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A quantitative characterisation of functions
with low Aviles Giga energy on convex domains

ANDREW LORENT

Abstract. Given a connected Lipschitz domain � we let 3(�) be the set of
functions inW2,2(�)with u = 0 on @� and whose gradient (in the sense of trace)
satisfies ru(x) · ⌘x = 1, where ⌘x is the inward pointing unit normal to @� at x .

The functional I✏(u) =
1
2
R
� ✏

�1
���1� |ru|2

���2 + ✏
���r2u���2 dz, minimised over

3(�), serves as a model in connection with problems in liquid crystals and thin
film blisters. It is also the most natural higher order generalisation of the Modica
and Mortola functional. In [16] Jabin, Otto and Perthame characterised a class of
functions which includes all limits of sequences un 2 3 (�) with I✏n (un) ! 0
as ✏n ! 0. A corollary to their work is that if there exists such a sequence
(un) for a bounded domain �, then � must be a ball and (up to change of sign)
u := limn!1 un is equal dist(·, @�). We prove a quantitative generalisation of
this corollary for the class of bounded convex sets. Namely we show that there
exists a positive constant �1 such that, if � is a convex set of diameter 2 and
u 2 3(�) with I✏(u) = �, then |B1(x)4�|  c��1 for some x and

Z
�

����ru(z) +

z � x
|z � x |

����
2
dz  c��1 .

A corollary of this result is that there exists a positive constant �2 < �1 such that
if� is convex with diameter 2 and C2 boundary with curvature bounded by ✏�

1
2 ,

then for any minimiser v of I✏ over 3(�) we have

kv � ⇣kW 1,2(�)  c(✏ + inf
y

|�4B1(y)|)�2 ,

where ⇣(z) = dist(z, @�). Neither of the constants �1 or �2 are optimal.

Mathematics Subject Classification (2010): 49N99 (primary).

1. Introduction

We consider the following functional

I✏(u) =

1
2

Z
�
✏�1

���1� |ru|2
���2 + ✏

���r2u���2 dz
the study of which arises from a number of sources, one of the earliest and most
important of which is the article by Aviles and Giga [7]. We will refer to the quantity
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I✏(u) as the Aviles-Giga energy of the function u. The functional I✏ is usually
minimised over the space of functions u 2 W 2,2(�) where u(x) = 0 and ru(x) ·

⌘x = 1 on @� (in the sense of trace) where ⌘x is the inward pointing unit normal,
we will denote this space of functions by 3(�).

Aviles and Giga raised the problem of the study of the limiting behavior of
I✏ as ✏ ! 0 in connection with the theory of smectic liquid crystals [7]. In [14]
Gioia and Ortiz studied I✏ as a model for thin film blisters. Jin and Kohn [17]
introduced the by now classic method of estimating the energy by ‘divergence of
vector fields’. A related functional arising from micromagnetics was studied by
Rivière and Serfaty [24]. In this case the functional acts on vector fields m (in two
dimensions) satisfying |m| = 1 in �, and the functional is given by M✏(m) =

✏
R
� |rm|

2
+ ✏�1

R
R2
��
r

�1divm̃
��2, where m̃ is the vector field m extended trivially

by 0 outside �. For the Aviles-Giga functional we minimise over curl free vector
fields and the functional forces the norm of the vector field to be close to 1 with
weighting ✏�1 while constraining an ✏ multiple of the L2 norm (squared) of the
gradient. On the other hand the micromagnetics functional is minimised over vector
fields whose norm is taken to be 1 from the outset, and the functional forces the
vector field to be divergence free with weighting ✏�1 1, while again constraining
an ✏ multiple of the L2 norm (squared) of the gradient. Functional M✏ is much
more rigid, and very much stronger results are known for it than for I✏ , see [1,6,24]
and [5].

Roughly speaking: the conjecture is that as ✏ ! 0 the energy of minimisers of
I✏ will converge to a collection of curves on which the gradient of the minimisers
makes a jump of order O(1) perpendicularly across the curve. This has already been
proved for functional M✏ [24]. A way to think about this is the following: given
a connected Lipschitz domain � let w be the distance from @� and let v✏ be w
convolved by a convolution kernel of diameter ✏. The regions where |rv✏ | 6⇠ 1 will
be exactly the ✏ neighborhoods of the curves on whichrw has a jump discontinuity.
If � is a ball rw will have a discontinuity only at one point. In all other cases
there will be non trivial curves of singularities, and for the specific function v✏ it
is exactly in an ✏ neighborhood of these curves that the energy will concentrate.
The conjecture is that what we can observe directly for v✏ will hold true for the
minimisers of I✏ .

The most natural way to study these questions is within the framework of
0-convergence. One of the earliest successes of 0-convergence was the char-
acterisation of the 0-limit of the so called Modica-Mortola functional A✏(w) =R
� ✏ |rw|

2
+ ✏�1

��1� |w|
2��2 which is minimised over scalar functions w satisfy-

ing an integral condition of the form
R
�wdx = 0. It was shown by Modica and

Mortola [21] (confirming a conjecture of De Giorgi) that the 0-limit of A✏ is a con-
stant multiple of the Hn�1 measure of the jump set Jw minimised over the space of
functionsw 2

�
v 2 BV : v 2 {1,�1} a.e. and

R
vdx = 0

 
. Given the elementary

1 The term
R
R2
���r�1divm

���2 is the L2 norm of the Hodge projection onto curl free vector fields.
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inequality
✏ |rw|

2
+ ✏�1

���1� |w|
2
���2 � |rw|

���1� |w|
2
��� , (1.1)

we have that for any sequence (wn) of equibounded A✏n energy (for some subse-
quence ✏n ! 0) has a uniform L1 control of r

⇣
wn �

w3n
3

⌘
and the measure we

obtain as the limit of this L1 sequence of gradients will naturally be supported on
the jump set of the limiting function. In some sense the nature of the 0-limit of A✏
could be anticipated from (1.1).

Functional I✏ is the most natural higher order generalisation of A✏ . In the
case of I✏ the conjectured 0-limit is surprising. This is part of the reason that
functional I✏ has received so much attention. The first works on identifying the
0-limit are by Aviles and Giga [7] and Jin and Kohn [17]. Later these ideas were
developed by Ambrosio, De Lellis and Mantegazza [2]. Roughly speaking, the
limiting function space is conjectured to have a structure similar to the space of
functions whose gradient is BV and the limiting energy is conjectured to have the
form

R
Jru

��
ru+

� ru�

��3 dH1. Much progress has been made on this conjecture.
In particular equi-coercivity of I✏ has been shown independently in [2] and in the
work of DeSimone, Kohn, Muller and Otto [11]. A proposed limiting function
space AG(�) and limiting functional I as been suggested in [2], and it was shown
that all limits of sequences of functions (un) with supn I✏n (un) < 1 are such that

un
W 1,3
! u 2 AG(�) and lim inf I✏n (run) � I (u). The compactness proofs pro-

vided by [11] and [2] are different but share some common ideas. The proof by [11]
identifies the set of all smooth functions 8 : R2 ! R2 for which there exists a
smooth 9 : R2 ! R2 such thatZ

|div [8(ru)]|  c
Z ���9(ru) · r

⇣
1� |ru|2

⌘��� for any C2 function u. (1.2)

Influenced by ideas of Tartar and Murat on compensated compactness [25] [22] the
authors were able to prove that this set of8 is sufficiently rich so as to force run to
converge strongly. In [7] the authors, building on work of Jin and Kohn [17], found
two third order polynomial vector fields 61 : R2 ! R2 and 62 : R2 ! R2 such
thatZ

|div [6i (ru)]| c
Z ���r2u��� ���1�|ru|2

��� for any C2 function u, for i=1, 2. (1.3)
Using some elementary and surprising identities satisfied by 61(ru),62(ru), a
different approach to compactness was found. Rather naturally considering (1.3).
The function space AG(�) proposed by [2] is given by the set of functions v for
which div(6i (rv)) forms a Radon measure for i = 1, 2 and the limiting energy
functional I (v) is given by the total absolute value of this measure on �.

Given vector field w let �(⇠, w) := 11{⇠ ·w>0}, Jabin and Perthame [15] showed
that gradients of sequences of bounded Aviles-Giga energy (in fact their method
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extends to more general functionals) are compact and the limitru satisfies a kinetic
equation of the form ⇠ · rx�(⇠, R(ru)) = q where q is the distribution derivative
with respect to ⇠ of some measure on R2⇠ ⇥ R2x and R is the rotation given by
R(x, y) = (�y, x). By application of kinetic averaging lemmas [12] this leads to
some regularity: ru 2 Ws,q for all 0  s < 1

5 , q < 5
3 , and using the kinetic

equation a different proof of compactness was found. The kinetic equation deduced
by [15] was motivated by the characterisation of the set of 8 satisfying (1.2) given
in [11]: defining 8̃(z) = |z|2 e for z · e > 0 and 0 otherwise it was shown that a
sequence8n satisfying (1.2) could be found that approximates 8̃ pointwise. Using
the kinetic equation deduced in [15], Jabin, Otto and Perthame [16] were able to
characterise zero energy limits (and the domains that allow them) for I✏ . In fact
their result is stronger: they showed that if a divergence free vector field m satisfies
the kinetic equation ⇠ · r�(m, ⇠) = 0, |m(x)| = 1 a.e. in � and m(x) · ⌘x = 0
on @�, then either � is a strip and m is a constant or � = Br (x) for some r > 0,
x 2 R2 and m(z) =

⇣
z�x
|z�x |

⌘
?

or m(z) = �

⇣
z�x
|z�x |

⌘
?

. An analogous result for
zero energy limits of M✏ is stated in [18] and is a consequence of the main theorem
of [5].

As a corollary: given a sequence un 2 3(�) and ✏n ! 0 such that I✏n (un) !

0 as n ! 1 and letting u be the limit of this sequence, then the vector field
R(ru) satisfies the hypothesis stated and hence we have (up to a sign) a complete
description of ru.

The main theorem of this paper is a quantitative generalisation of the corollary
to Jabin, Otto and Perthame theorem over the class of bounded convex sets.

Theorem 1.1. Let ✏ > 0 and � be a convex domain with diameter 2. Let u 2

W 2,2(�) be with u = 0 on @� and ru(x) · ⌘x = 1 of @� (in the sense of trace)
where ⌘x is the inward pointing unit normal. Then there exists positive constants
C > 1 and � < 1 such that for some x 2 �,

|�4B1(x)|  C (I✏(u))�

and Z
�

����ru(z) +

z � x
|z � x |

����
2
dz  C (I✏(u))� .

Corollary 1.2. Let ✏ > 0 and � be a convex set of diameter 2 and with C2 bound-
ary and curvature bounded above by ✏�

1
2 . Let 3(�) := {u 2 W 2,2(�) : u = 0 on

@� and ru(z) · ⌘z = 1 for z 2 @�}. There exists positive constants C = C(�) > 1
and � < 1 such that if u is a minimiser of I✏ over 3(�), then

ku � ⇣kW 1,2(�)  C
✓
✏ + inf

y2�
|�4B1(y)|

◆�

where ⇣(z) = dist(z, @�).
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In Theorem 1.1 we take � = 512�1 and in Corollary 1.2, � = 5462�1. Nei-
ther constant is optimal. Corollary 1.2 requires a fair amount of technical work
establishing an upper bound for the minimiser of I✏ in terms of the ‘eccentric-
ity’ infy2�,r>0 |�4Br (y)|. For the reader primarily interested in the asymptotic
behavior of minimisers as ✏ ! 0 recent powerful results on 0-convergence up-
per bound of I✏ (in the case where the function u being approximated satisfies
ru 2 BV (� : S1)) by Conti and De Lellis [8] and Poliakovsky [23] do much of
the work for us and we can give a relatively shorter proof of the following corollary
to Theorem 1.1. Note that Corollary 1.3 stated below is a corollary to Corollary 1.2.

Corollary 1.3. Let � be a convex set of diameter 2 with C2 boundary. Let 3(�)
be as defined in Corollary 1.2. There exists positive constants C = C(�) > 1 and
� < 1 such that if u✏ is a minimiser of I✏ over 3(�), then

lim sup
✏!0

ku✏ � ⇣kW 1,2(�)  C
✓
inf
y2�

|�4B1(y)|
◆�

where ⇣(z) = dist(z, @�).

Plan of paper. After the introduction in Section 1 we sketch the proof of the main
theorem in Section 2. In Section 3 we prove the main theorem. In Section 4 we
establish Corollary 1.3, the additional lemmas needed to establish Corollary 1.2 are
given in Section 5.

1.1. Background

Given a sequence ✏n ! 0 and un 2 3(�) with lim sup I✏n (un) < 1, let u be the
limit of un . The vector valued measure given by ⌫u :=(div [61(ru)], div [62(ru)])
(where 61,62 are the third order polynomial vector fields that satisfy (1.3)) gives
us the expression of the limiting energy, i.e. I (u) = k⌫uk(�). If we consider the
1-dimensional part of the measure

0 :=

⇢
x : lim sup

r!0

k⌫u(Br (x))k
r

> 0
�

it has been shown that 0 is 1-rectifiable [9] (see also [10]) and an analogous result
has been shown for M✏ [6]. It was also shown ru has jump discontinuities across
the rectifiable set 0 exactly as would be the case if ru was BV and its jump set
was given by 0. However it is not known (even if un are the minimisers of I✏n ) if
measure k⌫uk is even singular with respect to Lebesgue measure. Note that for the
function M✏ the minimiser of the limiting energy is known to be rectifiable [5]. For
a sequence with only equibounded energy the measure is not known to be singular.
The original motivation for Theorem1.1 was to prove a version of it for�= B1(0)

without boundary conditions and under the hypotheses
R
B1

��1�|ru|2
�� ��

r
2u
�� dz=�,R

B1

��1� |ru|2
�� dz  ✏ and sup

�
ku � AkL1(B1(0)) : A is affine with |rA| = 1
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1000�1. The conclusion in this case would be that there exists a smooth function  
with |r | = 1 everywhere such that kru�r kL2

�
B2�1 (0)

�
 c�� for some � > 0.

This is a kind of quantitative version of the main proposition required to prove
compactness in [2], (see Proposition 4.6). The hope is to use such a quantitative
result to show k⌫uk is singular, or at least that ru is continuous at H1 a.e. point
outside 0. We will address these issues in a forthcoming paper [19].

The many strong results about measure k⌫uk (and the measure that gives the
limiting functional for the micromagnetics function) have been achieved by charac-
terising various kinds of blow up of the measure and understanding well the absolute
(i.e. non quantitative) situation in the limit [5, 6, 9, 10, 16]. In some sense there are
only two possibilities, either to take a limit and have an absolute situation and to un-
derstand the measure from this, or to stop before the limit and have a non-absolute
situation and try and understand something about it with a quantitative theorem.
Our primary motivation in proving a quantitative version of Jabin-Otto-Perthame
Theorem was so as to obtain a result that could be used for the latter approach.

By Poincaré’s inequality it is easy to see inf3(�) I✏ � c✏ and so Theorem 1.1
follows from the following slightly more general result.

Theorem 1.4. Let� be a convex body centered on 0 with diam(�) = 2. Let � > 0,
suppose u : W 2,2(�) ! R is a function satisfying

Z
�

���1� |ru|2
��� ���r2u��� dz  � (1.4)

and Z
�

���1� |ru|2
���2 dz  �2 (1.5)

and in addition u satisfies u = 0 on @� and ru(z) · ⌘z = 1 on @� in the sense of
trace where ⌘z is the inward pointing unit normal to @� at z.

Then there exists positive constant C1 > 0 such that |B1 (0)4�| < C1�
1
512

and Z
�

����ru(z) +

z
|z|

����
2
dz  C1�

1
512 . (1.6)

ACKNOWLEDGEMENTS. Part of this paper was written while the author was the
Emma e Giovanni Sansone Junior Visitor at Centro di Ricerca Matematica Ennio
De Giorgi, Pisa. The hospitality and support of this institute is gratefully acknowl-
edged. I would also like to express my great thanks to the referee for numerous
suggestions, simplifications and improvements. The quality of the paper has been
substantially increased by the input of the referee.
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2. Sketch of the proof

2.1. Sketch of the proof of Theorem 1.4

While the proof for convex domains is slightly involved, there are only a couple
of ideas that are really central. We will sketch the proof for the case � = B1(0).
Ignoring (without comment) many technicalities in order to give an impression of
the basic skeleton.

The real engine of the proof is the characterisation in [11] of the set of 8
such that (1.2) is satisfied. As mentioned in the introduction: as a consequence
of the characterisation it was shown there exists a sequence of 8n satisfying (1.2)
that converge pointwise to the function 8̃(z) = |z|2 e for z · e > 0 and 0 otherwise.
Following closely the proof of this, it is possible to extract the existence of functions
8✓ and 9✓ with kr8✓k  c��

1
4 , k9✓k  c��

1
4 , kr9✓k  c��

1
2 such that the

following two inequalities hold:
Let 3✓ (z) := ✓ for z · ✓ > 0 and 0 otherwise,

|8✓ (z) �3✓ (z)|  c�
1
4 for z 2 Np

�(S
1)\B

2�
1
4
(✓) (2.1)

and (letting R(z1, z2) = (�z2, z1) be the anti-clockwise rotation)

div
h
8✓ (R(rw)) �9✓ (R(rw))

⇣
1� |R(rw)|2

⌘i

 c��
1
2
���1� |rw|

2
��� ���r2w��� for any w 2 W 2,1.

Recall for simplicity we have taken � = B1(0), as ru(z) = �
z
|z| on @B1(0) then

we can extend u to a function ũ : B11/10(0) ! R such thatZ
B11/10(0)

���1� |rũ|2
��� ���r2ũ��� dz  c�,

Z
B11/10(0)

���1� |rũ|2
���2 dz  c�2

and
rũ(z) = �

z
|z|
for any z 2 B11/10(0).

It is more convenient to work with vector fields that are almost curl free instead of
almost divergence free. So notice that (2.1) can be rewritten as

|R (8✓ (z)) � R (3✓ (z))|  c�
1
4 for z 2 Np

�(S
1)\B

2�
1
4
(✓) (2.2)

and we have
R
B11/10(0)

���curl hR (8✓ (R (rũ))) � R (9✓ (R (rũ)))
⇣
1� |rũ|2

⌘i��� 

c
p

�. By the quantitative Hodge decomposition type theorem from [2] (Theorem
4.3) we can find a scalar valued function w✓ such thatZ
B11/10(0)

���rw✓ �

⇣
R (8✓ (R (rũ))) � R (9✓ (rR (rũ)))

⇣
1� |rũ|2

⌘⌘��� dz
 c

p
�.

(2.3)
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The real power of (2.3) is that on the annulus A := B11/10(0)\B1(0) we know
that rũ(z) = �

z
|z| and hence given inequality (2.2) (and the fact that |rũ| = 1

on A) we have a that 8✓ (R (rũ(z))) 2 N
�
1
4

(✓) for any z 2 A \ H (R✓, 0), see
Figure 2.1.

Figure 2.1.

In much the same way in the ball B1(0) by inequalities (2.2), (2.3) and the inequality

Z
B1(0)

���1� |rũ|2
���2  �2

we have that there exists a large set G ⇢ B1(0) \ H(0, R✓), with |B1(0)\G| 

p

�
such that if z 2 G then rw✓ (z) 2 B

�
1
4
(R✓) or rw✓ (z) 2 B� 14 (0) depending on

whether R(ru(z)) · ✓ > 0 or R(ru(z)) · ✓  0.
It is not hard to see we can find points a, b 2 N

�
1
8
(h✓i\@B1(0))with |a � b| ⇠

2, ✓ ·
b�a
|b�a| > 0, the angle between b�a

|b�a| and ✓ is at least �
1
8 and H1([a, b] \G) 

�
1
4 . Let G1 =

�
x 2 G : ru(z) · R�1 (✓) > 0

 
and G2 = G\G1. As can be seen

from Figure 2.1, we can connect a to b with a path 0 ⇢ A so

|w✓ (b) � w✓ (a)| =

����
Z
0

rw✓ (z)tzdH1z
���� �

����R✓ ·

✓Z
0
tzdH1z

◆����� c�
1
4

=

����R✓ ·

b � a
|b � a|

���� |b � a| � c�
1
4 .

(2.4)
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On the other hand

|w✓ (b) � w✓ (a)| =

����
Z
[a,b]

rw✓ (z)
b � a
|b � a|

dH1z
����



����
Z
[a,b]\G1

rw✓ (z)
b � a
|b � a|

dH1z
����+ c�

1
4



����
Z
[a,b]\G1

R✓ ·

b � a
|b � a|

dH1z
����+ c�

1
4

=

����R✓ ·

b � a
|b � a|

���� H1([a, b] \ G1) + c�
1
4

(2.5)

and since
���R✓ ·

b�a
|b�a|

��� � �
1
8 so putting (2.4) and (2.5) together

|a � b|  H1 ([a, b] \ G1) +

c�
1
4���R✓ ·
b�a
|b�a|

���  H1 ([a, b] \ G1) + c�
1
8 .

So by arguing in the same way for lines parallel to [a, b], by Fubini’s theorem we
can show

���H ⇣a+b2 , R
⇣
b�a
|b�a|

⌘⌘
\G1

���  c�
1
8 . Thus all but �

1
8 points z 2 B1(0) \

H(0, R(✓)) are such that ru(z) · R�1(✓) > 0. As ✓ is arbitrary we can rephrase
this the following way. Given � 2 S1 for all but �

1
8 points z 2 B1(0) \ H(0,�) are

such that ru(z) · (��) > 0.

Now take  =

✓
cos�

1
16

sin�
1
16

◆
. For all but �

1
8 points in H(0, e1) \ H(0,� ) \

H(0,�e2) we have that ru(z) · (�e1) > 0 and ru(z) ·  > 0, it is not hard to
show this implies |ru(z) · e1|  c�

1
16 and since ru(z) · e2 > 0 and |ru(z)| ⇠ 1

we have ru(z) 2 B
c�

1
16

(e2) with an exceptional set of measure less than c�
1
8 . So

integrating a carefully chosen line inside H(0, e1) \ H(0,� ) \ H(0,�e2) and
using the fact that u = 0 on @B1(0), we can show |u(0) � 1|  c�

1
16 .

Now, recall |ru| is mostly very close to 1 and we have zero boundary condi-
tion. To avoid technicalities let us assume we can apply the coarea formula at 0 so
we have Z

✓2S1

Z
R+✓\B1(0)

���|ru(z)|2 � 1
��� dH1zdH1✓  c

p
�.

Note also that for any ✓ 2 S1, u(✓) = 0 so by the fundamental theorem of Calculus
����
Z

R+✓\B1(0)
ru(z) · (�✓)dH1z � 1

����  |(u(0) � u(✓)) � 1|

 c�
1
16
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so Z
✓2S1

Z
R+✓\B1(0)

|ru(z) + ✓ |2 dH1z✓

=

Z
✓2S1

Z
R+✓\B1(0)

|ru(z)|2 + 2ru(z) · ✓ + |✓ |2 dH1zdH1✓

 c�
1
16 .

This concludes the sketch of the proof of Theorem 1.4.

2.2. Sketch of the proof of Corollary 1.2 and Corollary 1.3

In order to deduce Corollary 1.2 we need to apply Theorem 1.1 to the minimiser
of I✏ over 3(�). We can only do this if the minimiser has small energy (and from
Theorem 1.1 we know it can only have small energy if� is close to a ball). For this
reason it is necessary to construct a function in 3(�) with this property. This turns
out this is a surprisingly delicate task. It is achieved in Section 4 and Section 5 of
the paper.

The obvious way to attempt the construction is to make some adaptation of the
function ⇣(z) = dist(z, @�). This function clearly satisfies the correct boundary
condition. The first problem is that r⇣ will have its gradient in BV and it is easy to
construct examples of convex domains that are close to balls for which the singular
part of r⇣ is widely spread over the domain. So it is necessary to convolve ⇣ . Let
 denote the convolution of ⇣ with a convolution kernel of support size ⇠ ✏.

We need to check that the function  we obtain by convolving ⇣ will have
small energy. By recent results of [3] we have that r⇣ 2 SBV (� : S1). So by
Poincaré inequality if for most balls the gradient of r⇣ is not too concentrated in
balls of sized ✏ then we would have

R
�

��1� |r |
2��2 dz is small. Now assuming �

is close to a ball, then for x not too close to the center of � (which we assume is
0) it is not hard to show that

���r⇣(z) +
z
|z|

��� is small. By convexity of �, if 8t is a
parameterization of ⇣�1(t) then h ! r⇣(8t (h)) will be a monotonic parameter-
ization of S1. So the total variation of r⇣ can be explicitly bounded above. The
closer� is to a ball the better the estimate on

���r⇣(z) +
z
|z|

��� holds but near the center
it breaks down. To overcome this we do the following. Let � = |�4B1(0)| and let
⌘(z) := 1��

3
32+|z|, so5 := {z : ⌘(z)  ⇣(z)} is roughly a ball centered on 0 of ra-

dius �
3
32 . So definingw := min {⇣, ⌘}we have |rw| = 1 a.e. and rw 2 SBV . No-

tice that
R
Jrw\�

��
rw+

� rw�

��3 dH1 

R
Jr⇣ \5

��
r⇣+

� r⇣�

��3 dH1 + 8H1(0).

Now 5 is a convex set of diameter approximately �
3
32 so H1(0) ⇠ �

3
32 . So we

have the estimate
���r⇣(z) +

z
|z|

���  c�
3
32 so

��
r⇣�(z) � r⇣+(z)

��
 c�

3
32 for any

z 2 Jr⇣\5. Now by convexity of � and hence monotonicity of the gradient along
the level set ⇣�1(t) we can prove an explicit upper bound V (r⇣,�\5)  8⇡ . So
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we can estimate
Z
Jr⇣ \5

��
r⇣+

� r⇣�

��3 dH1  sup
Jr⇣ \5

��
r⇣+

� r⇣�

��2 Z
Jr⇣ \5

��
r⇣+

� r⇣�

�� dH1

 sup
Jr⇣ \5

��
r⇣+

� r⇣�

��2 V (r⇣,�\5)  8⇡�
3
16 .

Putting these things together we have
R
Jrw\�

��
rw+

� rw�

��3 dH1  c�
3
32 . This

allows us to apply recent results on 0-upper bounds of functions whose gradient
belongs to SBV by [8, 23]. These results give the existence of a sequence u✏ with
the same boundary conditions as w and with the property that lim sup✏!0 I✏(u✏) 

c�
3
32 . This energy bound allows us to apply Theorem 1.1 and hence to establish

Corollary 1.3.
To establish Corollary 1.2 requires us to construct a Sobolev function by adapt-

ingw with ‘our own hands’. Function we obtained by convolving ⇣ has a problem
in that the convolution will destroy the boundary condition. To circumvent this ob-
stacle, in an

p

✏ neighborhood of the @�. We convolve the ⇣ with a convolution ker-
nel who support decreases in proportion to the distance to the boundary. Let the new
function be denoted by '. We make the assumption that @� is C2 with curvature
bounded above by ✏�

1
2 and this allows us estimate the various error terms involved

in differentiating a function that is convolved with a kernel of varying support.
Clearly the goal is to show that

R
� ✏

�1 ��1� |r'|
2�� dz  �

3
32 and ✏

R
�

��
r
2'
��2 dz 

�
3
32 . Establishing the upper bounds required in �\

⇣
Np

✏(@�) [ N✏(5)
⌘
can be

achieved by Poincaré inequalities and the estimate V (�\5,r⇣ )  8⇡ . Establish-
ing the upper bounds on Np

✏(@�) can be achieved by very precise estimates on r'

and r
2' which are made due to the fact that the curvature conditions on @� implies

r⇣ has no singular points in this neighborhood. The length of @5 is less than c�
3
32

so as kr'k1 < c we know
R
N✏(@5) ✏

�1 ��1� |r'|
2�� dz  c�

3
32 . Similarly as for

z 2 �\Np

✏(@�), kr2'k1  c✏�1 so ✏
R
N✏(@5)

��
r
2'
��2 dz  c�

3
32 . The energy

of ' in 5\N✏(@5) can easily be estimated and shown to be negligible so putting
these things together gives that I✏(')  c�

3
32 . This upper bound allows us to apply

Theorem 1.1 and hence to establish Corollary 1.2.

3. Proof of Theorem

It should be re-emphasized that the main calculations that make this lemma work
(specifically equation (3.7)) are very minor adaptations of the calculations in [11].

Lemma 3.1. Let � be a convex body centered on 0 with diam(�)  2. Suppose
u : W 2,1(�) ! R satisfies (1.4) and (1.5). For each ✓ 2 S1 let 3✓ : R2 ! S1 be
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defined by

3✓ (z) =

(
✓ if z · ✓ > 0,
0 if z · ✓  0.

(3.1)

Let R 2 SO(2) be the anti-clockwise rotation defined by R(z1, z2) = (�z2, z1) and
let m = R(ru). We will show there exists a set 0 ⇢ S1 with H1(S1\0)  40⇡�

1
8

and �0 = 0 such that for any ✓ 2 0 we can find function w✓ : � ! R with the
property Z

�
|rw✓ � R (3✓ (m))|  c�

1
8 . (3.2)

Proof of Lemma 3.1. Let M = 2

�

�
1
4
8

�
, we divide S1 into M disjoint connected

subsets of length 2⇡
M , denote them A1, A2, . . . AM . We assume they have been

ordered sequentially, i.e. Ai \ Ai+1 6= ; for i = 1, 2, . . .M � 1. Also assume they
have been ordered so that �Ai = Ai+ M

2
for i = 1, 2, . . . M2 . Let

B =

⇢
k 2

⇢
1, 2, . . .

M
2

�
:

����
⇢
x 2 � :

ru (x)
|ru (x)|

2 Ak [ Ak+ M
2

����� � �
1
8

�
.

Since Card (B)�
1
8  |�|  4⇡ we have that Card (B)  4⇡��

1
8 .

Let D :=

�
k 2

�
2, 3, . . . M2 � 1

 
: {k � 1, k, k + 1} \ B 6= ;

 
. A simple cov-

ering argument shows that Card (D)  20⇡��
1
8 .

Let 0 =

⇢
✓ 2 S1 : ✓ 2

S
k2
n
2,3,... M2 �1

o
\D Ak [ Ak+ M

2

�
. Note that for any

✓ 2 0 we have����
⇢
x 2 � :

ru (x)
|ru (x)|

2 B
2�

1
4

(✓) [ B
2�

1
4

(�✓)

�����  3�
1
8 . (3.3)

So pick ✓ 2 0 without loss of generality we can assume ✓ = e1. Let s : R ! R+

be a smooth monotone function where s(x) = 0 if x  0 and s(x) = x if x > �
1
4

and kr
2skL1  ��

1
4 and kr

3skL1  ��
1
2 . It is clear such a function exists.

Let '(z) = s(z · e1) = s(z1). Define 8 : R2 ! R2 by

8(z) := '(z)
✓
z1
z2

◆
+

✓
r'(z) ·

✓
�z2
z1

◆◆✓
�z2
z1

◆

=

✓
' (z) z1 + z22',1 (z)
' (z) z2 � z2z1',1 (z)

◆
.

(3.4)

Define
9 (z) =

✓
91 (z)
92 (z)

◆
:=

✓
�',1 (z)
z2
2 ',11 (z)

◆
.
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Recall m (z) := R (ru (z)) so m is divergence free. Note (using the fact ',2 ⌘ 0
and ',12 ⌘ 0 and divm ⌘ 0 for the third inequality, and using divm = 0 for the last
inequality)

div [8 (m)]= div
✓
' (m)m1 + m22',1 (m)
' (m)m2 � m2m1',1 (m)

◆

= (',1(m)m1,1+ ',2(m)m2,1)m1+ '(m)m1,1+ 2m2m2,1',1(m)

+ m22(',11(m)m1,1 + ',12(m)m2,1)
+ (',1(m)m1,2 + ',2(m)m2,2)m2
+ '(m)m2,2 � ((m1,2m2 + m1m2,2)',1(m)

+ m1m2(',11(m)m1,2 + ',12(m)m2,2))
= m1',1(m)m1,1 + 2m2m2,1',1(m) + m22m1,1',11(m)

+ m2m1,2',1(m) � ((m1,2m2 + m1m2,2)',1(m)

+ m1m2m1,2',11(m)

= 2',1(m)(m1m1,1+ m2m2,1)� ',11(m)m2(m1m1,2+ m2m2,2).

(3.5)

Note also that

9(m) · r(1� |m|
2) = �9(m) ·

✓
2(m1m1,1 + m2m2,1)
2(m1m1,2 + m2m2,2)

◆

= 2',1(m)(m1m1,1 + m2m2,1) (3.6)
�m2',11(m)(m1m1,2 + m2m2,2)

so by (3.5) we have

div [8 (m)] = 9(m) · r(1� |m|
2). (3.7)

Let 8̃ := R (8) and 9̃ := R (9) note curl
h
8̃(m)

i
(3.7)
= div [8(m)] = 9(m) ·

r(1� |m|
2). So

curl
h
9̃(m)(1� |m|

2)
i

= div[9(m)](1� |m|
2) +9(m) · r(1� |m|

2)

= div [9 (m)] (1� |m|
2) + curl

h
8̃ (m)

i
.

(3.8)

Thus using the fact that |r9(z)|  c |z| kr3'kL1(R2)  c��
1
2 |z| we have

curl
h
8̃(m) � 9̃(m)(1� |m|

2)
i

(3.8)
= �div[9(m)](1� |m|

2)

=�(91,1(m)m1,1+91,2(m)m2,1+92,1(m)m1,2+92,2(m)m2,2)(1�|m|
2)

 c��
1
2 |m|

���1� |m|
2
��� |rm| .

(3.9)
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Hence
Z
�

���curl h8̃(m) � 9̃(m)(1� |m|
2)
i���  c��

1
2

Z
�

|m|

���1� |m|
2
��� |rm|

Using (3.9), note that if x is such that |m(x)| � 2 then for J (x) := |m(x)|3 we have
|r J (x)|  c

��1� |m|
2��

|rm| and so
Z

{x :2|m(x)|4}
|r J (x)| dx  c

Z
�

���1� |m|
2
��� |rm|  c�.

Applying the Co-area formula we know
R 64
8 H1(J�1(s))ds  c� and so we must

be able to find t 2 [8, 64] such that H1(J�1(t))  c�. Let

G := {x 2 � : J (x) < t} (3.10)

and define w : � ! R by

w(x) =

⇢
8̃(m) � 9̃(m)(1� |m|

2) for x 2 G
0 for x 2 �\G.

(3.11)

So if x 2 G,

curl(w) = curl
⇣
8̃(m) � 9̃(m)(1� |m|

2)
⌘

(3.9),(3.10)
 c��

1
2 |1� |m|| |rm| . (3.12)

Thus if x 2 int (�\G), curl
⇣
8̃(m) � 9̃(m)(1� |m|

2)
⌘

= 0.

Since m 2 W 1,1(�) and 8̃(x)� 9̃(x)(1� |x |2) is C1, the vector field 8̃(m)�

9̃(m)(1� |m|
2) is BV by Theorem 3.94 [4]. So by Theorem 3.83 [4] we have that

w is also BV and the singular part of rw, which we denote by [rw]s , is supported
on J�1(t) \�. As

���8̃(m(x))
���  c |m(x)|2 and

���9̃(m(x))
���  c��

1
4 |m(x)| we have

that
ess supJ�1(t)\�

���8̃(m(x)) � 9̃(m(x))(1� |m(x)|2)
���  c��

1
4

and thus k [rw]s k(S)  c��
1
4 H1(J�1(t) \�)  c�

3
4 . Now we know that for any

set S ⇢ �

kcurlwk(S)  ckrwk(S),

and so in particular

kcurlwk(J�1(t))  ckrwk(J�1(t))  c�
3
4 . (3.13)
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Thus

kcurlwk(�)  kcurlwk(J�1(t)) + kcurlwk(G) + kcurlwk(int(�\G))

(3.12),(3.13)
 c�

3
4 + c��

1
2

Z
G

|1� |m|| |rm|

(1.4)
 c

p
�.

(3.14)

Now we try and understand the nature of vector field 8̃(m(x)) � 9̃(m(x))(1 �

|m(x)|2). Note that if z 2 Np

�

�
S1
�
\ {z1 > 0} \

✓
B
2�

1
4

(e2) [ B
2�

1
4

(�e2)
◆
then

'(z) = z1, ',1(z) = 1 and so 8(z) (3.4)
=

✓
z21 + z22
0

◆
. On the other hand if z 2

Np

�(S1) \ {z1  0} \

✓
B
2�

1
4

(e2) [ B
2�

1
4

(�e2)
◆
then '(z) = ',1(z) = 0 and so

8(z) =

✓
0
0

◆
.

Now, if z 2 Np

�(S1) \ {z1 > 0} \

✓
B
2�

1
4

(e2) [ B
2�

1
4

(�e2)
◆
we have

���(8̃(z)�9̃(z)(1�|z|2))�R
�
3e1(z)

���� 

���8̃(z) � R
�
3e1(z)

����
+ c

p
� sup
z2Np

� (S1)

���9̃(z)
���

=

����R
✓
z21 + z22
0

◆
� R

✓
1
0

◆����+ c�
1
4

 c�
1
4 .

(3.15)

And if we have z 2 Np

�

�
S1
�
\ {z1  0} \

✓
B
2�

1
4

(e2) [ B
2�

1
4

(�e2)
◆
arguing in

the same way we can conclude���(8̃(z) � 9̃(z)(1� |z|2)) � R
�
3e1(z)

����  c�
1
4 . (3.16)

Let5 :=

�
z 2 � : |m(z)| 2 (1�

p

�, 1+

p

�)
 
and let

E :=

⇢
x 2 � :

ru (x)
|ru (x)|

2 B
2�

1
4

(e1) [ B
2�

1
4

(�e1)
�

. (3.17)

Note from (3.3) that we know |E |3�
1
8 .

Note also
p

� |�\5|c
R
�\5

��1�|ru|2
�� (1.5)

 � thus

|�\5|  c
p
�. (3.18)
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Now from (3.15) and (3.16)
����
Z
5\E

(8̃(m) � 9̃(m)(1� |m|
2)) � R

�
3e1(m)

�
dz
����  c�

1
4 . (3.19)

On the other hand recalling the fact that
���9̃(z)

���  ��
1
4 |z|,

���8̃(z)
���  c |z|2 and

using the definition of G (see (3.10)) we have
����
Z
G\5

⇣
(8̃(m) � 9̃(m)(1� |m|

2)) � R
�
3e1(m)

�⌘
dz
����

 c |G\5|

(3.18)
 c

p
�. (3.20)

Thus applying (3.19) to (3.20) gives
����
Z
G\E

⇣
(8̃(m) � 9̃(m)(1� |m|

2)) � R
�
3e1(m)

�⌘
dz
����  c�

1
4 . (3.21)

Recall that |E |  3�
1
8 so

����
Z
E\G

⇣
(8̃(m) � 9̃(m)(1� |m|

2)) � R
�
3e1(m)

�⌘
dz
����  c |E |

 c�
1
8 .

Putting this inequality together with (3.21) gives
����
Z
G

⇣
(8̃(m) � 9̃(m)(1� |m|

2)) � R
�
3e1(m)

�⌘
dz
����  c�

1
8 . (3.22)

So by definition of w (see (3.11)) we have that
����
Z
�

w � R(3e1(m))dz
���� (3.22)

 c�
1
8 +

����
Z
�\G

R(3e1(m))dz
����

 c�
1
8 + |�\G|

(3.18)
 c�

1
8 . (3.23)

Now from (3.14), applying Theorem 4.3 from ( [2]), there exists we1 2 W 1,1 (�)
such that Z

�

��
rwe1 � w

�� dz  c�
1
8

thus putting this together with (3.23) and gives (3.2).
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Lemma 3.2. Let � be a convex body centered on 0 and let u : W 2,2(�) ! R be a
function satisfying (1.4) and (1.5) and u = 0 on @� and ru(z) · ⌘z = 1 on @� in
the sense of trace, where ⌘z is the inward pointing unit normal to @� at z.

For any r > 0 define �r := Nr (�); we will show we can construct a function
ũ : W 2,1(�r ) ! R satisfying

Z
�r

���1� |rũ|2
��� ���r2ũ��� dz  �,

Z
�r

���1� |rũ|2
��� dz  �, (3.24)

and

ũ (z) =

(
u(z) + r for z 2 �

r � d(z,�) if z 2 �r\�.
(3.25)

Proof of Lemma 3.2.

Step 1. We will show ru(x) = ⌘x for H1 a.e. x 2 @�.
Proof of Step 1. Recall ru 2 W 1,1(�) and ru is defined on @� in the sense of
trace, as the trace operator is bounded we know

R
@� |ru| dH1 < 1.

We define

v (z) =

(
u(z) for z 2 �

0 if z 2 �r\�.

So note the vector field rv(z) is equal to ru(z) inside � and is zero outside, so by
Theorem 3.8 [4] rv 2 BV (�r ) and hence by Theorem 3.76 [4] and Theorem 2,
Section 5.3 [13] for H1 a.e. x 2 @� the following limits exist

lim
⇢!0

�

Z
B⇢(x)\{z:(z�x)·⌘x>0}

|rv(z) � ru(x)| dz = 0 (3.26)

and
lim
⇢!0

�

Z
B⇢(x)\{z:(z�x)·⌘x0}

|rv(z)| dz = 0. (3.27)

Let w
⇢
x (z) =

v(x+⇢z)
⇢ , by (3.26) and (3.27) for any sequence ⇢n ! 0 we have

w
⇢n
x (z) W 1,1

! wx as n ! 1 where

wx (z) =

(
ru(x) · z for z 2 H(0, ⌘x )
0 for z 2 H(0,�⌘x )

however rwx would not be curl free unless ru(x) = �⌘x for some � 2 R. As we
know ru(x) · ⌘x = 1 this implies ru(x) = ⌘x for H1 a.e. x 2 @�. This completes
the proof of Step 1.
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Step 2. For any z 2 �r\�, ũ(z) = d(z, @�r ).
Proof of Step 2. Note that krũkL1(�r\�)  1. Let x 2 @�r , let q(x) be the
metric projection onto a convex set �, i.e. the unique point for which |x � q(x)| =

d(x,�). Since x 2 @�r = @(Nr (�))={x 2 �c
: d(x,�)=r} so |x � q(x)|=r .

Since ũ(x) = 0 and ũ(q(x)) = r and as ũ is 1-Lipschitz on �r\� this implies
ũ((1� ↵)x + ↵q(x)) = ↵r for any ↵ 2 [0, 1].

Now let Q(z) := d(z, @�r ). For every x 2 @�r , Q(q(x))  |q(x) � x | = r .
As @�r = @(Nr (�)) so we know Q(q(x)) � r and thus have Q(q(x)) = r .
We also know Q is 1-Lipschitz and Q(x) = 0, thus in the same way as before
Q((1 � ↵)x + ↵q(x)) = ↵r for any ↵ 2 [0, 1]. Therefor Q(z) = ũ(z) for any
z 2 [x, q(x)], x 2 @�r and this completes the proof of Step 2.
Step 3. We will show that ũ 2 W 2,1(�r ) and that ũ satisfies (3.24).
Proof of Step 3. First we claim that ũ 2 W 2,1(�r\�) andZ

�r\�

���r2ũ��� dz  c. (3.28)

Note that ũ(z) = dist(z, @�r ) in �r\�. By Corollary 1.4 [3] for any compact
subset �0

⇢⇢ �r we have rũ 2 SBV (�0
\�). Also as ũ(z) = r � dist(z,�) for

any z 2 �r\� again by Corollary 1.4 [3] for any compact subset �00
⇢⇢ R2\�

we have rũ 2 SBV
�
(�r\�) \�00

�
. Putting these thing together we have rũ 2

SBV (�r\�). Recall ũ(x) = r�d(z,�) for z 2 �r\�, so as� is convex for every
z 2 �r\� there is a unique point b(z) 2 @� such that d(z,�) = |b(z) � z| and
rũ(z) =

b(z)�z
|b(z)�z| . Since b is a continuous function this shows that rũ is continuous

on�r\�, hence Srũ \�r\� = ; (recall Definition 3.63 [4]). So by equation (4.2)
of Section 4.1 [4] we have that rũ 2 W 1,1(�r\�). Thus in particular (3.28) holds
true.

Since � is an extension domain by Theorem 1, Section 4.4 [13] there exists a
function p : W 1,2(R2) ! R2 such that p(z) = rũ(z) on � and Sptp is compact.
Similarly as �r\� is an extension domain there exists a function q : W 1,1(R2) !

R2 such that q(z) = rũ(z) on�r\� and Sptq is compact. We definew : �r ! R2
byw := p11�+q11�r\�, by Theorem 3.83 [4]w 2 BV (�r : R2) and since p and q
agree on @� we have that rw as a measure is absolutely continuous with respect to
Lebesgue measure (and hence w 2 W 1,1(�r : R2)) and rw = r p11�+rq11�r\�.
Now as w = rũ a.e. in �r we have that rũ 2 W 1,1(�r ).

Since r
2ũ 2 L1 we knowZ

�r

���1� |rũ|2
��� ���r2ũ��� dz =

Z
�

���1�|rũ|2
��� ���r2ũ��� dz+

Z
�r\�

���1�|rũ|2
��� ���r2ũ��� dz

=

Z
�

���1� |rũ|2
��� ���r2ũ��� dz

 �.

Similarly
R
�r

���1� |rũ|2
��� dz =

R
�

���1� |rũ|2
��� dz  �.
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Lemma 3.3. Let � be a convex body with diam(�) = 2. Let u : W 2,2(�) ! R be
a function satisfying (1.4) and (1.5) and u = 0 on @� and ru(z) · ⌘z = 1 on @� in
the sense of trace where ⌘z is the inward pointing unit normal to @� at z. For any
x, v 2 R2 let H(x, v) :=

�
z 2 R2 : (z � x) · v > 0

 
.

Let 0 ⇢ S1 be the set constructed in Lemma 3.1. Let U := �1/10 be the convex
body and ũ : W 2,1(U) ! R be the function constructed in Lemma 3.2. Let R be
the anti-clockwise rotation defined by R(z1, z2) = (�z2, z1). Let R0 2

�
R�1, R

 
.

There exists a set e0 ⇢ 0 with H1(0\
e0) = 0 such that for every ✓ 2

e0 there exists
unique points a✓ , b✓ 2 @U with ⌘a✓ = ✓ and ⌘b✓ = �✓ with the property that if we
define GR0✓ :=

n
z 2 U : rũ(z) · R�1

0 ✓ > 0
o
, then

����U \ H
✓
a✓ + b✓
2

, R0
✓
b✓ � a✓
|b✓ � a✓ |

◆◆
\GR0✓

����  c�
1
24 . (3.29)

Proof of Lemma 3.3. Without loss of generality assume � is centered on 0, i.e.R
� zdz = 0. Since @U is smooth and U is convex there exists a set 4 ⇢ S1

with H1(S1\4) = 0 with the following property:

9 unique a' 2@U with ⌘a' =' and a unique b' 2@U with ⌘b' =�' for all '24.

Now by Lemma 3.2 (3.24) function ũ satisfies (1.4) and (1.5) so by Lemma 3.1
there exists 0 ⇢ S1 with H1(S1\0)  40⇡�

1
8 satisfying (3.2) for every ✓ 2 0.

Definee0 := 0 \4. Pick ✓ 2
e0 and let ' := RR�1

0 ✓ so note that ' = ✓ or ' = �✓

depending on whether R0 = R or R0 = R�1.
Note since� is convex� ⇢ H(a',')we also know that b' 2 H(a',') (since

otherwise given that @� is smooth it would not be possible that ⌘b' = �'), hence
defining ⌧' =

b'�a'
|b'�a'|

we have ⌧' · ' > 0.
Let m̃ = R(rũ), it is easy to see that

5' := {z 2 U\� : m̃(z) · ' > 0} =

n
z 2 U\� : ru (z) · R�1' > 0

o

forms a connected set whose boundary is contained in @U and @� and in two lines
parallel to '. See Figure 3.1. Note also the endpoints of @U \5' are given by a'
and b' .

Since either ' = ✓ 2
e0 or ' = �✓ 2

e0, we can apply Lemma 3.1. To m̃ and
thus there exists function w' : U ! R such thatZ

U

��
rw' � R

�
3' (m̃)

��� dx  c�
1
8 . (3.30)

By the Co-area formula and Chebyshev’s inequality there exists a set H ⇢ [0, 1/10]
such that H1([0, 1/10] \H)  c�

1
24 whereZ

ũ�1(t)

��
rw' � R

�
3' (m̃)

��� dH1  c�
1
12 for all r 2 H. (3.31)
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Figure 3.1.

Pick s0 2

h
1/10� c�

1
24 , 1/10

i
\ H . Recall ⌧' =

b'�a'
|b'�a'|

and define

W' := U \ H
✓
a' + b'
2

, R⌧'
◆

. (3.32)

We claim that
@U \5' = @U \W' . (3.33)

Since the endpoints of @U \ 5' are the same as the endpoints of @U \W' it is
sufficient to show H1

⇣
@U \5' \W'

⌘
> 0. Let

3 = sup
⇢
� > 0 :

✓
a' + b'
2

+ �R⌧' + h⌧'i

◆
\ @U 6= ;

�

then let c' be the point given by
⇣
a'+b'
2 +3R⌧' + h⌧'i

⌘
\@U . Since @U is smooth

⌘c' = R�1⌧' , soru(c') = R�1⌧' and thusru
�
c'
�
·R�1' = R�1⌧' ·R�1' = ⌧' ·

' > 0. As this inequality is strict, in a neighborhood of c' the same inequality will
be satisfied. Thus we have H1

⇣
@U \5' \W'

⌘
> 0 and so we have established

(3.33).
By the construction of 5' , W' and by (3.33) and the choice of s0 2 [

1
10 �

c�
1
24 , 1

10 ] we have
H1

⇣
@�s0 \5'4W'

⌘
 c�

1
24 . (3.34)

There must exist  2 (0, 2�
1
24 ) such that, defining Q :=

✓
cos � sin 
sin cos 

◆
, we

have ��R' · Q⌧'
�� > �

1
24 . (3.35)
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Let ⇣' :=

a'+b'
2 + C2�

1
24 R⌧' . From the construction it is clear that we can choose

constant C2 large enough so that

Card
✓
@�s0 \ H

✓
a' + b'
2

, R⌧'
◆

\

�
⇣' + hQ⌧'i

 ◆
= 2.

Let
A := sup

�
t > 0 : @�s0 \

�
⇣' + t R⌧' + hQ⌧'i

 
6= ;

 
. (3.36)

For t 2(0,A) let %1t ,%2t be the points defined by {%1t ,%
2
t }=@�s0\

�
⇣'+t R⌧'+hQ⌧'i

 
and %2t · Q⌧' � %1t · Q⌧' . By (3.34) we can assume constant C2 was chosen large
enough so that %1t , %2t 2 5' . Let6t be the connected component of @�s0\

�
%1t , %

2
t
 

that lies inside5' . Thus���(w'(%2t ) � w'(%
1
t )) � (%2t � %1t ) · R'

���
=

����
Z
6t

rw'(z) · tzdH1z �

Z
6t

R' · tzdH1z
����

=

����
Z
6t

(rw'(z) � R') · tzdH1z
����

(3.31)
 c�

1
12 .

(3.37)

Let
et =

Z
⇥
%1t ,%

2
t
⇤
��
rw' � R

�
3'(m̃)

��� dH1x . (3.38)

By the fundamental theorem of Calculus�����
⇣
w'(%

2
t ) � w'(%

1
t )
⌘

�

Z
⇥
%1t ,%

2
t
⇤ R

�
3'(m̃)

�
· Q⌧'dH1x

�����  et .

Thus in combination with (3.37) we have�����
⇣
%2t � %1t

⌘
· R' �

Z
⇥
%1t ,%

2
t
⇤ R

�
3'(m̃)

�
· Q⌧'dH1x

�����  et + c�
1
12 . (3.39)

Given the definition of 3' (see (3.1)) and of GR0✓ (see the statement of Lemma 3.3)
so

R(3'(m̃(x)))= R',m̃(x)·'>0,rũ(x)·R�1'>0,rũ(x)·R�1
0 ✓>0, x2GR0✓ .

In exactly the same way 3'(m̃(x)) = 0 , x 62 GR0✓ . HenceZ
⇥
%1t ,%

2
t
⇤3'(m̃(x))dH1x = 'H1

⇣h
%1t , %

2
t

i
\ GR0✓

⌘
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which from (3.39)���⇣%2t � %1t

⌘
· R' � Q⌧' · R'H1

⇣h
%1t , %

2
t

i
\ GR0✓

⌘���  et + c�
1
12

since (recall (3.35)) we chose Q so that
��R' · Q⌧'

�� > �
1
24 and since %2t �%

1
t��%2t �%1t �� = Q⌧'

so ������%2t � %1t

���� H1
⇣h
%1t , %

2
t

i
\ GR0✓

⌘���  c��
1
24 et + c�

1
24 .

Thus (recall definition (3.36) of A)

H1
⇣h
%1t , %

2
t

i
\ GR0✓

⌘
�

���%1t � %2t

���� c��
1
24 et � c�

1
24 for any t 2

⇥
0,A

⇤
. (3.40)

So
����s0 \ H

�
⇣', R

�
Q⌧'

��
\ GR0✓

��� =

Z
[0,A]

H1
⇣h
%1t , %

2
t

i
\ GR0✓

⌘
dt

(3.40)
�

Z
[0,A]

���%1t � %2t

���� c��
1
24 et � c�

1
24 dt

(3.38)
�

���s0 \ H
�
⇣', R

�
Q⌧'

����
� c�

1
24 (3.41)

�c��
1
24

Z
U

��
rw' � R

�
3' (m̃)

��� dx
(3.30)
�

���s0 \ H
�
⇣', R

�
Q⌧'

����
� c�

1
24 .

Note
��U\�s0

��
c�

1
24 and by definition ofW' (see (3.32))

��W'\H(⇣', R(Q⌧'))
��


c�
1
24 this together with (3.41) gives

���W'\GR0✓
���  c�

1
24 . Now if R0 = R and

so ' = ✓ , it is immediate that ⌧' =
b✓�a✓
|b✓�a✓ | and so (again recalling definition

(3.32)) (3.29) follows. On the other hand if R0 = R�1 then ' = �✓ and so
a' = b✓ , b' = a✓ , which implies ⌧' = �

b✓�a✓
|b✓�a✓ | so R⌧' = R

⇣
�

b✓�a✓
|b✓�a✓ |

⌘
=

R�1
⇣
b✓�a✓
|b✓�a✓ |

⌘
= R0

⇣
b✓�a✓
|b✓�a✓ |

⌘
hence (again recalling definition (3.32)),(3.29) also

follows in this case.

Lemma 3.4. Let � be a convex body with diam(�) = 2. Let u : W 2,2(�) ! R
be a function satisfying (1.4) and (1.5) and in addition u satisfies u = 0 on @� and
ru(z) · ⌘z = 1 on @� in the sense of trace where ⌘z is the inward pointing unit
normal to @� at z. Let a, b 2 � be such that diam (�) = |a � b|. We will show
there exists constant C3 > 1 and r0 2 (C�1

3 �
1
512 ,C3�

1
512 ) such that

u (x) � 1� C3�
1
512 for any x 2 @Br0

✓
a + b
2

◆
. (3.42)
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Proof of Lemma 4. Let U be the convex set and ũ be the function constructed in
Lemma 3.3. To simplify our notation we will without loss of generality assume
that a+b2 = 0. It is easy to see we can chose ã, b̃ 2 U such that ã�b̃���ã�b̃��� =

a�b
|a�b| ,���ã � b̃

��� = diam (U) and ã+b̃
2 = 0. Without loss of generality also assume ã�b̃���ã�b̃��� =

e2. For any z 2 @U let ⌘z denote the inward pointing unit normal to @U at z. Note
that ⌘ã = �e2 since otherwise U 6⇢ B���ã�b̃���(b̃) and this contradicts the fact that���ã � b̃

��� = diam(U). For the same reason ⌘b̃ = e2.

Step 1. Let P :

⇥
0, H1(@U)

�
! @U be a ‘clockwise’ parameterisation of @U by

arclength with P(0) = ã. For some �1 2 (H1(@U) � 2�
1
512 , H1(@U) � �

1
256 ) and

�2 2 (�
1
256 , 2�

1
512 ) we have that for �1 = P(�1), �2 = P(�2), (see Figure 3.2) the

points �1, �2 satisfy the following properties: firstly

⌘�i 2
e0 and ⌘�i · (�e2) � 1� c�

1
128 for i = 1, 2, (3.43)

secondly
|�1 � �2|  40�

1
512 , (3.44)

and thirdly

�1 · (�e1) �

�
1
256

2
and �2 · e1 �

�
1
256

2
. (3.45)

Proof of Step 1. Recall U = � 1
10

(�), so for any x 2 @U let zx 2 @� be such
that d(x,�) = |x � zx |, note that we can inscribe a ball B 1

10
(zx ) ⇢ U with x 2

@B 1
10

(zx )\ @U and B 1
10

(zx )\ @U = ;. Thus the curvature of @U is bounded above
by 10 and so

kP̈kL1(@U)  10. (3.46)

Lete0 ⇢ S1 be the set constructed in Lemma 3.3. We will show

inf
n
h 2

h
�

1
256 , H1(@U)

i
: ⌘P(h) 2

e0o  2�
1
512 . (3.47)

Suppose this is not true: so for every h 2

h
�

1
256 , 2�

1
512
i
, ⌘P(h) 62

e0. Note that
since @U is C1,

n
⌘P(h) : h 2

h
�

1
256 , 2�

1
512
io
is connected and since H1(S1\e0) 

40⇡�
1
8 . Thus

H1
⇣n
⌘P(h) : h 2

h
�

1
256 , 2�

1
512
io⌘

 40⇡�
1
8 . (3.48)
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Note that as P(0) = e2, Ṗ(0) = e1 and as generally for x 2

⇥
0, H1(@U)

⇤
where

we have that Ṗ(x) = R(⌘P(x)). So for any h 2

h
0, 2�

1
512
i

��Ṗ(h) � e1
��



���Ṗ(�
1
256 ) � Ṗ(0)

���+ ���Ṗ(h) � Ṗ(�
1
256 )

���
(3.48),(3.46)

 20�
1
256 + 40⇡�

1
8  40⇡�

1
256 . (3.49)

Thus by the fundamental theorem of Calculus,
���P(2�

1
512 ) � (ã + 2�

1
512 e1)

��� 

80⇡�
1
256�

1
512 . Now

���(ã + 2�
1
512 e1) � b̃

��� =

r���ã � b̃
���2 + 4�

1
256

�

���ã � b̃
���+ 3

4
�

1
256 .

Thus
���P(2�

1
512 ) � b̃

��� �

���ã � b̃
��� +

�
1
256
2 which is a contradiction. Thus we have

established (3.47).
Hence (recalling the fact H1(S1\e0)40⇡�

1
8 ) we can pick �22

h
�

1
256 ,2�

1
512
i
\

e0 such that ����⌘P(�
1
256 )

� ⌘P(�2)

����  50⇡�
1
8 (3.50)

and ⌘P(�2) 2
e0.

In the same way we can pick �1 2

h
H1(@U) � 2�

1
512 , H1(@U) � �

1
256
i
such that����⌘P(H1(@U)��

1
256 )

� ⌘P(�1)

����  50⇡�
1
8 and ⌘P(�1) 2

e0.
Define �2 = P(�2) and �1 = P(�1). Since Ṗ(0) = e1 and recalling again that

⌘P(s) = R�1(Ṗ(s)),

��Ṗ(0) � Ṗ(�2)
��



���Ṗ(0) � Ṗ(�
1
256 )

���+ ���Ṗ(�
1
256 ) � Ṗ(�2)

���
(3.46),(3.50)

 60⇡�
1
256 .

Arguing in the same way we can establish
��Ṗ(0) � Ṗ(�1)

��
 60⇡�

1
256 . Thus as @U

is convex
��⌘�i + e2

��
 60⇡�

1
256 for i = 1, 2 which establishes (3.43). Hence

�2 · e1 = (�2 � ã) · e1 =

Z �2

0
Ṗ(s) · e1ds

(3.49)
� (1� 40⇡�

1
256 )�2 �

�
1
256

2
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which establishes (3.45) for �2. Inequality (3.45) for �1 can be established in the
same way. Finally note

|�1 � �2| = |P(�2) � P(�1)| 

Z H1(@U)

�2

��Ṗ(z)
�� dz +

Z �2

0

��Ṗ(z)
�� dz  40�

1
512

(3.51)
which establishes (3.44).

Step 2. For y 2 R2,  2 R2, � > 0 define X (y, ,� ) :=

⇢
z :

���� z�y|z�y| ·

⇣
 
| |

⌘
?

�����
�
.

We will show there exists positive constant C4 and x0 2 N
C4�

1
512

⇣h
ã, b̃

i⌘
\U such

that for some  0 2 B
C4�

1
256

(e2) the following inequality holds:

���X ⇣x0, 0,C4� 1
256
⌘

\ U\

n
x : |rũ (x) · e1| < C4�

1
256
o���  C4�

1
24 . (3.52)

Proof of Step 2. Recall we know �1 and �2 are chosen so that ⌘�1 2
e0 and ⌘�2 2

e0.
We also know ⌘ã = �e2 and ⌘b̃ = e2. Let !1 2 @U be the unique point for which
�⌘!1 = ⌘�1 and let !2 2 @U be the unique point for which �⌘!2 = ⌘�2 . See
Figure 3.2.

Define

52 := H
✓
�2 + !2
2

, R
✓
!2 � �2
|!2 � �2|

◆◆
\H

✓
�1 + !1
2

, R�1
✓
!1 � �1
|!1 � �1|

◆◆
(3.53)

and

51 := H
✓
�2 + !2
2

, R�1
✓
!2 � �2
|!2 � �2|

◆◆
\H

✓
�1 + !1
2

, R
✓
!1 � �1
|!1 � �1|

◆◆
(3.54)

and let5 = 51 [52 and let x0 := 51 \52, see again Figure 3.2.
Let us define l✓x := x + R+✓ for any x 2 R2, ✓ 2 S1. First we will show

(x0 + Re2) ⇢ 5 however this inclusion is relatively easy to see because firstly

e2 · R
✓
!1 � �1
|!1 � �1|

◆
= e1 ·

✓
!1 � �1
|!1 � �1|

◆
(3.45)
�

10�
1
256

44

thus le20 ⇢ H
⇣
0, R

⇣
!1��1
|!1��1|

⌘⌘
. And secondly as x0 2 @H

⇣
�1+!1
2 , R

⇣
!1��1
|!1��1|

⌘⌘

le2x0 ⇢ H
✓
x0, R

✓
!1 � �1
|!1 � �1|

◆◆
= H

✓
�1 + !1
2

, R
✓
!1 � �1
|!1 � �1|

◆◆
.

In exactly the same way le2x0 ⇢ H
⇣
�2+!2
2 , R�1

⇣
!2��2
|!2��2|

⌘⌘
. Hence le2x0 ⇢ 51. Ar-

guing in the same manner we have l�e2x0 ⇢ 52 and thus we have established the
claim.
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Figure 3.2.

Let � = le2x0 \ @U , by construction we have that � lies in the component of @U
between �1 and �2 and hence by (3.51) we know d

�
� , le20

�
 40�

1
512 and so it

follows x0 2 N
c�

1
512

⇣h
ã, b̃

i⌘
\ U .

Since ⌘ã = �e2, ⌘b̃ = e2 and U is convex we know !2 2 H (0,�e1) and for

the same reasons !1 2 H (0, e1) see Figure 3.2. So (�2 � !2) · e1 � �2 · e1
(3.45)
�

c�
1
256 and for exactly the same reason (�1 � !1) · (�e1) � �1 · (�e1)

(3.45)
� c�

1
256 .

Thus as |�1 � !1|  2diam (U) and |�2 � !2|  2diam (U) we have �2�!2
|�2�!2|

· e1 �

c�
1
256 and �1�!1

|�1�!1|
· (�e1) � c�

1
256 . Hence

✓
�1 � !1
|�1 � !1|

◆
·

✓
�2 � !2
|�2 � !2|

◆
=

✓
�1 � !1
|�1 � !1|

· e1
◆✓

�2 � !2
|�2 � !2|

· e1
◆

+

✓
�1 � !1
|�1 � !1|

· e2
◆✓

�2 � !2
|�2 � !2|

· e2
◆

 �c�
1
128 + 1.

In other words the angle between �1�!1
|�1�!1|

and �2�!2
|�2�!2|

is greater than C4�
1
256 for

some positive constant C4.
Thus there exists  0 2 B

c�
1
256

(e2) such that X
⇣
x0, 0,C4�

1
256
⌘

⇢ 5. Now since

⌘�1, ⌘�2 2
e0 we can apply Lemma 3.3 so we know that
����U \ H

✓
�2 + !2
2

, R�1
✓
!2 � �2
|!2 � �2|

◆◆
\GR�1

⌘�2

����  c�
1
24
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and ����U \ H
✓
�1 + !1
2

, R
✓
!1 � �1
|!1 � �1|

◆◆
\GR⌘�1

����  c�
1
24 .

Thus (recalling the definition of51, (3.54))
���51 \ U\GR�1

⌘�2
\ GR⌘�1

���  c�
1
24 .

In exactly the same way we have (recall (3.53))
���52 \ U\GR�1

⌘�1
\ GR⌘�2

���  c�
1
24 .

Now for any x 2 GR�1
⌘�2

\ GR⌘�1 we have rũ (x) · R⌘�2 � 0 and rũ (x) · R�1⌘�1 �

0. Since from (3.43) ⌘�i 2 X+

⇣
0,�e2, c�

1
256
⌘
for i = 1, 2 we know R⌘�2 2

X+

⇣
0, e1, c�

1
256
⌘
and R�1⌘�1 2 X+

⇣
0,�e1,�

1
256
⌘
, from this it is easy to see

(assuming we chose C4 large enough)|rũ (x) · e1|  C4�
1
256 . And in the same way

for any x 2 GR�1
⌘�1

\ GR⌘�2 we also have |rũ (x) · e1|  C4�
1
256 .

���X ⇣x0, 0,C4� 1
256
⌘

\ U\

n
x : |rũ (x) · e1| < C4�

1
256
o���

 c
���51 \ U\GR⌘�1 \ GR�1

⌘�2

���+ c
���52 \ U\GR⌘�2 \ GR�1

⌘�1

���
 C4�

1
24

which establishes (3.52).

Step 3. There exists positive constant C5 such that for some v1 2 {e2,�e2} we have
���X ⇣x0, 0,C4� 1

256
⌘

\ U \ H
⇣
C5�

1
256 v1, v1

⌘
\V�v1

���  C5�
1
24 (3.55)

where
V�v1 :=

⇢
x 2 U : rũ (x) 2 N

C5�
1
256

(�v1)

�
. (3.56)

Proof of Step 3. Let f$0 = l�e10 \ @U . Note since U is convex ⌘f$0 · e1 > 0. We
claim

⌘f$0 · e1 >
1
10

. (3.57)

Suppose this were not the case, then ⌘f$0 · e1 
1
10 . Since U is convex (and recall

U = � 1
10
) and diam(U) =

22
10 we know U ⇢ H

�f$0, ⌘f$0� ⇢ H
⇣
�
22
10e1, ⌘f$0

⌘
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which implies (b̃ +
22
10e1) · ⌘f$0 > 0 and thus

b̃ · e2

r
99
100

�

✓✓
b̃ +

22
10
e1
◆

· e2
◆ �
⌘f$0 · e2

�
>�

✓✓
b̃ +

22
10
e1
◆

· e1
◆ �
⌘f$0 · e1

�

= �

22
10
⌘f$0 · e1 � �

22
100

.

However as
���ã � b̃

��� = diam(U) =
22
10 ,

ã+b̃
2 = 0 and ã�b̃���ã�b̃��� = e2 this is a contradic-

tion. Thus (3.57) is established.
Let

↵0 = sup
�
↵ > 0 : {⌘x : x 2 B↵(f$0) \ @U} \

e0 = ;

 
.

In the case where
�
↵ > 0 : {⌘x : x 2 B↵(f$0) \ @U} \

e0 = ;

 
= ; let ↵0 = 0.

Since H1(S1\e0)  40⇡�
1
8 we know @U\B↵0(f$0) 6= ;. Note also

M0 :=

�
⌘x : x 2 B↵0(f$0) \ @U

 

is a connected subset of S1. Thus H1(M0)  40⇡�
1
8 and hence for every z 2

B↵0(f$0)\@U , ��⌘z � ⌘f$0
��
 40⇡�

1
8 . So we can pick ↵1 > ↵0 such that some point

$0 2 @B↵1(f$0) \ @U satisfies ⌘$0 2
e0 and

��⌘z � ⌘$0
��
 50⇡�

1
8 for all z 2 B↵1(f$0). (3.58)

Now since B 1
10

(0) ⇢ U , we know f$0 · (�e1) �
1
10 . Using again the fact that

⌘P(s) = R�1(Ṗ(s)) (where P is the parameterisation of @U ) it is easy to see by the
fundamental theorem of Calculus that (3.58) implies

$0 · (�e1) �

1
11

. (3.59)

Also from (3.57) and (3.58) we know that

⌘$0 · e1 >
1
11

. (3.60)

Let $1 2 @U be the unique point for which ⌘$1 = �⌘$0 . Note that by (3.60) we
know that ⌘$1 · (�e1) > 1

11 and as ⌘ã = �e2 and ⌘b̃ = e2 by convexity of U this
implies

$1 2 @U \ H(0, e1). (3.61)

Now let l 2

⇣
$1�$0
|$1�$0|

⌘
?

\ S1 be such that

H1
✓
[a, b] \ H

✓
$1 +$0

2
, l
◆◆

�

|a � b|
2

. (3.62)
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Choose S 2

�
R�1, R

 
so that S

⇣
$1�$0
|$1�$0|

⌘
= l. Since ⌘$0 2

e0 we can apply
Lemma 3.3 and hence we have����U \ H

✓
$1 +$0

2
, l
◆

\GS⌘$0

����  c�
1
24 . (3.63)

From (1.5) and (3.52) we know
���X ⇣x0, 0,C4� 1

256
⌘

\ U\

�
x : rũ(x) 2 N100�1({e2,�e2})

 ���  c�
1
24 . (3.64)

Since so
��S�1⌘$0 · e2

�� (3.60)
> 11�1 there exists some fixed vector v0 2 {e2,�e2}

such that if x 2 GS⌘$0\
�
x : rũ (x) 2 N100�1 ({e2,�e2})

 
thenrũ (x)2 B100�1 (v0).

So using (3.63) and (3.64)
����X
⇣
x0, 0,C4�

1
256
⌘

\ U \ H
✓
$1 +$0

2
, l
◆

\

�
x : rũ(x) 2 B100�1 (v0)

 ����
 c�

1
24 .

(3.65)

Now for anyw2H (0,v0)we have the elementary inequality |w�v0|4d(w,S1)+
2 |w · e1|, so using (1.5), (3.52) and (3.65) we have (assuming constant C5 is large
enough, recall definition (3.56))

����X
⇣
x0, 0,C4�

1
256
⌘

\ U \ H
✓
$1 +$0

2
, l
◆

\Vv0

����  c�
1
24 . (3.66)

By (3.61) $1 · e1 � 0 and so
��� $1�$0
|$1�$0|

· e1
��� (3.59)

�
1
44 and so |l · e2| �

1
44 . Thus by

the fact that  0 2 B
C4�

1
256

(e2) and that inequality (3.62) implies 0 2 H($1+$02 , l)
there exists v1 2 {e2,�e2} such that for some constant C5 we have

X
⇣
x0, 0,C4�

1
256
⌘

\ H
⇣
C5�

1
256 v1, v1

⌘
⇢ H

✓
$1 +$0

2
, l
◆

. (3.67)

Putting (3.67) together with (3.66) gives
���X ⇣x0, 0,C4� 1

256
⌘

\ U \ H
⇣
C5�

1
256 v1, v1

⌘
\Vv0

���  c�
1
24 .

Let x 2 U\� \ X
⇣
x0, 0,C4�

1
256
⌘

\ H(C5�
1
256 v1, v1) so as ũ(x) = d(x, @U)

(and since again  0 2 B
C4�

1
256

(e2)) so rũ(x) 2 N
C5�

1
256

(�v1) thus we must have
v0 = �v1, this gives (3.55).
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Step 4. We will show there exists a positive constant C6 such that�
l�✓x [ l✓x

�
\B

C6�
1
256

(x) ⇢ X (x0, 0,C4�
1
256 )

for all x 2 B
�

1
128

(x0), ✓ 2 S1 \ B
�

1
128

( 0).
(3.68)

Proof of Step 4. Without loss of generality we assume x0 = 0,  0 = e2 and C4 = 1.
To begin with to take point x = �

1
128 e1, we will show later the general case follows

from this. See Figure 3.3.

β1/128

β1/128

β1/256

e2

e1

T1

T2

T3β1/128

β1/256

0 x

x0 z

y

θ

X (0, e2, β1/256)

Figure 3.3.

Let ✓ =

✓
sin�

1
128

cos�
1
128

◆
and let y = @X (0, e2,�

1
256 ) \ l✓x . We will get an upper bound

on |y|. Let z = y · e1e1. We have two triangles to calculate with: triangle T1 with
corners on 0, x, y which is a subset of triangle T2 with corners on 0, z, y. Note that
by applying the law of sins we have |y|�1 sin(⇡2 +�

1
128 ) = |x � y|�1 sin(⇡2 ��

1
256 ).

Note that T3 = T2\T1 is also a right angle triangle and since |z| = �
1
128 + |x � z|

we have |y| cos(⇡2 � �
1
256 ) = �

1
128 + |y � x | cos(⇡2 � �

1
128 ). Putting this together

with the previous equation we have |y| sin�
1
256 = �

1
128 +|y| cos�

1
256

cos�
1
128
sin�

1
128 which

gives |y|
✓
sin�

1
256 �

cos�
1
256

cos�
1
128
sin�

1
128

◆
= �

1
128 . Now by taking the Taylor series

approximating sin and cos we have |y|
⇣
�

1
256 + O

⇣
�

1
128
⌘⌘

= �
1
128 . Thus |y| ⇠

�
1
256 and thus the existence of constant C6 such that (3.68) holds follows instantly

for the case x = �
1
128 e1.

In the general case where x 6= �
1
128 e1 suppose without loss of generality x ·

e1 > 0. Define x̃ = (x + h✓i) \ he1i, since the angle between ✓ and e1 is with
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c�
1
256 of ⇡2 it is easy to see x̃ 2 B

2�
1
128

(0) and of course l✓x̃ \ @X (0, e2,�
1
256 ) =

l✓x \ @X (0, e2,�
1
256 ) so the argument for the special case x = �

1
128 e1 can be applied

to show the existence of constant C6 satisfying (3.68).
Step 5. We will establish (3.42).
Proof of Step 5. Let

h(z) := 11
X
✓
x0, 0,C4�

1
256

◆
\H

✓
C5�

1
256 v1,v1

◆
\U\V�v1

(3.69)

so we know
R
h

(3.55)
 c�

1
24 . So by Fubini’s Theorem,

Z
U

Z
U

✓
h(z) + ��1

���1� |rũ(z)|2
���2
◆

|z � x |�1 dzdx



Z
U

✓
h(z) + ��1

���1� |rũ(z)|2
���2
◆✓Z

U
|z � x |�1 dx

◆
dz

 c
Z
U

✓
h(z) + ��1

���1� |rũ(z)|2
���2
◆
dz

(1.5)
 c�

1
24 .

Let

G :=

⇢
x 2 B

�
1
128

(x0) :

Z
U

✓
h(z) + ��1

���1� |rũ(z)|2
���2
◆

|z � x |�1 dz  �
1
48

�

so we know �
1
48

����B� 1
128

(x0)\G
����  c�

1
24 , thus

����B� 1
128

(x0)\G
����  c�

1
48 . Assuming

� is small enough |G| � 2�1�
1
64 . By Step 4, (3.68) for any x 2 B

�
1
128

(x0), ✓ 2

B
�

1
128

( 0) \ S1 we have (l�✓x [ l✓x )\BC6�
1
256

(x) ⇢ X (x0, 0,C4�
1
256 ).

Since X (x0, 0,C4�
1
256 ) = X (x0,� 0,C4�

1
256 ) we can assume without loss

generality that  0 · v1 > 0. Pick x 2 G. By the coarea formula we must be able to
find ✓1 2 B

�
1
128

( 0) \ S1 such that

Z
(l�✓1x [l✓1x )\U

h(z) + ��1
���1� |rũ(z)|2

���2 dH1z  c�
1
48 /�

1
128  c�

1
128 . (3.70)

Let K := (l�✓1x [ l✓1x ) \ U \ H(C5�
1
256 v1, v1). Let d, e be the endpoint of K

where we chose d 2 @H(C5�
1
256 v1, v1) and e 2 @U . As already noted, by Step
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4 K\B
C6�

1
256

(x)
(3.68)
⇢ X (x0, 0,C4�

1
256 ) \ H(C5�

1
256 v1, v1) \ U , so for any z 2

K\B
C6�

1
256

(x) with h(z) = 0 by definition (3.69) we must have z 2 V�v1 . Thus

H1
�
K\V�v1

�
 4C6�

1
256 + H1

✓
K\

✓
B
C6�

1
256

(x) [ V�v1

◆◆
(3.70)
 c�

1
256 . (3.71)

Note also that if z 2 V�v1 so rũ(z) 2 B
C5�

1
256

(�v1) and as (recall from Step 2,

| 0 · e1| < c�
1
256 and we assumed without loss of generality  0 · v1 > 0)

✓1 2 B
�

1
128

( 0) ⇢ B
2C4�

1
256

(v1); (3.72)

thus rũ(z) ·(�✓1) � 1+ |rũ(z)|2�1
2 �c�

1
128 . Now for z 2 K let tz denote the tangent

to K. Since tz = �✓1 by the fundamental theorem of Calculus

ũ (d) � ũ (e) �

Z
V�v1\K

rũ(z) · (�✓1)dH1z �

Z
K\V�v1

|rũ(z)| dH1z

�

⇣
1� c�

1
128
⌘
H1

�
V�v1 \K

�
� H1

�
K\V�v1

�

� c
Z
K

���1� |rũ|2
��� dH1z

(3.70),(3.71)
� |d � e| (1� c�

1
256 ).

(3.73)

And as the curvature of @U is bounded above by 10 and by (3.72) it is easy to see
either e is very close to ã or b̃. We will without loss of generality assume the former,
so by (3.72) we have

|e � ã|  c�
1
256 . (3.74)

It is also easy to see
⇥
e, ã

⇤
⇢ U\� and ũ is 1-Lipschitz on U\� so

|ũ(e) � ũ(ã)|  c�
1
256 . (3.75)

Note also as d 2 @H(C5�
1
256 v1, v1) \

⇣
l�✓1x [ l✓1x

⌘
by (3.72) and the fact that x 2

B
�

1
128

(x0) and from Step 2 we know x0 2 N
c4�

1
512

⇣h
ã, b̃

i⌘
, thus d 2 B

c�
1
512

(0).
So we have

ũ(d) = ũ(d) � ũ(ã)
(3.73),(3.74),(3.75)

� |d � ã| � c�
1
256

� |ã| � c�
1
512 = 2�1diam(U) � c�

1
512 .

(3.76)

Pick r02
h
|d|+�

1
512 , |d|+2�

1
512
i
such that

R
@Br0 (0)

���1�|rũ(z)|2
��� dH1zc��

1
512�.

Now fix y 2 @Br0(0). Let s = K \ @Br0 (0) and 01 denote a connected component
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of @Br0(0)\ {s, y}. So we know
R
01[[d,s] |rũ(z)| dH

1z  cH1(01 [ [d, s]) 

c�
1
512 . Thus we can apply the fundamental theorem of Calculus we have that

|u(y) � u(d)|  c�
1
512 . Since y was an arbitrary point in @Br0(0), by using (3.76)

this gives
inf
�
ũ(z) : z 2 @Br0(0)

 
� 2�1diam(U) � c�

1
512 . (3.77)

By definition (see (3.25)) ũ(z)=u(z)+10�1 for any z2@Br0(0). Since diam(U) =

22
10 putting this with (3.77) we have (3.42).

Proof of Theorem 1.4. Let r0 2 (C�1
3 �

1
512 ,C3�

1
512 ) be a number. From Lemma 3.4

we obtain that satisfies (3.42).
By Fubini’s Theorem we know

R
�

R
�

��1� |ru(z)|2
��2

|z � y|�1 dzdy  C7�2 for
some constant C7 > 0. Let

G0 :=

⇢
y 2 � :

Z
�

���1� |ru(z)|2
���2 |z � y|�1 dz  �

�
. (3.78)

Note that |�\G0|  C7�.
Let a, b 2 � be such that |a � b| = diam(�). Let # =

a+b
2 . Since r0 >

C�1
3 �

1
512 we can pick x0 2 B

�
1
4
(#) \ G0 ⇢ Br0(#). So by the Co-area formula

there exists 9 ⇢ S1 such that H1(S1\9) 

p

� andZ
l✓x0\�

���1� |ru|2
���2 dH1z  c

p
� for each ✓ 2 9. (3.79)

For any ✓ 2 S1 define P(✓) := l✓x0 \ @�, we will show

|P(✓) � x0| � 1� c�
1
512 for any ✓ 2 9. (3.80)

To see this we argue as follows

u(x0) = u(x0) � u (P (✓))

=

Z
[x0,P(✓)]

ru(z) · (�✓)dH1z

(3.79)
 |x0 � P (✓)| + c�

1
4 .

(3.81)

Let y✓ := [x0, P(✓)] \ @Br0(#). In exactly the same way we have

|u(y✓ ) � u(x0)|  c�
1
512 . (3.82)

So

u(x0) � u(y✓ ) � |u(y✓ ) � u(x0)|
(3.82)
� u(y✓ ) � c�

1
512

(3.42)
� 1� c�

1
512 . (3.83)
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This together with (3.81) establishes (3.80).
Let N =

h
2�1��

1
2
i
, we can divide S1 into N disjoint pieces of equal length,

denote them I1, I2, . . . IN . Formally;
SN

k=1 Ik = S1 and H1(Ik) =
2⇡
N for each

k = 1, 2, . . . N . We can pick ✓k 2 Ik \9 for each k = 1, 2, . . . N .
Let

h = min {|P(✓k) � x0| : k 2 {1, 2, . . . N }} .

We define 5 to be the convex hull of the points x0 + h✓1, x0 + h✓2, . . . x0 + h✓N .
Now by the construction of 5, for any y 2 @5 we can find k 2 {1, 2, . . . N } such
that |y � (x0 + h✓k)|  c

p

� and thus |y � x0| � h � c
p

� and so

Bh�cp�(x0) ⇢ 5. (3.84)

Note that by using (3.80) we know h > 1�c�
1
512 and since |x0 � # |  �

1
4 (recalling

also that � is convex and so5 ⇢ �) there exists positive constant C8 such that

B
1�C8�

1
512

(#) ⇢ �. (3.85)

We claim
� ⇢ B

1+2C8�
1
512

(#). (3.86)

Suppose not, so there exists y 2 @� such that |y � # | � 1+2C8�
1
512 . By inequality

(3.85) we know�
y�#

|y�# |

⇣
1� C8�

1
512
⌘

+# ⇢ � and as by convexity of� we knowh
y,# �

y�#
|y�# |

⇣
1� C8�

1
512
⌘i

⇢ �, thus

H1
✓

y,# �

y � #

|y � # |

⇣
1� C8�

1
512
⌘�◆

� 2+ C8�
1
512

which contradicts the fact diam(�) = 2. Hence (3.86) is established. Since the
center of mass of � is 0, i.e.

R
� x dx = 0, by (3.85), (3.86) we have that |# | 

c�
1
512 . Recall x0 2 B

�
1
4
(#) so |x0 � P(✓)|  |P(✓)| + |x0|

(3.86)
 1 + c�

1
512 so

putting this together with (3.83) we have

u(x0) � u(P(✓)) = u(x0) � |x0 � P(✓)| � c�
1
512 . (3.87)

ThusZ
[x0,P(✓)]

|ru(z)+✓ |2 dH1z=
Z
[x0,P(✓)]

⇣
|ru(z)|2+2ru(z) · ✓+1

⌘
dH1z

(3.79)
 2(1+c�

1
4 ) |x0�P(✓)|+2 (u(P(✓))�u(x0))

(3.87)
 c�

1
512 for any ✓ 2 9.

(3.88)
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Now using the elementary fact that
���ru(z) +

z�x0
|z�x0|

���2 

��
|ru(z)|2 � 1

��2
+ 4, since

x0 2 G0 we haveZ
✓2S1\9

Z
l✓x0

����ru(z) +

z � x0
|z � x0|

����
2
dH1zdH1✓

 4H1(S1\9) +

Z
✓2S1

Z
l✓x0

���|ru(z)|2 � 1
���2 dH1zdH1✓

(3.78)
 5

p
�.

(3.89)

And thusZ
�

����ru(z) +

z � x0
|z � x0|

����
2
dz  c

Z
�

����ru(z) +

z � x0
|z � x0|

����
2
|z � x0|�1 dz

 c
Z
✓2S1

Z
l✓x0

����ru(z) +

z � x0
|z � x0|

����
2
dH1zdH1✓

(3.89),(3.88)
 c�

1
512 .

By Hölder’s inequality this gives Z
�

����ru(z) +

z � x0
|z � x0|

����
2
dz

! 1
2

 c�
1

1024 . (3.90)

Note that as x0 2 B
�
1
4
(#) and (3.84), (3.85) we established that |# |  c�

1
512 so

|x0|  c�
1
512 . Now for any z 2 �\B

�
1

1024
(0)

���� z
|z|

�

z � x0
|z � x0|

���� =

���� z |z � x0| � (z � x0) |z|
|z| |z � x0|

����
=

���� z(|z � x0| � |z|) + x0 |z|
|z| |z � x0|

����


���� |z � x0| � |z|
|z � x0|

����+ |x0|
|z � x0|

 c�
1

1024 .

(3.91)

So  Z
�

���� z
|z|

�

z � x0
|z � x0|

����
2
dz

! 1
2

 c�
1
512 +

0
B@
Z
�\B

�
1

1024

���� z
|z|

�

z � x0
|z � x0|

����
2
dz

1
CA

1
2

(3.91)
 c�

1
1024 .

Putting this together with (3.90) we have (1.6).
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4. Proof of Corollary 1.3

We begin by establishing the following proposition.

Proposition 4.1. Let � be a bounded convex domain with C2 boundary and
|�4B1(0)|  �. There exists a sequence u✏ 2 C1(�) such that u✏(z) = 0,
ru✏(z) · ⌘z = 1 for z 2 @� (where ⌘z is the inward pointing unit normal to @� at
z) and for which

lim sup
✏!0

Z
�
✏�1

���1�

��
ru✏

��2���2 + ✏
���r2u✏���2 dz  c�

3
32 . (4.1)

4.1. Proof of Proposition 4.1

Lemma 4.2. Suppose � is a convex and |�4B1(0)| = �. For a✓ = @� \ l✓0 the
following inequality holds true

||a✓ | � 1|  c
p
� for any ✓ 2 S1 and so @� ⇢ Ncp�(@B1(0)). (4.2)

In addition there exists constant c such that��⌘a✓ + ✓
��
 c�

1
4 for any ✓ 2 S1. (4.3)

Proof of Lemma.
Step 1. We will show B 1

2
(0) ⇢ �.

Proof of Step 1. Suppose not, so we can select x 2 @�\B 1
2
(0). Let ⌘x be the inward

pointing unit normal to @� at x . By convexity of � we have � ⇢ H(x, ⌘x ) and so
B1(0)\H(x,�⌘x )\� = ;which implies |B1(0)\�| � |B1(0) \ H(x,�⌘x )| > 1

8
which contradicts that |�4B1|  �.
Step 2. a✓ 2 B1+cp�(0).

Proof of Step 2. Suppose not. Since� is convex we have conv
⇣
{a✓ } [ B 1

2
(0)
⌘

⇢ �

and ���conv ⇣{a✓ } [ B 1
2
(0)
⌘

\B1(0)
��� > c�.

Thus we have |�\B1(0)| > c� which contradicts the fact that |�4B1(0)| = �.
Step 3. We will show a✓ 62 B1�cp�(0).

Proof of Step 3. Suppose a✓ 2 B1�cp�(0) this implies
��B1(0)\H(a✓ , ⌘a✓ )

��
� c�

3
4

and � ⇢ H(a✓ , ⌘a✓ ) so |B1(0)\�| � c�
3
4 which gives a contradiction.

Proof of Lemma completed. Suppose (4.3) is false, since |a✓ � ✓ |  c
p

� we have
��B1(0)\H(a✓ , ⌘a✓ )

��
� c�

3
4 .

As before this implies |B1(0)\�| > c�
3
4 which is a contradiction.
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Lemma 4.3. Let � be convex and define u(x) := d(z, @�) for any z 2 � then
function u is concave.

Proof of Lemma. Let a, b 2 �. Since � is convex conv
�
Bu(a)(a) [ Bu(b)(b)

�
⇢

�. Now suppose there exists � 2 (0, 1) such that

u (�a + (1� �)b) < �u(a) + (1� �)u (b)

then as this implies Bu(�a+(1��)b)(�a+(1� �)b)⇢ int
�
conv(Bu(a)(a) [ Bu(b)(b))

�
we must be able to find x 2 @� with x 2 @� \ conv

�
Bu(a)(a) [ Bu(b)(b)

�
which

is a contradiction.

Lemma 4.4. Let � > 0. Suppose � is a convex set with |�4B1(0)|  �. Let
u(z) = d(z, @�). For any x 2 �\B

�
1
8
(0) for which the approximate derivative ru

exists ����ru(x) +

x
|x |

����  c�
3
16 . (4.4)

Proof. For any x 2 �\B
�
1
8
(0) let bx 2 @� be such that |bx � x | = u (x).

We begin by showing ����bx �

x
|x |

����  c�
3
16 .

Recall from Lemma 4.2 a x
|x |

= @�\ l
x
|x |
0 . Using (4.2) from Lemma 4.2 and the fact

(x � a x
|x |

)
���x � a x

|x |

����1 =
x
|x | we have

|x � bx | 

���x � a x
|x |

��� (4.2)
 1� |x | + c

p
�. (4.5)

Hence

|x � bx |2 = |x |2 � 2x · bx + |bx |2
(4.5)
 1� 2 |x | + |x |2 + c

p
�. (4.6)

Therefore

�2x · bx
(4.6)
 1� 2 |x | + c

p
� � |bx |2

(4.2)
 �2 |x | + c

p
�.

Thus 2 |x |  2x · bx + c
p

�. Since |x | > �
1
8 we have

1� c�
3
8  1� c

�
1
2

|x |


x
|x |

· bx . (4.7)



38 ANDREW LORENT

Hence ����bx �

x
|x |

����
2

= |bx |2 + 1� 2
x
|x |

· bx
(4.7),(4.2)

 c�
3
8

which gives ���� x
|x |

� bx
����  c�

3
16 . (4.8)

Let ✓x =
bx
|bx | so using Lemma 4.2

���⌘bx +
bx
|bx |

��� =

��⌘a✓x + ✓x
�� (4.3)

 c�
1
4 and by (4.2)

this easily implies ��⌘bx + bx
��
 c�

1
4 . (4.9)

Now since ru(x) =
x�bx
|x�bx | = ⌘bx and so����ru(x) +

x
|x |

���� 

��⌘bx + bx
��
+

���� x
|x |

� bx
���� (4.8),(4.9)

 c�
3
16

thus we have established (4.4).

Lemma 4.5. Let � be a convex set and |�4B1(0)|  �. Define u(x) = d (x, @�).
Note that since u is convex ru is BV. Let V (ru, ·) denotes the total variation of the
measure ru. Firstly we have

V (ru,�\B
3�

1
8
(0))  16⇡. (4.10)

Secondly for any " 2 (0,�
1
2 ] and for any x 2 �\

✓
N2"(@�) [ B

4�
1
8
(0)
◆
we have

V (ru, B"(x))  c�
3
16 ". (4.11)

Proof. Let ⌧ 2(0, "
20 ) be some small number.

For any x 2�\(N4⌧ (@�) [ B 3
2�

1
8
(0)) =: 5⌧ . Let w⌧ (x) = u ⇤ ⇢⌧ (x) and v⌧ =

rw⌧
|rw⌧ |

. Note from Lemma 4.4 for any x 2 5⌧����rw⌧ (x) +

x
|x |

���� =

����
Z ✓

ru(x � z) +

x
|x |

◆
⇢⌧ (z)dz

����


Z ����
✓

ru(x � z) +

x � z
|x � z|

◆
⇢⌧ (z)

���� dz
+

Z ���� x � z
|x � z|

�

x
|x |

���� ⇢⌧ (z)dz
(4.4)
 c sup

z2B2⌧ (0)

���� x � z
|x � z|

�

x
|x |

����+ c�
3
16

 c�
3
16 .

(4.12)
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From this it is easy to conclude that

kw⌧ � dist(·, @B1(0)))kL1(5⌧ )  c�
3
16 . (4.13)

Step 1. Let ⌧0 > 0 be a very small number. We will show

lim
⌧!0

kv⌧ � rukL1(5⌧0 ) = 0. (4.14)

Proof of Step 1. Now
Z
5⌧0

|1� |rw⌧ || dz =

Z
5⌧0

||ru| � |rw⌧ || dz



Z
5⌧0

|ru � rw⌧ | dz ! 0 as ⌧ ! 0. (4.15)

Now from (4.12) we have

|rw⌧ (x)| �

1
2
for any x 2 5⌧0, ⌧ 2 (0, ⌧0). (4.16)

So

k

rw⌧

|rw⌧ |
� rw⌧kL1(5⌧0 )

= krw⌧

✓
1

|rw⌧ |
� 1

◆
kL1(5⌧0 )

(4.15),(4.16)
 2k1� |rw⌧ | kL1(5⌧0 )

! 0 as ⌧ ! 0.
(4.17)

Since krw⌧ � rukL1(5⌧0 ) ! 0 as ⌧ ! 0 putting this together with (4.17) gives
(4.14).

Step 2. We will show that for any G b �\B 3
2�

1
8
(0)

V (ru,G)  2 |div(ru)| (G) (4.18)

and
|div(ru)| (G)  lim inf

⌧!0

Z
G

��v⌧1,1 + v⌧2,2
�� dz, (4.19)

where |div(ru)| denotes the total variation of measure div(ru).

Proof of Step 2. We can find ⌧0 > 0 such thatG ⇢ 5⌧0 . Now from [3]ru 2 SBVloc
so in particular div(ru) is a signed measure defined by

Z
div(ru)�dz =

Z
�,1u,1 + �,2u,2dz for all � 2 C1

c (�). (4.20)
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So for � 2 C1

c (�) we have
Z
div(ru)�dz (4.20),(4.14)

= lim
⌧!0

Z
�,1v

⌧
1 + �,2v

⌧
2dz

= lim
⌧!0

Z
(v⌧1,1 + v⌧2,2)�dz.

Now given open set G ⇢ 5⌧0 if � 2 C1

c (G) then
����
Z
div(ru)�dz

���� =

���� lim⌧!0

Z
(v⌧1,1 + v⌧2,2)�dz

����
 k�kL1(5⌧0 )

Z
G

��v⌧1,1 + v⌧2,2
�� dz.

So this in particular by Proposition 1.47 [4] implies (4.19).
Now since ru 2 SBVloc(�) we know by Theorem 3.78 [4] that there ex-

ists a rectifiable set Jru ⇢ Sru (where Sru denotes the set of approximate jump
points of ru) with Hn�1(Sru\Jru) = 0 and DrubJru =

�
ru+

� ru�

�
⌦

⌫Hn�1
bJru where ⌫(x) is the normal to the approximate tangent of the rectifi-

able set Jru at point x . Following [4] Definition 3.67 we assume that the triple
(ru+(x),ru�(x), ⌫(x)) satisfies (3.69) of [4]. By Theorem 3.94 [4] we have that
(ru+(x)�ru�(x))⌦⌫(x) is a rank-1 matrix for |Dru| a.e. x 2 Jru . Now Dru is
a matrix valued measure and indeed letting @i u, j denote the individual ‘component’
measures, just from the definition we know that @i u, j = @ j u,i so Dru is a symmet-
ric matrix valued measure. Specifically by differentiation of measures (see Theorem
2.2 [4]) M(x) := limr!0

Dru(Br (x))
|Dru|(Br (x)) exists for |Dru| a.e. x and M(x) will be a

symmetric 2 ⇥ 2 matrix. So for Hn�1 a.e. x 2 Jru , (ru+(x) � ru�(x)) ⌦ ⌫(x)
is a symmetric rank-1 matrix, this is easily seen to imply ru+(x)�ru�(x)

|ru+(x)�ru�(x)| = ⌫(x).
So (ru+(x) � ru�(x)) ⌦ ⌫(x) =

��
ru+(x) � ru�(x)

�� ⌫(x) ⌦ ⌫(x). Thus we can
decompose D(ru) into absolutely continuous and singular parts we have

D(ru)(S) =

Z
S
D(ru)dx +

Z
S\Jru

��
ru+

� ru�

�� ⌫(x) ⌦ ⌫(x)dH1

for any set S ⇢ Rn.

(4.21)

Obviously this is a matrix valued Radon measure and the signed Radon measure
1u is given by the sum of diagonal elements of the matrix defined by (4.21) and so
is given by

1u(S) =

Z
S
diva(ru)dx +

Z
S\Jru

��
ru+

� ru�

�� ⌫ · ⌫dH1

=

Z
S
diva(ru)dx +

Z
S\Jru

��
ru+

� ru�

�� dH1 for any S ⇢ Rn.
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Now recall |ru(x)| = 1 for a.e. x 2 �. So by Volpert chain rule (see Theorem
3.94 [4]) we have that the function x ! |ru(x)|2 is BV and the standard chain rule
holds so

u,11(x)u,1(x) + u,12(x)u,2(x) = 0 and
u,12(x)u,1(x) + u,22(x)u,2(x) = 0 for a.e. x 2 �.

(4.22)

Since u,21 = u,12 we have
✓
u,11 u,12
u,21 u,22

◆✓
u,1
u,2

◆
(4.22)
=

✓
0
0

◆
and

✓
u,11 u,12
u,21 u,22

◆✓
�u,2
u,1

◆
(4.22)
= (u,11+u,22)

✓
�u,2
u,1

◆
.

Letting k · k denote the operator norm of a matrix, since
✓
u,1 �u,2
u,2 u,1

◆
2 O(2) we

have
����
����
✓
u,11 u,12
u,21 u,22

◆����
���� =

����
����
✓
u,11 u,12
u,21 u,22

◆✓
u,1 �u,2
u,2 u,1

◆����
����

=

����
����
✓
0 �(u,11 + u,22)u,2
0 (u,11 + u,22)u,1

◆����
����

 2
��u,11 + u,22

�� .
Hence

|Da(ru(x))|  2 |diva(ru(x))| for a.e. x 2 �.

Thus

V (ru,G) =

Z
G

|Da(ru)| dz +

Z
G\Jru

��
ru+

� ru�

�� dH1

 2
Z
G

|diva(ru)| dz +

Z
G\Jru

��
ru+

� ru�

�� dH1
 2 |div(ru)| (G),

thus establishing (4.18).
Step 3. We will show that for any t 2 (8⌧, 1� 2�

1
8 )

Z
w�1
⌧ (t)

��v⌧1,1(z) + v⌧2,2(z)
�� dH1z  2⇡.

Proof of Step 3. We define the ‘angle’ function by

A(x) :=

8<
:
arccos

⇣
x1
|x |

⌘
for x2 � 0

2⇡ � arccos
⇣
x1
|x |

⌘
for x2 < 0

. (4.23)
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Note that A is smooth expect at the half line {(x1, x2) : x2 = 0, x1 > 0}. For x 2 5⌧
we have |v⌧ (x)|2 = 1, so as before

@1(
��v⌧ (x)��2) = v⌧1 (x)v

⌧
1,1(x) + v⌧2 (x)v

⌧
2,1(x) = 0. (4.24)

Since u is 1-Lipschitz,
kw⌧ � ukL1(5⌧ )  2⌧, (4.25)

and so from this and (4.13) we have that w�1
⌧ (t) ⇢ 5⌧ for any t 2 (8⌧, 1 � 2�

1
8 ).

Hence by (4.12) v⌧ is well defined along this level set. We also know that for any

x 2 w�1
⌧ (t) the tangent to curve w�1

⌧ (t) is given by
✓

�v⌧2 (x)
v⌧1 (x)

◆
. Note that w�1

⌧ (t)

is the boundary of a smooth convex set so there exists a point xt 2 w�1
⌧ (t) such that

A
✓

�v⌧2 (xt )
v⌧1 (xt )

◆
= 0. There must also exist yt 2 w�1

⌧ (t) such that

A
✓

�v⌧2 (yt )
v⌧1 (yt )

◆
= ⇡. (4.26)

Let 8t
:

⇥
0, H1(w�1

⌧ (t))
�

! w�1
⌧ (t) denote the clockwise parameterization of

w�1
⌧ (t) by arc-length with 8t (0) = xt . So ˙8t (s) =

✓
�v⌧2 (8

t (s))
v⌧1 (8

t (s))

◆
. Define 2t :

[0, H1(w�1
⌧ (t))) ! R by 2t (s) = A(8̇t (s)). Now select s 2

�
0, H1(w�1

⌧ (t))
�
,

suppose v⌧1
�
8t (s)

�
> 0, then

2̇t (s) = ˙arccos
�
�v⌧2

�
8t (s)

�� @
@t
�
�v⌧2

�
8t (s)

��
= ˙arccos

�
�v⌧2

�
8t (s)

�� �
�v⌧2,1

�
8t (s)

�
8̇t
1(t) � v⌧2,2

�
8t (s)

�
8̇t
2(t)
�

= ˙arccos
�
�v⌧2

�
8t (s)

�� �
v⌧2,1

�
8t (s)

�
v⌧2
�
8t (s)

�
� v⌧2,2

�
8t (s)

�
v⌧1
�
8t (s)

��
(4.24)
= ˙arccos

�
�v⌧2

�
8t (s)

���
�v⌧1,1

�
8t (s)

�
v⌧1
�
8t (s)

�
�v⌧2,2

�
8t (s)

�
v⌧1
�
8t (s)

��
= � ˙arccos

�
�v⌧2

�
8t (s)

��
v⌧1
�
8t (s)

� �
v⌧1,1

�
8t (s)

�
+ v⌧2,2

�
8t (s)

��
.

Now for any w 2 (�1, 1), ˙arccos(w) = �(sin(arccos(w)))�1 so

2̇t (t) =

v⌧1
�
8t (s)

�
sin(arccos(�v⌧2 (8t (s))))

�
v⌧1,1

�
8t (s)

�
+ v⌧2,2

�
8t (s)

��
. (4.27)

Recall
����
✓

�v⌧2
�
8t (s)

�
v⌧1
�
8t (s)

� ◆���� = 1 and we supposed v⌧1
�
8t (s)

�
> 0, so

v⌧1
�
8t (s)

�
=

q
1�

�
v⌧2 (8t (s))

�2
=

q
1�

�
cos

�
arccos

�
�v⌧2 (8t (s))

���2
= sin

�
arccos

�
�v⌧2

�
8t (s)

���
.

(4.28)



FUNCTIONS WITH LOW AVILES GIGA ENERGY 43

Thus from (4.27)

2̇t (s) =

�
v⌧1,1

�
8t (s)

�
+ v⌧2,2

�
8t (s)

��
for any s 2

⇣
0, H1(w�1

⌧ (t))
⌘
with v⌧1

�
8t (s)

�
> 0.

(4.29)

Suppose we have s 2

�
0, H1(w�1

⌧ (t))
�
with v⌧1

�
8t (s)

�
< 0, then in the same way

as (4.28) we have

v⌧1
�
8t (s)

�
= �

q
1�

�
cos

�
arccos

�
�v⌧2 (8t (s))

���2
= � sin

�
arccos

�
�v⌧2

�
8t (s)

���
.

(4.30)

And since v⌧1 (8
t (s)) < 0, by definition of A (see (4.23)) arguing as in (4.27) we

have

2̇t (s) =

�v⌧1
�
8t (s)

�
sin
�
arccos

�
�v⌧2 (8t (s))

�� �v⌧1,1 �8t (s)
�
+ v⌧2,2

�
8t (s)

��
(4.30)
= v⌧1,1

�
8t (s)

�
+v⌧2,2

�
8t (s)

�
for s2

⇣
0, H1(w�1

⌧ (t))
⌘
with v⌧1

�
8t (s)

�
<0.

Without loss of generality we can assume
���s2 [0,H1(w�1

⌧ (t))] :v⌧1
�
8t (s)

�
=0
 ��

=

0. Thus by continuity of 2̇t (·), v⌧1,1(8
t (·)) and v⌧2,2(8

t (·)) we have

2̇t (s) = v⌧1,1
�
8t (s)

�
+ v⌧2,2

�
8t (s)

�
for s 2

h
0, H1(w�1

⌧ (t))
⌘

.

Now since u is concave, w⌧ is concave and so the set w�1
⌧ ([t,1)) is a convex set,

hence

v⌧1,1
�
8t (s)

�
+ v⌧2,2

�
8t (s)

�
= 2̇t (s) � 0 for any s 2

h
0, H1(w�1

⌧ (t))
⌘

. (4.31)

Therefore
Z

w�1
⌧ (t)

��v⌧1,1(z) + v⌧2,2(z)
�� dH1z =

Z H1(w�1
⌧ (t))

0
2̇t (s)ds  2⇡.

Step 4. Let x 2 5⌧\N2"(@�) and define

t1 = inf
n
s 2 R : w�1

⌧ (s) \ B"(x) 6= ;

o
and

t2 = sup
n
s 2 R : w�1

⌧ (s) \ B"(x) 6= ;

o
.

(4.32)

Recall yt 2 w�1
⌧ (t) was chosen so that (4.26) holds true, let ⇡t := (8t )�1(yt ). We

have for any t 2 (t1, t2)

sup
n
|2t (s1)�2t (s2)| : s1, s22(8t )�1

⇣
w�1
⌧ (t) \ B"(x)

⌘
\ [0,⇡t ]

o
c�

3
16 (4.33)



44 ANDREW LORENT

and

sup
n
|2t (s1)�2t (s2)| : s1,s22(8t )�1

⇣
w�1
⌧ (t)\B"(x)

⌘
\

h
⇡t , H1(w�1

⌧ (t))
⌘o

c�
3
16 .

(4.34)

Proof of Step 4. Let s1, s2 2 [0,⇡t ] such that 8t (s1),8t (s2) 2 B"(x), since 8t

is parameterization of w�1
⌧ (t) by arclength 8̇t (s) is the unit tangent to w�1

⌧ (t) at
8t (s). Thus

R

 
rw⌧

�
8t (si )

�
|rw⌧ (8t (si ))|

!
= 8̇t (si ) for i = 1, 2.

However by Lemma 4.4 (recalling the fact that
��8t (s1)

�� > 3�
1
8
2 and

��8t (s2)
��> 3�

1
8
2

in order to apply the lemma)
��
rw⌧

�
8t (s1)

�
� rw⌧

�
8t (s2)

���
=

����
Z �

ru
�
8t (s1) � z

�
� ru

�
8t (s2) � z

��
⇢⌧ (z)dz

���� (4.35)

(4.4)
 c

Z
B⌧ (0)

���� 8
t (s1) � z

|8t (s1) � z|
�

8t (s2) � z
|8t (s2) � z|

���� ⇢⌧ (z)dz + c�
3
16 .

Note z2 B⌧ (0) ⇢ B
�
1
2
20

(0) so as
��8t (s1)

�� > 3�
1
8
2 we have

��8t (s1) � z
��
�

��8t (s1)
��
�

|z| � �
1
8 . Recall the elementary inequality inequality

���� z
|z|

�

y
|y|

����  2 |z � y| for any z, y with |z| � 1, |y| � 1.

So in particular we have
����
���� 8

t (s1) � z
|8t (s1) � z|

�

8t (s2) � z
|8t (s2) � z|

����
���� 

2

�
1
8

��8t (s1) �8t (s2)
��
 2�

3
8 .

Thus with (4.35) this gives

��
rw⌧

�
8t (s1)

�
� rw⌧

�
8t (s2)

���
 c�

3
16 . (4.36)

As a consequence of (4.12) we know

||rw⌧ (x)| � 1|  c�
3
16 for any x 2 5⌧ (4.37)
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so

��8̇(s1)�8̇(s2)
��(4.36)



�����R
 

rw⌧
�
8t (s1)

�
|rw⌧ (8t (s1))|

!
� R

�
rw⌧

�
8t (s1)

�������
+

�����R
 

rw⌧
�
8t (s2)

�
|rw⌧ (8t (s2))|

!
� R

�
rw⌧

�
8t (s2)

�������+ c�
3
16 (4.38)

(4.37)
 c�

3
16 .

Now as s1,s2 2 [0,⇡t ], since w�1
⌧ (t) is the boundary of a convex set so we know

8̇t (s1), 8̇t (s2)2{v2 S1 : v ·e20}. Now, as A is Lipschitz on
�
v 2 S1 : v · e20

 
,

|2t (s1) �2t (s2)| =

��A �8̇t (s1)
�
� A

�
8̇t (s2)

��� (4.38)
 c�

3
16

and so (4.33) is established. Inequality (4.34) follows in exactly the same way.

Step 5. We will show

V (ru, B"(x))  c"�
3
16 for all x 2 �\

✓
N2"(@�) [ B

4�
1
4
(0)
◆

. (4.39)

Proof of Step 5. Let x 2 �\

✓
N2"(@�) [ B

4�
1
4
(0)
◆
. Let t 2 (t1, t2). The most

non-trivial case is where
�
s2 [0,⇡t ] : 8t (s)2 B"(x)

 
6=; and

n
s2
h
⇡t , H1(w�1

⌧ (t))
i

: 8t (s)2 B"(x)
o
6=;.

When either of these sets is empty the proof follows in a very similar way.
Let st1= inf{s 2[0,⇡t] : 8t (s) 2 B"(x)}, st2= sup{s 2 [0,⇡t ] : 8t (s) 2 B"(x)}.

So [st1, s
t
2] = {s 2 [0,⇡t ] : 8t (s) 2 B"(x)}. Now
Z
⇥
st1,s

t
2
⇤
��v⌧1,1(8t (s)) + v⌧2,2(8t (s))

�� ds (4.31)
=

Z
⇥
st1,s

t
2
⇤ 2̇t (s)ds

(4.40)
(4.33)
 c�

3
16 .

In the same way we let

r t1 = inf
n
s 2

h
⇡t , H1(w�1

⌧ (t))
i

: 8t (s) 2 B"(x)
o

,

r t2 = sup
n
s 2

h
⇡t , H1(w�1

⌧ (t))
i

: 8t (s) 2 B"(x)
o
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then Z
⇥
r t1,r

t
2
⇤
��v⌧1,1(8t (s)) + v⌧2,2(8̇t (s))

�� ds  c�
3
16 . (4.41)

Thus Z
B"(x)

��v⌧1,1(z) + v⌧2,2(z)
��
|rw⌧ (z)| dz

=

Z t2

t1

Z
w�1
⌧ (t)

��v⌧1,1(z) + v⌧2,2(z)
�� dH1zdt

=

Z t2

t1

Z
⇥
st1,s

t
2
⇤
[

⇥
r t1,r

t
2
⇤
��v⌧1,1(8t (s)) + v⌧1,1(8

t (s))
�� dsdt

(4.40),(4.41)
 c |t1 � t2|�

3
16 .

By using (4.12) and recalling the definition (4.32) of Step 2 wemust have |t1 � t2| 

c". Also from (4.12) we know |rw⌧ (z)| � 1 � c�
3
16 for all z 2 B"(x), so putting

these things together we haveZ
B"(x)

��v⌧1,1(z) + v⌧2,2(z)
�� dz  c"�

3
16 for all x 2 �\

✓
N2"(@�) [ B

4�
1
8
(0)
◆

.

So for any x 2 �\

✓
N2"(@�) [ B

4�
1
8
(0)
◆
we know B"(x) ⇢ 5"

4
so by Step 2

V (ru, B"(x))
(4.18)
 2 |div(ru)| (B"(x))

(4.19)
 2 lim inf

⌧!0

Z
B"(x)

��v⌧1,1 + v⌧2,2
�� dz

 c"�
3
16 ,

and hence we have established (4.39).
Proof of Lemma completed. Note that by (4.13) and (4.25) we have

516⌧\B
3�

1
8
(0) ⇢ w�1

⌧

⇣h
8⌧, 1� 2�

1
8
i⌘

by using the Co-area formula

Z
516⌧ \B

3�
1
8

(0)

��v⌧1,1 + v⌧2,2
�� ��

rw⌧
�� dz

Z 1�2�
1
8

8⌧

Z
w�1
⌧ (s)

��v⌧1,1 + v⌧2,2
�� dH1zds  4⇡.

Thus using (4.12) Z
516⌧ \B

3�
1
8

(0)

��v⌧1,1 + v⌧2,2
�� dz  8⇡.
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By Step 2 this implies V (ru,516⌧\B
3�

1
8
(0))  16⇡ and as ⌧ is arbitrary

V (ru,�\B
3�

1
8
(0))  16⇡ .

Lemma 4.6. Let � be a convex domain and |�4B1(0)|  �.
Let u(x)=d(x, @�) and ⌘(x)=1�8�

3
32 +|x |. Define 0 := {x : u(x) = ⌘(x)},

we will show 0 is the boundary of a convex set with H1(0)  c�
3
32 ,

0 ⇢ N
c�

3
16

(@B
4�

3
32

(0)) (4.42)

and for any " 2 (0,�
3
16 ]

|N2"(0)|  c"�
3
32 . (4.43)

Proof of Lemma.

Step 1. We will show5 := {x 2 � : ⌘(x)  u(x)} is convex.
Proof of Step 1. Take a, b 2 5 and pick � 2 [0, 1]. Since u is concave u(�a +

(1 � �)b) � �u(a) + (1 � �)u(b) and since ⌘ is convex ⌘(�a + (1 � �)b) 

�⌘(a) + (1� �)⌘(b). Hence as a, b 2 5, u(�a + (1� �)b) � ⌘(�a + (1� �)b).
Thus [a, b] ⇢ 5 and thus the set5 is convex.
Step 2. We will establish (4.42).
Proof of Step 2. Let x 2 0 and let bx 2 @� be such that |x � bx | = u(x). So

1� 8�
3
32 + |x | = |bx � x | . (4.44)

And thus 1� 8�
3
32 + |x | � |bx | � |x |, so using (4.2)

2 |x | � |bx | � 1+ 8�
3
32 � 8�

3
32 � c

p
�.

Also from (4.44) we have

|x | = |bx � x | � (1� 8�
3
32 )

(4.2)
 8�

3
32 +

p
�. (4.45)

Now using Lemma 4.4, since ru(x) =
x�bx
|x�bx | so���� x

|x |
�

bx
|bx |

���� 

���� bx � x
|bx � x |

�

bx
|bx |

����+
���� x � bx
|x � bx |

+

x
|x |

����
(4.45),(4.4)

 c�
3
32

so ����1�

bx
|bx |

·

x
|x |

���� = 2�1
���� bx
|bx |

�

x
|x |

����
2

 c�
3
16 . (4.46)
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Again by Lemma 4.4 we have
����|bx � x | + (x � bx ) ·

x
|x |

����  |x � bx |
���� x � bx
|x � bx |

+

x
|x |

����
 2

����ru(x) +

x
|x |

���� (4.47)

(4.4)
 c�

3
16

and thus
����2x ·

x
|x |

� 8�
3
32

���� (4.46)


�����8� 3
32 + 1�

bx
|bx |

·

x
|x |

+ 2x ·

x
|x |

����+ c�
3
16

=

����1� 8�
3
32 + |x | �

✓
bx
|bx |

� x
◆

·

x
|x |

����+ c�
3
16

(4.44)
=

����|bx � x | �

✓
bx
|bx |

� x
◆

·

x
|x |

����+ c�
3
16

(4.2)


����|bx � x | + (x � bx ) ·

x
|x |

����+ c�
3
16

(4.47)
 c�

3
16

hence
���2 |x | � 8�

3
32

���  c�
3
16 for any x 2 0, so (4.42) is established.

Since (4.42) implies the diameter of 5 is bounded by c�
3
32 and since 5 is a

convex set it follows immediately that H1(0)  c�
3
32 .

Now the set 0 equipped with the Euclidean norm is a bounded compact metric
space. So by applying the 5r Covering Theorem [20, Theorem 2.1] we can find
a disjoint collection of balls B2"(x1), B2"(x2), . . . B2"(xM) with x1, x2, . . . xM 2

0 such that 0 ⇢

Sn
i=1 B10"(xi ). This implies N2"(0) ⇢

Sn
i=1 B20"(xi ). Since

H1(0)  c�
3
32 so M  c"�1�

3
32 and thus |N2"(0)|  c"�

3
32 which establishes

(4.43).

Lemma 4.7. Let � be a convex set. Let � = |�4B1(0)|. Let

w(z) := min
n
d(z, @�), 1� 8�

3
32 + |z|

o
.

We will show rw 2 SBV (� : S1) and
Z
Jrw\�

��
rw+

� rw�

��3 dH1  c�
3
32 . (4.48)
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Proof. By Lemma 4.5 we knowru 2 BV (�\B
3�

1
3
(0)) and V (ru,�\B

3�
1
3
(0)) 

8⇡ . This implies
Z

(�\B
3�
1
8

(0))\Sru

��
ru+

� ru�

�� dH1  8⇡. (4.49)

Now by Lemma 4.4 (4.4) for any x2(�\B
3�

1
8
(0))\Sru we have

��
ru+(x)�ru�(x)

��


c�
3
16 . So

Z
(�\B

3�
1
8

(0))\Sru

��
ru+

�ru�

��3 dH1c�
3
8

Z
(�\B

3�
1
8

(0))\Sru

��
ru+

�ru�

�� dH1

(4.49)
 c�

3
8 .

(4.50)

As in Lemma 4.6 let 5 :=

n
x : u(x)  1� 8�

3
32 + |x |

o
and 0 := @5. Since 5 is

convex it is also a set of finite perimeter. Let ⌘(z) = 1�8�
3
32+|x |, it is clearw(z) =

115⌘(z) + 11�\5u(z). By Theorem 3.83 [4] we know rw 2 BV (� : S1). Also by
Lemma 4.6, H1(0)  c�

3
32 . Now for any x 2 0, since rw+(x),rw�(x) 2 S1,��

rw+(x) � rw�(x)
��
 2. So

Z
Jrw

��
rw+

� rw�

��3 dH1 =

Z
Jrw\(�\5)

��
rw+

� rw�

��3 dH1

+

Z
Jrw\5

��
rw+

� rw�

��3 dH1
(4.50)
 c�

3
8 + 8H1(0)

 c�
3
32 .

4.2. Proof of Proposition 4.1 completed

By Lemma 4.7 we know that w 2 BV (�, S1) we can apply Theorem 1 of [8] or
Corollary 1.1 [23] to find a sequence u✏ that satisfies u✏(z) = 0 and ru✏(z) ·⌘z = 1
for z 2 @� (where ⌘z is the inward pointing unit normal to @� at z) such that

lim sup
✏!0

Z
�
✏�1

���1�

��
ru✏

��2���2 + ✏
���r2u✏���2 dz 

Z
Jrw\�

��
rw+

� rw�

��3 dH1
(4.48)
 c�

3
32 .
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4.3. Proof of Corollary 1.3

Let �= infa2� |�4B1(a)|. Without loss of generality we can assume |�4B1(0)| 

2�. So by Proposition 4.1 we can find ✏0 2 (0, 1) such that for ✏ 2 (0, ✏0), any
minimiser u✏ of I✏ defined on � satisfiesZ

�
✏�1

���1�

��
ru✏

��2���2 + ✏
���r2u✏���2 dz  c�

3
32 . (4.51)

So we can apply Theorem 1.1 to conclude that
Z
�

����ru✏(z) +

z
|z|

����
2
dz  c�

1
5462 .

Applying Lemma 4.4 we haveZ
�\B

�
1
8

(0)

��
ru✏ � r⇣

��2
 c�

1
5462 . (4.52)

Now Z
B
�
1
8

(0)

��
ru✏ � r⇣

��2 dz 

Z
B
�
1
8

(0)

��
ru✏

��2
+ 2

��
ru✏

��
+ 1dz



Z
B
�
1
8

(0)

⇣���1�

��
ru✏

��2���+ c
⌘
dz

(4.51)
 c�

3
32

together with (4.52) this gives ku✏ � ⇣kW 1,2(�)  c�
1

5462 .

5. Proof of Corollary 1.2

In this section we will show that given a convex domain � with C2 boundary with
curvature bounded above by ✏�

1
2 and that satisfies |B1(0)4�|  � we will con-

struct a function u with I✏(u)  �
3
16 . This is the content of Proposition 5.1 below.

The proof of Corollary 1.2 will follow easily from this.

Proposition 5.1. Let � be a convex body with C2 boundary and with curvature

bounded above by ✏�
1
2 and |�4B1(0)|  �. Let ✏ 2 (0, �

1
2
4 ]. There exists a

function C2 function ⇠ : � ! R which satisfies r⇠(z) · ⌘z = 1 (where ⌘z is the
inward pointing unit normal to @� at z), ⇠(z) = 0 for z 2 @� and for whichZ

�
✏�1

���1� |r⇠ |2
���2 + ✏

���r2⇠ ���2 dz  c�
3
32 . (5.1)



FUNCTIONS WITH LOW AVILES GIGA ENERGY 51

5.1. Proof of Proposition 5.1

We begin with a preliminary lemma.

Lemma 5.2. Let � : R+ ! R+ be a continuous function. Let ⇢ denote the stan-
dard convolution kernel, i.e.

R
⇢dx = 1 and Spt⇢ ⇢ B 3

2
(0) and define ⇢h(z) :=

h�2⇢(h�1z).
Suppose f : Rn

! R be an affine function. If g(x) = f ⇤ ⇢�(x)(x) then

g (x) = f (x) for all x 2 Rn.

Proof of Lemma. Let ⌘ = r f . As f is affine f (x � y) = f (x) � ⌘ · y

g(x) =

Z
f (x � y)(�(x))�2⇢(�(x)�1y)dy

=

Z
( f (x) � ⌘ · y)(�(x))�2⇢(�(x)�1y)dy

= f (x).

Lemma 5.3. Let ✏ > 0. Suppose � is a convex body with C2 boundary and with
curvature bounded above by ✏�

1
2 . Let u(x) = d(x, @�). Let ⇢ be the standard

convolution kernel and ⇢✏(z) := ⇢
� z
✏

�
✏�2. We will construct a function  : � \

N8✏(@�) ! R with  = 0 on @� which satisfies the following properties
Z
�\N8✏(@�)

���1� |r |
2
���2 dz  c✏2, (5.2)

Z
�\N8✏(@�)

���r2 ���2 dz  c, (5.3)

 (z) = [u ⇤ ⇢✏] (z) for any z 2 �\N8✏(@�) (5.4)

and
r (z) = ⌘z for each z 2 @�. (5.5)

Proof. Let w : R+ ! R+ be a smooth monotone function with the following
properties

w (z) =

(
z for z 2

⇥
0, ✏3

�
✏ for z � ✏

(5.6)

and sup |ẅ|  c✏�1.
For any x 2 � \ N8✏(@�) define

�(x) = w(u(x)). (5.7)
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Wewill convolve the function u with convolution kernel ⇢�(x)(z):=⇢
⇣

z
�(x)

⌘
/(�(x))2.

Since the convolution kernel varies with x , when we differentiate u ⇤ ⇢�(x), the
derivative will involve a term with the derivative of ⇢�(x). For this reason we need
to calculate various partial derivatives of ⇢�(x).

Since the curvature of @� is bounded above by ✏�
1
2 . For any x 2 �\N8✏(@�)

we have that there is one unique bx 2 @� such that |x � bx | = u(x). We define

&x =
x�bx
|x�bx | . Let R =

✓
0 �1
1 0

◆
and define !x = R&x .

Note &x = ⌘bx , i.e. the inward pointing unit normal to @� at bx . Note also that
for all small enough h, bx = bx+h&x so u(x + h&x ) = h + u(x). Thus

�,&x (x) = lim
h!0

�(x + h&x ) � �(x)
h

= lim
h!0

w(u(x) + h) � w(u(x))
h

= ẇ(u(x)).

Note also that since |ru(x)| = 1 and u,&x (x) = limh!0
u(x+h&x )�u(x)

h = 1 so

u,!x (x) = lim
h!0

u(x + h!x ) � u(x)
h

= 0.

Thus
�,!x (x) = ẇ(u(x))u,!x (x) = 0. (5.8)

Hence

@

@&x

�
⇢�(x)(z)

�
=

@

@&x

✓
⇢

✓
z

�(x)

◆
(�(x))�2

◆

= �r⇢

✓
z

�(x)

◆
· z
�,&x (x)
(�(x))4

� 2⇢
✓

z
�(x)

◆
�,&x (x)
(�(x))3

(5.9)

and
@

@!x

�
⇢�(x)(z)

�
= 0.

Define
 (x) :=

⇢ R
u(x � z)⇢�(x)(z)dz for x 2 �

0 for x 62 �
. (5.10)

Now

 ,&x (x)
(5.9)
=

Z
u,&x (x � z)⇢�(x)(z)dz

�

Z
u(x�z)

✓
r⇢

✓
z

�(x)

◆
· z
�,&x (x)
(�(x))4

+ 2⇢
✓

z
�(x)

◆
�,&x (x)
(�(x))3

◆
dz.

(5.11)



FUNCTIONS WITH LOW AVILES GIGA ENERGY 53

In the same way it is easy to see  ,!x (x) =

R
u,!x (x � z)⇢�(x)(z)dz and so

 ,&x!x (x)=
Z
u,!x&x (x � z)⇢�(x)(z)dz +

Z
u,!x (x � z)

@

@&x

�
⇢�(x)(z)

�
dz. (5.12)

And
 ,!x!x (x) =

Z
u,!x!x (x � z)⇢�(x)(z)dz. (5.13)

Finally

 ,&x&x (x) =

Z
u,&x&x (x � z)⇢�(x)(z) + 2u,&x (x � z)

@

@&x

�
⇢�(x)(z)

�
dz

+

Z
u(x � y)

@2

@2&x

�
⇢�(x)(z)

�
dz

(5.14)

each term will be estimated later in Step 4.

Step 1. We will show
���r2u(x)���  c✏�

1
2 for any x 2 Np

✏
3

(@�). (5.15)

Proof of Step 1. Let bx 2 @� be such that dist(x, @�) = |x � bx |. We start by
showing

|ru(x) � ru(y)|  c✏�
1
2 |x � y| for any x 2 Np

✏
3

(@�), y 2 B ✏
6
(x). (5.16)

Now recall y�by
|y�by|

= ⌘by ,
x�bx
|x�bx | = ⌘bx . We have two cases to consider. Firstly the

case that (bx + R+⌘bx ) \ (by + R+⌘by ) = ;. In this case since � is convex this
implies ⌘bx = ⌘by . Thus as |ru(x) � ru(y)| =

��� y�by
|y�by|

�
x�bx
|x�bx |

��� =

��⌘bx � ⌘by
��
=

0 so (5.16) is established.
Now suppose we have the case that ⇡ := (bx + R+⌘bx ) \ (by + R+⌘by ) 6= ;.

Then let

✓ = arccos

 
by � y��by � y

�� ·

bx � x
|bx � x |

!
. (5.17)

Since the curvature of @� is bounded by ✏�
1
2 we know that ⇡ 62 Np

✏(@�). Con-
sider the triangle whose corners are x, y,⇡ , which we denote by T (x, y,⇡). The
angle at corner ⇡ is ✓ . Note that |x � y| 

✏
6 , |x � ⇡ | �

p

✏
2 and |y � ⇡ | �

p

✏
2 . So

as ||x � ⇡ | � |y � ⇡ ||  |x � y| 
✏
6 we therefore know

✏2

36
� ||x � ⇡ | � |y � ⇡ ||

2
=

���2 |x � ⇡ | |y � ⇡ | � |x � ⇡ |
2
� |y � ⇡ |

2
��� .
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Thus by the law of cosines

2 |x � ⇡ | |y � ⇡ | cos ✓ = |x � ⇡ |
2
+ |y � ⇡ |

2
� |x � y|2

� |x � ⇡ |
2
+ |y � ⇡ |

2
�

✏2

36

� 2 |x � ⇡ | |y � ⇡ | �

✏2

36
.

Which implies cos ✓ � 1� c✏ and so |✓ |  c
p

✏.
Let ỹ :=

⇥
by,⇡

⇤
\@B|x�⇡ |(x). Since |✓ |  c

p

✏ we have |x � ỹ| 
11
10 |x � y|.

Consider the triangle T (x, ỹ,⇡). Note the angle of this triangle at ⇡ is ✓ and de-
noting the angle at x by  we have  ⇠

⇡
2 .

Then by the law of sins

|x � ỹ|
sin ✓

=

|ỹ � ⇡ |

sin 
�

|ỹ � ⇡ |

2
�

p

✏

4
.

So 4 |x�ỹ|
p

✏
� sin ✓ which gives |✓ | 

c|x�ỹ|
p

✏


c|x�y|
p

✏
. So as ru(x) =

x�bx
|x�bx | and

ru(y)= y�by
|y�by|

, hence (recalling the definition of ✓ from (5.17)) |ru(x)�ru(y)|

c arccos (ru(x) · ru(y)) 
c|x�y|

p

✏
. So (5.16) is established. Thus letting y ! x

we have that
��
r
2u(x)

��
 c✏�

1
2 and this completes the proof of Step 1.

Step 2. For any x 2 N16✏(@�) \� we have

sup
�
|ru(z) � &x | : z 2 B16u(x)(x) \�

 
 c✏�

1
2 u(x). (5.18)

Proof of Step 2. Since @� has curvature less than ✏�
1
2 for any x1, x2 2 @�,h

x1, x1 + ✏
1
2 ⌘x1

i
\

h
x2, x2 + ✏

1
2 ⌘x2

i
= ;. So for any x1, x2 2 B32u(x)(x) \ @�,��⌘x1 � ⌘x2

��
 ✏�

1
2 H1(B32u(x)(x) \ @�). Note as � \ B32u(x)(x) is convex and

@� \ B32u(x)(x) ⇢ @(� \ B32u(x)(x)) so H1(@� \ B32u(x)(x))  cu(x). Hence��⌘x1 � ⌘x2
��
 c✏�

1
2 u(x)  c

p

✏ so it is clear that

B16u(x)(x) \� ⇢

[
z2@�\B32u(x)(x)

⇥
z, z +

p

✏⌘z
⇤
. (5.19)

For any z 2 B16u(x)(x) \ � we have ru(z) =
z�bz
|z�bz | = ⌘bz where bz is such that

|z � bz| = d (z, @�). So for any z1, z2 2 B16u(x)(x) \ � by (5.19) we have that
bz1, bz2 2 @� \ B32u(x)(x), so |ru(z1) � ru(z2)| =

���⌘bz1 � ⌘bz2

���  c✏�
1
2 u(x).

Step 3. For any x 2 N8✏(@�) \� we have

||r (x)| � 1|  c
p

✏. (5.20)
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And
lim
y!z

r (y) = ⌘z . (5.21)

Proof of Step 3. From (5.11) we have�� ,&x (x) � 1
��



Bz }| {����
Z

(u,&x (x � z) � 1)⇢
✓

z
�(x)

◆
(�(x))�2 dz

���� (5.22)

+

Cz }| {����
Z

�u(x � z)�,&x (x)
(�(x))3

✓
r⇢

✓
z

�(x)

◆
·

z
�(x)

+ 2⇢
✓

z
�(x

◆◆
dz
���� .

Now for any z 2 Spt⇢�(x) we have that ru(x�z) = u,&x (x�z)&x +u,!x (x�z)!x .
As Spt⇢�(x) ⇢ B2�(x)(0) ⇢ B2u(x)(0) so for any z 2 Spt⇢�(x) by (5.18) from Step 2
we have |ru(x � z) � &x |  c✏�

1
2 u(x) and thus

��u,&x (x � z) � 1
��
 c✏�

1
2 u(x) for any z 2 Spt⇢�(x).

So (noting u(x)  c�(x) for any x 2 N8✏(@�) \�)

B  cu(x)✏�
1
2 < c�(x)✏�

1
2 . (5.23)

Also defining w = �

R
B�(x)(x) rudz

|w � &x | =

������
Z
B�(x)(x)

(ru(z) � &x ) dz

�����
(5.18)
 c✏�

1
2� (x) . (5.24)

So by Poincaré’s inequality there exists affine function lw with rlw = w

�

Z
B�(x)(x)

|u (z)�lw (z)| dz c� (x)�

Z
B�(x)(x)

|ru(z) � w| dz

 c� (x)

 
�

Z
B�(x)(x)

|ru(z)�&x | dz + c |w � &x |

!

(5.18),(5.24)
 c✏�

1
2 (� (x))2.

(5.25)

Now using (5.24), again for the appropriate choice of affine function l&x withrl&x =

&x , we have by Poincaré’s inequality

�

Z
B�(x)(x)

��l&x (z) � lw(z)
�� dz  c� (x)�

Z
B�(x)

|w � &x | dz
(5.24)
 c✏�

1
2 (� (x))2
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with (5.25) this gives

�

Z
B�(x)(x)

��l&x (z) � u(z)
�� dz  c✏�

1
2 (� (x))2. (5.26)

Let g be defined by g(y) = l&x ⇤⇢�(y)(y). Note by Lemma 5.2 we haverg(y) = &x
for any y 2 � and hence g,&x (x) = 1. As

g,&x (x) =

Z
⇢

✓
z

�(x)

◆
(�(x))�2 dz

�

Z l&x (x � z)
(� (x))3

�,&x (x)
✓

r⇢

✓
z

�(x)

◆
· z (�(x))�1 + 2⇢

✓
z

�(x)

◆◆
dz

= 1�

Z l&x (x � z)
(� (x))3

�,&x (x)
✓
r⇢

✓
z

�(x)

◆
· z(�(x))�1+2⇢

✓
z

�(x)

◆◆
dz.

Thus

0 =

Z l&x (x � z)
(� (x))3

�,&x (x)
✓

r⇢

✓
z

�(x)

◆
· z (�(x))�1 + 2⇢

✓
z

�(x)

◆◆
dz.

So

C

Z ��l&x (x�z) � u(xz)
��

(� (x))3

�����,&x (x)
✓
r⇢

✓
z

�(x)

◆
· z (�(x))�1+2⇢

✓
z

�(x)

◆◆���� dz
 c(�(x))�3

Z
B�(x)(x)

��l&x (z) � u(z)
�� dz (5.27)

(5.26)
 c✏�

1
2�(x).

Since x 2 N8✏(@�) \ � we know �(x)  c✏ applying (5.27) and (5.23) to (5.22)
gives �� ,&x (x) � 1

��
 c✏�

1
2� (x)  c

p

✏. (5.28)

Now using that u,!x (x) = 0 we have that

�� ,!x (x)
��



����
Z
u,!x (x � z)⇢�(x)(z)dz

����


Z ��u,!x (x � z) � u,!x (x)
�� ⇢�(x)(z)dz

(5.29)
(5.15)
 c✏�

1
2�(x)

Z
⇢�(x)(z)dz

 c✏
1
2�(x).
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Thus |r (x) � &x |  c
p

✏ and (5.20) follows easily. Also for (5.28), (5.29) we
know

��
r (x) � ⌘bx

��
 c✏�

1
2�(x) and (5.21) follows. This completes the proof of

Step 3.
Step 4. We will show���r2 (x)

���  c✏�
1
2 for any x 2 N8✏(@�) \�. (5.30)

Proof Step 4. We will estimate the terms in (5.14) one by one. First noteZ
u(x � y)

@2

@2&x

�
⇢�(x)(z)

�
dz

=

Z
u(x � z)@&x

 
2X

k=1
�⇢,k

✓
z

� (x)

◆
zk�,&x (x)
(� (x))4

� 2⇢
✓

z
� (x)

◆
�,&x (x)
(� (x))3

!
dz

=

Z
u(x � z)

 
2X

k,l=1
⇢,kl

✓
z

� (x)

◆ �
�,&x (x)

�2
(�(x))6

zkzl

�

2X
k=1

⇢,k

✓
z

� (x)

◆
zk@&x

✓
�,&x (x)
(�(x))4

◆

+2
2X

m=1
⇢,m

✓
z

� (x)

◆
zm

(�,&x (x))2

(�(x))5

�2⇢
✓

z
� (x)

◆
@&x

✓
�,&x (x)
(� (x))3

◆◆
dz

Note
@&x

✓
�,&x (x)
(� (x))3

◆
=

�3(�,&x (x))2

(� (x))4
+

�,&x&x (x)
(� (x))3

and
@&x

✓
�,&x (x)
(�(x))4

◆
=

�4(�,&x (x))2

(� (x))5
+

�,&x&x (x)
(� (x))4

.

So Z
u(x � y)

@2

@2&x

�
⇢�(x)(z)

�
dz

=

Z
u(x � z)

 ✓
r
2⇢

✓
z

� (x)

◆
: z ⌦ z

◆
(�,&x (x))2

(� (x))6 (5.31)
+

 
�

�,&x&x (x)
(� (x))4

+

6(�,&x (x))2

(� (x))5

!
r⇢

✓
z

� (x)

◆
· z

+

 
6(�,&x (x))2

(� (x))4
�

2�,&x&x (x)
(� (x))3

!
⇢

✓
z

� (x)

◆!
dz.
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From Step 2 (5.26) we know the existence of an affine function l&x with rl&x = &x

with �

R
B�(x)(x)

��u � l&x
�� dz  c✏

1
2� (x). Let g(x) := l&x ⇤ ⇢�(x) (x); by Lemma

5.2 we know g,&x&x (x) = 0. By following through the same calculation that gave
(5.31), we have

0 =

Z
l&x (x � z)

 ✓
r
2⇢

✓
z

� (x)

◆
: z ⌦ z

◆
(�,&x (x))2

(� (x))6

+

 
�

�,&x&x (x)
(� (x))4

+

6(�,&x (x))4

(� (x))5

!
r⇢

✓
z

� (x)

◆
· z (5.32)

+

 
6(�,&x (x))2

(� (x))4
�

2�,&x&x (x)
(� (x))3

!
⇢

✓
z

� (x)

◆!
dz.

Note for x 2 N8✏(@�) \ �,
���,&x (x)

��
 c and

���,&x&x (x)
��

 c✏�1  c(�(x))�1.
So applying (5.32) to (5.31)

�����
Z
u(x � z)

@2

@&2x

�
⇢�(x)(z)

������


Z ��u (x � z) � l&x (x � z)
��
�����
✓

r
2⇢

✓
z

� (x)

◆
: z ⌦ z

◆
(�,&x (x))2

(� (x))6

+

 
��,&x&x (x)
(� (x))4

+

6(�,&x (x))4

(� (x))5

!
r⇢

✓
z

� (x)

◆
· z

+

 
6(�,&x (x))2

(� (x))4
�

2�,&x&x (x)
(� (x))3

!
⇢

✓
z

� (x)

◆����� dz (5.33)

 c
Z
B�(x)(0)

��u (x � z) � l&x (x � z)
��

(� (x))4
dz
⇣
kr

2⇢k1 + kr⇢k1 + k⇢k1

⌘

 c
Z
B�(x)(x)

��u (z) � l&x (z)
�� (� (x))�4 dz

(5.26)
 c✏�

1
2 .

Define h(x) :=
R
⇢�(x)(z)dz. Note that h⌘1 and so @h

@&x
(x)=

R
@
@&x

(⇢�(x)(z))dz= 0.



FUNCTIONS WITH LOW AVILES GIGA ENERGY 59

So ����
Z
u,&x (x � z)

@

@&x

�
⇢�(x)(z)

�
dz
����

=

����
Z �

u,&x (x � z) � 1
� @

@&x

�
⇢�(x)(z)

�
dz
����

(5.9),(5.18)
 c✏�

1
2 u(x)

����
Z
�,&x (x)

✓
r⇢

✓
z

�(x)

◆
· z (�(x))�4 (5.34)

+2⇢
✓

z
�(x)

◆
(�(x))�3

◆����
 c✏�

1
2 .

Finally we estimate the first term from (5.14):����
Z
u,&x&x (x � z)⇢�(x)(z)dz

����  kr
2ukL1(B4⇢�(x) (x))

����
Z
⇢�(x)(z)dz

����
(5.15)
 c✏�

1
2 .

(5.35)

Putting (5.33), (5.34) and (5.35) together and applying this to (5.14) we have
�� ,&x&x (x)

��
 c✏�

1
2 for any x 2 N8✏(@�) \�. (5.36)

Now by (5.12) for any x 2 N8✏(@�) \� we have
�� ,!x&x (x)

��


Z ���r2u(x � z)
��� ⇢�(x)(z)dz

+

Z ����u,!x (z � x)
@

@&x
(⇢�(x)(z))

���� dz
(5.18),(5.15)

 c✏�
1
2 + c✏

1
2

Z ���� @@&x (⇢�(x)(z))
���� dz

(5.9)
 c✏�

1
2 .

(5.37)

And by (5.13) �� !x!x (x)�� 

����
Z
u,!x!x (x � z)⇢�(x)(z)dz

����
(5.15)
 c✏�

1
2 .

(5.38)

Putting (5.36), (5.37) and (5.38) together establishes (5.30).
Proof of Lemma completed. From Step 3 for any x 2 N8✏(@�) \� we have���|r (x)|2 � 1

���2  c✏

so (5.2) follows. In the same way from Step 4 (5.30) and (5.3) follows.
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Since for any x 2 �\N8✏(@�)we know u(x) � ✏ and so �(x) = w(u(x)) = ✏
and thus ⇢�(x)(z) = ⇢

� z
✏

�
✏�1 and there for  (x) =

R
u(x � z)⇢✏(z)dz. Thus (5.4)

is established. Finally by (5.21), (5.5) follows.

Lemma 5.4. Let� be a convex domain and |�4B1(0)|  �. Let u(x) = d(x, @�)
and for " > 0 define u" := u ⇤ ⇢". For any a 2 �\N4"(@�) we have

||ru"(x)| � 1|  c"�1V (ru, B4"(a)) for any x 2 B2"(a). (5.39)

Proof. Firstly recall that since u is concave we haveru is BV. Letw=�

R
B4"(a)rudx .

By Poincaré’s inequality (see Remark 3.45 [4])
Z
B4"(a)

|ru � w| dz  c"V (ru, B4"(a)) . (5.40)

Now

⇡16"2 |1� |w|| =

Z
B4"(a)

|1� |w|| dz

=

Z
B4"(a)

||ru| � |w|| dz

(5.40)
 c"V (ru, B4"(a)).

Thus |1� |w||  c V (ru,B4"(a))
" and so there must exists v 2 S1 such that |v � w| 

|1� |w|| hence putting this together with (5.40) we have

�

Z
B4"(a)

|ru � v| dz  c
V (ru, B4"(a))

"
. (5.41)

Hence for any w 2 B2"(a)

|ru"(w) � v| =

����
Z

(ru(z) � v) ⇢"(w � z)dz
����

 c"�2
����
Z

(ru(z) � v) ⇢("�1(z � w))dz
����

 c"�2
Z
B2"(w)

|ru(z) � v| dz

(5.41)
 c

V (ru, B4"(a))
"

.

This completes the proof of Lemma 5.4.
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Lemma 5.5. Let� be a convex domain and |�4B1(0)|  �. Let u(x) = d(x, @�)

and define u" := u ⇤ ⇢". Define 3 := �\

✓
N8"(@�) [ B

4�
1
8
(0)
◆
, we will show

that for any " 2 (0, �
1
2
4 ]Z
3
"�1

���1� |ru"|2
���2 + "

���r2u"
���2 dz  c�

3
16 . (5.42)

Proof of Lemma. By the 5r Covering Theorem [20, Theorem 2.1], we can find a
finite collection of balls J :=

n
B 2"
5
(xi ) : i = 1, 2, . . .m

o
that are piecewise disjoint

and 3 ⇢

Sm
i=1 B2"(xi ).

Note that for any i = 1, 2, . . . n, since the set of ball in J are pairwise disjoint,
for some constantC1 there are at mostC1 balls from the set {B5"(xk) : k = 1, . . .m}

intersecting B5"(xi ). Thus k

Pm
i=1 11B5"(xi )kL1(�)  C1 and this obviously implies

k

Pm
i=1 11B2"(xi )kL1(�)  C1.
For x, y 2 R2 let x ⌦ y :=

� x1y1 x1y2
x2y1 x2y2

�
. For a 2 3 if x 2 B2"(a), let w =

�

R
B"(x) rudx . Now

���r2u"(x)
��� =

����
Z

ru(z) ⌦ r⇢"(x � z)dz
����



����
Z

(ru(z) � w) ⌦ r⇢

✓
x � z
"

◆
"�3dz

����
 c"�3

����
Z
B2"(x)

(ru � w)dz
����

(5.40)
 c"�2V (ru, B4"(a)).

(5.43)

So Z
3

���r2u"
���2 dz 

mX
i=1

c
Z
B2"(xi )

���r2u"
���2 dz

 c
mX
i=1

"2kr2u"k2L1(B2"(xi ))

(5.43)
 c"2

 
mX
i=1

"�4 (V (ru, B4"(xi )))2
!

(4.11)
 c�

3
16 "�1

 
mX
i=1

V (ru, B4"(xi ))

!

 c�
3
16 "�1V (ru,3)

(4.10)
 c"�1�

3
16 .

(5.44)
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Now
Z
3

���1� |ru"|2
���2 dz  c

mX
i=1

Z
B2"(xi )

|1� |ru"||2 dz

(4.11),(5.39)


mX
i=1

c"2�
3
16 k |1� |ru"|| kL1(B2"(xi ))

(5.39)


mX
i=1

c"�
3
16 V (ru, B4"(xi ))

 c"�
3
16 V (ru,�\B

2�
1
8
(0))

(4.10)
 c�

3
16 ".

(5.45)

Putting (5.45) together with (5.44) establishes (5.42).

Lemma 5.6. Let ⌘(x) = |x |, " > 0 and define ⌘"(x) :=

R
⌘(z)⇢"(x � z)dz. Then

Z
B1(0)

���1� |r⌘"|
2
���2 dz  c log("�1)"2 (5.46)

and Z
B1(0)

���r2⌘"
���2 dz  c log("�1). (5.47)

Proof of Lemma. Note for x 62 B2"(0), z 2 B"(x)
���� z
|z|

�

x
|x |

���� 

���� z |x | � x |z|
|z| |x |

����


���� z |x | � x |x |
|z| |x |

����+
���� x |x | � x |z|

|z| |x |

���� (5.48)



c"
|x | � "

.

So for x 62 B4"(0)
����r⌘"(x) �

x
|x |

���� =

����
Z
⇢"(x � z)

✓
x
|x |

�

z
|z|

◆
dz
����

(5.48)


c"
|x | � "

.

(5.49)
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Since
R x

|x | ⌦ r⇢"(x � z)dz = 0, for any x 62 B4"(0)

r
2⌘"(x) =

����
Z

r⌘"(z) ⌦ r⇢"(x � z)dz
����

=

����
Z ✓

r⌘"(z) �

z
|z|

◆
⌦ r⇢"(x � z)dz

����
+

����
Z ✓

x
|x |

�

z
|z|

◆
⌦ r⇢"(x � z)dz

����
(5.48),(5.49)



c"
|x | � "

����
Z

r⇢"(x � z)dz
����



c
|x | � "

.

(5.50)

Hence
Z
B1(0)\B4"(0)

���r2⌘"(x)
���2 dx (5.50)

= c
Z 1

4"

Z
@Bh(0)

✓
1

|z| � "

◆2
dH1zdr

 c
Z 1

"

1
r
dr (5.51)

 c log("�1).

Now as |r⌘✏(x)|  c and
��
r
2⌘✏(x)

��
 c✏�1 for any x 2 B1�✏(0) so

Z
B4✏(0)

���r2⌘✏
���2 dz  c✏.

Thus putting this together with (5.51) establishes (5.47).

Note ||r⌘"(x)| � 1|2 

���r⌘"(x) �
x
|x |

���2 (5.49)
 c ✏2

(|x |�✏)2 so arguing in the same
way as in (5.51) we have (5.46).

5.2. Proof of Proposition 5.1

Let u(x)=d(x, @�), let w : R+ !R+ be the smooth monotonic function from the
proof of Lemma 5.3. So w satisfies (5.6) and sup |ẅ|  c✏�1. As in Lemma 5.3;
for x 2 N✏(@�) \� define

�(x) = w(u(x)). (5.52)

Let
v(x) := min

n
u(x), 1� 8�

3
32 + |x |

o
and define

⇠(x) =

Z
v(x � z)⇢�(x)(z)dz.
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Let5 :=

n
x : u(x) > 1� 8�

3
32 + |x |

o
. Define30 := �\(N8✏(@�)[N✏(5)).

Note that ⇠(x) = u✏(x) for any x 2 30.
Recall from (5.10) the function  defined in Lemma 5.3. Note that for any

x 2 N8✏(@�) \� function � we defined by (5.52) is identical to � defined by (5.7)
in Lemma 5.3. Hence as u = v in N8✏(@�) \ � we have ⇠(x) =  (x) for any
x 2 N8✏(@�) \� thusZ

N8✏(@�)\�
✏�1

���1� |r⇠ |2
���2 + ✏

���r2⇠ ���2 dx (5.2),(5.3)
 c✏.

Since  = u✏ in 30, from (5.42) we have
R
30
✏�1

��1� |r⇠ |2
��2

+ ✏
��
r
2⇠
��2 dx 

c�
3
16 and so putting this two inequalities together we haveZ

�\N✏(5)
✏�1

���1� |r⇠ |2
���2 + ✏

���r2⇠ ���2 dx  c�
3
16 . (5.53)

Now, as for any x 2 5\N✏(@5), w(x) = 1� 8�
3
32 + |x | and so u✏(x) = ⌘✏(x) +

(1� 8�
3
32 ) where ⌘(x) = |x | and ⌘✏ = ⌘ ⇤ ⇢✏ . So r⇠(x) = r⌘✏(x) and r

2⇠(x) =

r
2⌘✏(x) thus applying Lemma 5.6 we haveZ

5\N✏(@5)
✏�1

���1� |r⇠ |2
���2 + ✏

���r2⇠ ���2 dx (5.46),(5.47)
 c✏ log(✏�1). (5.54)

Since w is Lipschitz, ⇠ is Lipschitz and so from (4.43) we haveZ
N✏(@5)

✏�1
���1� |r⇠ |2

���2 dx  c�
3
32 .

And note for any x 2 �\N✏(@�)

���r2⇠(x)��� = ✏�3
����
Z

rv(z) · r⇢

✓
x � z
✏

◆
dz
����  c✏�1

so Z
N✏(@5)

✏
���r2⇠ ���2 dx  c✏�1 |N✏(@5)|

(4.43)
 c�

3
32 .

Putting these inequalities together we haveZ
N✏(@5)

✏�1
���1� |r⇠ |2

���2 + ✏
���r2⇠ ���2 dx  c�

3
32 . (5.55)

Now inequalities (5.53), (5.54) and (5.55) give us that ⇠ satisfies (5.1). And since
⇠(x) =  (x) on N✏(@�) \� from (5.5) satisfies r⇠(x) · ⌘x = 1 for any x 2 @�.
This completes the proof of Proposition 5.1.
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5.3. Proof Corollary 1.2

Let ↵ = infy2� |�4B1(y)|. Let � = 4(↵ + ✏), note that since we can assume
without loss of generality that ↵ + ✏ 

1
4 so �  1. This implies �  �

1
2 and so

✏ 
�
1
2
4 . Now we can also assume without loss of generality that |�4B1(0)|  �.

So we can apply Proposition 5.1 which gives us the existence of ⇠ 2 3(�) such
that(5.1) hold true. Hence we have that infu23(�) I✏(u)  c�

3
32 . Let v 2 3(�) be

the minimiser of I✏ and since v satisfies
Z
�

���1� |rv|
2
��� ���r2v��� dz 

Z
�
✏�1

���1� |rv|
2
���2 + ✏

���r2v���2 dz  c�
3
32

and as ✏ 2 (0, �
1
2
4 ) Z

�

���1� |rv|
2
���2 dz  c�

19
32 .

Thus we have that (1.4), (1.5) are satisfied and hence by Theorem 1.4

Z
�

����rv(z) +

z
|z|

����
2
dz  c�

1
5462 .

Applying Lemma 4.4 we have
R
�\B

�
1
8

(0) |rv � r⇣ |2  c�
1

5462 . So arguing in the

same way as the proof of Corollary 1.3 we have kv � ⇣kW 1,2(�)  c�
1

5462  c(✏ +

↵)
1

5462 .
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