s) ds = t (s2)�t (s1) +

Z s2

s1
kv(s)kL2 ds

� t (s2)�t (s1) +

1
C2

Z s2

s1
e9(v(s)) ds

� �

✓
3(t (s2) � t (s1)) + 2C

Z s2

s1
e9(v(s)) ds

◆

� �(s2 � s1) � C2c0(s1),

(2.95)

with � = 1/max{3, 2C1C}.
To conclude R(s) � � a.e., we consider the two alternative possibilities (i)

c0(s1) > 0 and (ii) c0(s1) = 0. Since s 7! c0(s) � C1s is nonincreasing, the
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function c0 is continuous a.e. Thus, it suffices to consider s1 in which c0 is contin-
uous. In case (i) the explicit description of c0 in (2.94) gives kv(s1)kL2 = 1 and,
consequently, R(s1) = 1 � �. In case (ii) we also assume that s1 is a Lebesgue
point of R. Dividing (2.95) by s2 � s1 and passing to the limit s2 ! s1, we get
R(s1) � � > 0. Thus, estimate (2.88) is verified and Theorem 2.21 is proved.

Remark 2.23. Differentiating equation (2.68) by s, multiplying it by @2s u(s) and
arguing as in the derivation of (2.31), one can obtain the uniform estimate of @su"
in the space L1([s1, S], H1(�)) for all s1 2 (0, S). This shows that the limit
solution u of problem (2.78) satisfies @su 2 L1

loc((0, S], H
1(�)).

Proof of Corollary 2.20. Indeed, due to estimate (2.88) both functions s̄(s) and s(s̄)
are uniformly Lipschitz continuous and, therefore, the regularity (2.86) of the func-
tion ū follows immediately from the analogous regularity of u(s) proved in Theo-
rem 2.21.

2.6. An example

We conclude the section by showing that the result of Theorem 2.21 is, in a sense,
sharp and cannot be, in general, improved till the desired equality R(s) ⌘ 1. To this
end, we first note that, although, for simplicity, we have considered above only the
case where the non-linearity f and the initial data u0 are independent of ", all of
the results, obviously, remain true in the case where f = f (", ·)) and u0 = u0(")
and the dependence on " is regular as " ! 0.

Let us consider now the following system of two ODEs on the plane u 2 R2:
(
6A sgn(u0

1) + "u0

1=�A(u2)u2+ f A(u1)+6A+6A2"�At, u1(0)=0,
6A sgn(u0

2)+"u
0

u=��A(u1)u1+ f A(u2)+6A+6A2" + At, u2(0)=",
(2.96)

where the nonlinearity f A(z) = 0 for |z|  2A and is dissipative for large z. The
parameter A > 1 is fixed, and the cut-off function �A : R ! [0, 1] is such that
�A(z) ⌘ 1 for |z|  2A and 0 for |z| � 3A.

On the one hand, we see that the assertion of the Theorem 2.21 still holds for
this system. Indeed, the non-gradient part of the nonlinearity f can be estimated
via

k(�A(u2)u2 , ��A(u1)u1)kR2  3
p

2A

and, consequently, the subordination condition (2.65) is satisfied, while the other
assumptions are obvious. On the other hand, the unique solution u" is given explic-
itly via

u"(t) =

✓
At + " sin

t
"
, At + " cos

t
"

◆
for t 2 [0, 1]. (2.97)

Obviously, for " ! 0 this solution tends to the limit solution u(t) = (At, At)
of problem (2.96) with " = 0. Moreover, it follows from Theorem 2.21 that the
scaled solutions (t"(s), ũ"(s)) of problem (2.68) tend as " ! 0 to a limit solution
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(t0(s), ũ0(s)) of problem (2.78) with some R(s) in the right-hand side of the second
equation.

We show that R(s) < 1 by an explicit calculation of the limit solution (t0, ũ0).
For " > 0 we have

s"(t) = t +

Z t

0

q
|u0

1,"(r)|2 + |u0

2,"(r)|2 dr

= t +

Z t

0

q
(A + cos r" )2 + (A � sin r

" )
2 dr

and find the limit s"(t) ! (1+ B)t for " ! 0 with

B =

1
2⇡

Z 2⇡

0

q
(A + cos�)2 + (A � sin�)2 d� >

p

2 A.

Denote by t"(s) the inverse of s"(t), then with ũ"(s) = u"(t"(s)) we have t0(s) =

lim"!0 t"(s) =
s

1+B and ũ0(s) = lim"!0 ũ"(s) =
As
1+B (1, 1). Thus, we find

R(s) = t 00(s) + kũ0

0(s)kR2 =

1
1+ B

+

p

2 A
1+ B

=

1+

p

2 A
1+ B

< 1.

3. The abstract semilinear case: an alternative approach

The aim of this section is to discuss briefly the general semilinear case

0 2 @e9(u̇) + "I u̇ + Bu + f (t, u), u(0) = u0, (3.1)

where the underlying space is an abstract Hilbert space H with scalar product (·, ·)
and Riesz isomorhpism I : H ! H⇤. We will identify H and H⇤ and hence drop
the operator I . On the one hand, the analysis here is similar to the one given in the
previous section, so we will just highlight the general principles without going into
too much technicalities. On the other hand, we provide an alternative approach to
obtain the central estimate for the control of

R T+1
T ku̇(t)kH1 dt . In particular, we are

able to do all the estimates in the original time variable t and can avoid the usage of
⌧ = "t completely.

3.1. Assumptions

On the Hilbert space H the linear operator B : D(B) ⇢ H ! H is assumed to be
self-adjoint with compact inverse and to be positive definite, i.e., there exists  > 0
with

(Bu, u)H � kuk2 for all u 2 D(B). (3.2)
As usual, the operatorB generates a scale of Hilbert spaces H↵ := D(B↵/2), ↵ 2 R,
equipped with the (graph) norm kuk↵ = kukH↵ = kB↵/2uk = (B↵u, u)1/2H and
kuk0 = kuk. The compactness of B�1 implies H↵ b H� for � < ↵.



RATE-INDEPENDENT LIMITS OF PARABOLIC EQUATIONS 97

The dissipation functional e9 : H ! [0,1) is assumed to be continuous,
convex, homogeneous of degree 1, and positive, i.e., for all u, v 2 H and ↵ � 0 we
have

e9(u)  Ckuk, e9(u + v) 
e9(u) +

e9(v), (3.3a)
e9(↵u) = ↵e9(u), e9(u) = 0 , u = 0. (3.3b)

From assumption (3.3a) we conclude that the subdifferential @9(u) is uniformly
bounded in H :

k⌘k  C for all u 2 H and all ⌘ 2 @9(u). (3.4)

Usually, it is assumed that e9 is coercive on a suitable Banach space X into which
the Hilbert space H is continuously embedded. Here, we avoid the usage of the
space X and work instead with e9 directly. The connection of e9 with the Hilbert
spaces H↵ is incorporated into the interpolation condition

9 ✓ 2 (0, 1), C > 0 : kuk  Ce9(u)✓kuk1�✓1 for all u 2 H1. (3.5)

The nonlinear operator f (t, ·) is assumed to map H1�� into H�1+� for some
� 2 (0, 1). Moreover, it is assumed to be potential, i.e., f (t, u) = 80

u(t, u) for
some nonlinear functional 8(t, ·) on H1�� . In addition, we impose the following
dissipativity assumptions analogous to (2.7):

( f (t, u), u)H � �C; (3.6a)
80

t (t, u)  3( f (t, u), u)H + C(1+ kuk2); (3.6b)
8(t, u)  3( f (t, u), u)H + C(1+ kuk2). (3.6c)

Moreover, we impose the growth and regularity assumptions formulated as asser-
tions in Lemma 2.1. This leads to the following assumptions for the abstract case:

k f (t,u)kH
�1+� +k f 0

t (t,u)kH�1+� +|8(t,u)|+|80

t (t,u)|Q(kukH1�� ) and (3.7a)

|( f 0

u(t, u)v, v)H |  Q(kukH1�� )kvk
2
H1�� for all u, v 2 H1�� ; (3.7b)

k f (t, u)kH  Q(kukH1)kuk
1��
H2 for all u 2 H2; (3.7c)

k f 0

u(t, u)vkH  Q(kukH1)(1+ kukH2)kvkH1 for all u 2 H2, v 2 H1; (3.7d)
k f 0

t (t, u)kH  Q(kukH2) for all u 2 H2 (3.7e)

for some positive � and a monotonously increasing function Q.

3.2. Wellposedness and energy estimates

Most parts of the estimates obtained in previous sections can be transferred word by
word to the abstract semilinear case. For this reason, we only indicate them below
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leaving the proof to the reader. However, there is a difference here. Namely, the
explicit construction of smooth approximations to 9(v) given in Appendix A does
not work in the infinite-dimensional case. Although it does not seem a big problem
to construct smooth approximations for the infinite-dimensional case (using, e.g.,
the proper combination of Yosida approximations), we prefer to give below an al-
ternative scheme which works directly with non-smooth potential 9 and Galerkin
approximations.

As in Section 2.2 (see Definition 2.3), a function u = u(t) is a weak energy
solution of problem (3.1) if u 2 L1([0, T ], H1) \ H1([0, T ], H) and satisfies
the equation as an equality in L2([0, T ], H�1). Moreover, exactly as in Lemma
2.4, we establish that every weak energy solution satisfies u 2 L2([0, T ], H2) and
f (·, u) 2 L2([0, T ], H). In particular, this means that every weak solution satisfies
the energy equality

E(t, u(t)) +

Z t

0
e9(u̇(r)) + "ku̇(r)k2 dr = E(0, u(0)) +

Z t

0
E 0

t (r, u(r)) dr, (3.8)

where E(t, u) =
1
2 (Bu, u) + 8(t, u). In order to obtain this estimate, we need to

multiply (3.1) by u̇, use that (@9(u̇), u̇) = 9(u̇) and integrate over [0, t].
Furthermore, arguing exactly as in Theorem 2.8 (see the derivation of (2.34)),

we have

ku(t)k21 + "

Z t+1

t
ku̇(r)k2 dr  Q(ku(0)k1) e�↵t/" +C⇤, (3.9)

where the positive constants ↵ andC⇤ and the monotone function Q are independent
of " and u(0). This estimate, the energy equality (3.8) and assumption (3.6) gives
the control of the dissipation via

Z t2

t1
e9(u̇(t)) dt  C(1+ t2 � t1) for 0  t1  t2, (3.10)

where the constant C depends on u(0), but is independent of t1, t2 and ", see Corol-
lary 2.10. Finally, we have the following wellposedness result for the weak energy
solutions of problem (3.1).

Lemma 3.1. Let the above assumptions hold. Then, for every u0 2 H1, problem
(3.1) possesses a unique weak energy solution u in the above described sense.

Indeed, the existence of a solution is standard (see e.g., [6]) and the uniqueness
can be established exactly as in Proposition 2.7.

3.3. Higher energy estimates

As already mentioned, estimate (3.10) is not sufficient for passing to the vanishing-
viscosity limit " ! 0. We need an analogous estimate for the H -norm (or H1-norm)
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of u̇. For this, we would like to differentiate the equation with respect to t and write
out the energy estimate for that differentiated equation. However, the term @9(u̇)
is clearly not differentiable and, consequently, this procedure requires a non-trivial
justification.

In the previous section, we managed this by constructing explicitly smooth
approximations for the functional 9 and passing to the limit. In this section, we
employ a technique using difference quotients vh(t) =

1
h (u(t+h) � u(t)), which

was already successfully exploited in [18] for nonsmooth problems in plasticity.
The idea is to derive estimates uniform in h > 0 for vh , which then implies that u̇
exists and satisfies the same bounds.

We say that the energy solution u of equation (3.1) is a strong solution if

u 2 L1([0, T ], H2), u̇ 2 L2([0, T ], H1) \ L1([0, T ], H). (3.11)

We first verify the smoothing property for strong solutions which is analogous to
(2.31). That additional smoothness will be essentially used below for verifying the
analog of the energy equality (2.22). In the subsequent Theorem 3.3 we then show
that energy solutions are, in fact, strong solutions.

Lemma 3.2. Let the above assumptions hold. Then, any strong solution u of prob-
lem (3.1) becomes more regular for t > 0, namely

u̇ 2 L1([t1, T ], H1) \ H1([t1, T ], H) for all t1 2 (0, T ) (3.12)

and satisfies the following estimate:

"

Z t

0
rkü(r)k2 dr + tku̇(t)k2H1 

C(t + 1)
"

Z t

0
ku̇(r)k2H1 dr. (3.13)

where the constant C depends on the L1([0, T ], H2)-norm of the solution u, but is
independent of t and ".

Proof. Note that (3.1) is equivalent to

8a.a.t 2 [0, T ] 8 v̂ 2 H :

�
"u̇ + Bu + f (t, u), v̂ � u̇

�
H +

e9(v̂) �
e9(u̇) � 0.

(3.14)
Choosing t and h such that t, t+h 2 [0, T ] and we may use (3.14) at t and t+h
and test with v̂ = u̇(t+h) and v̂ = u̇(t), respectively. Adding the two estimates all
terms involving e9 cancel. Dividing by h2 and using vh(t) :=

1
h (u(t+h)�u(t)) we

arrive at

"kv̇h(t)k2+

1
2
d
dt

(Bvh(t), vh)H + (
1
h
[ f (t+h, u(t+h))� f (t, u(t))], v̇h(t))H  0.

Employing (3.7d) and (3.7e) gives

"kv̇h(t)k2 +

d
dt

(Bvh(t), vh(t))H 

C
"

(1+ kvh(t)k21),
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where the constant C depends on the L1([0, T ], H2)-norm of the solution u, but is
independent of t and ". Multiplying this estimate by t and integrating in time, we
get

"

Z t

0
rkv̇h(r)k2 dr + tkvh(t)k21 

C(t + 1)
"

✓
1+

Z t

0
kvh(r)k21 dr

◆
. (3.15)

Since the strong solution u is assumed belonging to H1([0, T ], H1), we may pass to
the limit h ! 0 in estimate (3.15) which gives all the assertions of the lemma.

We now verify the analog of energy equality (2.22) for u̇ that does not depend
on 9. For this, we replace v by �v in (3.14), use the 1-homogeneity in v and divide
by � > 0. Passing after that to the limit � ! 1, we have

8a.a.t 2 [0, T ] 8 v 2 H : ("u̇ + Bu + f (t, u), v)H +9(v) � 0. (3.16)

However, inserting v = u̇ into here and v = 0 into (3.14) we also obtain

8a.a.t 2 [0, T ] : ("u̇ + Bu + f (t, u), u̇)H +9(u̇) = 0,

which is just the differentiated version of the energy balance (3.8).
Let g(t) = "u̇+Bu+ f (t, u). Then, using the regularities (3.11) and (3.12), we

conclude that g 2 AC((0, T ), H�1). Choosing now v = u̇(t⇤) for some t⇤ 2 (0, T )
(the element v exists for all t⇤ since u̇ 2 C((0, T ], H) and even Cw((0, T ], H1) due
to the smoothing (3.12)), we have

(g(t), u̇(t⇤))H � �9(u̇(t⇤)) = (g(t⇤), u̇(t⇤))H
for all t, t⇤ 2 (0, T ) . Thus, the left-hand side as a function of t attains its minimum
at t = t⇤. Since g 2 AC((0, T ), H�1), this implies that g is differentiable a.e. with
(ġ(t⇤), u̇(t⇤))H = 0 for almost all t⇤ 2 (0, T ). Inserting the definition of g, we
establish the energy equality for the time derivative u̇, namely

"

2
d
dt

ku̇k2 + (Bu̇, u̇)H +

�
f 0

u(t, u)u̇, u̇
�
H +

�
f 0

t (t, u), u̇
�
H = 0. (3.17)

Again, we find the surprising fact that this energy balance holds independently ofe9.
We can now state the main result on the wellposedness for the abstract problem

(3.1).

Theorem 3.3. Let the above assumptions hold and let u0 2 H2. Then, the energy
solution u of problem (3.1) is unique, is a strong solution, and satisfies the dissipa-
tive estimate

ku(t)k2H2 + "2ku̇(t)k2 + "

Z t+1

t
ku̇(s)k2H1 ds  Q(ku(0)kH2) e

�↵t/"
+C⇤ (3.18)

for some monotone function Q and positive constants ↵ and C⇤, which are inde-
pendent of ", u and t � 0.
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Proof. As in previous sections, the higher energy equality (3.17) together with the
additional assumption u̇ 2 C([0, T ], H) would allow us to establish the abstract
analog of the dissipative estimate (3.18), which is the abstract analog of (2.29). Yet,
we do not succeed to prove that any strong solution u of problem (3.1) satisfies
u 2 C1([0, T ], H), since Lemma 3.2 only implies u 2 C1((0, T ], H).

However, in the finite-dimensional case dim H < 1, this regularity is imme-
diate and, in addition, any energy solution is automatically a strong solution. This
observation allows us to overcome the above difficulty and establish the basic dissi-
pative estimate (3.18) without the continuity assumption. To this end, we consider
the standard Galerkin approximations to problem (3.1):

0 2 @e9(u̇N ) + "u̇N + BuN + PN f (t, uN ), uN (0) = PNu0, (3.19)

where PN is an orthoprojector to the first N eigenvalues of B and uN 2 HN :=

PN H . Since uN 2 C1([0, T ], HN ) we can use (3.17) to derive the basic dissipative
estimate (3.18) for uN with Q and C⇤ independent of N . Moreover, since u0 2 H2
we also have kuN (0)k2  ku(0)k2 = ku0k2, such that the right-hand side will be
uniformly bounded with respect to N ! 1. Then passing to the limit N ! 1,
we establish the existence of a strong solution for problem (3.1) and the validity of
the dissipative estimate (3.18). Thus, we have proved the theorem.

3.4. Basic L1 estimate for the time derivative

We are now ready to verify the analog of estimate (2.63), which provides the L1
estimate with respect to t 2 [0, T ] in the H1 norm.

Lemma 3.4. Let the above assumptions hold and u0 2 H2. Then, energy solutions
u of (3.1) satisfies the following estimates:

ku̇(t)k  C/" a.e. in [0, T ], (3.20a)Z t2

t1
ku̇(t)k1 dt  C(1+t2�t1) for 0  t1 < t2  T, (3.20b)

where the constant C depends on ku0k2, but is independent of ", t1, t2, and T .

Proof. Estimate (3.20) can be verified exactly as in the proof of Proposition 2.11.
However, here we present an alternative, probably simpler proof, which works di-
rectly in the scaling of the time t and thus avoids usage of the slow time ⌧ = "t .
Using the higher energy equality (3.17), together with (3.9) and the assumptions
(3.7d) and (3.7e) we have

"

2
d
dt

kv(t)k2 + kv(t)k21  C(1+ kv(t)k1)kv(t)k, where v(t) = u̇(t), (3.21)

for some positive constant C , which is independent of t and ".
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To simplify the notation in the subsequent arguments we introduce the short-
hands

 (t) =
e9(v(t)), µ(t) = kv(t)k, and ⌫(t) = kv(t)k1

for the different norms of the rate v = u̇. Our assumptions give

  Cµ, µ  C⌫, µ  C ✓⌫1�✓ , and µ(0)  C/".

With these abbreviations (3.21) takes the form "µµ̇ + ⌫2  C(1+⌫)µ. Using

µ⌫  C ✓⌫2�✓ 



2
⌫2 + C 2 



2
⌫2 + C2 µ

we obtain the following the differential estimate "µµ̇ +

2Cµ⌫  C(1+ )µ. We

first assume that µ > 0, then dividing by µ gives

µ̇ +



2"C
⌫ 

C
"

�
1+  

�
. (3.22)

Estimating ⌫ � µ/C we find µ̇ + ↵"µ  C(1+ )/" with ↵" = /(2"C2), which
leads to

µ(t)  µ(0) e�↵" t +
Z t

0
e�↵"(t�s)

C
"

�
1+  (s)

�
ds for 0 < t  T .

Using µ(0)  C/" and estimate (3.10) yields (3.20a). Integrating (3.22) we obtain
Z t2

t1
ku̇(t)k1 dt =

Z t2

t1
⌫(t) dt 

Z t2

t1

2C2


(1+ (t)) dt +

2"C


µ(t1).

Together with (3.20a) we find the desired estimate (3.20b).
In case we do not have µ > 0, we may change the definition of  , µ, and ⌫

into

 (t) =

�e9(v(t))2+�
�1/2

, µ(t) =

�
kv(t)k2+�

�1/2
, and ⌫(t) =

�
kv(t)k21+�

�1/2
,

where � > 0 is arbitrary. It is easy to see that the above estimates remain valid with
slightly larger constants. With � ! 0 the desired estimates are then established.

3.5. The vanishing-viscosity limit

Above we have derived uniform estimates with respect to " > 0. Thus, the the
limit passage " ! 0 in equation (3.1) can be done repeating the arguments given
in sections 2.4 and 2.5 word by word. For this reason, we only formulate the main
result and leave the details to the reader.

As in Section 2.4 we introduce the new scaled time

s(t) = t +

Z t

0
ku̇(t)k dt,
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which is in fact the arc-length in the extended state space [0, T ] ⇥ H . Using the
inverse t" and u"(s) = u(t"(s)) equation (3.1) takes the equivalent form (see also
(2.68))

8>><
>>:
0 2 @e9(u0

"(s)) +

"

1� ku0

"(s)k
u0

"(s) + Bu"(s) + f (t"(s), u"(s)),

t 0"(s) + ku0

"(s)k = 1,
u"(0) = u0, t"(0) = 0,

(3.23)

where 0
=

d
ds .

Theorem 3.5. Let the assumptions of Theorem 3.3 hold and let u"(0) = u0 2 H2
be independent of ". Then, there exists a sequence "n ! 0 such that the asso-
ciated sequence (tn(s), un(s)) := (t"n (s), u"n (s)) of solutions of problems (3.23)
converges to a limit pair (t (s), u(s)) in the sense of (2.77a–f), where the spaces
Ws,2(�) are replaced by the spaces Hs . Moreover, the limit (t (s), u(s)) solves the
analog of problem (2.78), namely

8><
>:
0 2 @e9(u0(s)) + @C0(u0(s)) + Bu(s) + f (t (s), u(s)),
t 0(s) + ku0(s)k = R(s),
u(0) = u0, t (0) = 0,

(3.24)

where C0(v) = 0 for kvk  1 and 1 else. Finally, the function t (s) satisfies
estimates (2.79) and the scaling factor R(s) is such that 1 � R(s) � � > 0 for
almost all s.

Of course, the solutions in the above result can be rescaled to in such a way
that R(s) = 1 a.e., see Remark 2.19.

3.6. BV solutions

In [19–21] the concept of BV solutions is studied in oder to understand the point-
wise limits of the unscaled function u"(t). Such pointwise limits are sometimes
also called approximable solutions, cf. [13,19,27]. However, it is desirable to char-
acterize these solutions in terms of differential inclusions. We refer to [16] for a
survey.

The name “BV solutions” derives from the fact that bu needs to lie in
BV ([0, T ], H). Thus for all t 2 [0, T ] the limit bu(t+) and the limit bu(t�) from
the left exist (in the strong H topology). We can define the set J (bu) of jump times,
at whichbu : [0, T ] ! H is not continuous. A functionbu : [0, T ] ! H is called
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BV solution of (3.1) if

bu2 BV ([0, T ], H) \ L1([0, T ], H1); (3.25a)

0 2 @9(0) + Bbu(t) + f (t,bu(t)) for all t 2 [0, T ] \ J (bu); (3.25b)

8 t 2 J (bu) 9�t > 0 9 yt 2 W 1,1([0, 1], H) \ L1([0, T ], H1) :

bu(t�) = yt (0), bu(t+) = yt (1), bu(t) = yt (✓t ) for some ✓ t 2 [0, 1],
02@9(y0

t (✓))+@C0(�t y0

t (✓))+Byt (✓)+ f (t, yt (✓)) for a.a. ✓ 2 [0, 1];

9>=
>; (3.25c)

8 t 2 [0, T ] \ J (bu) : E(t,bu(t))+1(t)=E(0,bu(0)) +

Z t

0
E 0

t (r,bu(r)) dr, (3.25d)

where E(t, u) =
1
2 hBu, ui +8(t, u) and 1 : [0, T ] \ J (bu) ! R is defined via

1(t)=
Z t

0
e9(dbu) +

X
⌧2[0,t]\J (bu)

⇣
J(⌧ ) �

e9(bu(⌧+)�bu(⌧�))
⌘

(3.25e)

with J(⌧ ) =

R 1
0
e9(y0

⌧ (✓)) + ky0

⌧ (✓)kM(By⌧ (✓) + f (⌧, y⌧ (✓))) d✓ and M(⇠) =

min{ k⇠+k :  2 @e9(0) }.
The last condition (3.25d) is the energy balance corresponding to obtained

from the viscous energy balance (3.8). The additional terms in 1 arising at the
jumps are obtained as limit contributions of

R T
0 "ku̇"(s)k

2 ds. Because (3.25c) pos-
tulates the existence of optimal jump paths, this notion is called connectable BV
solution in [16, Def. 4.21].

Clearly, the parametrized solutions constructed in Theorem 3.5 provide such
BV solutions in the following way. For a parametrized solution (t, u) : [0, S] !

R ⇥ H1 we let T = t (S) and choose for each t 2 [0, T ] an s = � (t) 2 [0, S]
such that t (� (t)) = t . Since the function t : [0, S] ! [0, T ] is nondecreasing
and Lipschitz continuous, we see that every such � : [0, T ] ! [0, S] is strictly
increasing. We definebu(t) = u(� (t)) and claim thatbu is a BV solution.

We sketch the arguments and refer to [16] for the details. First note that

VarH (bu, [0,T ]) :=sup
n NX
i=1

kbu(t j )�bu(t j�1)kH , N 2N, 0 t0< t1< · · ·< tN T
o

 VarH (u, [0, S]) 

Z S

0
R(s) ds < 1.

which provides bu 2 BV ([0, T ], H). Moreover, u 2 L1([0, S], H1) implies bu 2

L1([0, T ], H1) and (3.25a) is established. The local stability condition (3.25b)
follows from the first equation in (3.24). If t⇤ 62 J (bu), then there is a unique s⇤
with t⇤ = t (s) and there is a sequence of Lebesgue points sk ! s⇤ of u0 such that
ku0(sk)k < 1. Thus, the first equation in (3.24) holds with @e9(u0(sk))+@C0(u0(sk))
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replaced by @e9(0), since rate independence gives @e9(v) ⇢ @e9(0). We conclude
that (3.25b) holds at tk = t (sk) ! t⇤. Because of t 62 J (bu) we know also that
t 7! bu(t) 2 H1 is weakly continuous in H1. Since @e9(0) ⇢ H⇤

1 is weakly closed
we conclude that (3.25b) also holds at t⇤.

For t⇤ 2 J (bu)we use the fact, that the preimage of s 7! t (s) of t⇤ is a full inter-
val [s⇤1 , s

⇤

2 ]. The desired jump path yt⇤ is then given via yt⇤(✓) = u(s⇤1+✓(s
⇤

2�s
⇤

1 )).
The energy balance (3.25d) can be obtained by integrating along the parametrized
curved and then identifying the jump terms accordingly.

As a consequence of this fact, it is possible to show that from each family
u" : [0, T ] ! H1 of solutions of (3.1) with u0 2 H2, we can extract a subsequence
um = u"m with "m ! 0, such that for all t 2 [0, T ] we have um(t) ! bu(t)
weakly in H , wherebu : [0, T ] ! H1 is a BV solution. We refer to [20, Thm. 4.10]
or [16, Thm. 4.23] for the details.

4. The quasi-linear case

In that chapter, we consider the general quasi-linear case with convex leading part.
In addition, we do not assume that the underlying domain � is smooth, but only
Lipschitz continuous. The main difficulty here, in comparison with the semi-linear
case studied before, is the absence of the uniqueness result (even for the case of
strong solutions). Moreover, we cannot even verify that all reasonably defined so-
lutions satisfy the higher energy estimate (which is crucial for the rate-independent
limit). By this reason, we have to proceed in much more delicate way including, in
particular, the required higher energy estimate into the definition of a solution.

As in the previous chapter, the rigorous formulation of the problem, assump-
tions on B, 9 and F and some basic preliminary facts are given in Section 4.1. The
uniform with respect to " ! 0 estimates and the existence of a solution for the
general quasi-linear case is proved in Section 4.2 and the passage to the vanishing-
viscosity limit " ! 0 is justified in Section 4.3.

4.1. Preliminaries

In this section we start to study the quasi-linear problem of the form:
(
"@t u + @9(@t u) 3 div b(rxu) � f (t, u),
u
��
@�

= 0, u(0, ·) = u0,
(4.1)

where u(t, x) = (u1(t, x), · · · , um(t, x)) is an unknown vector-valued function,
� b Rn is a bounded domain in Rn which is now only Lipschitz continuous and
" > 0 is a small positive parameter.

We assume that the nonlinear function b : Rmn
! Rmn has a gradient structure

b(w) = rwB(w), w 2 Rnm, for some B 2 C2(Rnm, R) (4.2)
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and satisfies the following assumptions:
8><
>:
1. (b(w),w)Rnm � ↵kwk

p
� C,

2. kb0(w)kL(Rnm ,Rnm)  C(1+ kwk
p�2),

3. (b0(w)✓, ✓)Rnm � k✓k2Rnm ,  > 0
(4.3)

for some p � 2. In particular, first and second assumptions of (4.3) imply that

↵1kwk
p

� C1  B(w)  ↵2kwk
p

+ C2 (4.4)

for some positive Ci and ↵i and the third assumption of (4.3) guarantees that the
potential B(w) is strictly convex. Thus, the associated differential operator

B(u) := � div b(rxu) (4.5)

is a non-degenerate second order quasilinear elliptic operator. Moreover, the above
assumptions imply also that the operator B is a potential maximal monotone oper-
ator in W 1,p

0 (�) (with respect to the standard inner product of L2(�)).
As in the semilinear case , we assume that @9(v) is a subdifferential of of a

convex order one homogeneous functional9 onRm , i.e., the function9 : Rm
! R

satisfies assumptions (2.3).
Finally the third nonlinearity f : R ⇥ Rm

! Rm is supposed to be potential
(i.e. (2.4) is assumed to be true) and to satisfy the growth restrictions (2.5) where
the limit exponent exponent is now defined by r < rmax :=

2p
n�p (qmax = 1 if

p � n). Moreover, the dissipativity assumption (2.6) is also takes place.
In particular, exactly as in Section 2.1, growth restrictions (2.5) and the dissi-

pativity assumption (2.6) imply that

F 0

t (t, u)  3 f (t, u).u + C(1+ |u|r ), 3 > 0. (4.6)

Analogously to Lemma 2.1, the following lemma shows, the growth restrictions
(2.5) guarantee that the term f (t, u) is subordinated to the main elliptic operator
B(u) and collects all necessary properties of the non-linear function f (t, u).

Lemma 4.1. Let the function f satisfy growth restrictions (2.5). Then,
1) The operators u ! f (t, u) and u ! f 0

t (t, u) are uniformly bounded con-
tinuous operators from W 1�� ,p(�) to H�1(�), for some � > 0

k f (t, u)kH�1(�) + k f 0

t (t, u)kH�1(�)  C(1+ kukr+1W 1�� ,p(�)
) (4.7)

with C independent of u and t .
2) The functionals u ! (F(t, u), 1)L2 and u ! (F 0

t (t, u), 1)L2 are bounded
and continuous on W 1�� ,p(�):

|(F(t, u), 1)L2 | + |(F 0

t (t, u), 1)L2 |  C(1+ kukr+2W 1�� ,p(�)
). (4.8)
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Here and below (u, v)L2 denotes the scalar product in L2(�).
3) The functional u, v ! ( f 0

u(t, u)v, v)L2 is bounded and continuous on
W 1�� ,p(�) ⇥ W 1�� ,2(�) and

|( f 0

u(t, u)v, v)L2 |  C(1+ kukrW 1�� ,p(�)
)kvk

2
W 1�� ,2(�)

, (4.9)

where the constant C is independent of t , u and v.

Proof. Since the assertions of the lemma are more or less standard, we check below
only the most complicated estimate (4.9) (which defines the limit exponent rmax)
leaving all other assertions to the reader. Indeed, due to (2.5),

|( f 0

u(t, u)v, v)L2 |  C(kvk
2
L2 + (|u|r , v2)L2). (4.10)

Thus, we only need to estimate the second term in the right-hand side of (4.10). To
this end, we will use the Sobolev embeddings W 1�� ,p

⇢ Ls� and W 1�� ,2
⇢ Lr�

with the exponents r� and s� satisfying

1
r�

=

1
2

�

1� �

n
,

1
s�

=

1
p

�

1� �

n
.

Then, by the Hölder inequality, we want to have

(|u|r , v2)L2  CkukrLs� (�)kvk
2
Lr� (�)  C1kukrW 1�� ,p(�)

kvk
2
W 1�� ,2(�)

. (4.11)

In order this estimate to be true, we need

r
s�

+

2
r�

 1 or, equivalently,
r

rmax
+ �

r + 2
2n

 1 (4.12)

with rmax =
2p
n�p . We see that condition (4.12) is satisfied for sufficiently small � >

0 if r < rmax. Since estimate (4.11) implies (4.9), then Lemma 4.1 is proved.

Remark 4.2. We note that the theory developed below remains true if we add time-
independent monotone function f0(u) (i.e., with f 0

0(u) � 0) of arbitrary growth to
the non-linearity f .
As in the semilinear case, in order to study the dependence of solutions of problem
(4.1), it is more convenient to scale time ⌧ = "t and rewrite the problem in the
equivalent form with respect to the function ũ(⌧ ) := u("⌧ ). In order to simplify
the notations, we will write below u(⌧ ) instead of ũ(⌧ ). Then, using that 9 is
homogeneous of order one (and, consequently, @9 is homogeneous of order zero),
equation (4.1) reads

(
@⌧u + @9(@⌧u) 3 div b(rxu) � f"(⌧, u),
u
��
@�

= 0, u
��
⌧=0 = u0,

(4.13)
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where, by definition,
f"(⌧, u) := f ("⌧, u). (4.14)

In order to define the (strong) solution of equation (4.13), we first introduce a func-
tion

2u(⌧ ) := div b(rxu(⌧ )) � f"(⌧, u(⌧ )). (4.15)

Definition 4.3. Let the above assumptions hold and let u0 2 W 1,p
0 (�) is such that

2u(0) := div b(rxu0) � f"(0, u0) 2 L2(�). (4.16)

We say that a function u = u(⌧, x) is a solution of (4.13) if, for every R > 0,8><
>:
1) u 2 L1([0, R],W 1,p

0 (�)),

2) @⌧u 2 L1([0, R], L2(�)) \ L2([0, R], H1(�)),

3) 2u 2 L1([0, R], L2(�)),

(4.17)

u satisfies equation (4.26) in the sense of distributions and the following estimate

k@⌧u(⌧2)k2L2 � k@⌧u(⌧1)k2L2 + 2↵
Z ⌧2

⌧1

krx@⌧u(⌧ )k2L2 d⌧

+ 2
Z ⌧2

⌧1

[( f 0

",⌧ (⌧,u(⌧ )),@⌧u(⌧ ))L2+( f 0

",u(⌧,u(⌧ ))@⌧u(⌧ ),@⌧u(⌧ ))L2] d⌧ 0
(4.18)

holds for almost all ⌧2 � ⌧1 � 0 including ⌧1 = 0 (i.e., (4.18) holds for all ⌧1, ⌧2 2

R+\N , ⌧2 � ⌧1, with meas N = 0 and 0 /2 N ). Here ↵ > 0 is the same as in
estimate (4.3)(1).

We now comment the requirements involved into the above solution’s defi-
nition. We start with the third assumption of (4.17) on the L2-regularity of the
right-hand side 2u of equation (4.13). Let us consider the particular case p = 2
and assume that the quasilinear elliptic operator B(u) possesses the L2-maximal
regularity property of the form: if

B(u) := � div b(rxu) = h

for some u 2 H10 (�) and h 2 L2(�) then, necessarily, u 2 H2(�) and

kukH2(�)  CkhkL2 (4.19)

for some positive constant C which can depend, in general on the H1-norm of u.
Then, arguing as in Lemma 2.4, one can easily show that

u0 2 H2(�) and u 2 L1(R+, H2(�)) (4.20)

in a complete agreement with the definition of a strong solution for the semilinear
case, see Definition 2.6.
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However, we do not know the analog of such simple description for p 6= 2.
Moreover, even for p = 2, the maximal (L2, H2)-regularity for the elliptic operator
B(u) is rather essential restriction and can be violated even in the linear case (B is
a linear operator) if the underlying domain is not C1, see e.g. [24].

In contrast to that, as we will see below, assumption (4.17)(3) defines a reason-
able class of solutions even in the general quasilinear situation described above.

Let us now consider the integral estimate (4.18). In a fact, it is nothing more
than the integrated version of the higher order energy equality (2.22) (where the
term (B0(u)@t u, @t u) is replaced by its natural estimate from (4.3)(3)). However, in
contrast to the semilinear case, we cannot verify that the strong solution satisfies
automatically the higher energy equality (2.22) (or some reasonable estimate of
that form) and have to include it into the definition of a strong solution. Thus, we
have excluded from consideration the possible pathological solutions which do not
satisfy the higher energy estimate (remind that the solution of problem (4.1) may be
not unique and a pathological solution may exist simultaneously with a reasonable
solution(s) for the same initial data).

It also worth to note that, in contrast to the semilinear case, we do not know
whether or not the function ⌧ ! k@⌧u(⌧ )kL2 is continuous and, by this reason, we
cannot obtain (4.18) for all ⌧1, ⌧2, but for almost all only.

We now verify that any strong solution satisfies the usual energy equality. To
this end, we need the following lemma which is of independent interest as well.

Lemma 4.4. Let the function b satisfy (4.3) and let

@⌧u 2 L2([0, R], H10 (�)),

u 2 L1([0, R],W 1,p
0 (�)),

div b(rxu) 2 L2([0, R], H�1(�)).

Then, (B(rxu), 1)L2 2 AC([0, R]) and

d
d⌧

(B(rxu(⌧ )), 1)L2 = �(div b(rxu(⌧ )), @⌧u(⌧ ))L2 (4.21)

for almost all ⌧ .

Proof. Let h > 0 be arbitrary. Then, since b0
� 0, we have the following estimates:

B(rxu(⌧ + h)) � B(rxu(⌧ ))
h

= b(rxu(⌧ ))
rxu(⌧ + h) � rxu(⌧ )

h

+

Z 1

0
r2b0(rxu(⌧ )+r1r2[rxu(⌧+h) �rxu(⌧ )]) dr1 dr2

(rxu(⌧+h) �rxu(⌧ ))2

h

� b(rxu(⌧ ))
rxu(⌧ + h) � rxu(⌧ )

h
(4.22)
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and
B(rxu(⌧ + h)) � B(rxu(⌧ ))

h
= b(rxu(⌧ + h))

rxu(⌧ + h) � rxu(⌧ )
h

�

Z 1

0
(1�r2)b0(rxu(⌧ + h)�r1(1�r2)[rxu(⌧+h)�rxu(⌧ )]) dr1 dr2

⇥

(rxu(⌧+h)�rxu(⌧ ))2

h

 b(rxu(⌧ + h))
rxu(⌧ + h) � rxu(⌧ )

h
.

(4.23)

Integrating these estimates with respect to (t, x), we have

�

Z ⌧2

⌧1

(div b(rxu(⌧ )),
u(⌧+h) � u(⌧ )

h
)L2 d⌧



1
h

Z ⌧2+h

⌧2

(B(rxu(⌧ )), 1)L2 d⌧ �

1
h

Z ⌧1+h

⌧1

(B(rxu(⌧ )), 1)L2 d⌧

 �

Z ⌧2

⌧1

✓
div b(rxu(⌧ + h)),

u(⌧ + h) � u(⌧ )
h

◆
L2
d⌧,

(4.24)

where all of the integrals have sense due to (4.3) and assumption u 2 L1(R+,

W 1,p
0 (�)). Passing now to the limit h ! 0 and using the assumptions of the

lemma, we deduce that, for almost all ⌧2 and ⌧1,

(B(rxu(⌧2)), 1)L2 � (B(rxu(⌧1)), 1)L2 = �

Z ⌧2

⌧1

(div b(rxu(⌧ )), @⌧u(⌧ ))L2 d⌧

which shows that (B(rxu), 1)L2 2 AC([0, R]) and (4.21) holds. Lemma 4.4 is
proved.

Remark 4.5. The assertion of the lemma looks completely standard. However, in
contrast to the standard situation, we cannot write that

(div b(rxu(⌧ )), @⌧u(⌧ ))L2 = �(b(rxu(⌧ )), @⌧rxu(⌧ ))L2
since b(rxu) /2 L2(�). As a result, we cannot use the standard method of approxi-
mation of the function u by smooth ones and have to use more delicate methods.
Corollary 4.6. Let the above assumptions hold. Then, any strong solution u of
problem (4.13) satisfies the energy identity

(B(rxu(⌧2)), 1)L2 � (B(rxu(⌧1)), 1)L2

+

Z ⌧2

⌧1

k@⌧u(⌧ )k2L2 + (9(@⌧u(⌧ )), 1)L2 d⌧

= �

Z ⌧2

⌧1

( f"(⌧, u(⌧ )), @⌧u(⌧ ))L2 d⌧

(4.25)

for all 0  ⌧1  ⌧2.
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Indeed, according to (4.17) and (4.7), we see that div b(rxu) 2 L1(R+,H�1(�))
since

div b(rxu(⌧ )) = 2u(⌧ ) � f"(⌧, u(⌧ )).

Therefore, (4.21) holds. Multiplying then equation (4.13) by @⌧u and integrating
over [⌧1, ⌧2] ⇥�, we deduce (4.25)

4.2. Uniform estimates and existence of solutions

The aim of this section is to deduce uniform with respect to " ! 0 estimates for the
solutions of problem (4.13) and prove the existence of a solution of that problem
in the sense of Definition 4.3. To this end, we approximate the function 9(v) by
smooth ones 9�(v) with

9�(v) :=

Z
Rm
'(r/�)9(v � r) dr,

where ' is a standard smoothing kernel in Rm , see Appendix A for the detailed
study of the approximating functions 9� , and consider the smoothed version of
problem (4.13)

(
@⌧u +9 0

�(@⌧u) = div b(rxu) � f"(⌧, u),
u
��
@�

= 0, u(0, ·) = u0.
(4.26)

As in the semilinear case, our next task is to obtain uniform with respect to " and
� estimates for the solutions of the auxiliary equation (4.26). The required solution
u(⌧ ) of the initial problem (4.13) will be than obtained as a limit � ! 0.

We say that a function u = u(⌧, x) is a solution of (4.26) if it satisfies all of
the assertions of Definition 4.3 except of integral estimate (4.18) which should be
replaced by

k@⌧u(⌧2)k2L2� k@⌧u(⌧1)k2L2 + 2↵
Z ⌧2

⌧1

krx@⌧u(⌧ )k2L2 d⌧

+ 2
Z ⌧2

⌧1

[( f 0

",⌧ (⌧,u(⌧ )),@⌧u(⌧ ))L2+( f 0

",u(⌧, u(⌧ ))@⌧u(⌧ ), @⌧u(⌧ ))L2] d⌧

 C�,

(4.27)

where the additional constant C is independent of � (and appears due to the fact that
9�(v) is not homogeneous of order one).

The next theorem gives the existence of such solutions.

Theorem 4.7. Let the above assumptions hold and let u0 2 W 1,p(�) and2u(0) 2

L2(�). Then, for every � > 0, there exists at least one solution u = u� in the sense
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of the above definition. Moreover, every such solution satisfies the energy identity

(B(rxu(⌧2)), 1)L2 � (B(rxu(⌧1)), 1)L2

+

Z ⌧2

⌧1

k@⌧u(⌧ )k2L2 + (9 0

�(@⌧u(⌧ )), @⌧u(⌧ ))L2 d⌧

= �

Z ⌧2

⌧1

( f"(⌧, u(⌧ )), @⌧u(⌧ ))L2 d⌧

(4.28)

for all 0  ⌧1  ⌧2 and the following dissipative estimate:

ku(⌧ )kW 1,p(�) +

Z ⌧+1

⌧
k@⌧u(s)k2L2 ds  Q(ku(0)kW 1,p(�)) e�k⌧ +C f , (4.29)

where k, CF > 0 and the monotone function Q are independent of ⌧ , " and �.

Proof. Indeed, the energy identity follows from Lemma 4.4 exactly as in Corollary
4.6. Let us check the dissipative estimate. The energy equality together with the ob-
vious formula d

d⌧ (F("⌧, u(⌧ )), 1)L2 = ( f"(⌧, u(⌧ )), @⌧u(⌧ )+"(F 0

t ("⌧, u(⌧ )), 1)L2
gives

d
d⌧

�
(b(rxu(⌧ ), 1)L2 + (F("⌧, u(⌧ )), 1)

�
L2 + 1/2k@⌧u(⌧ )k2L2

+ (9 0

�(@⌧u(⌧ )), @⌧u(⌧ ))L2
= "(F 0

t ("⌧, u(⌧ )), 1)L2 .

(4.30)

Furthermore, we multiply equation (4.26) by u(⌧ ) and integrate by x . Then, using
(4.3)(1) and the fact that 9 0

� is uniformly bounded in L
1, we have

d
d⌧

ku(⌧ )k2L2 + ↵kru(⌧ )kpL p(�) + 2( f"(⌧, u(⌧ )), u(⌧ ))L2  C, (4.31)

where C is independent of ⌧ , " and �. Multiplying estimate (4.31) by 2L where L is
a sufficiently large positive number, taking a sum with equation (4.30), using (2.7)
and the fact that 9 0

�  C , see Lemma A.2, we have

d
d⌧

E(⌧, u(⌧ )) + ✓ku(⌧ )kpW 1,p(�)
 C1, (4.32)

where
E(⌧, v) := Lkvk

2
L2 + (B(rxv), 1)L2 + (F("⌧, v), 1)L2 (4.33)

and positive constants ✓ and C1 are independent of ", � and ⌧ . Moreover, due to
(2.6) and (4.4), we have

⇢kvk
p
W 1,p(�)

� C  E(⌧, v)  Q(kvkW 1,p(�)) (4.34)
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for some positive ⇢ and monotone function Q. Estimate (4.29) follows now from
(4.32) and (4.34) and the Gronwall-type estimate (see [3, Lem. 2.7]). Thus, the
dissipative estimate (4.29) is proved.

To verify the existence of solutions, we use the Galerkin approximation
method. Indeed, let PN be the orthoprojectors associated with a smooth complete
orthonormal system in L2(�) which is assumed to be complete in W 1,p

0 (�) and let
uN (t) 2 PN L2(�) be a solution of the following system of ODEs

PN (@⌧uN +9 0

�(@⌧uN )) = PN div b(rxuN (⌧ )) � PN f"(⌧, uN ). (4.35)

We complete this system of equations by the initial value u0N = uN (0) constructed
as follows: let 20N 2 PN L2(�) be some sequence converging strongly to 2u(0) in
L2(�) and let ũ0N 2 PNW

1,p
0 (�) be a sequence converging to u(0), then we find

w = u0N 2 PNW
1,p
0 (�) as a solution of the following equation

�Mũ0N +20N = PN div b(rxv) � PN f"(0, v) � Mv, (4.36)

where the (large) positive constant M will be chosen in the next lemma.

Lemma 4.8. Let the above assumptions hold. Then, there exists a positive M such
that, for every N , equation (4.36) has a unique solution u0N and this solution tends
to u(0) as N ! 1 in the space W 1,p

0 (�).

Proof. Let the sequences ũ0N and2
0
N be fixed. We first deduce the a priori estimate

kvkW 1,p(�)  C (4.37)

for the solution v of (4.36), where the constant C is independent of M and N . To
this end, we set w̄ := v � ũ0N and multiply equation (4.36) by w̄ and obtain that

(b(rx w̄ +rx ũ0N ),rx w̄)L2 + ( f"(0, w̄ + ũ0N ), w̄)L2 +Mkw̄k
2
L2 + (20N , w̄)L2 = 0.

(4.38)
Using now assumptions (4.3) for the function b and the fact that the sequence
ũ0N is uniformly bounded in W

1,p(�), we see that (b(rx w̄ + rx ũ0N ),rx w̄)L2 �

↵kvk
p
W 1,p(�)

� C , where ↵ > 0 and C are independent of N and M . Anal-
ogously, using assumptions (2.6) and (2.5) for the function f and the embed-
ding W 1,p

⇢ Lrmax+2 (the subordination assumption), we see that ( f"(0, w̄ +

ũ0N ), w̄)L2 � �kvk
r+2
Lr+2(�)

� C1 for some �,C1 > 0 which are also independent of
N and M . Inserting these estimates into (4.38) and using that20N is also uniformly
bounded in L2(�), we deduce a priori estimate (4.37).

To finish the proof of the lemma, we verify the existence of a solution for
(4.36) in a standard way using a priori estimate (4.37). Let us verify the uniqueness.



114 ALEXANDER MIELKE AND SERGEY ZELIK

Indeed, let v1 and v2 be two solutions of (4.36) and let w = v1 � v2. Then, this
function solves

PN div[b(rxv1) � b(rxv2)] � PN [ f"(0, v1) � f"(0, v2)] � Mw = 0.

Multiplying this equation by w, integrating over x and using assumption (4.3)(3)
and estimate (4.9) together with the uniform estimate (4.37) for v1 and v2, we see
that

kwk
2
H1 � Kkwk

2
W 1�� ,2(�)

+ Mkwk
2
L2  0,

where positive constants K and  are independent of M and � > 0 is the same
as in (4.9) and N . Together with the standard interpolation estimate, this estimate
implies w ⌘ 0 if M > M0(, � , K ). Thus, uniqueness is also verified.

Finally, since the sequence of solutions v = u0N of problem (4.36) is uniformly
bounded in W 1,p

0 (�), we can assume, without loss of generality, that it converges
weakly to some function u0 2 W 1,p

0 (�) which, by standard arguments, should
satisfy the limit equation

�Mu(0) +2u(0) = div b(rxu0) � f"(0, u0) � Mu0.

Since, by the definition of 2u(0), the function u(0) solves this equation, then, nec-
essarily, u0 = u(0). The strong convergence of u0N can be proved by the standard
monotonicity arguments. Lemma 4.8 is proved.

We are now ready to finish the proof of the theorem. To this end, we note that, mul-
tiplying equation (4.35) by @⌧uN + 2LuN and arguing as before, we can prove that
the solution uN (t) of (4.35) satisfies the analog of (4.28) and (4.29) (uniformly with
respect to N ). Since (4.35) is, in a fact, a system of ODEs, this a priori estimate
is sufficient to establish the global solvability of the Galerkin approximation sys-
tem. Moreover, since the sequence u0N is also uniformly bounded, the dissipative
estimate (4.29) shows that

kun(⌧ )kW 1,p(�) +

Z ⌧+1

⌧
k@⌧uN (r)k2L2 dr  C, (4.39)

where the constant C is independent of ⌧ and N .
We now derive estimates for @⌧u and estimate (4.27). To this end, we differ-

entiate equation (4.35) by ⌧ , denote vN (⌧ ) = @⌧uN (⌧ ) and multiply it by vN (⌧ ).
Then, we have

d
d⌧
⇥
(9 0

�(vN ).vN �9�(vN ), 1)L2 + 1/2kvNk
2
L2
⇤

+ (b0(rxuN )rxvN ,rxvN )L2+( f 0

",⌧ (⌧,uN ),vN )L2+( f 0

",u(⌧,uN )vN ,vN )L2

= 0.

(4.40)
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Integrating this equality by ⌧ 2 [⌧1, ⌧2] and using (4.3)(3) and (A.7), we deduce the
analog of (4.27) for uN :

k@⌧uN (⌧2)k
2
L2 � k@⌧uN (⌧1)k

2
L2 + 2

Z ⌧2

⌧1

krx@⌧uN (⌧ )k2L2 d⌧

+ 2
Z ⌧2

⌧1

[( f 0

",⌧ (⌧,uN (⌧ )),@⌧uN (⌧ ))L2+( f 0

",u(⌧,uN (⌧ ))@⌧uN (⌧ ),@⌧uN (⌧ ))L2] d⌧

 C�
(4.41)

with the constant C independent of N . Moreover, using estimates (4.7) and (4.9)
together with (4.39), we deduce from (4.40) that

d
d⌧

[2(9 0

�(vN ).vN�9�(vN ), 1)L2+kvNk
2
L2]+krxvNk

2
L2 C(1+kvNk

2
W 1�� ,2(�)

).

(4.42)

Applying the Gronwall estimate to this relation and using (A.7), interpolation esti-
mate k · kW 1�� ,2  Ck · k

�

L2k · k
1��
H1 and estimate (4.39) for estimating the integral

over the L2-norm of v, we will have

kvN (⌧ )k2L2 +

Z ⌧+1

⌧
krxvN (r)k2L2 dr  C(1+ kvN (0)k2L2), (4.43)

where C is independent of N . Furthermore, vN (0) = @t uN (0) can be found from

PN [vN (0) +9 0

�(vN (0))] = 2uN (0) := PN [div b(rxuN (0)) � f"(0, uN (0))].
(4.44)

But, according to (4.36)

2uN (0) = 20N + M(uN (0) � ũ0N )

and, consequently, 2uN (0) is uniformly bounded in L2(�) and tends strongly as
N ! 1 to2u(0). ¿From equation (4.44) and the monotonicity of9 0

� , we conclude
that the same is true for the functions vN (0) = @⌧u(0) as well. Thus, estimate (4.43)
gives

kvN (⌧ )k2L2 +

Z ⌧+1

⌧
krxvN (r)k2L2 dr  C1, (4.45)

where the constant C1 is independent of ⌧ and N .
Finally, the uniform estimates (4.39) and (4.45) allow to pass in a standard

way to the weak limit N ! 1 in equations (4.35) and to obtain a solution u(⌧ ) of
the limit problem (4.26) belonging to the class (4.17). Moreover, the monotonicity
arguments (see e.g. the proof of the next theorem) show that @⌧uN converges to
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@⌧u strongly in L2([0, R] ⇥ �). This convergence, together with Lemma 4.1 (see
(4.7) and (4.9)) allow to pass to the limit N ! 1 in estimate (4.41) and verify that
(4.27) is satisfied for almost all ⌧1 and ⌧2. Thus, Theorem 4.7 is proved.

Our next task is to construct solutions for (4.13) by passing to the limit � ! 0 in
(4.26).

Theorem 4.9. Let the above assumptions hold. Then, problem (4.13) possesses at
least one solution u in the sense of Definition 4.3. Every such solution satisfies
the dissipative estimate (4.29) (uniformly with respect to ") and the energy equality
(4.25).

Proof. Indeed, the energy equality and dissipative estimate for the solution u of
problem (4.13) can be verified exactly as in the previous theorem. So, it remains to
check existence.

We will construct the required solution u(⌧ ) of problem (4.13) as a limit � ! 0
of the solutions u�(⌧ ) of the regularized problems (4.26). Indeed, using the dissi-
pative estimate (4.29) and estimate (4.27), we see that the sequence u� is uniformly
bounded in L1(R+,W 1,p

0 (�)). Moreover, using (4.27) and the Gronwall esti-
mate (analogously to (4.43)), we see that the corresponding sequence of derivatives
@⌧u� is uniformly bounded in L1([0, R], L2(�)) \ L2([0, R], H10 (�)), for every
R > 0. Thus, without loss of generality, we can assume that there exists a weak
limit u = limn!1 u�n where �n ! 0 as n ! 1 and un = u�n solves (4.26) with
� = �n . To be more precise,

un!u weakly* in
L1([0, R],W 1,p(�)) \ W 1,1([0, R], L2(�)) \ H1([0, R], H10 (�)).

(4.46)

Let us prove that u solves (4.13). To this end, we set

vn := @⌧un, 2n := 2un = 9 0

�n (vn) + vn. (4.47)

Since the sequence @t un is uniformly bounded in L1([0, R], L2(�)) and 9 0

� is
bounded in L1, the sequence 2n is uniformly bounded in L1([0, R], L2(�)).
Consequently, without loss of generality, we can assume that 2n ! 2 weakly*
in that space. We need to prove that

(1) 2 = 2u := div B0(rxu) � f"(⌧, u), (2) 2 2 @9(v) + v, (4.48)

where v = @⌧u. To verify (1) we let B(u) := � div(b(rxu)). Then, due to as-
sumptions (4.3), this operator is monotone as the operator from the space W :=

L p([0, R],W 1,p
0 (�)) to W ⇤. Moreover, this operator is maximal monotone in

W as a derivative of a convex functional, see e.g., [29]. Let now  n := B(un).
Then,  n is uniformly bounded in W ⇤ and, consequently,  n !  weakly in
W ⇤

= Lq([0, R],W�1,q(�)). Taking in mind that the operator f" is subordinated
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to B (see Lemma 4.1 and estimate (4.7)) and the functions un converge strongly in
L p([0, R],W 1��,p(�)), for any � > 0, we have

2+  + f"(⌧, u) = 0. (4.49)

On the other hand, multiplying equation (4.26) by un , we have

(B(un),un))L2([0,R]⇥�) =�(2n, un)L2([0,R]⇥�) � ( f"(⌧,un),un)L2([0,R]⇥�). (4.50)

Passing to the limit in the right-hand side of (4.50) and using again that f" is subor-
dinated, we deduce

lim
n!1

(B(un), un) = �(2, u) � ( f"(⌧, u) = ( , u). (4.51)

Since B is maximal monotone, the last equality implies B(u) =  , and (4.48)(1) is
verified.

The inclusion (4.48)(2) can be checked exactly as in the proof of Theorem 2.9.
Thus, u solves indeed the limit problem (4.13).

Furthermore, to verify that u is a solution of (4.13) in the sense of Definition
4.3, we want to pass to the limit in estimate (4.27) for un , thus needing the strong
convergence

un ! u strongly in L p([0, R],W 1,p(�) \ H1([0, R], L2(�)). (4.52)

To this end, we rewrite energy equality (4.28) in the form

⌦
9�n (vn), 1

↵
R +

D
|vn|

2, 1
E
R

+ (B(rxun(R)), 1)L2

= (B(rxu(0)), 1)L2 �

⌦
P�n (vn), 1

↵
R � h f"(⌧, un), vniR , (4.53)

where P�(v) := 9 0

�(v).v �9�(v), see Appendix A.
Using the fact that f" is relatively compact and estimate (A.7) and passing to

the limit n ! 1, we get

lim
n!1

⌦
9�n (vn), 1

↵
R +

D
|vn|

2, 1
E
R

+ (B(rxun(R)), 1)L2

= (B(rxu(0)), 1)L2 � h f"(⌧, u), viR (4.54)

which together with the energy equality for the limit equation (4.13) gives

lim
n!1

[h9(vn), 1iR +

D
|vn|

2, 1
E
R

+ (B(rxun(R)), 1)L2]

= h9(v), 1iR +

D
|v|
2, 1

E
R

+ (B(rxu(R)), 1)L2 . (4.55)
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Since the functions 9 and B are convex, equality (4.55) implies

1) lim
n!1

D
|vn|

2, 1
E
R

=

D
|v|
2, 1

E
R

,

2) lim
n!1

(B(rxun(R)), 1)L2 = (B(rxu(R)), 1)L2 .
(4.56)

Since the spaces L2 andW 1,p are uniformly convex, B is strictly convex and R > 0
is arbitrary, then (4.56) implies (4.52).

It is now not difficult to pass to the limit in (4.27). Indeed, the strong conver-
gence (4.52) together with weak convergence (4.46) imply that un ! u strongly in
Ls([0, R],W 1,p(�)), @⌧un ! @⌧u strongly in L2([0, R],W 1�� (�)), for every s <
1 and � > 0 and k@⌧un(⌧ )kL2 ! k@⌧u(⌧ )kL2 for almost all ⌧ 2 R+. These con-
vergence, together with Lemma 4.1 justify the passing to the limit � ! 0 in (4.27)
and show that the solution u satisfies (4.18). Thus, Theorem 4.9 is proved.

Analogously to the semilinear case, estimate (4.18) and energy equality allow
to deduce the crucial estimate of @⌧u in the space L2([0, R], H1(�)). Next corol-
lary is the analog of the dissipation integral (2.53) for solutions of problem (4.13).

Corollary 4.10. Let the assumptions of Theorem 4.9 hold and let u be a solution of
problem (4.13). Then, for every ⌧1, ⌧2 2 R+, ⌧2 � ⌧1, one has
Z ⌧2

⌧1

k@⌧u(⌧ )kL1(�) +k@⌧u(⌧ )k2L2 d⌧  Q(ku(0)kW 1,p(�))[1+"(⌧2�⌧1)], (4.57)

where the monotone function Q is independent of ", ⌧1 and ⌧2.

Proof. In order to obtain estimate (4.57), it is sufficient to integrate the energy
equality (4.25) and use the uniform bounds for the W 1,p-norm of the solution ob-
tained above. Indeed, integrating (4.25) by ⌧ 2 [⌧1, ⌧2] and using (4.29) and (4.8)
and the obvious equality f"(⌧, u).@⌧u = @⌧ F("⌧, u) � "F 0

t ("⌧, u), we get

Z ⌧2

⌧1

(9(@⌧u(⌧ )), 1)L2 + 1/2k@⌧u(⌧ )k2L2 d⌧  Q(ku0kW 1,p(�))

+

Z ⌧2

⌧1

"(F 0

t ("⌧, u(⌧ )), 1)L2 d⌧. (4.58)

Using estimates (4.8) and (4.29) in order to estimate the integral with F 0

t and esti-
mate (2.3)(1) and for estimating the term with 9, we obtain the required estimate
(4.57) and finish the proof of Corollary 4.10.

Next proposition is the analog of Proposition 2.11.
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Proposition 4.11. Let the assumptions of Section 4.1 hold and let u = u(⌧ ) be
a solution of problem (4.13) in the sense of Definition 4.3. Then, the following
estimate holds:

Z ⌧2

⌧1

k@⌧u(⌧ )kH1 d⌧  C(1+ "(⌧2 � ⌧1)), (4.59)

where the constant C depends on the appropriate norms of u(0) and 2u(0), but is
independent of " > 0, ⌧1 � 0 and ⌧2 � ⌧1.

Proof. Indeed, since f 0

",⌧ (⌧, u) = " f 0

t ("⌧, u), then using (4.7), (4.9) and the dissi-
pative estimate (4.29), one can transform estimate (4.18) as follows:

k@⌧u(⌧2)k2L2 � k@⌧u(⌧1)k2L2

+ 

Z ⌧2

⌧1

krx@⌧u(r)k2L2 dr  C
✓
"2 +

Z ⌧2

⌧1

k@⌧u(r)k2L2 dr
◆

, (4.60)

where the constant C depends only on the W 1,p-norm of u(0). The rest of the
proof repeats word by word the proof of Proposition 2.11 and, by this reason, is
omitted.

Corollary 4.12. Let the above assumptions hold and let u = u(⌧ ) be a solution of
problem (4.13). Then, the following estimate holds:

k@⌧u(⌧ )kL2 + k2u(⌧ )kL2  Q(k2u(0)kL2 + ku(0)kW 1,p(�)) e�↵⌧ +CF , (4.61)

where the positive constants CF and ↵ and the monotone function Q are indepen-
dent of ⌧ , u and ".

Proof. Indeed, in order to obtain the required estimate for @⌧u(⌧ ) it is sufficient
to use estimate (4.60) with ⌧1 = 0, ⌧2 = ⌧ , apply estimate (B.2) with �(s) :=

e↵(s�⌧ ) to it and use the dissipation integral (4.57) for estimating the integral in the
right-hand side. Analogous estimate for 2u(⌧ ) follows from the obvious relation
2u(⌧ ) 2 @⌧u(⌧ ) + 9(@⌧u(⌧ )) and the fact that k9(v)kL1  C which, in turns,
implies that

k@⌧u(⌧ )kL2  k2u(⌧ )kL2  k@⌧u(⌧ )kL2 + C. (4.62)

Thus, Corollary 4.12 is proved.

We are now able to return back to the variable t = "⌧ and the associated
equation (4.1) and summarize the obtained results in the following theorem.

Theorem 4.13. Let the assumptions of Section 4.1 hold. Then, for all " > 0, there
exists at least one solution u of problem (4.1) (such that ũ(⌧ ) := u("⌧ ) is a solution
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of the scaled problem (4.13) in the sense of Definition 4.3). Every such solution
satisfies the following dissipative estimate:

ku(t)kW 1,p(�) + "k@t u(t)kL2 + k2u(0)kL2
 Q(ku(0)kW 1,p(�) + k2u(0)kL2) e�↵t/" +C f , (4.63)

where the positive constants ↵ and C f and monotone function Q are independent of
" and t . Moreover, the time derivative of that solution satisfies:

Z T+1

T
k@t u(t)kH1 dt  C, (4.64)

where C depends on ku(0)kW 1,p(�) and k2u(0)kL2 , but is independent of " and
T 2 R+.

Indeed, estimate (4.63) is an immediate corollary of estimates (4.29) and (4.61)
and estimates (4.64) follow from Proposition 4.11 taking into the account that the
L1(H1)-norm of @t u is scaling invariant.

4.3. The vanishing-viscosity limit

The aim of this section is to clarify the behavior of solutions of (4.1) as " ! 0.
In order to do so, exactly as in the semilinear case, we introduce the scaled time
variable

s(t) := t +

Z t

0
k@t u"(r)kL2 dr, (4.65)

where u"(t) solves (4.1) and rewrite equation (4.1) with respect to new dependent
variable ũ"(s) := u(t"(s)) (here and below t"(s) denotes the inverse function to
s(t)). Moreover, for simplifying the notations, we will write again u(s) instead of
ũ(s). With respect to the new variables u"(s) and t"(s) (4.1) reads8>><
>>:
div(b(rxu"(s)))� f (t"(s), u"(s))2@9(@su"(s)) + "

@su"(s)
1� k@su"(s)kL2

,

t 0"(s) + k@su"(s)kL2 = 1, t"(0) = 0,
u"(0) = u0.

(4.66)

In particular, this shows that

k@su(s)kL2 < 1 for almost all s � 0. (4.67)

Moreover, using the convex functional C" : L2(�) ! R+ given by (2.70), system
(4.66) can be rewritten in the equivalent form:8><
>:
@9(@su"(s)) + @C"(@su"(s)) 3 div(b(rxu"(s))) � f (t"(s), u"(s)),
t 0"(s) + k@su"(s)kL2 = 1, t"(0) = 0,
u"(0) = u0.

(4.68)



RATE-INDEPENDENT LIMITS OF PARABOLIC EQUATIONS 121

Furthermore, since @C" converges to the limit operator @C0 defined by (2.73), we
expect that the solutions (u", t") converge, in the proper sense, to the solution (u, t)
of the limit problem

8><
>:
@9(@su(s)) + @C0(@su(s)) 3 div(b(rxu(s))) � f (t (s), u(s)),
t 0(s) + k@su(s)kL2 = 1, t (0) = 0,
u(0) = u0.

(4.69)

The rest of this section is devoted to the justification of the passage from (4.68) to
(4.69). To this end, analogously to Lemma 2.15, we first need to control new time
s = s"(t).

Lemma 4.14. Let the assumptions of Section 4.1 hold and let u = u"(t) be a so-
lution of (4.1) in the sense of Theorem 4.13. Then, the scaled time s satisfies the
estimate

s � t"(s) � �s � C, t"(0) = 0, t 0"(s) � 0 (4.70)

for some positive constants � and C .

Indeed, estimate (4.70) follows immediately from the definition (4.65) of the
scaled time s and the uniform estimate (4.64) for the integral of @t u(t).

The next lemma interprets the uniform estimates obtained in the previous sec-
tion in terms of the solutions (u"(s), t"(s)) of problem (4.68).

Lemma 4.15. Let the above conditions hold. Then, the solutions (u", t") of prob-
lems (4.68) satisfy the following estimates:

ku"(s)kW 1,p(�) + k2u"(s)kL2  C = C(ku0kW 1,p(�), k2u(0)kL2),Z S+1

S
k@su"(s)kH1 ds  C,

s � t"(s) � �s � C, 1 � t 0"(s) � 0,

(4.71)

where the positive constants C and � are independent of " ! 0, s � 0 and S � 0.

Indeed, first estimate of (4.71) is an immediate corollary of (4.63) and the
scaling invariance of the L1-norm. Analogously, the second estimate of (4.71)
follows from (4.64) and the scaling invariance of the L1-norm of the time derivative.
Finally, the third one is just repeats estimate (4.70).

We are now ready to pass to the limit " ! 0 and formulate the main result of
this section which is the analog of Theorem 2.17 for the quasi-linear case.

Theorem 4.16. Let the assumptions of Section 4.1 hold and let (u"(s), t"(s)), " !

0 be solutions of problem (4.68) constructed above. Then, there exists a sequence
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"n ! 0 such that the associated solutions (un(s), tn(s)) := (u"n (s), t"n (s)) tend to
the limit pair (u(s), t (s)), k@su(s)kL2  1, in the following sense:

un ! u weakly* in L1([0, S],W 1,p(�)) \ W 1,1([0, S], L2(�)), (4.72a)
un ! u strongly in L p([0, S], H1(�)), (4.72b)
2un ! 2u weakly* in L1([0, S], L2(�)), (4.72c)
@sun ! @su weakly in L1/([0, S],W ,2(�)), 0   < 1, (4.72d)
tn ! t weakly* in W 1,1([0, S]), (4.72e)Z S1

S2
(9(@sun(s)), 1)L2 ds !

Z S1

S2
(9(@su(s)), 1)L2 ds, S1 � S2 � 0, (4.72f)

e)
Z S2

S1
(@C"n (@sun(s), @sun(s))L2 ds !

Z S2

S1
('0(s), @su(s))L2 ds, (4.72g)

for a function '0 2 L1([0, S], L2(�)) with '0(s) 2 @C0(@su(s)) for almost all s.
The limit functions (t (s),u(s)) satisfy the following weakened version of (4.69):

8><
>:
@9(@su(s)) + @C0(@su(s)) 3 div(b(rxu(s))) � f (t (s), u(s)),
t 0(s) + k@su(s)kL2 = R(s), t (0) = 0,
u(0) = u0,

(4.73)

where the function R 2 L1(�), 0  R(s)  1 satisfies the following property:
Z S1

S2
R(s) ds � C min{S1 � S2, (S1 � S2)K }, S1 � S2 � 0, (4.74)

where the positive constants C and K are independent of S1 and S2. Finally, the
scaled time t (s) satisfies

s � t (s) � �s � C, 1 � t 0(s) � 0. (4.75)

Proof. Indeed, the weak convergences (4.72a), (4.72c), and (4.72e) are immediate
corollaries of the boundedness of u", t" and 2u" in the corresponding functional
spaces, see estimates (4.71). In order to obtain (4.72d), it is sufficient to note that,
due to (4.71), the sequence @su" is uniformly bounded in L1([0, S], L2(�)) \

L1([0, S], H1(�)) and to use the standard interpolation embedding

L1/([0, S],W ,2(�)) ⇢ L1([0, S], L2(�)) \ L1([0, S], H1(�)).

Moreover, estimates (4.75) follow from the fact that

tn ! t strongly in C↵([0, S]), 0 < ↵ < 1. (4.76)
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In order to verify the remaining properties, we first prove that

2un ! 2u strongly in L p([0, S],W�,2(�)),  > 0 (4.77)

and that
2u(s) = div(b(rxu(s)) � f (t (s), u(s)). (4.78)

Indeed, since the uniform boundedness of 2un in L1([0, S], L2(�)) is already
known, for proving (4.77), it is sufficient to obtain some information about the
smoothness of s 7! 2un (s). Moreover, since the operator f (t, u) is subordinated to
div(b(rxu)) and (4.76) holds, it is sufficient to consider only the most complicated
term div(b(rxun(s)). In particular, (4.77) will be proved if we prove that

b(rxun) 2 W 1/(p�1),1([0, S], L1(�)) (4.79)

and uniformly bounded in that space. To this end we note that assumptions (4.3)
imply

|b(w1) � b(w2)|  C(kw1k + kw2k)
p�1�↵

|w1 � w2|
↵ (4.80)

for all 0  ↵  1. Fixing ↵ = 1/(p � 1) and using the Hölder inequality, we infer

kb(w1) � b(w2)kL1([0,1]⇥�)

 C(kw1kL p([0,1]⇥�) + kw2kL p([0,1]⇥�))
p�1�↵

kw1 � w2k
1/(p�1)
L1([0,1]⇥�)

for every w1, w2 2 L p([0, 1] ⇥�). Using now this formula with w1 := rxun(· +

s1), w2 := rxun(· + s2) and using (4.71), we get

kb(rxun(· + s1)) � b(rxun(· + s2))kL1([0,1]⇥�)

 Ckrxu1(· + s1) � rxu1(· + s2)k
1/(p�1)
L1([0,1]⇥�)

 C|s1 � s2|1/(p�1)
 Z s2+1

s1
k@sun(s)kH1 ds

!1/(p�1)
.

Thus, the uniform boundedness of b(rxun) in the space (4.79) is verified and, con-
sequently, convergence (4.77) is also verified. Moreover, this strong convergence
together with the fact that f (t, u) is subordinated to the leading monotone part
div(b(rxu)) allows us to pass to the limit n ! 1 in the elliptic problem

2un (s) = div b(rxun(s)) � f (tn(s), un(s)) (4.81)

and establish the limit equality (4.78) (using the standard monotone-operator ar-
guments). Moreover, since 2un ! 2u strongly in L p([0, S], H�1(�)), estimate
(4.3)(3) implies in a standard way that un ! u strongly in L p([0, S], H1(�)).
Thus, convergence (4.72b) is also verified. Moreover, using (4.72d) we see that, for
every S > 0

lim
n!1

⌦
2un , @sun

↵
S = h2u, @suiS , (4.82)

where h·.·iS denotes the scalar product in L2([0, S] ⇥�).
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We are now ready to prove (4.72f) and pass to the limit n ! 1 in equations
(4.68). To this end,we fix ✓n 2 L1(R+ ⇥�) and 'n 2 L1(R+, L2(�)) such that

✓n + 'n = 2un , ✓n(s) 2 @9(@sun(s)), 'n(s) 2 @C"n (@sun(s)). (4.83)

Such decomposition exists since un(s) satisfies the first equation of (4.68). More-
over, since k✓nkL1  C then the above sequences are uniformly bounded in these
spaces. So, without loss of generality, we may assume that

✓n ! ✓0 weakly* in L1([0, S] ⇥�),

'n ! ' weakly* in L1([0, S], L2(�))
(4.84)

for every S 2 R+ and
✓0 + '0 = 2u . (4.85)

Thus, in order to verify that (u, t) solves the first equation of (4.73), we only need
to prove that

✓0 2 @9(@su), '0 2 @C0(@su). (4.86)
To this end, we first recall that the monotonicity of operators @9(v) and @C"n (v)

together with the strong convergence (in V = L2([0, S] ⇥�)) of the operator @C"n
to @C0 established in Lemma A.4, give

lim inf
n!1

h✓n, @suniS � h✓0, @suiS , lim inf
n!1

h'n, @suniS � h'0, @suiS (4.87)

for every S � 0. Indeed, let us verify the more complicated second estimate (leav-
ing the analogous, but simpler first one to the reader). Let (@su, w0) be an arbitrary
point of the graph of @C0 (which exists since k@su(s)kL2  1). Then, Lemma A.4
with V = L2([0, S]⇥L2(�)) gives the existence of a sequence (vn, wn) converging
strongly in L2([0, S] ⇥�)2 to the pair (@su, w0) and such that

wn 2 @C"n (vn). (4.88)

Then, due to the monotonicity of @C"n , we have

h'n, @suniS = h'n � wn, @sun � vniS + hwn, @sun � vniS + h'n, vniS
� hwn, @sun � vniS + h'n, vniS .

(4.89)

Passing to the limit n ! 1 in this estimate, we obtain the second estimate of
(4.87). Thus, estimates (4.87) are verified.

On the other hand, due to the convergence (4.82), we have

lim
n!1

�
h'n, @suniS + h'n, @suniS

�
= h'0, @suiS + h'0, @suiS . (4.90)

Inequalities (4.87) together with the equality (4.90) imply that we have exact equal-
ities in (4.87), i.e.

lim
n!1

h✓n, @suniS = h✓0, @suiS , lim
n!1

h'n, @suniS = h'0, @suiS . (4.91)
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Since the operators @9(v) and @C0(v) are maximal monotone, the estimates (4.87)
imply in a standard way the inclusions (4.86) and, consequently, the limit functions
(u(s), t (s)) satisfy the first equation of (4.73).

Furthermore, using the identity (@9(v), v) = 9(v), we transform the first
equality of (4.91) to

lim
n!1

Z S

0
(9(@sun(s)), 1)L2 ds =

Z S

0
(9(@su(s)), 1)L2 ds (4.92)

which holds for every S > 0. Subtracting equations (4.92) for S = S1 and S = S2,
we obtain convergence (4.72f). The convergence (4.72e) follows analogously from
the second equality of (4.91). Thus, all of the convergences (4.72) are verified.

Let us now consider the second equation of (4.68) and let

R(s) := t 0(s) + k@su(s)kL2 . (4.93)

Then, the second equation of (4.73) are satisfied by definition and, passing to the
limit in the second equation of (4.68) and using that @sun converges weakly in L2
to the limit function @su, we see that

0  R(s)  1. (4.94)

Unfortunately, we do not have the strong convergence of @sun to @su in L2([0, S]⇥
�) in order to conclude that R(s) ⌘ 1.

Finally, to finish the proof of the theorem, we only need to verify estimate
(4.74). But it is factually done in the proof of Corollary 2.18. Thus, Theorem 4.16
is proved.

We conclude this section by proving that we can fix K = 1 in (4.74) and,
consequently, the scaling factor R(s) is separated from zero (exactly as in the semi-
linear case).

Theorem 4.17. Let the assumptions of Theorem 4.16 hold. Then, the scaling factor
R(s) from the second equation (4.73) satisfies

1 � R(s) � � > 0 for a.a. s 2 [0, S].

Proof. Analyzing the proof of Theorem 2.21, we conclude that we can repeat it
word by word for the quasi-linear case as well if the higher energy estimate (2.90)
is a priori known. Thus, we only need to verify this estimate. However, in contrast
to the semi-linear case, we do not have the uniqueness and, by this reason, the
proof indicated in Lemma 2.22 fails here. Indeed, although we are still able to
construct directly a strong solution (u(s), t (s)) of (4.68) satisfying (2.90) by the
above approximation scheme, it is not obvious that the corresponding solution u(⌧ )
of (4.13) will satisfy the energy estimate (4.18) involved in our definition of a strong
solution. Therefore, in order to overcome this difficulty, we need to deduce (2.90)
directly from (4.18).
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We first recall that the higher energy estimate (4.18) can be formulated in the
initial time scale t as follows:

"k@t u(t2)k2L2 � "k@t u(t1)k2L2 + 2↵
Z t2

t1
krx@⌧u(t)k2L2 dt

+ 2
Z t2

t1
[( f 0

t (t, u(t)), @t u(t))L2 + ( f 0

u(t, u(t))@t u(t), @t u(t))L2] dt  0
(4.95)

for almost all t1, t2 � 0, t2 � t1.
It is not difficult to see that, in order to deduce (2.90) from (4.95), it is sufficient

to be able to apply (B.2) with

�(t) :=

1
1+ k@t u(t)kL2

(4.96)

to estimate (4.95) (see formulae (2.66) and (2.69)). However, we are not able to
apply Lemma B.1 here, since the function � is only L1, but does not belong to C1.
In order to overcome this obstacle, we use Lemma B.2 and the convexity arguments
instead. Indeed,

k@t u(t)k2L2 = F(�(t)), where F(z) :=

✓
1
z

� 1
◆2

and the function F is decreasing on the interval (0, 1] (since �(t) 2 (0, 1] for all t ,
we need the monotonicity on that interval only). Thus, Lemma B.2 is applicable to
(4.95) and the obtained estimate (B.3) is equivalent to the desired estimate (2.90).

This finishes the proof of the theorem.

Finally, exactly as in the semilinear case, we can rescale the independent vari-
able to obtain a strict arclength parametrization, see Remark 2.19. Therefore, the
proved Theorem 4.16 provide a pair (t̄, ū) with

t̄ 2 W 1,1(R+), ū 2 W 1,1(R+, L2(�)) \ L1(R+,W 1,p
0 (�)) (4.97)

satisfying the analog of (4.69), namely
8><
>:
@9(@s̄ ū(s̄)) + @C0(@s̄ ū(s̄)) 3 div(b(rx ū(s̄))) � f (t̄(s̄), ū(s̄)),
t̄ 0(s̄) + k@s̄ ū(s̄)kL2 = 1, t̄(0) = 0,
u(0) = u0.

(4.98)

5. An application in magnetostriction

We consider a bounded Lipschitz domain � ⇢ Rd for d 2 {2, 3} together with
a Dirichlet part 0Dir ⇢ @� having positive surface measure. For a fixed time the
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state of the body is described by the displacement y : � ! Rd with y 2 Y :=

H10Dir(�) = { y 2 H1(�) , y|0Dir = 0 } and the magnetization m : � ! R
satisfying m 2 H1(�). Often it is assumed |m(x)| = Msat but in our model this
will be only satisfied approximately through a penalty term in the energy functional.

To put the system into the abstract form (3.1) it suffices to explain the form of
the Hilbert spaces H , the dissipation potential 9 : H ! [0,1), main operator B,
and the potential8(t, ·). The magnetization m plays the role of our former variable
u. Hence, we let

H = H1(�)d and e9(m) =

Z
�
⇢(x)|m(x)| dx,

where ⇢ 2 L1(�) satisfies ⇢(x) � ⇢0 > 0 a.e. in �.
We first define an energy functional in terms of the displacement y and m,

namely

eE(t, y,m) =

Z
�

↵

2
|rm|

2
+ W (x, e(y),m) dx � h`mech(t), yi � hHext(t),mi,

where `mech 2 C1([0, T ],Y ⇤) is the mechanical loading via volume and surface
forces, whereas Hext 2 C1([0, T ], H⇤) denotes the external magnetic field.

The stored energy density W may depend on the material point x 2 �, but for
notational simplicity we suppress this dependence. More importantly, W depends
on the linearized strain tensor e(y) =

1
2 (ry + (ry)T ) 2 Rd⇥d

sym and the magnetiza-
tion vector m in the form

W (e,m) =

1
2
(e�E(m)):C:(e�E(m)) + Waniso(m) +

1
4�

(|m|
2
�M2

sat)
2

where E 2 C(Rd
; Rd⇥d

sym ) is the magnetization strain, which we assume to be linear
in the form E(m) =

Pd
j=1m j E j for m = (m1, ...,md), and C is the elastic forth-

order tensor, which is assumed to satisfy e:C:e =

Pd
i, j,k,l=1 ei jCi jklekl � c0|e|2.

The term Waniso 2 C2(Rd) satisfies Waniso(m) � 0, |W 00

aniso(m)|  C , and contains
the anisotropy information, e.g. about easy axes, while the last term penalized m to
have a modulus close to the saturation value.

In the quasistatic setting we may assume that the displacement is always in
equilibrium, i.e. eE 0

y(t, y(t),m(t)) = 0 for all [0, T ]. From the quadratic nature
of W in terms of e(y)�E(m) we see that y can be found by a linear elliptic PDE
giving y(t) = L(m(t), `(t)), where L : L2(�)⇥H⇤

! H is a bounded linear oper-
ator. To prove this result one uses the Lax-Milgram lemma and the Korn inequalityR
� e(ŷ):C:e(ŷ) dx � c1kŷk2H1 for all ŷ 2 Y .
Thus, we are able to define

E(t,m) =
eE(t,L(m, `(t)),m) = min{ eE(t, ŷ,m) , ŷ 2 Y }.
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Defining B : H ! H⇤ via Bm = �↵1m+↵m we see that the potential8(t,m) =

E(t,m) �
1
2 hBm,mi takes the form

8(t,m) =

Z
�
W (e(L(m, `(t)),m))�

↵

2
|m|

2 dx�h`(t),L(m, `(t))i�hHext(t),mi.

It is not difficult to check that 8 satisfies all the assumptions of Section 3. Thus,
the abstract theory developed there applies in the present case.

A. Approximation of convex functions and their subdifferentials

The aim of this appendix is to study the approximations of several convex func-
tionals and the associated subdifferentials which associated with problem (2.1). We
start by constructing the approximations of a convex order one homogeneous func-
tional on a finite-dimensional space by smooth functionals.

To be precise, let a function 9 : Rm
! R+ satisfy assumptions (2.3) Then,

obviously, the function 9(v) should be Lipschitz continuous with respect to v. In-
deed, according to (2.3),

|9(v + w) �9(v)|  9(w)  2kwk. (A.1)

Let us fix now a non-negative cut-off function ' 2 C1

0 (Rm) such that (i) supp' ⇢

B10 := {v 2 Rm, kvk < 1}, (ii)
R
Rm '(v) dv = 1. and introduce the standard

smoothing kernel '�(v) :=
1
�m '( v

� ), � > 0. Then, the smooth approximations
9�(v) can be defined as follows:

9�(v) =

Z
Rm
'�(s)9(v � s) ds. (A.2)

The next lemma indicates the obvious properties of functions 9� .

Lemma A.1. Let the above assumptions hold. Then, for every � > 0 the func-
tions 9�(v) are smooth, convex and satisfy the first estimate of (2.3) with the same
constants i . Moreover, the second assumption of (2.3) now reads

9�(↵v) = |↵|9�/|↵|(v), ↵ 2 R, v 2 Rm . (A.3)

Furthermore, 9� converges to 9 as � ! 0 and

|9�(v) �9(v)|  2�, v 2 Rm . (A.4)

Indeed, all of the assertions of the lemma are standard corollaries of (2.3) and (A.1)–
(A.2). We recall that smooth homogeneous order p functions satisfy the Euler iden-
tity f 0(v).v = p f (v). The next lemma gives the analog of this identity for the
functions 9� .
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Lemma A.2. Let the above assumptions hold. Then

9 0

�(v).v �9�(v) = P�(v), (A.5)

where

P�(v) :=

Z
Rm
 �(s)9(v � s) ds,  �(s) :=

m
�m
'
⇣ s
�

⌘
�

1
�m+1'

0

⇣ s
�

⌘
.s. (A.6)

In particular,
|P�(v)|  C�, (A.7)

where the constant C is independent of � and v.

Proof. Differentiating identity (A.3) with respect to ↵ near ↵ = 1, we get

9 0

�(v).v �9�(v) =

d
d↵
9�/↵(v)

��
↵=1

which, after simple calculations, gives (A.5) and (A.6). Thus, we only need to
verify estimate (A.7). To this end, we note thatZ

Rm
 �(s) ds =

Z
Rm

[m'(s) + '0(s).s] ds = 0. (A.8)

Indeed, since div('(s)Es) = m'(s)+'0(s).s, the Gauss integration by parts formula
gives (A.8). Using that, we can rewrite b�(v) as b�(v) =

R
Rm  �(s)[9(v�s) �

9(v)] ds and, consequently, due to (A.1),

|P�(v)|  2

Z
Rm

| �(s)| · |s| ds = 2�

Z
Rm

|s| · |m'(s) � '0(s).s| ds = C�.

Lemma A.2 is proved.

Our next task is to study the convergence of subdifferentials of functionals 9�(v).
To be more precise, we consider the following equation in Rm :

9 0

�(v) + "v = f, f 2 Rn, " > 0. (A.9)

Lemma A.3. Let the above assumptions hold. Then, for every f 2 Rn and every
� > 0, problem (A.9) has a unique solution v� , these solutions converge as � ! 0
to the unique solution v0 of the limit problem

f 2 @9(v) + "v (A.10)

and the following estimate holds:

kv� � v0k  C (�/")1/2 , (A.11)

where the constant C is independent of �, " and f .
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Proof. Let
A�(v) := 9�(v) + "/2kvk

2. (A.12)

Since 9�(v) + "/2kvk
2 is strictly convex, then the minimum in of A�(v) over v 2

Rm exists and v� = Argminv2Rm {9�(v)+"/2kvk
2
} gives a unique solution of (A.9)

and the analogous description holds for the solution v0 of the limit problem (A.10).
Moreover, due to estimate (A.4), we have |A�(v�)�A0(v0)| = |min A��min A0| 

C� and, consequently, |A0(v�) � A0(v0)|  2C�. Moreover, the strong convexity
of A0 gives A0(v�) � A0(v0) + "/4kv� � v0k2. Together this implies (A.11) and
the proof of the lemma is finished.

We conclude by studying the functionals on the infinite-dimensional phase spaces
which arise in our study the rate independent limit " ! 0. Namely, let

V = Vp, := L p([0, T ],W ,2
0 (�), V ⇤

= Lq([0, T ],W�,2(�)) (A.13)

for some 2  p < 1, 1/p+ 1/q = 1 and 0    1 and let the functionals C" and
C0 on V be defined as follows:

C"(v) :=

Z T

0
C"(v(s)) ds, C0(v) :=

Z T

0
C0(v(s)) ds, (A.14)

where the functions C" and C0 are defined by (2.70) and (2.73) respectively.
The next lemma shows that the subdifferentials @C" converge strongly as " !

0 to the subdifferential @C0 of the limit functional C0 (with respect to the pairing
(V, V ⇤)). This corresponds to Mosco convergence, see [1].

Lemma A.4. Let the above assumptions hold, let (v0, w0)2V⇥V ⇤, v02Dom(C0),
w0 2 @C0(v0) be arbitrary and let "n ! 0 be an arbitrary sequence of positive
numbers. Then, there exist two sequences vn 2 V and wn 2 V ⇤ such that

vn 2 Dom(C"n ), wn 2 @C"(vn) (A.15)

such that
(vn, wn) ! (v0, w0) strongly in V ⇥ V ⇤. (A.16)

Proof. Indeed, it follows in a standard way from the definition of a subdifferential
that Dom(C0) = {v0 2 V, kv0kL2  1} and the set @C0(v0) has the following
structure:

@C0(v0) =

n
↵(s)v0(s),

Z T

0
|↵(s)|qkv0(s)k

q
W�,2(�)

ds < 1,

↵(s) � 0,
�
↵(s) = 0 if kv0(s)kL2 < 1

�o
. (A.17)
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Thus, w0(s) = ↵(s)v0(s) for some non-negative function ↵ satisfying the condi-
tions formulated in (A.17). We now set

v"n (s) :=

↵(s) +

p

"n

↵(s) + "n +

p

"n
v0(s). (A.18)

Then, obviously,kv"n � v0kV 

p

"nkv0kV and, consequently, v"n ! v0 strongly
in V . Let us now check that vn 2 Dom(C"n ). To this end, we first note that the
function ↵ must belong to L1([0, T ]). Indeed, for every s such that kv0(s)kL2 = 1,
the interpolation estimate gives

kv0(s)kW�,2(�) � Ckv0(s)k�1
W ,2(�)

and, consequently,

Z T

0
↵(s) ds  k↵v0kV ⇤

✓Z
↵(s)6=0

1/kv0(s)kpW�,2(�)
ds
◆1/p

 Ck↵vkV ⇤kv0kV < 1.

(A.19)

Moreover,

1
1� kv"n (s)kL2

=

↵(s) + "n +

p

"n

"n + (↵(s) +

p

"n)(1� kv0(s)kL2)

 1+

↵(s) +

p

"n

"n

(A.20)

and, therefore,

C"n (v"n )  C +

Z T

0
"n ln(1+

↵(s) +

p

"n

"n
) ds  C1 +

Z T

0
↵(s) ds < 1.

It only remains to note that, according to (A.20),

@C"n (v"n )(s) = "n
w0(s) +

p

"nv0(s)
"n + (↵(s) +

p

"n)(1� kv0(s)kL2)
:= wn. (A.21)

Thus,

wn(s) =

(
w0(s) +

p

"nv0(s), kv0(s)kL2 = 1,
("n)3/2v0(s)

"n+
p

"n(1�kv0(s)kL2 )
, kv0(s)kL2 < 1 (A.22)

which, in turns, implies kwn(s) � w0(s)kW�,2(�)  Cp

"nkv0(s)kW�,2(�). Using
p � 2 we have wn 2 V ⇤, and the last estimate implies wn ! w0 in V ⇤. Lemma
A.4 is proved.
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B. A product rule for an integral estimate

We consider solutions ↵ 2 L1([0, T ]) of the integral equality

↵(t) � ↵(s) 

Z t

s
g(⌧ ) d⌧ for all t, s 2 [0, T ] \ N with s < t, (B.1)

where g 2 L1([0, T ]) is given and N ⇢ [0, T ] has Lebesgue measure 0. For
differentiable ↵ this estimate is equivalent to ↵0

 g a.e. on [0, T ]. The desired
product-rule estimate then means that for all nonnegative � 2 C1([0, T ]) we have

(�↵)0 = �↵0

+ �0↵  �g + �0↵.

The following result states that the corresponding integrated version holds with-
out assuming that ↵ is differentiable. The idea of the proof is to show that ↵ has
bounded variation and thus a distributional derivative D↵ in the set of measures.
Then, (B.1) implies that g dt � D↵ is a nonnegative measure.
Lemma B.1. Let g 2 L1([0, T ]) and � 2 C1([0, T ]) with �(t) � 0 be given. If
↵ 2 L1(�) solves (B.1), then,

�(t)↵(t) � �(s)↵(s) 

Z t

s
[�(⌧ )g(⌧ ) + �0(⌧ )↵(⌧ )]d ⌧ for all t, s 2 [0, T ] \ N .

(B.2)
Proof. We first show that ↵ lies in BV([0, T ]). For this define � : [0, T ] ! R
via �(t) =

R t
0 g(r) dr � ↵(r). By (B.1) we conclude that � is nondecreasing on

[0, T ] \ N . Thus, we may modify ↵ on the null set N in such a way that � :

[0, T ] ! R is nondecreasing and hence of bounded variation.
Since we have ↵(t) =

R t
0 g(r) dr � �(r) we conclude that ↵ is of bounded

variation as well. The distributional derivative µ := D� of � is a positive measure,
i.e., µ 2 C00([0, T ])⇤ defined via

R T
0  (t)µ(dt) = �

R T
0  

0(t)�(t) dt for all  2

C1

c ([0, T ]). Clearly, we have D↵ = g dt � µ. The chain rule D(�↵) = �D↵ +

�0↵ dt is derived as follows:Z T

0
 (t)D(�↵)(dt) = �

Z T

0
 0(t)�(t)↵(t) dt

= �

Z T

0
( �)0↵ dt +

Z T

0
 �0↵ dt

=

Z T

0
 �D↵(dt) +

Z T

0
 �0↵ dt.

Now using the nonnegativity of � and µ we obtain

D(�↵) = �(g dt � µ) + �0↵ dt 

�
�g + �0↵

�
dt.

Thus, we conclude that t 7!

R t
0
�
�g + �0↵

�
dr � �(t)↵(t) is a nondecreasing func-

tion, and (B.2) is established.
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To conclude, we formulate one more useful analog of formula (B.2) for the
case where the function � is only L1, but that ↵ is related to � via ↵ = F � �. For
� 2 C1, the result is an immediate corollary of (B.2). The non-trivial part of the
lemma is that this estimate remains true for the non-smooth � as well.

The result was used in the proof of Theorem 4.17 only. There F has the form
F(z) = (1/z � 1)2 for z 2 (0, 1).

Lemma B.2. Let � 2 L1([0, T ]), g 2 L1([0, T ]) and F 2 C2(R2) be three
functions such that � is nonnegative, F is monotone (decreasing or increasing) and
the functions ↵ = F � � and g satisfy estimate (B.1) for almost all t, s 2 [0, T ].
Then, for all s, t 2 [0, T ] \ N with s  t we have

[�(t)↵(t) �8(�(t))] � [�(s)↵(s) �8(�(s))] 

Z t

s
�(⌧ )g(⌧ ) d⌧, (B.3)

where 8(z) :=

R z
0 F(y) dy.

Proof. Let 5 = {s = t0 < t1 < · · · < tl�1 < tl = t} be an arbitrary partition of
[s, t] such that t j 2 [0, T ] \ N and let F be increasing. Then 8 is convex and ,
analogously to (4.22), we infer that F(�(t j�1))[�(t j ) � �(t j�1)]  [8(�(t j )) �

8(�(t j�1))]. Thus,

[�(t)↵(t) �8(�(t))] � [�(s)↵(s) �8(�(s))]

=

lX
j=1

[�(t j )↵(t j ) �8(�(t j ))] � [�(t j�1)↵(t j�1) �8(�(t j�1))]



lX
j=1

�(t j )↵(t j ) � �(t j�1)↵(t j�1) � ↵(t j�1)(�(t j ) � �(t j�1))

=

lX
j=1

�(t j )(↵(t j ) � ↵(t j�1) 

X
j
�(t j )

Z t j

t j�1
g(r) dr =

Z t

s
�5right(r)g(r) dr,

where �5right is the right-continuous piecewise interpolant of � with respect to the
partition 5. Using a suitable sequence of partitions (cf. [9]), the right-hand side
approaches the limit

R t
s �g dr and the result is established the case of increasing F .

Assume now that F is decreasing. Then, 8 is concave and, analogously to
(4.23), we have F(�(t j ))[�(t j ) � �(t j�1)]  [8(�(t j )) �8(�(t j�1))]. Thus,

[�(t)↵(t) �8(�(t))] � [�(s)↵(s) �8(�(s))]



lX
j=1

�(t j )↵(t j ) � �(t j�1)↵(t j�1) � ↵(t j )(�(t j ) � �(t j�1))

=

lX
j=1

�(t j�1)(↵(t j ) � ↵(t j�1) 

X
j
�(t j )

Z t j

t j�1
g(r) dr =

Z t

s
�5le f t (r)g(r) dr,
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where �5le f t is the left-continuous piecewise interpolant of � with respect to the
partition 5. Using a suitable sequence of partitions (cf. [9]), the right-hand side
approaches the limit

R t
s �g dr and the result is established for the case of decreasing

F as well.
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