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Periodically wrinkled plate model of the Föppl-von Kármán type

IGOR VELČIĆ

Abstract. In this paper we derive, by means of 0-convergence, the periodically
wrinkled plate model starting from three dimensional nonlinear elasticity. We
assume that the thickness of the plate is h2 and that the mid-surface of the plate is
given by (x1, x2) → (x1, x2, h2θ( x1h , x2h )), where θ is [0, 1]2 periodic function.
We also assume that the strain energy of the plate has the order h8 = (h2)4, which
corresponds to the Föppl-von Kármán model in the case of the ordinary plate. The
obtained model mixes the bending part of the energy with the stretching part.

Mathematics Subject Classification (2010): 74K20 (primary); 74B20 (sec-
ondary).

1. Introduction

The study of thin structures is the subject of numerous works in the theory of elas-
ticity. Many authors have proposed two-dimensional shell and plate models and we
come to the problem of their justification. There is a vast literature on the subject
of plates and shells (see [9, 10]).

The justification of the model of plates and shells, by using 0-convergence is
well established. The first works in that direction are [17, 18]. The thickness of
the plate is assumed to be h, a small parameter, and the external loads are assumed
to be of the order 0. The obtained model for plate and shells differs from the one
obtained by the formal asymptotic expansion in the sense that additional relaxation
of the energy functional is done.

From the pioneering work of Friesecke, James, Müller [13] higher order mod-
els of plates and shells are justified from three dimensional nonlinear elasticity
(see [13–16, 20, 21]. Here, higher order, relates that we assume that the magni-
tude of the external loads (i.e. of the strain energy) behaves like hα,α > 0 (i.e.
hβ,β > 0). Depending on different parameter α different lower-dimensional mod-
els are obtained (see [14]).

Different influence of the imperfections of the domain on the model is also
discussed in the literature. In [5, 7] it is assumed that the stored energy is non-
homogeneous function and oscillates with the order h, as the thickness of the plate,
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but the strain energy (after divided by the order of volume h) is assumed to be of the
order 0. This model thus corresponds to the one given in [17] for the ordinary plate.
Also, the influence of non oscilating imperfections of the domain on the Föppl-von
Kármán plate model is discussed in [22] (elastic pre-deformation is a special case
of these imperfections). The special case of shallow shell and weakly curved rod is
discussed in [28, 29]. All these models do not include periodic wrinkles which we
discuss here. Here we assume that the thickness of the plate is h2 and that the mid-
surface of the plate is given by (x1, x2) → (x1, x2, h2θ( x1h , x2h )), where θ is [0, 1]2
periodic function. We also assume that the strain energy of the plate (divided by the
order of volume h2) has the order h8 = (h2)4, which corresponds to the Föppl-von
Kármán model in the case of the ordinary plate. The obtained model mixes the
bending part of the energy with the stretching part. This model is obtained in the
procedure of simultaneous homogenization and dimensional reduction. Recently
such procedure is done to obtain bending model of rods (see [24]). Some partial re-
sults are obtained in the bending case of plates (see [23]). However, in this case we
consider the Föppl-von Kármán model for plates and suppose that we have oscillat-
ing elastic pre-deformation, but not oscillating changes of the material itself. Let us
just mention that applying the same type of wrinkles in the case of von Kármán rod
model would not influence the model i.e. we would obtain the usual von Kármán
rod model.

We could try to generalize these periodic wrinkles to the general prestress im-
perfections of domain (like it is done in [22] for non oscillating prestress or in [23]
for the oscillating prestress in the bending case for rod). But it is important to see
that our model depends on the pre-deformation θ0 (see (4.60)), thus not only on
the derivatives of θ . To deal with periodic wrinkles we use the tool of two-scale
convergence. The wrinkled plates model, derived from two dimensional linear Koi-
ter shell model, are derived in [2, 3]. This model (and its linearization) is different
from those ones, which is not unexpected, since we derive the model from three
dimensional nonlinear theory and the thickness of the plate is of the same order as
the amplitude of the mid-surface.

Throughout the paper Ā or {A}− denotes the closure of the set. By a domain we
call a bounded open set with Lipschitz boundary. I denotes the identity matrix, by
SO(3) we denote the rotations in R3 and by so(3) the set of antisymmetric matrices
3 × 3. By Rn×n

sym we denote the set of symmetric matrices of the dimension n ×

n. Ee1, Ee2, Ee3 are the vectors of the canonical base in R3. → denotes the strong
convergence and * the weak convergence. By A · B we denote tr(ATB). We
suppose that the Greek indices α,β take the values in the set {1, 2} while the Latin
indices i, j take the values in the set {1, 2, 3}.

2. Setting up the problem

Let ω be a two-dimensional domain with Lipschitz boundary in the plane spanned
by Ee1, Ee2. The canonical cell in R2 we denote by Y = [0, 1]2; the generic point in
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Y is y = (y1, y2). By a periodically wrinkled plate we mean a shell defined in the
following way. Let θ : R2 → R be a Y -periodic function of class C2. We call θ
the shape function. We consider a three-dimensional elastic shell occupying in its
reference configuration the set {ƒ̂h}−, where

ƒ̂h = E2h(ƒh), ƒh = ω ×

√

−
h2

2
,
h2

2

!

;

the mapping E2h : {ƒh}− → R3 is given by

E2h(xh) =

µ
x1, x2, h2θ

µ
x1
h

,
x2
h

∂∂
+ xh3 Enh(x1, x2)

for all xh = (x 0, xh3 ) ∈ ƒ̄h , where Enh is a unit normal vector to the middle surface
E2h(ω) of the shell. By ƒ we denote ƒ1 and by x3 we denote

xh3
h2 and by x

0 we
denote x 0 = (x1, x2). At each point of the surface ω̄ the vector Enh is given by

Enh(x1, x2) = (nh(x1, x2))−1/2
µ

−h@1θ
µ
x1
h

,
x2
h

∂
,−h@2θ

µ
x1
h

,
x2
h

∂
, 1

∂
,

where

nh(x1, x2) = h2@1θ
µ
x1
h

,
x2
h

∂2
+ h2@2θ

µ
x1
h

,
x2
h

∂2
+ 1.

By inverse function theorem it can be easily seen that for h ∑ h0 small enough E2h is
a C1 diffeomorphism (the global injectivity can be proved by adapted compactness
argument, see [10, Theorem 3.1-1] for the ordinary shell). Let us by θ0 : R2 → R
denote the function:

θ0 = θ − hθi, hθi :=
Z

Y
θdy. (2.1)

The following theorem is easy to prove.

Theorem 2.1. There exists h0 = h0(θ) > 0 such that the Jacobian matrix∇ E2h(xh)
is invertible for all xh ∈ ƒ̄h and all h ∑ h0. Also there exists C > 0 such that for
h ∑ h0 we have

det∇ E2h = 1+ h2δh(xh), (2.2)

and

∇ E2h(xh) = I− hC(x1, x2) − h2D(x1, x2, x3) + h3Rh1(x
h), (2.3)

(∇ E2h(xh))−1 = I+ hC(x1, x2) + h2E(x1, x2, x3) + h3Rh2(x
h), (2.4)

k(∇ E2h) − IkL1(ƒh;R3×3), k(∇ E2h)−1 − IkL1(ƒh;R3×3) < Ch, (2.5)
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where

C(x1, x2) =




0 0 @1θ( x1h , x2h )

0 0 @2θ( x1h , x2h )

−@1θ( x1h , x2h ) −@2θ( x1h , x2h ) 0



 , (2.6)

D(x1,x2,x3) = (2.7)





x3@11θ( x1h , x2h ) x3@12θ( x1h , x2h ) 0
x3@12θ( x1h , x2h ) x3@22θ( x1h , x2h ) 0

0 0 1
2

≥
@1θ( x1h , x2h )2 + @2θ( x1h , x2h )2

¥




,

E(x1, x2, x3) = C2(x1, x2) + D(x1, x2, x3)
= (E1(x1, x2, x3),E2(x1, x2, x3),E3(x1, x2, x3)), (2.8)

E1(x1, x2, x3) =




−@1θ( x1h , x2h )2 + x3@11θ( x1h , x2h )

−@1θ( x1h , x2h )@2θ( x1h , x2h ) + x3@12θ( x1h , x2h )

0



 , (2.9)

E2(x1, x2, x3) =




−@1θ( x1h , x2h )@2θ( x1h , x2h ) + x3@12θ( x1h , x2h )

−@2θ( x1h , x2h )2 + x3@22θ( x1h , x2h )
0



 , (2.10)

E3(x1, x2, x3) =






0
0

−1
2

≥
@1θ( x1h , x2h )2 + @2θ( x1h , x2h )2

¥




 , (2.11)

and δh : ƒ̄h → R, Rhk : ƒ̄h → R3×3, k = 1, 2 are functions which satisfy

sup
0<h∑h0

max
xh∈ƒ̄h

|δh(xh)| ∑ C0, sup
0<h∑h0

max
i, j

max
xh∈ƒ̄h

|Rhk,i j (x
h)| ∑ C0, k = 1, 2,

for some constant C0 > 0.

Proof. It is easy to see

Enh(x1, x2) = Ee3 − h@1θ
µ
x1
h

,
x2
h

∂
Ee1 − h@2θ

µ
x1
h

,
x2
h

∂
Ee2

−
h2

2

√

@1θ

µ
x1
h

,
x2
h

∂2
+ @2θ

µ
x1
h

,
x2
h

∂2!

Ee3 + h3oh1(x1, x2),(2.12)

where

sup
0<h∑h0

max
xh∈ƒ̄h

|oh1(x1, x2)| ∑ C, sup
0<h∑h0

max
xh∈ƒ̄h

|@αoh1(x1, x2)| ∑
C
h

,
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for some C > 0 and α = 1, 2. From the definition E2h we conclude that

∇ E2h(x 0, xh3 ) = I+ h@1θ
µ
x1
h

,
x2
h

∂
Ee3 ⊗ Ee1 + h@2θ

µ
x1
h

,
x2
h

∂
Ee3 ⊗ Ee2

+

µ
xh3 @1En

h
µ
x1
h

,
x2
h

∂
, xh3 @2En

h
µ
x1
h

,
x2
h

∂
, Enh

∂
. (2.13)

The relation (2.3) is the direct consequence of the relations (2.12) and (2.13). The
relations (2.2), (2.4), (2.5) are the direct consequences of the relation (2.3).

The starting point of our analysis is the minimization problem for the wrinkled
plate. The strain energy of the wrinkled plate is given by

Kh(Ey) =
Z

ƒ̂h
W (∇Ey(x))dx,

where W : M3×3 → [0,+1] is the stored energy density function. W is Borel
measurable and, as in [13–15], is supposed to satisfy

i) W is of class C2 in a neighborhood of SO(3);
ii) W is frame-indifferent, i.e., W (F) = W (RF) for every F ∈ R3×3 and R ∈
SO(3);

iii) W (F) ≥ CW dist2(F,SO(3)), for some CW > 0 and all F ∈ R3×3, W (F) = 0
if F ∈ SO(3).

By Q3 : R3×3 → R we denote the quadratic form Q3(F) = D2W (I)(F,F) and by
Q2 : R2×2 → R the quadratic form,

Q2(G) = min
Ea∈R3

Q3(G+ Ea ⊗ Ee3 + Ee3 ⊗ Ea), (2.14)

obtained by minimizing over the stretches in the x3 directions. Using ii) and iii)
we conclude that both forms are positive semi-definite (and hence convex), equal
to zero on antisymmetric matrices and depend only on the symmetric part of the
variable matrix, i.e. we have

Q3(F) = Q3(symF), Q2(G) = Q2(symG). (2.15)

Also, from ii) and iii), we can conclude that both forms are positive definite (and
hence strictly convex) on symmetric matrices. For the special case of isotropic
elasticity we have

Q3(F) = 2µ|
F+ FT

2
|2 + ∏(trF)2,

Q2(G) = 2µ|
G+GT

2
|2 +

2µ∏

2µ + ∏
(trG)2. (2.16)
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Here µ, ∏ are Lamé constants (see e.g. [8]). Since the strain energy is the most
difficult part to deal with (see Theorem 4.15) we shall look for the 0-limit of the
functional

I h(Ey) =
1
h8

1
h2
Kh(Ey).

The reason why we divide by h8 is because we are interested in the Föppl-von
Kármán type model of the wrinkled plate (the thickness of the plate is h2). The
reason why we additionally divide Kh by h2 is because the volume of ƒ̂h is de-
creasing with the order h2. In the third section we prove some technical results
about two scale convergence which we need later, in the forth section we prove the
0-convergence result. To prove it we firstly need the compactness result which tells
us how the displacements of the energy order h8 look like and secondly we have to
prove lower and upper bound which is standard in 0-analysis.

3. Two-scale convergence

For the notion of two scale convergence see [4, 25]. Here ω ⊂ Rn is a bounded
Lipschitz domain and Y = [0, 1]n . For k = (ki )i=1,...,n ∈ Zn we denote by |k| =
(
Pn

i=1 k2i )
1/2.

We denote by Ck
#(Y ) the space of k-differentiable functions with continuous

k-th derivative in Rn which are periodic of period Y . Then L2#(Y ) (respectively
Hm
# (Y ) is the completion for the norm of L2(Y ) (respectively Hm(Y ) of C1

# (Y )).
Remark that L2#(Y ) actually coincides with the space of functions in L2(Y ) ex-
tended by Y -periodicity to the whole of Rn . H1# (Y ) coincides with the space of
functions in H1(Y ) which are Y -periodic at the boundary in the sense of traces and
H2# (Y ) coincides with the space of functions in H2(Y ) which are with their first
derivatives Y -periodic at the boundary in the sense of traces etc. Using the Fourier
transform on torus it can be seen that (see e.g. [27])

Hm
# (Y ) =

Ω
u, u(y) =

X

k∈Zn
cke2π ik·y, ck = c−k,

X

k∈Zn
|k|2m |ck |2 < 1

æ
, (3.1)

and the norm kukHm
# (Y ) is equivalent to the norm {

P
k∈Z2(1 + |k|2m)|ck |2}1/2. We

also set

Ḣm
# (Y ) =

Ω
u of type (3.1), c0 = 0} = {u, u ∈ Hm

# (Y ),

Z

Y
u = 0

æ
.

The restricted norm kukḢm
# (Y ) is equivalent to the norm {

P
k∈Z2 |k|2m |ck |2}1/2. The

space L2(ω;C#(Y )) denotes the space of measurable and square integrable func-
tions in x ∈ ω with values in the Banach space of continuous functions, Y -periodic
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in y. In the analogous way one can define L2(ω; Hm
# (Y )). Using the representation

(3.1) it can be seen that

L2(ω; Hm
# (Y )) =

Ω
u, u(x, y) =

X

k∈Zn
ck(x)e2π ik·y, ck ∈ L2(ω; Rn), ck = c−k,

X

k∈Zn
|k|2mkckk2L2(ω)

< 1

æ
, (3.2)

where we have by ck denoted the conjugate of ck . The norm kukL2(ω;Hm
# (Y )) is

equivalent to the norm
Ω X

k∈Z2
(1+ |k|2m)kckk2L2(ω)

æ1/2
.

The space D(ω;C1
# (Y )) denotes the space of infinitely differentiable functions

which take values in C1
# (Y ) with compact support in ω. It is easily seen that this

space is dense in L2(ω; Hm
# (Y )). In fact it can be seen that the space of finite linear

combinations

FL(ω;C1
# (Y )) =

Ω
u, ∃n ∈ N u(x, y) =

X

k∈Zn, |k|∑n
ck(x)e2π ik·y,

ck ∈ C1
0 (ω; R2), ck = c−k

æ

is dense in L2(ω; Hm
# (Y )).

Definition 3.1. A sequence (uh)h>0 of functions in L2(ω) converges two-scale to
a function u0 belonging to L2(ω × Y ) if for every √ ∈ L2(ω;C#(Y )),

Z

ω
uh(x)√

µ
x,
x
h

∂
→

Z

ω

Z

Y
u0(x, y)√(x, y) as h → 0.

By ** we denote the two-scale convergence. The following theorems are given
in [4].

Theorem 3.2. Let f ∈ L1(ω;C#(Y )). Then f (x, xh ) is a measurable function on
ω for which it is valid:

k f
µ
x,
x
h

∂
kL1(ω) ∑

Z

ω
sup
y∈Y

| f (x, y)|dy =: k f kL1(ω;C#(Y )), (3.3)

and
lim
h→0

Z

ω
f
µ
x,
x
h

∂
dx =

Z

ω

Z

Y
f (x, y)dydx . (3.4)
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Theorem 3.3. From each bounded sequence (uh)h>0 in L2(ω) one can extract a
subsequence, and there exists a limit u0(x, y) ∈ L2(ω × Y ) such that this subse-
quence two-scale converges to u0.

The following theorem tells us about the form of oscillations of order h of
weakly convergent sequences in H1(ω).
Theorem 3.4. Let (uh)h>0 be a bounded sequence in H1(ω) which converges
weakly to a limit u ∈ H1(ω). Then uh two-scale converges to u(x), and there
exists a unique function u1(x, y) ∈ L2(ω; Ḣ1# (Y )) such that, up to a subsequence,
(∇uh)h>0 two-scale converges to ∇xu + ∇yu1(x, y).
Remark 3.5. In the definition of two-scale convergence we have taken the test
functions to be in the space L2(ω;C#(Y )). When we are dealing with the sequence
of the functions which are bounded in L2(ω) it is enough to take the test function
to be in the space D(ω;C1

# (Y )).
The following lemmas will be needed later.

Lemma 3.6. Let (uh)h>0 be a bounded sequence in H1(ω) and let there exists a
constant C > 0 such that kuhkL2(ω) ∑ Ch2. Then we have that (uh)h>0 and
(∇uh)h>0 two-scale converge to 0.
Proof. That (uh)h>0 two-scale converges to zero is the direct consequence of the
fact that strong convergence implies two-scale convergence to the same limit (not
depending on y ∈ Y ). Let us now take √ ∈ D(ω;C1

# (Y )). Then we have
Z

ω
@i uh(x)√

µ
x,
x
h

∂
dx = −

Z

ω
uh(x)@x√

µ
x,
x
h

∂
dx

−
1
h

Z

ω
uh(x)@y√

µ
x,
x
h

∂
dx .

Since the both terms on the right hand side converge to 0, due to the fact that
kuhkL2(ω) ∑ Ch2 we have the claim.

The following characterization of the potentials is needed
Lemma 3.7. Let Eu ∈ L2(ω × Y ; Rn) be such that for each E√ ∈ D(ω;C1

# (Y ))n

which satisfies divy E√ = 0, ∀x, y we have that
Z

ω

Z

Y
Eu(x, y) E√(x, y)dydx = 0.

Then there exists a unique function v ∈ L2(ω; Ḣ1# (Y )) such that ∇yv = u. In the
same way, let EU ∈ L2(ω × Y ; Rn×n) be such that for each E9 ∈ D(ω;C1

# (Y ))n×n

which satisfies
Pn

i, j=1 @yi y j E9i j = 0, ∀x, y we have that
Z

ω

Z

Y
EU(x, y) · E9(x, y)dydx = 0. (3.5)

Then there exists a unique function v ∈ L2(ω; Ḣ1# (Y )) such that ∇2yv = EU .
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Proof. We shall only prove the second claim since the first goes in the analogous
way. Let us define the operator ∇2y : L2(ω; Ḣ2# (Y )) → L2(ω × Y ; Rn×n) by
v → ∇2yv. Let us identify the space L2(ω; Ḣ2# (Y )) with the sequences of
functions

L2(ω; Ḣ2# (Y )) =

Ω
(ck)k∈Zn , ck ∈ L2(ω; R2), ck = c−k,

Z

ω

X

k∈Zn
|k|4|ck(x)|2dx < 1

æ
,

with the norm

k(ck)kk2 =
Z

ω

X

k∈Zn
|k|4|ck(x)|2dx

and the space L2(ω × Y ; Rn×n) with

L2(ω × Y ; Rn×n) =

Ω
(ci jk )k∈Zn,i, j=1,...,n, c

i j
k ∈ L2(ω; R2), ci jk = ci j−k,

Z

ω

X

k∈Zn

X

i, j=1,...n
|ci jk (x)|2dx < 1

æ
,

with the norm

k(ci jk )kk
2 =

Z

ω

X

k∈Zn

X

i, j=1,...,n
|ci jk (x)|2dx .

The operator ∇2y operates in the following way

∇2y(ck)k = ((ki k j ck)i, j=1,...,n)k∈Zn .

It is easily seen that ∇2y is continuous and one to one. We shall prove that it is
enough to demand the condition (3.5) for E9 ∈ FL(ω;C1

# (Y ))n×n . Using the
properties of the Fourier transform the condition (3.5) can be interpreted in the
following way: For given (( EUi j

k )i, j=1,...,n)k∈Zn ∈ L2(ω × Y ; (R2)n×n) and every
((di jk )i, j=1,...,n)k∈Zn ∈ FL(ω;C1

# (Y ))n×n which satisfies the property

X

i, j=1,...,n
ki k j d

i j
k = 0, ∀k ∈ Zn, (3.6)
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we have that
Z

ω

X

k∈Zn

X

i, j=1,...n

EUi j
k (x)di jk (x)dx = 0.

By fixing k0 ∈ Zn and taking di jk0 ∈ C1
0 (ω; R2), which satisfies

X

i, j=1,...,n
k0i k

0
j d
i j
k0 = 0

and defining di j
−k0 = di jk0 , d

i j
k = 0, ∀k 6= k0,−k0, i, j = 1, . . . , n we conclude that

Z

ω
Re( EUi j

k0(x)d
i j
k0(x))dx = 0.

From this it can be easily seen that there exists vk0 ∈ L2(ω; R2) such that EUi j
k0 =

k0i k
0
jvk0 , for all i, j = 1, . . . , n. This is valid for an arbitrary k0 ∈ Zn and we

can easily conclude from the fact (( EUi j
k )i, j=1,...,n)k∈Zn ∈ L2(ω × Y ; (R2)n×n)

that
R
ω

P
k∈Zn |k|4|vk(x)|2dx < 1. Now we have the claim by taking v(x, y) =

(vk(x))k ≡
P

k∈Zn vk(x)e2π ik·y .

Lemma 3.8. Let (uh)h>0 be a sequence which converges strongly to u in H1(ω).
Let (Evh)h>0 be a sequence which is bounded in H1(ω; Rn) and for which is valid

k∇uh − EvhkL2(ω;Rn) ∑ Ch2, (3.7)

for some C > 0. Then there exists a unique v ∈ L2(ω; Ḣ2# (Y )) such that ∇Evh **

∇2u(x) + ∇2yv(x, y).

Proof. It is easily seen that Evh → ∇u weakly in H1(ω; Rn) and thus u ∈ H2(ω).
By using Theorem 3.3 we conclude that there exists E8i j ∈ L2(ω × Y ) such that

∇Evih ** (@i1u(x) + E8i1(x, y), . . . , @inu(x) + E8in(x, y)).

To show the existence of v we shall use Lemma 3.7. Let us take E9 ∈ D(ω;
C1
# (Y ))n×n which satisfies

nX

i, j=1
@yi y j E9i j = 0, ∀x, y (3.8)
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and let us calculate
Z

ω

Z

Y
E8 · E9dydx = lim

h→0

Z

ω

√
X

i, j=1,...,n
(@ j Ev

i
h(x) − @i j u(x)) · E9i j

µ
x,
x
h

∂!

dx

= − lim
h→0

Z

ω

X

i, j=1,...,n
(Evih(x) − @i u(x))@x j E9i j

µ
x,
x
h

∂
dx

− lim
h→0

1
h

Z

ω

X

i, j=1,...,n
(Evih(x) − @i u(x))@y j E9i j

µ
x,
x
h

∂
dx

using (3.7) = − lim
h→0

1
h

Z

ω

X

i, j=1,...,n
(@i uh(x) − @i u(x))@y j E9i j

µ
x,
x
h

∂
dx

= − lim
h→0

1
h

Z

ω

X

i, j=1,...,n
(uh(x) − u(x))@y j xi E9i j

µ
x,
x
h

∂
dx

− lim
h→0

1
h2

Z

ω

X

i, j=1,...,n
(uh(x) − u(x))@yi y j E9i j

µ
x,
x
h

∂
dx

using (3.8) = lim
h→0

Z

ω

X

i, j=1,...,n
(@ j uh(x) − @ j u(x))@xi E9i j

µ
x,
x
h

∂
dx

+ lim
h→0

Z

ω

X

i, j=1,...,n
(uh(x) − u(x))@xi x j E9i j

µ
x,
x
h

∂
dx = 0.

Remark 3.9. In the special case C = 0 Lemma 3.8 is just the generalization of
Theorem 3.4. In fact what lemma tells us is that the claim is also valid if we are
closer to the gradient than the order of the oscillations.

Lemma 3.10. Let Q : Rn → R be a convex function which satisfies

|Q(x)| ∑ C(1+ |x |2), ∀x ∈ Rn, (3.9)

for some C > 0. Let (Euh)h>0 ⊂ L2(ω; Rn) be a sequence which two-scale con-
verges to Eu0 ∈ L2(ω × Y ; Rn). Then we have that

Z

ω

Z

Y
Q(Eu0(x, y))dydx ∑ lim inf

h→0

Z

ω
Q(Euh(x))dx . (3.10)

Proof. Let us take an arbitrary E√ ∈ (L2(ω;C#(Y )))n . It is well known that if a
convex function is finite on an open set than it is continuous. Thus Q is continuous.
Also an arbitrary convex function is a pointwise limit of an increasing family of
smooth convex Lipschitz functions Qn . To see this first we use the fact that there
exists an increasing family eQn of piecewise affine functions (with finitely many
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cuts) which pointwise converge to Q. Then we define eeQn = eQn − 1
n . Finally we

smooth every eeQn by an appropriate mollifier to preserve the fact that the sequence
should be increasing. We obtain for each n ∈ N, h > 0

Z

ω
Qn(Euh(x))dx ≥

Z

ω
Qn

µ
E√

µ
x,
x
h

∂∂
dx

+
Z

ω
DQn

µ
E√

µ
x,
x
h

∂∂µ
Euh(x) − E√

µ
x,
x
h

∂∂
dx .

(3.11)

By letting h → 0 and using the definition of two-scale convergence and Theo-
rem 3.2 and the fact that the convexity of Qn and |Qn(x)| ∑ C(1 + |x |2) implies
|DQn(x)| ∑ C(1+ |x |) we obtain for each n ∈ N

lim inf
h→0

Z

ω
Qn(Euh(x))dx ≥

Z

ω

Z

Y
Qn( E√(x, y))dydx

+
Z

ω

Z

Y
DQn( E√(x, y))(Eu0(x, y) − E√(x, y))dx .

(3.12)

By using an arbitrariness of E√ and the density of L2(ω;C#(Y )) in L2(ω × Y ) we
conclude that for each n ∈ N

lim inf
h→0

Z

ω
Qn(Euh(x))dx ≥

Z

ω

Z

Y
Qn(Eu0(x, y))dydx . (3.13)

Since Qn < Q we conclude

lim inf
h→0

Z

ω
Q(Euh(x))dx ≥

Z

ω

Z

Y
Qn(Eu0(x, y))dydx . (3.14)

Letting n → 1 and using (3.9) we conclude (3.10).

Lemma 3.11. Let (uh)h>0 be a bounded sequence in L2(ω) which two-scale con-
verges to u0(x, y) ∈ L2(ω × Y ). Let (vh)h>0 be a sequence bounded in L1(ω)
which converges in measure to v0 ∈ L1(ω). Then vhuh ** v0(x)u0(x, y).

Proof. We know that (vhuh)h>0 is bounded in L2(ω) and that there exists a subse-
quence of (vh)h>0 such that vh → v a.e. in ω. Let us take √ ∈ D(ω;C#(Y )) and
write,

Z

ω
vh(x)uh(x)√(x,

x
h
)dx =

Z

ω
(vh(x) − v(x))uh(x)√

µ
x,
x
h

∂
dx

+
Z

ω
v(x)uh(x)√

µ
x,
x
h

∂
dx .

(3.15)

The second converges to
Z

ω

Z

Y
v(x)u0(x, y)√(x, y)dydx,
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by the definition of two-scale convergence. We have to prove that the first term in
(3.15) converges to 0. By Egoroff’s theorem for an arbitrary ε > 0 there exists
E ⊂ ω such that meas(E) < ε and vh → v uniformly on Ec. We write
Z

ω
(vh(x)−v(x))uh(x)√

µ
x,
x
h

∂
dx=

Z

E
(vh(x)−v(x))uh(x)√

µ
x,
x
h

∂
dx

+
Z

Ec
(vh(x)−v(x))uh(x)√

µ
x,
x
h

∂
dx .

(3.16)

The second term in (3.16) converges to 0 and can be made arbitrary small. For the
first term by the Cauchy inequality we have that there exists C > 0 such that

Z

E
(vh(x) − v(x))uh(x)√

µ
x,
x
h

∂
dx ∑ C

√
ε sup
h>0

kuhkL2(ω). (3.17)

By the arbitrariness of ε we have the claim.

4. 0-convergence

We shall need the following theorem which can be found in [13].

Theorem 4.1 (on geometric rigidity). Let U ⊂ Rm be a bounded Lipschitz do-
main, m ≥ 2. Then there exists a constant C(U) with the following property: for
every Ev ∈ H1(U ; Rm) there is associated rotation R ∈ SO(m) such that

k∇Ev − RkL2(U) ∑ C(U)k dist(∇Ev,SO(m)kL2(U). (4.1)

The constant C(U) can be chosen uniformly for a family of domains which are
Bilipschitz equivalent with controlled Lipschitz constants. The constant C(U) is
invariant under dilatations.

In the sequel we suppose h0 ≥ 1
2 (see Theorem 2.1). If this was not the case,

what follows could be easily adapted. Let us by Ph : ƒ → ƒh denote the map
Ph(x 0, x3) = (x 0, h2x3). By ∇h we denote

∇h = ∇Ee1,Ee2 +
1
h2

∇Ee3 .

By Erh : R2 → R2 we denote the mapping Erh(x1, x2) = ( x1h , x2h ). In the same
way as in [14, Theorem 10, Remark 11] (see also [20, Lemma 8.1]) we can prove
the following theorem. For the adaption we only need Theorem 4.1 and the facts
that C(U) can be chosen uniformly for Bilipschitz equivalent domains and that the
norms k∇ E2hk, k(∇ E2h)−1k are uniformly bounded on ƒh for h ∑ 1

2 .
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Theorem 4.2. Let ω ⊂ R2 be a domain. Let E2h be as above and let h ∑ 1
2 . Let

Eyh ∈ H1(ƒ̂h; R3) be such that

1
h2

Z

ƒ̂h
dist2(∇Eyh,SO(3))dx ∑ Ch8,

for some C > 0. Then there exists map Rh ∈ H1(ω,SO(3)) such that

k(∇Eyh) ◦ E2h ◦ Ph − RhkL2(ƒ) ∑ Ch4, (4.2)

k∇RhkL2(ω) ∑ Ch2. (4.3)

Moreover there exist a constant rotation Q̄h ∈ SO(3) such that

k(∇Eyh) ◦ E2h ◦ Ph − Q̄hkL2(ƒ) ∑ Ch2, (4.4)

kRh − Q̄hkL p(ω) ∑ Cph2, ∀p < 1. (4.5)

Here all constants depend only on ω (and on p where indicated).

Remark 4.3. Since E2h is Bilipschitz map, it can easily be seen that the map Ey →
Ey ◦ E2h is an isomorphism between the spaces H1(ƒh; Rm) and H1(ƒ̂h; Rm) (see
e.g. [1]).

To prove 0-convergence result we need to prove the compactness result, the
lower and the upper bound.

4.1. Compactness result

We need the following version of Korn’s inequality which is proved in a standard
way by contradiction.

Lemma 4.4. Let ω ⊂ R2 be a Lipschitz domain. Then there exists C(ω) > 0 such
that for an arbitrary Eu ∈ H1(ƒ; R2) we have

kEukH1(ω;R2) ∑C(ω)

µ
k sym∇EukL2(ω;R2)+

Ø
Ø
Ø
Z

ω
Eudx

Ø
Ø
Ø+

Ø
Ø
Ø
Z

ω
(@2Eu1−@1Eu2)dx

Ø
Ø
Ø
∂

. (4.6)

Lemma 4.5. Let Eyh ∈ H1(ƒ̂h; R3) be such that

1
h2

Z

ƒ̂h
dist2(∇Eyh,SO(3))dx ∑ Ch8. (4.7)

Then there exists maps Rh ∈ H1(ω,SO(3)) and constants R̄h ∈ SO(3), Ech ∈ R3
such that

eEyh := (R̄h)T Eyh − Ech
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and the corrected in-plane and the out-of-plane displacements

Euh(x1, x2) :=
1
h4

√Z 1/2

−1/2

√
eEyh1 ◦ E2h ◦ Ph

eEyh2 ◦ E2h ◦ Ph

!

(x1, x2, x3)dx3 −

µ
x1
x2

∂

−h2
√
Rh13(x1, x2)θ0(

x1
h , x2h )

Rh23(x1, x2)θ0(
x1
h , x2h )

!!

,

vh(x1, x2) :=
1
h2

Z 1/2

−1/2
(eEyh3 ◦ E2h ◦ Ph)(x1, x2, x3)dx3 − θ

µ
x1
h

,
x2
h

∂
(4.8)

satisfy
k(∇eEyh) ◦ E2h ◦ Ph − RhkL2(ƒ) ∑ Ch4, (4.9)

kRh − IkL p(ω) ∑ Cph2 ∀p < 1, k∇RhkL2(ω) ∑ Ch2. (4.10)
Moreover every subsequence (not relabeled) has its subsequence (also not rela-
beled) such that

vh → v in H1(ω), v ∈ H2(ω) (4.11)
Euh * Eu in H1(ω; R2), (4.12)

Rh − I
h2

* A in H1(ω; R3×3), (4.13)

(∇eEyh) ◦ E2h ◦ Ph − I
h2

→ A in L2(ƒ; R3×3) (4.14)

@3A = 0, A ∈ H1(ω; R3×3), (4.15)
A = Ee3 ⊗ ∇v − ∇v ⊗ Ee3, (4.16)

sym(Rh − I)
h4

→
A2

2
in L2(ω; R3×3). (4.17)

Proof. We shall follow the proof in [14, Lemma 13] (see also in [28, Lemma 2]).
Estimates (4.9) and (4.10) follow immediately from Theorem 4.2 since one can
choose R̄h so that (4.4) holds with Q̄h = I. By applying additional constant in-
plane rotation of order h2 to eEyh and Rh we may assume in addition to (4.9) and
(4.10) that Z

ƒ
((@2eEy

h
1) ◦ E2h ◦ Ph − (@1eEy

h
2) ◦ E2h ◦ Ph)dx = 0. (4.18)

By choosing Ech suitably we may also assume that
Z

ƒ
(eEyh ◦ E2h ◦ Ph − E2h ◦ Ph)dx = 0. (4.19)

Let us define Ah = Rh−I
h2 . From (4.10) we get for a subsequence

Ah * A in H1(ω; R3×3)
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Thus we deduce (4.13). Using (2.5), (4.9) we deduce (4.14). Since (Rh)TRh = Iwe
have Ah + (Ah)T = −h2(Ah)TAh . Hence A+AT = 0 and after multiplication by
1/h2 we obtain (4.17) from the strong convergence of Ah . Using (4.9) we conclude
that

k sym((∇eEyh) ◦ E2h ◦ Ph − I)kL2(ƒ) ∑ Ch4. (4.20)
The following is useful

(∇eEyh) ◦ E2h ◦ Ph = (∇(eEyh ◦ E2h) ◦ Ph)((∇ E2h)−1 ◦ Ph)

= ∇h(eEy
h

◦ E2h ◦ Ph)((∇ E2h)−1 ◦ Ph). (4.21)

From (4.21) it follows

((∇eEyh) ◦ E2h ◦ Ph)((∇ E2h) ◦ Ph) = ∇h(eEy
h

◦ E2h ◦ Ph). (4.22)

Using (2.5), (4.14), (4.22) we conclude that
1
h2

∇h(eEy
h

◦ E2h ◦ Ph − E2h ◦ Ph) → A in L2(ƒ; R3×3). (4.23)

From (4.19), (4.23) and the Poincaré inequality we conclude the convergence in
(4.11). Moreover we have @iv = A3i for i = 1, 2. Hence v ∈ H2 since A ∈ H1.
Since A is skew-symmetric we immediately have A13 = −@1v,A23 = −@2v.

By the chain rule the following identities are valid for i = 1, 2, 3, α = 1, 2,

@α(eEyhi ◦ E2h ◦ Ph) = (@1eEy
h
i ) ◦ E2h ◦ Ph · (@α E2h

1) ◦ Ph

+(@2eEy
h
i ) ◦ E2h ◦ Ph · (@α E2h

2) ◦ Ph + (@3eEy
h
i ) ◦ E2h ◦ Ph · (@α E2h

3) ◦ Ph (4.24)

1
h2

@3(eEy
h
i ◦ E2h ◦ Ph) = (@1eEy

h
i ) ◦ E2h ◦ Ph · (@3 E2h

1) ◦ Ph

+(@2eEy
h
i ) ◦ E2h ◦ Ph · (@3 E2h

2) ◦ Ph + (@3eEy
h
i ) ◦ E2h ◦ Ph · (@3 E2h

3) ◦ Ph . (4.25)

From (2.3), (4.14), (4.20) we conclude for α,β = 1, 2

k(@α
eEyhα) ◦ E2h ◦ Ph · (@β E2h

β) ◦ Ph − (@β E2h
β) ◦ PhkL2(ƒ) ∑ Ch4, (4.26)

and

k(@3eEy
h
α) ◦ E2h ◦ Ph · (@α E2h

3) ◦ Ph − hRα3(@αθ) ◦ ErhkL2(ƒ) ∑ Ch4, (4.27)

for some C > 0. Using (4.9), (4.10), (4.14), (4.18), (4.25) we conclude that
Ø
Ø
Ø
Z

ω
(@2Euh1 − @1Euh2)dx

Ø
Ø
Ø ∑ Ch4. (4.28)

In the same way using (4.9), (4.10), (4.14), (4.18), (4.25) we conclude that
k 1
h4 sym∇EuhkL2(ω) is bounded. Using Lemma 4.4, (4.19) and (4.28) we have the
convergence (4.12). It remains to conclude A12 = 0. But this is easy, from (4.12),
(4.13) and (4.23).
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Lemma 4.6. If we additionally assume the following
∞
∞
∞
∞

Z 1/2

−1/2

√
eEyh1 ◦ E2h ◦ Ph

eEyh2 ◦ E2h ◦ Ph

!

(x1, x2, x3)dx3 −

µ
x1
x2

∂∞
∞
∞
∞
L2(ω)

∑ Ch4, (4.29)

∞
∞
∞
∞

Z 1/2

−1/2
(eEyh3 ◦ E2h ◦ Ph)(x1, x2, x3)dx3

∞
∞
∞
∞
L2(ω)

∑ Ch2, (4.30)

we can take R̄h = I, Ech = 0 in Lemma 4.5.
Proof. First we shall prove that we can take Q̄h = I in Theorem 4.2. By multiplying
(4.4) with ∇( E2h ◦ Ph) and using Poincaré inequality onƒ we have that there exists
bh ∈ R3 such that

kEyh ◦ E2h ◦ Ph − Q̄h( E2h ◦ Ph) − bhkL2(ƒ) ∑ Ch2. (4.31)
From (4.29), (4.30) and by integrating (4.31) with respect to x3 we conclude

∞
∞
∞
∞
∞
∞
Q̄h




x1
x2
0



 −




x1
x2
0



 − bh
∞
∞
∞
∞
∞
∞
L2(ω)

∑ Ch2. (4.32)

From this, using the fact that Q̄h ∈ SO(3), we can conclude that kbhk ∑ Ch2 and
kQ̄h − Ik ∑ Ch2. Thus we can take Q̄h = I in Theorem 4.2. Now we conclude that
we can repeat the proof of Lemma 4.5 with assumptions (4.29) and (4.30) instead
of assumptions (4.18) (i.e. (4.28)) and (4.19).

Lemma 4.7. LeteEyh,Rh, Euh, Eu, vh, v be as in Lemma 4.5. Then there exist unique
Eu1 ∈ L2(ω; Ḣ1# (Y ))2 and v1 ∈ L2(ω; Ḣ2# (Y )) such that

∇Euh ** ∇x Eu(x) + ∇y Eu1(x, y) in L2(ω × Y ; R2×2), (4.33)

∇
1
h2

µ
Rh13
Rh23

∂
** −∇2xv(x) − ∇2yv1(x, y) in L

2(ω × Y ; R2×2). (4.34)

Proof. The relation (4.33) is the direct consequence of the relation (4.12) and The-
orem 3.4. To prove (4.34) we shall use Lemma 3.7. From the relation (4.9) using
the boundedness of ∇ E2h and (4.22) we conclude

k
1
h2

Z 1/2

−1/2
(∇h(eEy

h
◦ E2h ◦ Ph − E2h ◦ Ph)dx3

−
1
h2

(Rh − I)
Z 1/2

−1/2
∇h( E2h ◦ Ph)dx3kL2(ω) ∑ Ch2. (4.35)

From (4.35) using (2.3) and (4.17) we conclude

k@1v
h −

1
h2
Rh31kL2(ω) ∑ Ch2, k@2v

h −
1
h2
Rh32kL2(ω) ∑ Ch2, (4.36)
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for some C > 0. From that we have, by using (4.17),

k@1v
h +

1
h2
Rh13kL2(ω) ∑ Ch2, k@2v

h +
1
h2
Rh23kL2(ω) ∑ Ch2. (4.37)

The claim is now the direct consequence of Lemma 3.8 and (4.13).

4.2. Lower bound

Remark 4.8. In the next lemma we shall characterize the limiting strain and ex-
press it in terms of Eu, Eu1, v, v1, θ (see Lemma 4.7). Since the strain is an element of
L2(ƒ) and we want to obtain its two-scale limit which characterizes only oscilla-
tions of the first two variables of the order h the following modification of Definition
3.1 is needed: A sequence (uh)h>0 of functions in L2(ƒ) converges two-scale to a
function u0 belonging to L2(ƒ × Y ) if for every √ ∈ L2(ƒ;C#(Y )),
Z

ƒ
uh(x1, x2, x3)√(x1, x2, x3,

x1
h

,
x2
h

) →
Z

ƒ

Z

Y
u0(x1, x2, x3, y)√(x1, x2, x3, y).

Here Y = [0, 1]2. It can be also seen that the analogous statements of Theorem 3.2,
Theorem 3.3, Theorem 3.4 and Remark 3.5 are valid (see [26] for time dependent
problems). Also the analogous conclusions of Lemma 3.6, Lemma 3.7, Lemma 3.8,
Lemma 3.10 and Lemma 3.11 are valid (∇x should be replaced by the gradient in
the first two variables).

Lemma 4.9. Consider Eyh : ƒ̂h → R3, Rh ∈ H1(ω;SO(3)) and define Euh, v by
(4.8) Suppose that we have a subsequence of Eyh such that (4.9)-(4.17) are valid.
Additionally we suppose

∇Euh ** ∇x Eu(x) + ∇y Eu1(x, y) in L2(ω × Y ; R2×2), (4.38)

∇
1
h2

µ
Rh13
Rh23

∂
** −∇2xv(x) − ∇2yv1(x, y) in L

2(ω × Y ; R2×2), (4.39)

for Eu1 ∈ L2(ω; Ḣ1# (Y ))2 and v1 ∈ L2(ω; Ḣ2# (Y )). Then

Gh :=
(Rh)T ((∇Eyh) ◦ E2h ◦ Ph) − I

h4
** G in L2(ƒ × Y ; R3×3), (4.40)

and the 2× 2 sub-matrix G00 given by G00
αβ = Gαβ for 1 ∑ α,β ∑ 2 satisfies

G00(x1, x2, x3, y) = G0(x1, x2, y) + x3G1(x1, x2, y), (4.41)

where

symG0(x1, x2, y) = sym∇x Eu(x) + sym∇y Eu1(x, y)

−∇2xv(x)θ0(y) − ∇2yv1(x, y)θ0(y) +
1
2
∇xv(x) ⊗ ∇xv(x) (4.42)

G1(x1, x2, y) = −∇2xv(x) − ∇2yv1(x, y). (4.43)
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Proof. We follow the proof of Lemma 15 in [14] (see also Lemma 4 in [28]). By
the assumption Gh is bounded in L2, thus a subsequence converges weakly.

To show that the limit matrix G00 is affine in x3 we consider the difference
quotients

Hh(x 0, x3) = s−1[Gh(x1, x2, x3 + s) −Gh(x1, x2, x3)]. (4.44)

By multiplying the definition of Gh with Rh and using (4.22) we obtain for α,β ∈
{1, 2}

(RhHh)αβ =
1
sh4

h
∇h(Eyh ◦ E2h ◦ Ph)(x 0, x3 + s)

−∇h(Eyh ◦ E2h ◦ Ph)(x 0, x3)
i

αβ

+
1
sh4

h
((∇Eyh) ◦ E2h ◦ Ph)(x 0, x3 + s)

·
≥
I− ((∇ E2h) ◦ Ph)(x 0, x3 + s)

¥ i

αβ

−
1
sh4

h
((∇Eyh) ◦ E2h ◦ Ph)(x 0, x3)

·
≥
I− ((∇ E2h) ◦ Ph)(x 0, x3)

¥ i

αβ

=
1
sh4

h
(∇h(Eyh ◦ E2h ◦ Ph − E2h ◦ Ph)(x 0, x3 + s)

−∇h(Eyh ◦ E2h ◦ Ph − E2h ◦ Ph)(x 0, x3)
i

αβ

+
1
sh4

h
((∇Eyh) ◦ E2h ◦ Ph)(x 0, x3 + s) −

−Rh(x 0))
≥
I− ((∇ E2h) ◦ Ph)(x 0, x3 + s)

¥ i

αβ

−
1
sh4

h
((∇Eyh) ◦ E2h ◦ Ph)(x 0, x3)

−Rh(x 0))
≥
I− ((∇ E2h) ◦ Ph)(x 0, x3)

¥ i

αβ

−
1
sh4

h
(Rh(x 0) − I)((∇ E2h) ◦ Ph)(x 0, x3 + s)

−((∇ E2h) ◦ Ph)(x 0, x3)
i

αβ
. (4.45)

By using (2.3), (4.9) we conclude that the second and third term converges to 0
strongly in L2(ω × (−1

2 ,
1
2 − s). The forth term also converges to 0 by (2.3) and
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(4.13). Thus we have that the first term in (4.45) is bounded in L2(ƒ) and thus two
scale converges to some G1 ∈ L2(ƒ × Y ). We conclude

1
sh4

h
(∇h(Eyh ◦ E2h ◦ Ph − E2h ◦ Ph)(x 0, x3 + s)

−∇h(Eyh ◦ E2h ◦ Ph − E2h ◦ Ph)(x 0, x3))
i

αβ

=
1
h2

@β

≥1
s

Z s

0

1
h2

@3(Eyh ◦ E2h ◦ Ph − E2h ◦ Ph)α
¥
. (4.46)

By using (4.20) (which is a consequence of (4.9) and (4.17)) and (4.25) we conclude
that there exists C > 0 such that for α = 1, 2, β = 3− α

∞
∞
∞

µ
1
sh2

Z s

0

1
h2

@3(Eyh ◦ E2h ◦ Ph − E2h ◦ Ph)α
∂

−
1
h2
Rhα3

+
1
h
Rhαβ(@βθ) ◦ Erh

∞
∞
∞
L2(ω×(− 1

2 ,
1
2−s))

< Ch2. (4.47)

By using Lemma 3.6, the fact that for α = 1, 2, β = 3− α

1
h
Rhαβ(@βθ) ◦ Erh → 0 in H1(ω) (4.48)

(this follows from (4.13)), we conclude from (4.45) that

RhHh ** G1, in L2(ω ×

µ
−
1
2
,
1
2

− s
∂

; Rn×n), (4.49)

where G1 is given by (4.43). Since Rh → I boundedly a.e. we conclude Hh **
G1 from Lemma 3.11. From this we have also (4.41). In order to prove formula for
G0 it suffices to study

Gh
0(x

0) =
Z 1

2

− 1
2

Gh(x 0, x3)dx3.

We have for α,β ∈ {1, 2}

(Gh)αβ(x 0, x3) =
((∇Eyh) ◦ E2h ◦ Ph − I)αβ

h4
−

(Rh − I)αβ

h4

+

"

(Rh − I)T
(∇Eyh) ◦ E2h ◦ Ph − Rh

h4

#

αβ

. (4.50)

The third term in (4.50) converges strongly to 0 in L2(ƒ). From (4.25) we conclude,
after a little calculation by using (2.3), (4.9) and (4.13),that

∇Euh −
Z 1/2

−1/2

((∇Eyh) ◦ E2h ◦ Ph − I)
h4

dx3

+(θ0 ◦ Erh)∇
1
h2

µ
Rh13
Rh23

∂
→ 0 in L2(ƒ; R2×2). (4.51)
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From (4.51) we conclude
Z 1/2

−1/2

((∇Eyh) ◦ E2h ◦ Ph − I)
h4

dx3 ** ∇x Eu(x) + ∇y Eu1(x, y)

−(∇x )
2v(x)θ0(y) − (∇y)

2v1(x, y)θ0(y) in L2(ω × Y ; R2×2). (4.52)

From (4.51) and (4.52) we have (4.42).

By I L : H1(ω; R2) × L2(ω; Ḣ1# (Y ))2 × H2(ω) × L2(ω; Ḣ2# (Y )) → R+
0 we

denote the functional

I L(Eu, Eu1, v, v1) =
Z

ω

Z

Y

µ
1
2
Q2

µ
sym∇x Eu(x) + sym∇y Eu1(x, y) − ∇2xv(x)θ0(y)

−∇2yv1(x, y)θ0(y) +
1
2
∇xv ⊗ ∇xv

∂∂
dydx

+
1
24

Z

ω

Z

Y
Q2(∇2yv1(x, y))dydx +

1
24

Z

ω
Q2(∇2xv(x))dx . (4.53)

Corollary 4.10. Let Eyh,Rh, Euh, Eu, Eu1, vh, v, v1,Gh,G,G00,G0,G1 be as in Lem-
ma 4.9. Then we have the following semi-continuity results.

lim inf
h→0

I h(Eyh) ≥ I L(Eu, Eu1, v, v1). (4.54)

Proof. We shall use the truncation, the Taylor expansion and the weak semi-conti-
nuity argument as in the proof of Corollary 16 in [14]. Let m : [0,1) → [0,1)
denote a modulus of continuity of D2W near the identity and consider the good set
ƒh := {x ∈ ƒ : |Gh(x)| < h−1}. Its characteristic function χh is bounded and
satisfies χh → 1 a.e. in ƒ. Thus we have χhGh ** G in L2(ƒ × Y ; R3×3) by
Lemma 3.11. By Taylor expansion

1
h8

χhW (I+ h4Gh) ≥
1
2
Q3(χhGh) − m(h3)|χhGh|2. (4.55)

Using i), ii), the nonnegativity of W , (4.55), the fact that χhGh ** G in
L2(ƒ; R3×3), the convexity of Q3, Lemma 3.10 and the definition of Q2 we con-
clude

lim inf
h→0

I h(Eyh) = lim inf
h→0

1
h8

Z

ƒ
W

°
(Rh)T ((∇Eyh) ◦ E2h ◦ Ph)

¢
dx

≥ lim inf
h→0

∑
1
2

Z

ƒ
Q3(χhGh)dx +

1
h8

Z

ƒ
(1− χh)W

°
(∇Eyh) ◦ E2h ◦ Ph)

¢
dx

∏

≥
1
2

Z

ƒ

Z

Y
Q3(G(x, y))dydx ≥

1
2

Z

ƒ

Z

Y
Q2(G00(x, y))dydx . (4.56)
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Now by (4.41), the fact that
R 1
2

− 1
2
x3dx3 = 0 we have

Z 1/2

−1/2

Z

Y
Q2(G00(x1, x2, x3, y))dydx3 =

Z

Y
Q2(G0(x1, x2, y))dy

+
1
12

Z

Y
Q2(G1(x1, x2, y))dy. (4.57)

By using (4.43) and the fact that
R
Y @i@ jv = 0, for i, j = 1, 2 and an arbitrary

v ∈ H2# (Y ) we conclude
Z

ω

Z

Y
Q2(G1(x1, x2, y))dydx=

Z

ω
Q2(∇2xv(x))dx+

Z

ω

Z

Y
Q2(∇2yv1(x, y))dydx .

This implies the claim of the corollary.

Let us by QH
2 : R2×2sym × R2×2sym → R+

0 denote the functional

QH
2 (G,F) = min

Eu1 ∈ Ḣ1# (Y ),

v1 ∈ Ḣ2# (Y )

I HG,F, (4.58)

where we have by I HG,F : (Ḣ1# (Y ))2 × Ḣ2# (Y ) → R+
0 denoted the functional

I HG,F(Eu1, v1) =
Z

Y

≥
Q2(G+ Fθ0(y) + sym∇Eu1(y) − ∇2v1(y)θ0(y))

+
1
12
Q2(∇2v1(y))

¥
dy (4.59)

By I L0 : H1(ω; R2) × H2(ω) → R+
0 we denote the functional

I L0 (Eu, v) =
1
2

Z

ω
QH
2 (sym∇Eu +

1
2
∇v ⊗ ∇v,−∇2v)dx +

1
24

Z

ω
Q2(∇2v)dx .

(4.60)
In the sequel we shall analyze the property of QH

2 .

Lemma 4.11. For every G,F ∈ R2×2 there exists a unique Eu1(G,F) ∈ (Ḣ1# (Y ))2,
v1(G,F) ∈ Ḣ2# (Y ) which minimizes the functional I HG,F. This minimizer satisfies
the estimate

kEu1(G,F)k2Ḣ1# (Y )
, kv1(G,F)k2Ḣ2# (Y )

∑ C(kGk2 + kFk2), (4.61)

for some C > 0. The functional QH
2 is a nonnegative quadratic form. Let us by V

denote the subspace of R2×2sym

V =

Ω
A=

µ
a11 a12
a12 a22

∂
;∀y ∈ Y, a11@22θ(y) + a22@11θ(y) − 2a12@12θ(y) = 0

æ
,
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and by V⊥ its orthogonal complement in R2×2sym . Then there exists C > 0 such that

QH
2 (G,F) > C(kGk2 + kF⊥k2),∀G,F ∈ R2×2sym , (4.62)

where F⊥ ∈ V⊥ is the unique matrix such that F− F⊥ ∈ V .

Proof. The existence of the minimum of the functional I HG,F in the space (Ḣ1# (Y ))2×

Ḣ2# (Y ) is guaranteed by the following facts:

1. for each G,F the functional I HG,F is sequentially weakly lower semi continuous
by the convexity of the form Q2.

2. for each G,F the functional I HG,F is coercive in the sense

kEun1k(Ḣ1# (Y ))2 → +1 or kvn1kḢ2# (Y ) → +1 ⇒ I HG,F(Eu
n
1, v

n
1 ) → +1.

To prove this let us note that the boundedness of I HG,F(Eu
n
1, v

n
1 ) directly implies

the boundedness of kvn1kḢ2# (Y ). This, on the other hand, implies the boundedness
of k sym∇Eun1kL2(Y ). From Korn’s inequality we have the claim.

The uniqueness of the minimum is the consequence of the strict convexity of the
form Q2 on symmetric matrices.

Let us byA : R2×2sym → R2×2sym denote the positive definite linear operator which
realizes the quadratic functional Q2 i.e. we have

Q2(G) = (AG,G),∀G ∈ R2×2sym , (4.63)

where we have by (·, ·) denoted the standard scalar multiplication on R2×2. The
minimization formulation (4.58) implies

Z

Y
(A(sym∇Eu1(y) − ∇2v1(y)θ0(y)), sym∇ Eϕ(y))dy

+
Z

Y
(A(sym∇Eu1(y) − ∇2v1(y)θ0(y)),−∇2υ(y)θ0(y))dy

+
1
6

Z

Y
(A∇2v1(y),∇2υ(y))dy

= −
Z

Y
(AG,∇2υ(y)θ0(y))dy +

Z

Y
(AFθ0(y), sym∇ Eϕ(y) − ∇2υ(y)θ0(y))dy

∀Eϕ ∈ (Ḣ1# (Y ))2,υ ∈ Ḣ2# (Y ) . (4.64)

From (4.64) it can be easily seen that Eu1(G,F), v1(G,F) depends linearly on (G,F)
and thus QH

2 is a nonnegative quadratic form. To see the estimate (4.61) we just
take Eϕ = Eu1, υ = v1. We obtain

kEu1 − ∇2v1θ0kL2(Y ) + k∇2v1kL2(Y ) ∑ C(kGk + kFk). (4.65)
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From (4.65) we have (4.61). To check the positive definiteness of QH
2 we have to

check
QH
2 (G,F) = 0,G,F ∈ R2×2sym ⇒ G = 0, F ∈ V . (4.66)

Let us suppose QH
2 (G,F) = 0. From (4.59) we conclude that

v1(y) = 0, G+ Fθ0(y) + sym∇Eu1(y) = 0, ∀y ∈ Y. (4.67)

Integrating (4.67) in Y and using the fact u1 ∈ Ḣ1# (Y ) we conclude G = 0.
From the second equation we conclude that Fθ0 is symmetrized gradient and

this implies
F11@22θ + F22@11θ − 2F12@12θ = 0. (4.68)

From this we have that F ∈ V .

Now we shall say something about the regularity of (4.64). First we will need
one technical lemma which is a variant of well known lemma (see e.g. [12]) for
torus.

Lemma 4.12. Let us take u ∈ L2(Y ) and let us extend u to R2 by periodicity.
Define the i-th difference quotient of size h by

Dh
i (u)(y) =

u(y + hEei ) − u(y)
h

, (i = 1, 2) (4.69)

for y ∈ Y and h ∈ R and let us define

Dh(u) := (Dh
1u, D

h
2u). (4.70)

We have:

i) Suppose u ∈ H1# (Y ). Then

kDhukL2(Y ) ∑ CkDukL2(Y ),

for some C > 0 and all 0 < |h| < h0.
ii) Assume u ∈ L2(Y ) and there exists a constant C such that

kDhukL2(Y ) ∑ C,

for all 0 < |h| < h0. Then

u ∈ H1# (Y ), with kDukL2(Y ) ∑ C.

Proof. Let us take Y 0 = [−1, 2]2.



PERIODICALLY WRINKLED PLATE MODEL OF THE FÖPPL-VON KÁRMÁN TYPE 299

i) From standard theorem on difference quotients we conclude that there exists
C1 > such that

kDhukL2(Y ) ∑ C1kDukL2(Y 0), (4.71)

for all 0 < |h| < 1. Since, by periodicity, kDukL2(Y 0) = 9kDukL2(Y ) we have
the claim.

ii) Let us take u ∈ L2(Y ) and extend it, by periodicity to L2(Y 0). To conclude that
kDukL2(Y ) ∑ C is the direct consequence of the standard theorem on difference
quotient. We have to prove u ∈ H1# (Y ), i.e. it has periodic boundary conditions.
But this can be concluded from the fact that kDhukL2(V ) ∑ 9C , for every V
open Y ⊂ V ⊂ Y 0. This implies kDukL2(V ) ∑ 9C , by standard theorem on
difference quotients, and thus u ∈ H1(V ). This, on the other hand, implies that
u has periodic boundary conditions.

Lemma 4.13. Let θ ∈ Ck
#(Y ). The solution Eu1, v1 of (4.64) is a linear function of

G,F and Eu1 is in the space Ḣ k+1
# (Y ) and v1 is in the space Ḣ k+2

# (Y ).

Proof. Since we are on torus, proving regularity is easier since we do not have
boundary. Let us prove the claim for k = 1. Let us take i ∈ {1, 2} and test functions

Eϕα = −D−h
i (Dh

i Euα), α = 1, 2; υ = −D−h
i (Dh

i v1)

in (4.64). From standard properties on difference quotient we conclude
Z

Y
(A(sym∇Dh

i Eu1(y) − ∇2Dh
i v1(y)θ0(y)), sym∇Dh

i Eu1)dy

+
Z

Y
(A(sym∇Dh

i Eu1(y) − ∇2Dh
i v1(y)θ0(y)),−∇2Dh

i v1(y)θ0(y))dy

+
1
6

Z

Y
(A∇2Dh

i v1(y),∇
2Dh

i v1(y))dy

= −
Z

Y
(AG,∇2Dh

i v1(y)θ0(y))dy

+
Z

Y
(AFθ0(y), sym∇Dh

i Eu1(y) − ∇2Dh
i v1(y)θ0(y))dy

−
Z

Y
(A(sym∇Eu1(y) − ∇2v1(y)Dh

i θ0(y)), sym∇Eu1(y))dy

−
Z

Y
(A(sym∇Eu1(y) − ∇2v1(y)θ0(y)),−∇2v1(y)Dh

i θ0(y))dy

−
Z

Y
(A(sym∇Eu1(y) − ∇2v1(y)Dh

i θ0(y)),−∇2v1(y)θ0(y))dy . (4.72)
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From (4.72), using the positive definiteness ofA and transposing the different quo-
tient in the first two terms on the right hand side, we conclude that there exists
C > 0, dependent only onA such that

k sym∇Dh
i Eu1 − ∇2Dh

i v1θ0)k
2
L2(Y )

+ k∇2Dh
i v1k

2
L2(Y )

∑ C(kGk2 + kFk2 + kθ0k
2
C1(Y )

)(kEu1k2Ḣ1# (Y )
+ kv1k

2
Ḣ2# (Y )

). (4.73)

From this we conclude that kDh
i Eu1kH1(Y ), kDh

i v1kH2(Y ) are bounded, independent
of h, for i ∈ {1, 2}. Using lema 4.12 we have the claim for k = 1. For general k we
just differentiate (4.64) and repeat the arguments (see e.g. [12]). Thus we have that
the solution of (4.64) for θ ∈ Ck

#(Y ) is given by

Euα
1 (y) = Aα

u (y) ·G+ Bα
u (y) · F,

α = 1, 2,
v1(y) = Av(y) ·G+ Bv(y) · F,

(4.74)

where Aα
u ,Bα

u ∈ Hk+1
# (Y ; R2×2), Av,Bv ∈ Hk+2

# (Y ; R2×2).

4.3. Upper bound

Theorem 4.14 (optimality of lower bound). Let v ∈ H2(ω), Eu ∈ H1(ω; R2) and
let θ ∈ C2#(Y ). Then for each sequence h → 0 there exists a subsequence, still
denoted by h and appropriate Eyh ∈ H1(ƒ̂h; R3) and Rh ∈ H1(ω;SO(3)) such
that

k(∇Eyh) ◦ E2h ◦ Ph − RhkL2(ƒ) ∑ Ch4, (4.75)

k∇RhkL2(ω) ∑ Ch2,
Rh − I
h2

* A in H1(ω; R3×3), (4.76)

where A is defined by (4.16) and for Euh , vh defined by (4.8) (where eEy should be
replaced by Ey) convergence (4.11)-(4.12) are valid and

lim
h→0

I h(Eyh) = I L0 (Eu, v). (4.77)

Proof. Let us assume that Eu ∈ C1(ω; R2), v ∈ C1(ω). Let us take an arbitrary
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Eu1 ∈ D(ω;C1
# (Y ))2 , v1 ∈ D(ω;C1

# (Y )). Then we define

Eyh( E2h(x1, x2, xh3 )) = E2h(x1, x2, xh3 )

+




h4Eu(x1, x2) + h5Eu1(x1, x2, x1h , x2h )

h2v(x1, x2) + h4v1(x1, x2, x1h , x2h )





−h2xh3







@1v(x 0) + h@y1v1(x1, x2,
x1
h , x2h )

@2v(x 0) + h@y2v1(x1, x2,
x1
h , x2h )

0







−h4
µ

@1v(x1, x2) + h@y1v1
µ
x1, x2,

x1
h

,
x2
h

∂∂
θ0

µ
x1
h

,
x2
h

∂
Ee1

−h4
µ

@2v(x1, x2) + h@y2v1
µ
x1, x2,

x1
h

,
x2
h

∂∂
θ0

µ
x1
h

,
x2
h

∂
Ee2

−h3xh3

µ
@1v(x1, x2)@1θ

µ
x1
h

,
x2
h

∂
+ @2v(x1, x2)@2θ

µ
x1
h

,
x2
h

∂∂
Ee3

+h4xh3 Ed0
µ
x1, x2,

x1
h

,
x2
h

∂
+
1
2
h2(xh3 )

2 Ed1
µ
x1, x2,

x1
h

,
x2
h

∂
, (4.78)

where Ed0, Ed1 ∈ D(ω;C1
# (Y ))3 are going to be chosen later. We calculate

∇Eyh∇ E2h = ∇ E2h + h2A0 + h4B0 − h2xh3C
0

−h3






@1v@1θ @1v@2θ 0
@2v@1θ @2v@2θ 0
0 0 @1v@1θ + @2v@2θ






+h4






−@y1v@1θ −@y1v@2θ 0
−@y2v@1θ −@y2v@2θ 0

@x1v1 @x2v1 0






−h2xh3




0 0 0
0 0 0

@1v@11θ + @2v@12θ @1v@12θ + @2v@22θ 0





+h4 Ed0 ⊗ Ee3 + h2xh3 Ed1 ⊗ Ee3 + O(h5), (4.79)
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where kO(h5)kL1(ƒ) ∑ Ch5 and

A0 =






0 0 −@1v − h@y1v1
0 0 −@2v − h@y2v1

@1v + h@y1v1 @2v + h@y2v1 0




 , (4.80)

B0 =






@1Eu1 + @y1 Eu11 @2Eu1 + @y2 Eu11 0

@1Eu2 + @y1 Eu21 @2Eu2 + @y2 Eu21 0
0 0 0






−






(@11v + @y1y1v1)θ0 (@12v + @y1y2v1)θ0 0
(@12v + @y1y2v1)θ0 (@22v + @y2y2v1)θ0 0

0 0 0




 , (4.81)

C0 =






@11v + @y1y1v1 @12v + @y1y2v1 0
@12v + @y1y2v1 @22v + @y2y2v1 0

0 0 0




 . (4.82)

From (4.79), by using (2.4), we conclude

∇Eyh = I+ h2A0 + h4B0 − h2xh3C
0

+h4O+ h2xh3P+ h4 Ed0 ⊗ Ee3 + h2xh3 Ed1 ⊗ Ee3 + O(h5), (4.83)

where

O =







0 0 oh13
0 0 oh23
oh31 o

h
32 o

h
33





 , P =






0 0 0
0 0 0

ph31 ph32 0




 (4.84)

ohi3, o
h
3i , p

h
3α ∈ D(ω;C1

# (Y )), kohi3kL1(ω), koh3ikL1(ω), kph3αkL1(ω) ∑ C , C inde-
pendent of h.

Let us define
Rh := eh

2A0
.

The claims (4.75), (4.76) are easily checked to be valid as well as the convergence
(4.11), (4.12).

Using the identities (I + A)T (I + A) = I + 2 symA + ATA and (Ee3 ⊗ Ea0 −
Ea0 ⊗ Ee3)T (Ee3 ⊗ Ea0 − Ea0 ⊗ Ee3) = Ea0 ⊗ Ea0 + |Ea0|2Ee3 ⊗ Ee3 for Ea0 ∈ R2 we obtain

(∇Eyh)T (∇Eyh) = I+ h4[2 symB+ ∇v ⊗ ∇v + |∇v|2Ee3 ⊗ Ee3]
−2h2xh3 (∇

2v + ∇2yv1) + 2h4 sym( Ed0 ⊗ Ee3)

+2h2xh3 sym( Ed1 ⊗ Ee3) + 2h4 symO
+2h2xh3 symP+ O(h5). (4.85)
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For a symmetric 2 × 2 matrix A00 let c = LA00 ∈ R3 denote the (unique) vector
which realizes the minimum in the definition of Q2. i.e.

Q2(A00) = Q3(A00 + Ec ⊗ Ee3 + Ee3 ⊗ Ec).

Since Q3 is positive definite on symmetric matrices, Ec is uniquely determined and
the map L is linear. We choose now

Edi0 = −
1
2
|∇v|2δi3 −

1
2
(Oi3 +O3i ) +

µ
L

µ
symB+

1
2
∇v ⊗ ∇v

∂∂i
,

Edi1 = −
1
2
(Pi3 + P3i ) − (L(∇2v + ∇2yv1))

i ,

where δ is Kronecker symbol, and we can see that all the calculations are still valid.
Taking the square root in (4.85) and using the frame indifference of W and the
Taylor expansion we get

1
h8

Z

ƒ̂h
W (∇Eyh) =

1
h8

Z

ƒ̂h
W

°
[(∇Eyh)T∇Eyh]1/2

¢
→ I L(Eu, v, Eu1, v1), (4.86)

In the case θ ∈ C1
# (Y ) we could use Lemma 4.13. Since we supposed only θ ∈

C2#(Y )we continue as follows. Let us now take an arbitrary Eu ∈ H1(ω), v ∈ H2(ω).
Let Eu1(∇Eu,−∇2v) ∈ L2(ω; Ḣ1# (Y ))2, v1(∇Eu,−∇2v) ∈ L2(ω; Ḣ2# (Y )) be from
Lemma 4.11. We know take Eun, vn, Eun1, v

n
1 smooth such that

kEun − EukH1(ω;R2) ∑
1
n

(4.87)

kvn − vkH2(ω) ∑
1
n

(4.88)

kEun1 − Eu1k(L2(ω;Ḣ1# (Y ))2 ∑
1
n

(4.89)

kvn1 − v1kL2(ω;Ḣ2# (Y )) ∑
1
n

(4.90)

|I L(Eun, vn, Eun1, v
n
1 ) − I L0 (Eu, v)| ∑

1
n

(4.91)

Now, we choose Eyhn ∈ H1(ƒ̂hn ; R3), from the proof, such that

i)

k(∇Eyhn ) ◦ E2hn ◦ Phn − IkL2(ƒ) ∑
1
n

ii) for vhn defined by (4.8) we have kvhn − vnkH1(ω) ∑ 1
n .
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iii) for Ẽuhn defined by

Ẽuhn (x1, x2) :=
1
h4n

µZ 1/2

−1/2

√
Eyhn1 ◦ E2hn ◦ Phn

Eyhn2 ◦ E2hn ◦ Phn

!

(x1, x2, x3)dx3 −

µ
x1
x2

∂∂

+

√
@1v

n(x1, x2)θ0( x1h , x2h )

@2v
n(x1, x2)θ0( x1h , x2h )

!

,

we have kẼuhn − EunkL2(ω;R2) ∑ 1
n .

iv)
kI hn (Eyhn ) − I L(Eun, vn, Eun1, v

n
1 )k ∑

1
n
.

By using ii) and iii) and compactness Lemma 4.5 and Lemma 4.6 we conclude that
there exists Rhn such that (4.9), (4.10) is valid and for vhn and Euhn defined by (4.8)
we have that (4.11)-(4.17) is valid (it is easily seen from the properties ii) iii) and
the assumptions (4.87) and (4.88) that the limits of Euhn and vhn are Eu and v). By
using (4.91) and iv) we conclude that

lim
n→1

I hn (Eyhn ) = I L0 (Eu, v).

This finishes the proof of theorem.

Lemma 4.5, Lemma 4.9 and Theorem 4.14 enable us to standard theorem on
convergence of minimizers. We shall state it without proof (since it is standard),
assuming the external loads in Ee3 direction. For a more detailed discussion on
external loads in the standard Föppl-von Kármán case see [19].

Let Ef h3 ∈ L2(ƒ̂h; R) be given with the property

∀h,
1
h6

Ef h3 ◦ E2h ◦ Ph = Ef3 ∈ L2(ω; R), (4.92)
Z

ƒ̂h
Ef h3 dx = 0. (4.93)

It is not necessary to demand the equality in (4.92) neither that Ef3 depends only on
x1, x2. For a more detailed discussion see the proof of Theorem 2.5 in [20] (see
also the proof of Theorem 6 in [28]). Let us additionally assume

Z

ω
x1 Ef3dx = 0,

Z

ω
x2 Ef3dx = 0. (4.94)

This can be assumed by rotating the coordinate axis (the energy density W in rota-
tional invariant). From (2.2) it can be concluded that

Ø
Ø
Z

ƒ̂h
x1 Ef h3 dx

Ø
Ø ∑ Ch4,

Ø
Ø
Z

ƒ̂h
x2 Ef h3 dx

Ø
Ø ∑ Ch4. (4.95)
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The total energy functional Jh (divided by h2), defined on the space H1(ƒ̂h; R3),
is given by

Jh(Eyh) = h8 I h(Eyh) −
1
h2

Z

ƒ̂h
Ef h3 Eyh3 . (4.96)

The following theorem is the main result and its proof follows the proof of Theorem
2 in [14].
Theorem 4.15 (0-convergence). Let us suppose that θ∈C2#(Y ) and Ef h3 ∈L2(ƒ̂h;R)
is given and satisfies (4.92), (4.93) and (4.94). Then:
1. There exists C1,C2 > 0 such that for every h > 0 we have

C1h2 ≥ inf
Ω
1
h8
Jh(Eyh); Eyh ∈ H1(ƒ̂h; R3)

æ
≥ −C2. (4.97)

In the case hθi 6= 0 we can take C1 = 0.
2. If Eyh ∈ H1(ƒ̂h; R3) is a minimizing sequence of 1h8 J

h , that is

lim
h→0

≥ 1
h8
Jh(Eyh) − inf

1
h8
Jh

¥
= 0, (4.98)

then we have that there exists R̄h ∈ SO(3), Ech ∈ R such that the sequence
(R̄h, Eyh) has its subsequence (also not relabeled) with the following property:

i) For the sequenceeEyh := (R̄h)T Eyh − Ech and Euh, vh defined by (4.8) the fol-
lowing is valid

Euh * Eu weakly in H1(ω; R2),
vh → v in H1(ω), v ∈ H2(ω).

Any accumulation point (Eu, v, R̄) of the sequence (Euh, vh, R̄h) minimizes the
functional

J L0 (Eu, v, R̄) = I L0 (Eu, v) − R̄33
Z

ω

Ef3(x1, x2)
°
v(x1, x2) + hθi

¢
dx1dx2, (4.99)

where I L0 is defined in (4.60). Moreover, for Ef3 6= 0 we have R̄33 = 1 or
R̄33 = −1.

3. The minimum of the functional J L0 exists in the space H1(ω; R2) × H2(ω) ×

SO(3). If Eyh ∈ H1(ƒ̂h; R3) is a minimizing sequence (not relabeled) of 1
h8 J

h

then we have that

lim
h→0

1
h8
Jh(Eyh) = min

Eu∈H1(ω;R2), v∈H2(ω), R̄∈SO(3)
J L0 (Eu, v, R̄). (4.100)

Remark 4.16. When we compare this model with the ordinary plate model of the
Föppl-von Kármán type we see that in the energy expression we mix the term ∇2v
which measures the bending of the plate with the term sym∇Eu+ 1

2∇v ⊗ ∇v which
measures the stretching of the plate. Thus the imperfect plate (periodically wrin-
kled) can cause this kind of behavior.
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[5] J. F. BABADJIAN and M. BAÍA, 3D-2D analysis of a thin film with periodic microstructure,

Proc. Roy. Soc. Edinburgh, Section A 136 (2006), 223–243.
[6] A. BRAIDES, “0-convergence for Beginners”, Oxford University Press, Oxford, 2002.
[7] A. BRAIDES, I. FONSECA and G. FRANCFORT, 3D-2D Asymptotic analysis for inhomo-

geneous thin films, Indiana Univ. Math. J. 49 (2000), 1367–1404.
[8] P. G. CIARLET, “Mathematical Elasticity. Vol. I, Three-dimensional Elasticity”, North-

Holland Publishing Co., Amsterdam, 1988.
[9] P. G. CIARLET, “Mathematical elasticity. Vol. II. Theory of plates. Studies in Mathematics

and its Applications”, 27. North-Holland Publishing Co., Amsterdam 1997.
[10] P. G. CIARLET, “Mathematical elasticity. Vol. III. Theory of shells. Studies in Mathematics

and its Applications”, 29. North-Holland Publishing Co., Amsterdam 2000.
[11] G. DAL MASO, “An Introduction to 0-convergence, Progress in Nonlinear Differential

Equations and Their Applications”, Birkäuser, Basel 1993.
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for plates with incompatible strains, Proc. R. Soc. London, Ser. A 467 (2011) 402–426.

[23] S. NEUKAMM, Homogenization, linearization and dimension reduction in elasticity with
variational methods, Dissertation Technische Universität München, 2010.

[24] S. NEUKAMM, Rigorous derivation of a homogenized bending-torsion theory for inextensi-
ble rods from three-dimensional elasticity, Arch. Ration. Mech. Anal. 206 (2012), 645–706.



PERIODICALLY WRINKLED PLATE MODEL OF THE FÖPPL-VON KÁRMÁN TYPE 307
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[29] I. VELČIĆ, Nonlinear weakly curved rod by 0-convergence, J. Elasticity 108 (2012), 125–
150.

Faculty of Electrical Engineering
and Computer Science
University of Zagreb
Unska 3, 10000 Zagreb, Croatia
Igor.Velcic@fer.hr


