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Multiply monogenic orders

ATTILA BÉRCZES, JAN-HENDRIK EVERTSE AND KÁLMÁN GYŐRY

Abstract. Let A = Z[x1, . . . , xr ] ⊃ Z be a domain which is finitely generated
over Z and integrally closed in its quotient field L . Further, let K be a finite
extension field of L . An A-order in K is a domain O ⊃ A with quotient field K
which is integral over A. A-orders in K of the type A[α] are called monogenic.
It was proved by Győry [10] that for any given A-order O in K there are at
most finitely many A-equivalence classes of α ∈ O with A[α] = O, where two
elements α,β of O are called A-equivalent if β = uα + a for some u ∈ A∗,
a ∈ A. If the number of A-equivalence classes of α with A[α] = O is at least k,
we call O k times monogenic.

In this paper we study orders which are more than one time monogenic.
Our first main result is that if K is any finite extension of L of degree ≥ 3, then
there are only finitely many three times monogenic A-orders in K . Next, we
define two special types of two times monogenic A-orders, and show that there
are extensions K which have infinitely many orders of these types. Then under
certain conditions imposed on the Galois group of the normal closure of K over
L , we prove that K has only finitely many two times monogenic A-orders which
are not of these types. Some immediate applications to canonical number systems
are also mentioned.

Mathematics Subject Classification (2010): 11R99 (primary); 11D99, 11J99
(secondary).

1. Introduction

In this introduction we present our results in the special case A = Z. Our general
results over arbitrary finitely generated domains A are stated in the next section.

Let K be an algebraic number field of degree d ≥ 2 with ring of integers OK .
The number field K is called monogenic if OK = Z[α] for some α ∈ OK . This
is equivalent to the fact that {1,α, . . . ,αd−1} forms a Z-module basis for OK . The
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existence of such a basis, called power integral basis, considerably facilitates the
calculations inOK and the study of arithmetical properties ofOK .

The quadratic and cyclotomic number fields are monogenic, but this is not the
case in general. Dedekind [4] gave the first example for a non-monogenic number
field.

More generally, an order O in K , that is a subring of OK with quotient field
equal to K , is said to be monogenic if O = Z[α] for some α ∈ O. Then for
β = ±α + a with a ∈ Z we also have O = Z[β]. Such elements α,β of O are
called Z-equivalent.

In this paper, we deal with the “Diophantine equation”

Z[α] = O in α ∈ O (1.1)

where O is a given order in K . As has been explained above, the solutions of
(1.1) can be divided into Z-equivalence classes. It was proved by Győry [7–9]
that there are only finitely many Z-equivalence classes of α ∈ O with (1.1), and
that a full system of representatives for these classes can be determined effectively.
Evertse and Győry [5] gave a uniform and explicit upper bound, depending only
on d = [K : Q], for the number of Z-equivalence classes of such α. For various
generalizations and effective versions, we refer to Győry [13].

In what follows, the following definition will be useful.

Definition. An order O is called k times monogenic, if there are at least k distinct
Z-equivalence classes of α with (1.1), in other words, if there are at least k pairwise
Z-inequivalent elements α1, . . . ,αk ∈ O such that

O = Z[α1] = · · · = Z[αk].

Similarly, the order O is called precisely/at most k times monogenic, if there are
precisely/at most k Z-equivalence classes of α with (1.1).
It is not difficult to show that any order O in a quadratic number field is precisely
one time monogenic, i.e., there exist α ∈ O with (1.1), and these α are all Z-
equivalent to one another.

Our first result is as follows.
Theorem 1.1. Let K be a number field of degree ≥ 3. Then there are at most
finitely many three times monogenic orders in K .

This result is a refinement of work of Bérczes [1].
The bound 3 is best possible, i.e., there are number fields K having infinitely

many two times monogenic orders. We believe that if K is an arbitrary number field
of degree ≥ 3, then with at most finitely many exceptions, all two times monogenic
orders in K are of a special structure. Below, we state a theorem which confirms
this if we impose some restrictions on K .

Let K be a number field of degree at least 3. An order O in K is called of
type I if there are α,β ∈ O and

° a1 a2a3 a4
¢

∈ GL(2, Z) such that

K = Q(α), O = Z[α] = Z[β], β =
a1α + a2
a3α + a4

, a3 6= 0. (1.2)
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Notice that β is not Z-equivalent to α, since a3 6= 0 and K has degree at least 3. So
orders of type I are two times monogenic.

Orders O of type II exist only for number fields of degree 4. An order O in a
quartic number field K is called of type II if there are α,β ∈ O and a0, a1, a2, b0,
b1, b2 ∈ Z with a0b0 6= 0 such that

K = Q(α), O = Z[α] = Z[β], (1.3)
β = a0α2 + a1α + a2, α = b0β2 + b1β + b2.

Orders of type II are certainly two times monogenic. At the end of this section,
we give examples of number fields having infinitely many orders of type I, respec-
tively II.

Let E be a field of characteristic 0, and F = E(θ)/E a finite field extension of
degree d. Denote by θ (1), . . . , θ (d) the conjugates of θ over E , and by G the normal
closure E(θ (1), . . . , θ (d)) of F over E . We call F m times transitive over E (m ∑ d)
if for any two ordered m-tuples of distinct indices (i1, . . . , im), ( j1, . . . , jm) from
{1, . . . , d}, there is σ ∈ Gal(G/E) such that

σ (θ (i1)) = θ ( j1), . . . , σ (θ (im)) = θ ( jm).

If E = Q, we simply say that F is m times transitive.
We denote by Sn the permutation group on n elements.
Our result on two times monogenic orders is as follows.

Theorem 1.2. (i) Let K be a cubic number field. Then every two times monogenic
order in K is of type I.
(ii) Let K be a quartic number field of which the normal closure has Galois group
S4. Then there are at most finitely many two times monogenic orders in K which
are not of type I or of type II.
(iii) Let K be a four times transitive number field of degree at least 5. Then there at
most finitely many two times monogenic orders in K which are not of type I.

In Section 2 we present some immediate applications of our results to canonical
number systems. In Section 3 we formulate generalizations of Theorems 1.1 and
1.2 for the case that the ground ring is an arbitrary integrally closed domain which
is finitely generated over Z. Sections 4–6 contain auxiliary results, and Sections
7–9 contain our proofs.

Our proofs of Theorems 1.1 and 1.2 use finiteness results on unit equations in
more than two unknowns, together with some combinatorial arguments. At present,
it is not known how to make the results on unit equations effective, therefore we are
not able to determine effectively the three times monogenic orders in Theorem 1.1,
or the two times monogenic orders not of type I or II in Theorem 1.2. Although
it is possible to estimate from above the number of solutions of unit equations, it
is because of the combinatorial arguments in our proofs that we are not able to
estimate from above the numbers of exceptional orders in Theorems 1.1 and 1.2.
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We finish this introduction with constructing number fields having infinitely
many orders of type I, respectively type II.

Let K be a number field of degree≥ 3 which is not a totally complex quadratic
extension of a totally real field. By Dirichlet’s Unit Theorem, for any proper sub-
field L of K , the rank of O∗

L (the group of units of the ring of integers of L) is
smaller than that ofO∗

K . We show that K has infinitely many orders of type I. Take° a1 a2a3 a4
¢

∈ GL(2, Z) with a3 6= 0. Suppose that there is u0 ∈ O∗
K such that u0 ≡ a4

(mod a3). This is the case for instance if a3 = 1. By the Euler-Fermat Theorem
for number fields, there is a positive integer t such that ut ≡ 1 (mod a3) for every
u ∈ O∗

K . Hence the group of units u ∈ O∗
K with u ≡ 1 (mod a3) has finite index in

O∗
K . Consequently, there are infinitely many units u ∈ O∗

K with u ≡ a4 (mod a3).
By our assumption on K , among these, there are infinitely many u withQ(u) = K .
For each such u, put

α :=
u − a4
a3

, β :=
a1α + a2
a3α + a4

.

Then clearly, K = Q(α). From the minimal polynomial of u we derive a relation
u−1 = f (u) with f ∈ Z[X]. Hence β = (a1α + a2) f (a3α + a4) ∈ Z[α]. Since
β = (a4β − a2)/(−a3β + a1) and −a3β + a1 = ±u−1, we obtain in a similar
fashion α ∈ Z[β]. Therefore, Z[α] = Z[β]. By varying

° a1 a2a3 a4
¢
and u we obtain

infinitely many orders of type I in K .
For instance, for u ∈ O∗

K we have Z[u] = Z[u−1] and the discriminant of this
order is the discriminant of (the minimal polynomial of) u. By Győry [8, Corollaire
2.2], there are at most finitely many units u ∈ O∗

K of given discriminant. Hence
there are infinitely many distinct orders among Z[u] (u ∈ O∗

K ).
We now construct quartic fields with infinitely many orders of type II. The

construction is based on the theory of cubic resolvents, see van der Waerden [20,
Section 64].

Let r, s be integers such that the polynomial f (X) = (X2 − r)2 − X − s is
irreducible and has Galois group S4. There are infinitely many such pairs (r, s) (see,
e.g., Kappe and Warren [14]). Denote by α(1) = α,α(2),α(3),α(4) the roots of f
and let K := Q(α). Define

η1 := −(α(1) + α(2))(α(3) + α(4)) = (α(1) + α(2))2,

η2 := −(α(1) + α(3))(α(2) + α(4)) = (α(1) + α(3))2,

η3 := −(α(1) + α(4))(α(2) + α(3)) = (α(1) + α(4))2.

Then
(X − η1)(X − η2)(X − η3) = X3 − 4r X2 + 4sX − 1. (1.4)

Take
√

η1 = α(1) + α(2),
√

η2 = α(1) + α(3),
√

η3 = α(1) + α(4).

Then
√

η1 ·
√

η2 ·
√

η3 = 1. (1.5)
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By the Gauss-Fermat Theorem over number fields, there exists a positive integer t
such that

ηt1 ≡ 1 (mod 4). (1.6)

Consider for m = 0, 1, 2, . . . the numbers

αm := 1
2

≥√
η1
1+2mt +

√
η2
1+2mt +

√
η3
1+2mt

¥
,

βm := 1
2

≥√
η1

−1−2mt +
√

η2
−1−2mt +

√
η3

−1−2mt
¥

.

The numbers αm are invariant under any automorphism that permutes α(2),α(3),
α(4), i.e., under any automorphism that leaves K invariant, hence they belong to K .
Further, they have four distinct conjugates, so Q(αm) = K . Next, by (1.5),

βm = α2m − rm, αm = β2m − sm,

where

rm = 1
4

≥
η1+2mt1 + η1+2mt2 + η1+2mt3

¥
,

sm = 1
4

≥
η−1−2mt
1 + η−1−2mt

2 + η−1−2mt
3

¥
.

By (1.4),(1.6), rm, sm are rational integers, hence αm,βm are algebraic integers for
every m. We thus obtain for every non-negative integer m an order Z[αm] = Z[βm]
of type II in K .

We claim that among the orders Z[αm] there are infinitely many distinct ones.
Denote by Dm the discriminant of Z[αm]. Then Dm is equal to the discriminant of
αm , and a straightforward computation shows that this is equal to the discriminant
of η1+2mt1 . By [8, Corollaire 2.2], we have |Dm | → 1 as m → 1. This implies
our claim.

2. Application to canonical number systems

Let K be an algebraic number field of degree ≥ 2, andO an order in K . A nonzero
element α in O is called a basis of a canonical number system (or CNS basis) for
O if every nonzero element ofO can be represented in the form

a0 + a1α + · · · + amαm

with m ≥ 0, ai ∈ {0, 1, . . . , |NK/Q(α)| − 1} for i = 0, . . . ,m, and am 6= 0.
Canonical number systems can be viewed as natural generalizations of radix repre-
sentations of rational integers to algebraic integers.

When there exists a canonical number system in O, then O is called a CNS
order. Orders of this kind have been intensively investigated; we refer to the survey
paper [2] and the references given there.
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It was proved by Kovács [15] and Kovács and Pethő [16] thatO is a CNS order
if and only if O is monogenic. More precisely, if α is a CNS basis in O, then it
is easily seen that O = Z[α]. Conversely, O = Z[α] does not imply in general
that α is a CNS basis. However, in this case there are infinitely many α0 which are
Z-equivalent to α such that α0 is a CNS basis for O. A characterization of CNS
bases inO is given in [16].

The close connection between elements α ofO withO = Z[α] and CNS bases
in O enables one to apply results concerning monogenic orders to CNS orders and
CNS bases. The results presented in Section 1 have immediate applications of this
type. For example, it follows that up to Z-equivalence there are only finitely many
canonical number systems inO.

We say that O is a k-times CNS order if there are at least k pairwise Z-
inequivalent CNS bases inO. Theorem 1.1 gives the following.

Corollary 2.1. Let K be an algebraic number field of degree ≥ 3. Then there are
at most finitely many three times CNS orders in K .

3. Results over finitely generated domains

Let A be a domain with quotient field L of characteristic 0. Suppose that A is
integrally closed, and that A is finitely generated over Z as a Z-algebra. Let K be a
finite extension of L of degree at least 3, AK the integral closure of A in K , and O
an A-order in K , that is a subring of AK which contains A and which has quotient
field K . Consider the equation

A[α] = O in α ∈ O. (3.1)

The solutions of this equation can be divided into A-equivalence classes, where
two elements α,β ofO are called A-equivalent if β = uα + a for some a ∈ A and
u ∈ A∗. Here A∗ denotes the multiplicative group of invertible elements of A. As
is known (see Roquette [19]), A∗ is finitely generated.

It was proved by Győry [10] that the set of α with (3.1) is a union of finitely
many A-equivalence classes. An explicit upper bound for the number of these A-
equivalence classes has been derived by Evertse and Győry [5]. An effective version
has been established by Győry for certain special types of domains [11].

We now formulate our generalizations of the results from the previous sections
to A-orders. We call an A-orderO k times monogenic, if equation (3.1) has at least
k A-equivalence classes of solutions.

Theorem 3.1. Let A be a domain with quotient field L of characteristic 0 which is
integrally closed and finitely generated over Z, and let K be a finite extension of L
of degree≥ 3. Then there are at most finitely many three times monogenic A-orders
in K .
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We now turn to two times monogenic A-orders. Let again K be a finite ex-
tension of L of degree at least 3. We call O an A-order in K of type I if there are
α,β ∈ O and

° a1 a2a3 a4
¢

∈ GL(2, L) such that

K = L(α), O = A[α] = A[β], β =
a1α + a2
a3α + a4

, a3 6= 0. (3.2)

It should be noted that in the previous section (with L = Q, A = Z) we had in
our definition (1.2) of orders of type I the stronger requirement

° a1 a2a3 a4
¢

∈ GL(2, Z)

instead of
° a1 a2a3 a4

¢
∈ GL(2, Q). In fact, if A is a principal ideal domain, we can

choose a1, a2, a3, a4 in (3.2) such that a1, a2, a3, a4 ∈ A and the ideal generated
by a1, . . . , a4 equals A. In that case, according to Lemma 6.4 proved in Section 6
below, (3.2) implies that

° a1 a2a3 a4
¢

∈ GL(2, A).
A-orders of type II exist only in extensions of L of degree 4. Thus, let K be

an extension of L of degree 4. We call O an A-order in K of type II if there are
α,β ∈ O and a0, a1, a2, b0, b1, b2 ∈ A with a0b0 6= 0, such that

K = L(α), O = A[α] = A[β], (3.3)
β = a0α2 + a1α + a2, α = b0β2 + b1α + b2.

Theorem 3.2. Let A be a domain with quotient field L of characteristic 0 which is
integrally closed and finitely generated over Z, and let K be a finite extension of L .
Denote by G the normal closure of K over L .

(i) Suppose [K : L] = 3. Then every two times monogenic A-order in K is of
type I.

(ii) Suppose [K : L] = 4 and Gal(G/L) ∼= S4. Then there are only finitely many
two times monogenic A-orders in K which are not of type I or type II.

(iii) Suppose [K : L] ≥ 5 and that K is four times transitive over L . Then there
are only finitely many two times monogenic A-orders in K which are not of
type I.

4. Equations with unknowns from a finitely generated multiplicative
group

The main tools in the proofs of Theorems 3.1 and 3.2 are finiteness results on poly-
nomial equations of which the unknowns are taken from finitely generated multi-
plicative groups. In this section, we have collected what is needed. Below, G is a
field of characteristic 0.

Lemma 4.1. Let a1, a2 ∈ G∗ and let 0 be a finitely generated subgroup of G∗.
Then the equation

a1x1 + a2x2 = 1 in x1, x2 ∈ 0 (4.1)

has only finitely many solutions.
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Proof. See Lang [17].

A pair (a1, a2) ∈ (G∗)2 = G∗ × G∗ is called normalized if (1, 1) is a solution
to (4.1), i.e., a1 + a2 = 1. If (4.1) has a solution, (y1, y2), say, then by replacing
(a1, a2) by (a1y1, a2y2) we obtain an equation like (4.1) with a normalized pair of
coefficients, whose number of solutions is the same as that of the original equation.

Lemma 4.2. Let 0 be a finitely generated subgroup of G∗. There is a finite set of
normalized pairs in (G∗)2, such that for every normalized pair (a1, a2) ∈ (G∗)2

outside this set, equation (4.1) has at most two solutions, the pair (1, 1) included.

Proof. This result is due to Evertse, Győry, Stewart and Tijdeman [6]; see also [12].
We note that the proof depends ultimately on the Subspace Theorem, hence it is
ineffective.

We consider more generally polynomial equations

f (x1, . . . , xn) = 0 in x1, . . . , xn ∈ 0 (4.2)

where f is a non-zero polynomial from G[X1, . . . , Xn] and 0 is a finitely generated
subgroup of G∗. Denote by T an auxiliary variable. A solution (x1, . . . , xn) of (4.2)
is called degenerate, if there are integers c1, . . . , cn , not all zero, such that

f (x1T c1, . . . , xnT cn ) ≡ 0 identically in T , (4.3)

and non-degenerate otherwise.

Lemma 4.3. Let f be a non-zero polynomial from G[X1, . . . , Xn] and 0 a finitely
generated subgroup of G∗. Then equation (4.2) has only finitely many non-degen-
erate solutions.

Proof. Given a multiplicative Abelian group H , we denote by Hn its n-fold direct
product with componentwise multiplication.

Let V be the hypersurface given by f = 0. Notice that the degenerate solutions
x are precisely those, for which there exists an algebraic subgroup H of (G∗)n of
dimension ≥ 1 such that xH ⊆ V . By a theorem of Laurent [18], the intersection
V ∩0n is contained in a finite union of cosets x1H1∪ · · ·∪xr Hr where H1, . . . , Hr
are algebraic subgroups of (G∗)n , x1, . . . , xr are elements of 0n , and xi Hi ⊆ V for
i = 1, . . . , r . The non-degenerate solutions in our lemma are precisely the zero-
dimensional cosets among x1H1, . . . , xr Hr , while the degenerate solutions are in
the union of the positive dimensional cosets.
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5. Finitely generated domains

We recall some facts about domains finitely generated over Z.
Let A be an integrally closed domain with quotient field L of characteristic 0

which is finitely generated over Z. Then A is a Noetherian domain. Moreover, A
is a Krull domain; see e.g. Bourbaki [3], Chapter VII, Section 1. This means the
following. Denote by P(A) the collection of minimal non-zero prime ideals of A,
these are the non-zero prime ideals that do not contain a strictly smaller non-zero
prime ideal. Then there exist normalized discrete valuations ordp (p ∈ P(A)) on
L , such that the following conditions are satisfied:

for every x ∈ K ∗ there are only finitely many p ∈ P(A) with
ordp(x) 6= 0, (5.1)

A =
©
x ∈ K : ordp(x) ≥ 0 for p ∈ P(A)

™
, (5.2)

p =
©
x ∈ A : ordp(x) > 0

™
for p ∈ P(A). (5.3)

These valuations ordp are uniquely determined. As is easily seen, for x, y ∈ L∗ we
have

ordp(x) = ordp(y) for all p ∈ P(A) ⇐⇒ xy−1 ∈ A∗. (5.4)

Let G be a finite extension of L . Denote by AG the integral closure of A in G, and
by A∗

G the unit group, i.e., group of invertible elements of AG . We will apply the
results from Section 4 with 0 = A∗

G . To this end, we need the following lemma.

Lemma 5.1. The group A∗
G is finitely generated.

Proof. The domain AG is contained in a free A-module of rank [G : L]. Since A is
Noetherian, the domain AG is finitely generated as an A-module, and so it is finitely
generated as an algebra over Z. Then by a theorem of Roquette [19], the group A∗

G
is finitely generated.

6. Other auxiliary results

We have collected some elementary lemmas needed in the proofs of Theorems 3.1
and 3.2. Let A be an integrally closed domain with quotient field L of characteristic
0 which is finitely generated over Z, and K a finite extension of L with [K : L] =:
d ≥ 3. Denote by G the normal closure of K over L . Let σ1 = id, . . . , σd be
the distinct L-isomorphisms of K in G, and for α ∈ K write α(i) := σi (α) for
i = 1, . . . , d. Denote by AK and AG the integral closures of A in K and G,
respectively, and by A∗

G the multiplicative group of invertible elements of AG .
The discriminant of α ∈ K is given by

DK/L(α) :=
Y

1∑i< j∑d

≥
α(i) − α( j)

¥2
.
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This is an element of L . We have L(α) = K if and only if all conjugates of α are
distinct, hence if and only if DK/L(α) 6= 0. Further, if α is integral over A then
DK/L(α) ∈ A since A is integrally closed.

Lemma 6.1. Let α,β ∈ AK and suppose that L(α) = L(β) = K , A[α] = A[β].
Then

(i)
β(i) − β( j)

α(i) − α( j) ∈ A∗
G for i, j ∈ {1, . . . , d}, i 6= j ,

(ii)
DK/L(β)

DK/L(α)
∈ A∗.

Proof. (i) Let i, j ∈ {1, . . . , d}, i 6= j . We have β = f (α) for some f ∈ A[X].
Hence

β(i) − β( j)

α(i) − α( j) =
f (α(i)) − f (α( j))

α(i) − α( j) ∈ AG .

Likewise (α(i) − α( j))/(β(i) − β( j)) ∈ AG . This proves (i).
(ii) We have on the one hand, DK/L(β)/DK/L(α) ∈ L∗, on the other hand

DK/L(β)

DK/L(α)
=

Y

1∑i< j∑d

√
β(i) − β( j)

α(i) − α( j)

!2
∈ A∗

G .

Since A is integrally closed, this proves (ii).

We call two elements α,β of K L-equivalent if β = uα + a for some u ∈
L∗, a ∈ L .

Lemma 6.2. Let α,β ∈ AK and suppose that L(α) = L(β) = K , A[α] = A[β],
and α,β are L-equivalent. Then α,β are A-equivalent.

Proof. By assumption, β = uα + a with u ∈ L∗, a ∈ L . By the previous lemma,
ud(d−1) = DK/L(β)/DK/L(α) ∈ A∗, and then u ∈ A∗ since A is integrally closed.
Consequently, a = β − uα is integral over A. Hence a ∈ A. This shows that α,β
are A-equivalent.

For α ∈ K with K = L(α) we define the ordered (d − 2)-tuple

τ (α) :=
≥α(3) − α(1)

α(2) − α(1) , . . . ,
α(d) − α(1)

α(2) − α(1)

¥
. (6.1)

Lemma 6.3. (i) Let α,β with L(α) = L(β) = K . Then α,β are L-equivalent if
and only if τ (α) = τ (β).
(ii) Let α,β ∈ AK and suppose that L(α) = L(β) = K , A[α] = A[β]. Then α,β
are A-equivalent if and only if τ (α) = τ (β).
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Proof. (i) If α,β are L-equivalent, then clearly τ (α) = τ (β). Assume conversely
that τ (α) = τ (β). Then there are unique u ∈ G∗, a ∈ G such that

(β(1), . . . ,β(d)) = u(α(1), . . . ,α(d)) + a(1, . . . , 1). (6.2)

In fact, the unicity of u, a follows since thanks to our assumption K = L(α),
the numbers α(1), . . . ,α(d) are distinct. As for the existence, observe that (6.2) is
satisfied with u = (β(2) − β(1))/(α(2) − α(1)), a = β(1) − uα(1).

Take σ from the Galois group Gal (G/L). Then σ ◦ σ1, . . . , σ ◦ σd is a per-
mutation of the L-isomorphisms σ1, . . . , σd : K ,→ G. It follows that σ permutes
(α(1), . . . ,α(d)) and (β(1), . . . ,β(d)) in the same way. So by applying σ to (6.2) we
obtain

(β(1), . . . ,β(d)) = σ (u)(α(1), . . . ,α(d)) + σ (a)(1, . . . , 1).

By the unicity of u, a in (6.2) this implies σ (u) = u, σ (a) = a. This holds for
every σ ∈ Gal (G/L). So in fact u ∈ L∗, a ∈ L , that is, α, β are L-equivalent.

(ii) Use Lemma 6.2.

We denote by (a1, . . . , ar ) the ideal of A generated by a1, . . . , ar .

Lemma 6.4. Let α,β ∈ AK with L(α) = L(β) = K , A[α] = A[β]. Suppose there
is a matrix

° a1 a2a3 a4
¢

∈ GL(2, L) with

β =
a1α + a2
a3α + a4

, a3 6= 0, (6.3)

a1, a2, a3, a4 ∈ A, (a1, a2, a3, a4) = (1). (6.4)

Then
° a1 a2a3 a4

¢
∈ GL(2, A).

Remark. Let O be an A-order of type I, as defined in Section 3. Then there exist
α,β with O = A[α] = A[β], and a matrix U :=

° a1 a2a3 a4
¢

∈ GL(2, L) with (6.3). If
A is a principal ideal domain then by taking a suitable scalar multiple of U we can
arrange that (6.4) also holds, and thus, that U ∈ GL(2, A).

Proof. Since α ∈ AK and L(α) = K , it has a monic minimal polynomial f ∈ A[X]
over L of degree d. Moreover, since A[β] = A[α], we have

β = r0 + r1α + · · · + rd−1α
d−1 with r0, . . . , rd−1 ∈ A. (6.5)

Hence

(a3X + a4)(rd−1Xd−1 + · · · + r0) − a1X − a2 = a3rd−1 f (X). (6.6)

Equating the coefficients, we see that

a4r0 − a2 ∈ a3rd−1A, a4r1 + a3r0 − a1 ∈ a3rd−1A, (6.7)
a4r j + a3r j−1 ∈ a3rd−1A ( j = 2, . . . , d − 1). (6.8)
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We first prove that
a1− j
3 r j ∈ A for j = 1, . . . , d − 1. (6.9)

In fact, we prove by induction on i (1 ∑ i ∑ d − 1), the assertion that a1− j
3 r j ∈ A

for j = 1, . . . , i , and a1−i3 r j ∈ A for j = i + 1, . . . , d − 1. For i = 1 this is
clear. Let 2 ∑ i ∑ d − 1 and suppose that the assertion is true for i − 1 instead
of i . Then s j := a2−i3 r j ∈ A for j = i, . . . , d − 1. Further, by (6.8), we have
a4s j + a3s j−1 = z ja3sd−1 with z j ∈ A for j = i, . . . , d − 1. Next, by (6.7) we
have a1, a2 ∈ (a3, a4), and then (a3, a4) = (1) by (6.4). That is, there are x, y ∈ A
with xa3 + ya4 = 1. Consequently, for j = i, . . . , d − 1, we have

s j = (xa3 + ya4)s j = a3(xs j + y(z j sd−1 − s j−1)) ∈ a3A,

i.e., a1−i3 r j = a−1
3 s j ∈ A. This completes our induction step, and completes the

proof of (6.9).
Now define the binary form F(X,Y ) := Yd f (X/Y ). Then (6.6) implies

a3rd−1F(X,Y ) = (a3X + a4Y )(· · · ) − Yd−1(a1X + a2Y ).

Substituting X = a4, Y = −a3, and using (6.9), it follows that

F(a4,−a3) = s−1(a1a4 − a2a3) with s ∈ A. (6.10)

Denote by α(1), . . . ,α(d) the conjugates of α, and by β(1), . . . ,β(d) the correspond-
ing conjugates of β. Then for the discriminant of β we have, by (6.3), (6.10),

DK/L(β) =
Y

1∑i< j∑d
(β(i) − β( j))2

= (a1a4 − a2a3)d(d−1)

√
dY

i=1
(a4 + a3α(i))

!−2d+2 Y

1∑i< j∑d
(α(i) − α( j))2

= (a1a4 − a2a3)d(d−1)F(a4,−a3)−2d+2DK/L(α)

= s2d−2(a1a4 − a2a3)(d−1)(d−2)DK/L(α).

On the other hand, by Lemma 6.1, (ii) we have DK/L(β)/DK/L(α) ∈ A∗. Using
also that A is integrally closed, it follows that a1a4 − a2a3 ∈ A∗. This completes
our proof.

7. Proof of Theorem 3.1

The proof splits into two parts. Consider β ∈ AK with K = L(β). The first
part, which is Lemma 7.1 below, implies that the set of β such that A[β] is three
times monogenic, is contained in a union of at most finitely many L-equivalence
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classes. The second part, which is Lemma 7.2 below, implies that if C is a given L-
equivalence class, then the set of β ∈ C such that A[β] is two times monogenic, is in
a union of at most finitely many A-equivalence classes. (Lemma 7.2 is used in the
proof of Theorem 3.2 as well, therefore it deals with two times monogenic orders.)
Any three times monogenic A-order in K can be expressed as A[β]. A combination
of Lemmas 7.1 and 7.2 clearly yields that the set of such β lies in finitely many A-
equivalence classes. Since A-equivalent β give rise to equal A-orders A[β], there
are only finitely many three times monogenic orders in K .

Lemma 7.1. The set of β such that

β ∈ AK , L(β) = K , A[β] is three times monogenic (7.1)

is contained in a union of at most finitely many L-equivalence classes.

Proof. Assume the contrary. Then there is an infinite sequence of triples
{(β1p,β2p,β3p) : p = 1, 2, . . .} such that

βhp ∈ AK , L(βhp) = K for h = 1, 2, 3, p = 1, 2, . . . ; (7.2)

β1p (p = 1, 2, . . .) lie in different L-equivalence classes (7.3)
and for p = 1, 2, . . . ,

Ω
A[β1p] = A[β2p] = A[β3p],
β1p,β2p,β3p lie in different A-equivalence classes

(7.4)

(so the β1p play the role of β in the statement of our lemma). For any three distinct
indices i, j, k from {1, . . . , d}, and for h = 1, 2, 3, p = 1, 2, . . ., put

β
(i jk)
hp :=

β
(i)
hp − β

( j)
hp

β
(i)
hp − β

(k)
hp

.

By (7.2), these numbers are well-defined and non-zero.
We start with some observations. Let i, j, k be any three distinct indices from

{1, . . . , d}. By Lemma 6.1 and the obvious identities β
(i jk)
hp + β

(k ji)
hp = 1 (h =

1, 2, 3), the pairs (β
(i jk)
hp /β

(i jk)
1p ,β

(k ji)
hp /β

(k ji)
1p ) (h = 1, 2, 3) are solutions to

β
(i jk)
1p x + β

(k ji)
1p y = 1 in x, y ∈ A∗

G . (7.5)

Notice that (7.5) has solution (1, 1). So according to Lemmas 4.2, 5.1, there
is a finite set Ai jk such that if β

(i jk)
1p 6∈ Ai jk , then (7.5) has at most two solu-

tions, including (1, 1). In particular, there are at most two distinct pairs among
(β

(i jk)
hp /β

(i jk)
1p ,β

(k ji)
hp /β

(k ji)
1p ) (h = 1, 2, 3). Consequently,

β
(i jk)
1p 6∈ Ai jk =⇒ two among β

(i jk)
1p ,β

(i jk)
2p ,β

(i jk)
3p are equal. (7.6)
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We start with the case d = 3. Then τ (βhp) = (β
(132)
hp ) for h = 1, 2, 3. By (7.3)

and Lemma 6.3,(i) the numbers β
(132)
1p (p = 1, 2, . . .) are pairwise distinct. By

(7.6) and Lemma 6.3,(ii), for all but finitely many p, two among the numbers β
(132)
hp

(h = 1, 2, 3) are equal and hence two among βhp (h = 1, 2, 3) are A-equivalent
which contradicts (7.4).

Now assume d ≥ 4. We have to distinguish between subsets {i, j, k} of
{1, . . . , d} and indices h for which there are infinitely many distinct numbers among
β

(i jk)
hp (p = 1, 2, . . .), and {i, j, k} and h for which among these numbers there are
only finitely many distinct ones. This does not depend on the choice of ordering
of i, j, k, since any permutation of (i, j, k) transforms β

(i jk)
hp into one of (β(i jk)

hp )−1,
1− β

(i jk)
hp , (1− β

(i jk)
hp )−1, 1− (β

(i jk)
hp )−1, (1− (β

(i jk)
hp )−1)−1.

By assumption (7.3) and Lemma 6.3,(i), the tuples τ(β1p)=(β
(132)
1p , . . . ,β

(1d2)
1p )

(p = 1, 2, . . .) are all distinct. Hence one of the sets {1, 2, 3}, . . . , {1, 2, d}, say
{i, j, k}, is such that there are infinitely many distinct numbers among β

(i jk)
1p (p =

1, 2, . . .). Choose an infinite subsequence of indices p such that the numbers β
(i jk)
1p

are pairwise distinct. Suppose there is another subset {i 0, j 0, k0} 6= {i, j, k} such that
if p runs through the infinite subsequence just chosen, then β

(i 0 j 0k0)
1p runs through an

infinite set. Then for some infinite subsequence of these p, the numbers β
(i 0 j 0k0)
1p

are pairwise distinct. Continuing in this way, we infer that there is a non-empty
collection S of 3-element subsets {i, j, k} of {1, . . . , d}, and an infinite sequence
P of indices p, such that for each {i, j, k} ∈ S the numbers β

(i jk)
1p (p ∈ P) are

pairwise distinct, while for each {i, j, k} 6∈ S , there are only finitely many distinct
elements among β

(i jk)
1p (p ∈ P).

Notice that if {i, j, k} 6∈ S , then among the equations (7.5) with p ∈ P , there
are only finitely many distinct ones, and by Lemmas 4.1, 5.1, each of these equa-
tions has only finitely many solutions. Therefore, there are only finitely many dis-
tinct numbers among β

(i jk)
hp /β

(i jk)
1p hence only finitely many among β

(i jk)
hp (h = 2, 3,

p ∈ P). Conversely, if {i, j, k} ∈ S , h ∈ {2, 3}, there are infinitely many distinct
numbers among β

(i jk)
hp (p ∈ P). For if not, then by the same argument, interchang-

ing the roles of βhp, β1p, it would follow that there are only finitely many distinct
numbers among β

(i jk)
1p (p ∈ P), contradicting {i, j, k} ∈ S .

We conclude that there is an infinite subsequence of p, which after renaming
we may assume to be 1, 2, . . ., such that for h = 1, 2, 3,

β
(i jk)
hp (p = 1, 2, . . .) are pairwise distinct if {i, j, k} ∈ S , (7.7)

there are only finitely many distinct numbers among
β

(i jk)
hp (p = 1, 2, . . .) if {i, j, k} 6∈ S.

(7.8)
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Notice that this characterization of S is symmetric in βhp (h = 1, 2, 3); this will be
used frequently.

We frequently use the following property of S: if i, j, k, l are any four distinct
indices from {1, . . . , d}, then

{i, j, k} ∈ S =⇒ {i, j, l} ∈ S or {i, k, l} ∈ S. (7.9)

Indeed, if {i, j, l}, {i, k, l} 6∈ S then also {i, j, k} 6∈ S since β
(i jk)
hp = β

(i jl)
hp /β

(ikl)
hp .

Pick a set from S , which without loss of generality we may assume to be
{1, 2, 3}. By (7.9), for k = 4, . . . , d at least one of the sets {1, 2, k}, {1, 3, k}
belongs to S . Define the set of pairs

C :=
n
( j, k) : j ∈ {2, 3}, k ∈ {3, . . . , d}, j 6= k, {1, j, k} ∈ S

o
. (7.10)

Thus, for each k ∈ {3, . . . , d} there is j with ( j, k) ∈ C. Further, for every p =
1, 2, . . . there is a pair ( j, k) ∈ C such that

β
(1 jk)
1p 6= β

(1 jk)
2p .

Indeed, if this were not the case, then since β
(12k)
hp = β

(13k)
hp β

(123)
hp , it would follow

that for some p,
β

(12k)
1p = β

(12k)
2p for k = 3, . . . , d,

and then τ (β1p) = τ (β2p). Together with Lemma 6.3,(ii) this would imply that
β1p, β2p are A-equivalent, contrary to (7.4). Clearly, there is a pair ( j, k) ∈ C
such that β(1 jk)

1p 6= β
(1 jk)
2p for infinitely many p. After interchanging the indices 2

and 3 if j = 3 and then permuting the indices 3, . . . , d, which does not affect the
above argument, we may assume that j = 2, k = 3. That is, we may assume that
{1, 2, 3} ∈ S and

β
(123)
1p 6= β

(123)
2p for infinitely many p.

We now bring (7.6) into play. It implies that for infinitely many p we have β
(123)
3p ∈

{β(123)
1p ,β

(123)
2p }. After interchanging β1p, β2p (which does not affect the definition

of S or the above arguments) we may assume that {1, 2, 3} ∈ S and

β
(123)
1p = β

(123)
3p 6= β

(123)
2p (7.11)

for infinitely many p.
We repeat the above argument. After renaming again, we may assume that the

above infinite sequence of indices p for which (7.11) is true is p = 1, 2, . . . , and
thus, (7.7) and (7.8) are true again. Define again the set C by (7.10). Similarly as
above, we conclude that there is a pair ( j, k) ∈ C such that among p = 1, 2, . . .
there is an infinite subset with β

(1 jk)
1p 6= β

(1 jk)
3p . Then necessarily, k 6= 3. After inter-

changing 2 and 3 if j = 3 (which does not affect (7.11)) and rearranging the other
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indices 4, . . . , d, we may assume that j = 2, k = 4. Thus, {1, 2, 3}, {1, 2, 4} ∈ S
and there are infinitely many p for which we have (7.11) and

β
(124)
1p 6= β

(124)
3p .

By (7.6), for all but finitely many of these p we have β
(124)
2p ∈ {β(124)

1p ,β
(124)
3p }. After

interchanging β1p,β3p if necessary, which does not affect (7.11), we may conclude
that {1, 2, 3}, {1, 2, 4} ∈ S and there are infinitely many p with (7.11) and

β
(124)
1p = β

(124)
2p 6= β

(124)
3p . (7.12)

Next, by (7.9), at least one of {1, 3, 4}, {2, 3, 4} belongs to S . Relations (7.11),
(7.12) remain unaffected if we interchange β

(1)
hp and β

(2)
hp , so without loss of gen-

erality, we may assume that {1, 3, 4} ∈ S . By (7.6), for all but finitely many of
the p with (7.11) and (7.12), at least two among the numbers β

(134)
hp (h = 1, 2, 3)

must be equal. Using (7.11), (7.12) and β
(134)
hp = β

(124)
hp /β

(123)
hp , it follows that

{1, 2, 3}, {1, 2, 4}, {1, 3, 4} ∈ S and for infinitely many p we have (7.11), (7.12)
and

β
(134)
2p = β

(134)
3p 6= β

(134)
1p . (7.13)

We now show that this is impossible. For convenience we introduce the notation

β̃
(i)
hp :=

β
(i)
hp − β

(4)
hp

β
(3)
hp − β

(4)
hp

= β
(4i3)
hp

for h = 1, 2, 3, i = 1, 2, 3, 4, p = 1, 2, . . .. Notice that β̃(3)
hp = 1, β̃(4)

hp = 0, and

β
(i jk)
hp =

β̃
(i)
hp−β̃

( j)
hp

β̃
(i)
hp−β̃

(k)
hp
for any distinct i, j, k ∈ {1, 2, 3, 4}. Thus, (7.11)–(7.13) translate

into

β̃
(1)
1p − β̃

(2)
1p

β̃
(1)
1p − 1

=
β̃

(1)
3p − β̃

(2)
3p

β̃
(1)
3p − 1

6=
β̃

(1)
2p − β̃

(2)
2p

β̃
(1)
2p − 1

, (7.14)

β̃
(1)
1p − β̃

(2)
1p

β̃
(1)
1p

=
β̃

(1)
2p − β̃

(2)
2p

β̃
(1)
2p

6=
β̃

(1)
3p − β̃

(2)
3p

β̃
(1)
3p

, (7.15)

β̃
(1)
2p − 1

β̃
(1)
2p

=
β̃

(1)
3p − 1

β̃
(1)
3p

6=
β̃

(1)
1p − 1

β̃
(1)
1p

. (7.16)

We distinguish between the cases {2, 3, 4} ∈ S and {2, 3, 4} 6∈ S .
First suppose that {2, 3, 4} ∈ S . Then by (7.6), there are infinitely many p

such that (7.14)–(7.16) hold and at least two among β̃
(2)
hp = β

(423)
hp (h = 1, 2, 3) are
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equal. But this is impossible, since (7.14),(7.15) imply β̃
(2)
1p 6= β̃

(2)
2p ; (7.14),(7.16)

imply β̃
(2)
1p 6= β̃

(2)
3p ; and (7.15),(7.16) imply β̃

(2)
2p 6= β̃

(2)
3p .

Hence {2, 3, 4} 6∈ S . This means that there are only finitely many distinct
numbers among β̃

(2)
hp = β

(423)
hp , (h = 1, 2, 3, p = 1, 2, . . .). It follows that there

are (necessarily non-zero) constants c1, c2, c3 such that β̃(2)
hp = ch for h = 1, 2, 3

and infinitely many p. By (7.16), (7.15), respectively, we have for all these p that
β̃

(1)
2p = β̃

(1)
3p and β̃

(1)
2p = (c2/c1)β̃(1)

1p . By substituting this into (7.14), we get

β̃
(1)
1p − c1

β̃
(1)
1p − 1

=
c2β̃(1)

1p − c1c3

c2β̃(1)
1p − c1

.

By (7.14), (7.16) we have c1 6= c3, hence

β̃
(1)
1p = β

(413)
1p =

c1(c1 − c3)
c1c2 + c1 − c2 − c1c3

is a constant independent of p. But this contradicts {1, 3, 4} ∈ S and (7.7).
So our assumption that Lemma 7.1 is false leads in all cases to a contradiction.

This completes our proof.

Lemma 7.2. Let C be an L-equivalence class in K . Then the set of β such that

β ∈ AK ∩ C, L(β) = K , A[β] is two times monogenic (7.17)

is contained in a union of at most finitely many A-equivalence classes.

Remark. As mentioned before, Lemma 7.2 is used also in the proof of Theo-
rem 3.2. Our proof of Lemma 7.2 does not enable to estimate the number of A-
equivalence classes. It is for this reason that we can not prove quantitative versions
of Theorems 3.1 and 3.2.

Proof. We assume that the set of β with (7.17) is not contained in a union of finitely
many A-equivalence classes and derive a contradiction.

Pick β with (7.17). Then there exist numbers α such that A[α] = A[β] and α
is not A-equivalent to β. Consider such α. Then from the identities

α(i) − α(1)

α(2) − α(1) +
α(2) − α(i)

α(2) − α(1) = 1 (i = 3, . . . , d)

and Lemma 6.1 it follows that the pairs
√

α(i) − α(1)

α(2) − α(1) ,
α(2) − α(i)

α(2) − α(1)

!

(i = 3, . . . , d) (7.18)
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satisfy
x + y = 1 in x, y ∈ 0,

where 0 is the multiplicative group generated by A∗
G and the numbers

β(i) − β(1)

β(2) − β(1) ,
β(2) − β(i)

β(2) − β(1) (i = 3, . . . , d).

By Lemma 6.3,(i), the group 0 depends only on the given L-equivalence class C
and is otherwise independent of β. By Lemma 5.1, the group 0 is finitely generated,
and then by Lemma 4.1, the pairs (7.18) belong to a finite set depending only on 0,
hence only on C. Therefore, the tuple τ (α) belongs to a finite set depending only on
C. In view of Lemma 6.3,(i), this means that α belongs to a union of finitely many
L-equivalence classes which depends on C but is otherwise independent of β. Now
by Dirichlet’s box principle, there is an L-equivalence class C0 with the following
property: the set of β such that






β ∈ AK , L(β) = K , β ∈ C,

there is α ∈ C0 such that A[α] = A[β]
and α is not A-equivalent to β

(7.19)

cannot be contained in a union of finitely many A-equivalence classes.
Fix β0 with (7.19) and then fix α0 such that A[α0] = A[β0], α0 ∈ C0 and α0 is

not A-equivalent to β0.
Let β be an arbitrary number with (7.19). Choose α such that A[α] = A[β],

α ∈ C0 and α is not A-equivalent to β. Then there are u, u0 ∈ L∗, a, a0 ∈ L with

β = uβ0 + a, α = u0α0 + a0. (7.20)

For these u, u0 we have

DK/L(β) = ud(d−1)DK/L(β0), DK/L(α) = u0d(d−1)DK/L(α0). (7.21)

On the other hand, it follows from A[α0] = A[β0], A[α] = A[β] and Lemma 6.1
(ii) that DK/L(β)/DK/L(α) ∈ A∗ and DK/L(β0)/DK/L(α0) ∈ A∗. Combined with
(7.21) and our assumption that A is integrally closed, this gives

u0/u ∈ A∗. (7.22)

Since L(β0) = K and α0 ∈ A[β0] there is a unique polynomial F0 ∈ L[X] of
degree < d, which in fact belongs to A[X], such that α0 = F0(β0). Likewise, there
is a unique polynomial F ∈ L[X] of degree < d which in fact belongs to A[X],
such that α = F(β). Inserting (7.20), it follows that F(X) = u0F0 ((X − a)/u) +
a0. Suppose that F0 =

Pm
j=0 a j X j with m < d and am 6= 0. Then F has leading

coefficient amu0u−m which belongs to A. Together with (7.22) this implies

u1−mam ∈ A. (7.23)
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Further, by (7.21)
ud(d−1)DK/L(β0) = DK/L(β) ∈ A. (7.24)

We distinguish between the cases m > 1 and m = 1. First let m > 1. We have
shown that every β with (7.19) can be expressed as β = uβ0 + a with u ∈ L∗,
a ∈ L and moreover, u satisfies (7.23), (7.24). Hence

−
ordp(DK/L(β0))

d(d − 1)
∑ ordp(u) ∑

ordp(am)

m − 1
for p ∈ P(A),

where P(A) is the collection of minimal non-zero prime ideals of A and ordp (p ∈
P(A) ) are the associated discrete valuations, as explained in Section 5. Thus, for
the tuple v(u) := (ordp(u) : p ∈ P(A) ) we have only finitely many possibilities.

We partition the set of β with (7.19) into a finite number of classes according
to the tuple v(u). Let β1 = u1β0 + a1, β2 = u2β0 + a2 belong to the same class,
where u1, u2 ∈ L∗ and a1, a2 ∈ L . Then v(u1) = v(u2) and so, u1u−1

2 ∈ A∗

by (5.4). Hence β2 = vβ1 + b with v ∈ A∗ and b ∈ L . But b = β2 − vβ1 is
integral over A, hence belongs to A since A is integrally closed. So two elements
with (7.19) belonging to the same class are A-equivalent. But then, the set of β
with (7.19) is contained in a union of finitely many A-equivalence classes, which is
against our assumption.

Now assume that m = 1. Then

α0 = a1β0 + a0 with a1 ∈ A \ {0}, a0 ∈ A,

hence ad(d−1)
1 = DK/L(α0)/DK/L(β0). By Lemma 6.1 (ii) we have ad(d−1)

1 ∈ A∗,
and then a1 ∈ A∗ since by assumption A is integrally closed. Hence α0, β0 are A-
equivalent, which is against our choice of α0, β0. We arrive again at a contradiction.

Consequently, our initial assumption that the set of β with (7.17) cannot be
contained in finitely many A-equivalence classes leads to a contradiction. This
proves Lemma 7.2.

Now our proof of Theorem 3.1 is complete.

8. Reduction of Theorem 3.2 to a polynomial unit equation

We keep the assumptions and notation from the previous sections. In particular,
A is an integrally closed domain with quotient field L of characteristic 0 which is
finitely generated over Z and K is a finite extension of L . Further, we denote by G
the normal closure of K over L . As it will turn out, the proof of part (i) of Theorem
3.2 is elementary. Therefore, in this section we assume that [K : L] =: d ≥ 4. Let
O = A[α] = A[β] be a two times monogenic A-order in K , where α,β are not
A-equivalent.

By Lemma 6.1,(i) we have

εi j :=
α(i) − α( j)

β(i) − β( j) ∈ A∗
G for i, j = 1, . . . , d, i 6= j, (8.1)
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where A∗
G is the unit group of the integral closure of A in G. Let i, j, k be any three

distinct indices from {1, . . . , d}. By Lemma 6.1, the identity

β( j) − β(i)

β( j) − β(k) +
β(i) − β(k)

β( j) − β(k) = 1

and a similar identity for α, the two pairs (1, 1) and (εi j/ε jk, εik/ε jk) satisfy

β( j) − β(i)

β( j) − β(k) · x +
β(i) − β(k)

β( j) − β(k) · y = 1 in x, y ∈ A∗
G . (8.2)

Now a straightforward computation gives

εik

ε jk
− 1 =

β(i) − β( j)

β(i) − β(k) ·

µ
εi j

ε jk
− 1

∂
. (8.3)

This is valid for any three distinct indices i, j, k. Now take four distinct indices
i, j, k, l from {1, . . . , d}. By applying (8.3) but with the respective triples (i, j, k),
(i, k, l), (i, l, j) replacing (i, j, k), and taking the product, the terms with the con-
jugates of β disappear, and we obtain

µ
εik

ε jk
− 1

∂µ
εil

εkl
− 1

∂µ
εi j

ε jl
− 1

∂
=

µ
εi j

ε jk
− 1

∂µ
εik

εkl
− 1

∂µ
εil

ε jl
− 1

∂
. (8.4)

In the remainder of this section we focus on the equation

(x1 − 1)(x2 − 1)(x3 − 1) = (y1 − 1)(y2 − 1)(y3 − 1) (8.5)
in x1, x2, x3, y1, y2, y3 ∈ 0

where 0 is a finitely generated multiplicative group, contained in a field of charac-
teristic 0. As we just observed, the tuple

µ
εik

ε jk
,
εil

εkl
,
εi j

ε jl
,

εi j

ε jk
,
εik

εkl
,

εil

ε jl

∂
(8.6)

is a solution to (8.5) with 0 = A∗
G . Recall that by Lemma 5.1, the group A

∗
G is

finitely generated.
We prove the following Proposition concerning (8.5).

Proposition 8.1. Let G be a field of characteristic 0 and 0 a finitely generated
subgroup of G∗. Then there is a finite subset S of 0 with 1 ∈ S such that for every
solution (x1, . . . , y3) ∈ 06 of (8.5), at least one of the following holds:

(i) at least one of x1, . . . , y3 belongs to S;
(ii) there are η1, η2, η3 ∈ {±1} such that (y1, y2, y3) is a permutation of

(xη1
1 , xη2

2 , xη3
3 );
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(iii) one of the numbers in {xi x j , xi/x j , yi y j , yi/y j : 1 ∑ i < j ∑ 3} is equal
to either −1, or to a primitive cube root of unity.

We remark here that case (iii) may occur. For instance, let i2 = −1, let ρ denote
a primitive cube root of unity, and assume that i, ρ ∈ 0. Then for every u ∈ 0,
the tuple (u6, iu3,−iu3, u4, ρu4, ρ2u4) satisfies (8.5). There are various other such
infinite families of solutions. Proposition 8.1 contains only the information needed
for the proof of Theorem 3.2.

Proposition 8.1 is deduced from the following lemma. Here and below, T is an
auxiliary variable, and by ≡ we indicate that an identity holds identically in T .

Lemma 8.2. Let G, 0 be as in Proposition 8.1. Let m, n be non-negative integers
with m + n > 0. Then there is a finite subset T of 0 with 1 ∈ T such that for every
solution (x1, . . . , xm, y1, . . . , yn, z) ∈ 0m+n+1 of

(1− x1) · · · (1− xm) = z(1− y1) · · · (1− yn), (8.7)

at least one of the following holds:

(i) at least one of x1, . . . , yn belongs to T ;
(ii) there are integers c1, . . . , cm, d1, . . . , dn, e with c1 · · · cmd1 · · · dn 6= 0, such

that

(1− x1T c1) · · · (1− xmT cm ) ≡ zT e(1− y1T d1) · · · (1− ynT dn ). (8.8)

Proof. We proceed by induction on m + n. For m = 1, n = 0, say, our assertion
is a simple consequence of the fact that the equation 1 − x1 = z has only finitely
many solutions in x1, z ∈ 0. Let p ≥ 2, and suppose that the lemma is true
for all pairs of non-negative integers m, n with m + n < p. Take non-negative
integers m, n with m + n = p. By Lemma 4.3, for all but finitely many solutions
(x1, . . . , yn, z) ∈ 0m+n+1 of (8.7) with xi 6= 1 for i = 1, . . . ,m, y j 6= 1 for j =
1, . . . , n, there are integers c1, . . . , dn, e, not all 0, such that (8.8) holds, but some
of c1, . . . , cm, d1, . . . , dn may be zero. Notice that (8.8) cannot hold with e 6= 0 and
all ci , d j equal to 0. Fix a solution (x1, . . . , yn, z) satisfying (8.8) where some of
the ci , d j are 0, and put I := {i : ci 6= 0}, I c := {1, . . . ,m} \ I , J := { j : d j 6= 0},
J c := {1, . . . , n} \ J . Then at least one of I, J is non-empty.

For i ∈ I , put ai := |ci | and ui := x±1
i with uaii = x−ci

i . Likewise, for j ∈ J ,
put b j := |d j |, and v j := y±1

j such that vb jj = y−d j
j . Then (8.7) implies that

Y

i∈I
(T ai − ui ) ·

Y

i∈I c
(1− xi ) ≡ z0T f

Y

j∈J
(T b j − v j ) ·

Y

j∈I c
(1− y j )

with z0 ∈ 0, f ∈ Z. Since both sides of this identity must be polynomials with
equal leading coefficients, we have f = 0, and

Y

i∈I c
(1− xi ) = z0

Y

j∈I c
(1− y j ). (8.9)
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By combining this with (8.8) we obtain
Y

i∈I
(1− T ci xi ) ≡ z00T e

Y

j∈J
(1− T d j y j ), (8.10)

where z0z00 = z. Recall that all but finitely many solutions of (8.7) satisfy both
(8.9), (8.10).

We apply the induction hypothesis to (8.9). Notice that |I c| + |J c| < m + n
since at least one of the sets I, J is non-empty. It follows that there exists a finite set
T 0 with 1 ∈ T 0 such that for every tuple (xi : i ∈ I c; y j : j ∈ J c; z0) with entries
from 0, satisfying (8.9), either one of the xi (i ∈ I c) or y j ( j ∈ J c) belongs to T 0,
or there are integers ci (i ∈ I c), d j : ( j ∈ J c), e0 with

Q
i∈I c ci

Q
j∈Jc d j 6= 0 such

that Y

i∈I c
(1− xi T ci ) ≡ z0T e

0 Y

j∈I c
(1− y j T d j ).

By multiplying this with (8.10), we obtain an identity of the type (8.8) where none
of the ci , d j are 0. All solutions (x1, . . . , xm; y1, . . . , yn; z) ∈ 0m+n+1 of (8.7)
satisfy this identity, except those for which some xi or y j belongs to T 0 or the
finitely many solutions with all xi , y j different from 1 for which (8.9), (8.10) do not
both hold. This completes our induction step, and our proof.

Proof of Proposition 8.1. We take for S the set T from Lemma 8.2, taken with
m = n = 3 and z = 1. Pick a solution (x1, . . . , y3) ∈ 06 of (8.5) with none of the
xi , y j in S . Then there are integers c1, . . . , d3 and e with c1c2c3d1d2d3 6= 0 such
that

(1−x1T c1)(1−x2T c2)(1−x3T c3) ≡ T e(1−y1T d1)(1−y2T d2)(1−y3T d3). (8.11)

For i = 1, 2, 3, define ai := |ci |, bi := |di |, ui := x±1
i , vi := y±1

i , where
uaii = x−ci

i , vbii = y−di
i . Then (8.11) can be rewritten as an identity in polynomials

(T a1 − u1)(T a2 − u2)(T a3 − u3) ≡ (T b1 − v1)(T b2 − v2)(T b3 − v3) (8.12)

with positive integers a1, . . . , b3; here we have divided out possible powers of T on
both sides.

In what follows we assume that

ui + u j 6= 0, vi + v j 6= 0 for 1 ∑ i < j ∑ 3 (8.13)

and prove that at least one of the following two alternatives must hold:

(v1, v2, v3) is a permutation of (u1, u2, u3); (8.14)
{ui/u j , vi/v j (i ∑ i < j ∑ 3)} contains a primitive cube root of unity. (8.15)

This clearly implies Proposition 8.1. Since (8.13)–(8.15) are invariant under per-
mutations of u1, u2, u3, under permutations of v1, v2, v3 and under interchanging
the tuples (u1, u2, u3), (v1, v2, v3), it suffices to consider the cases (i)–(x) below.
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Case (i). a1 > a2 > a3, b1 > b2 > b3.
Then (8.12) becomes

T a1+a2+a3 − u3T a1+a2 − u2T a1+a3 − u1T a2+a3

+u2u3T a1 + u1u3T a2 + u1u2T a3 − u1u2u3
≡ T b1+b2+b3 − v3T b1+b2 − v2T b1+b3 − v1T b2+b3

+v2v3T b1 + v1v3T b2 + v1v2T b3 − v1v2v3.

We have either a2 + a3 6= a1 and b2 + b3 6= b1 or a2 + a3 = a1 and b2 + b3 = b1.
But in each of these cases, the second largest exponent on T on the left is a1 + a2
and that on the right b1 + b2; hence u3 = v3. Likewise, the third largest exponent
on T on the left is a1 + a3 and that on the right b1 + b3; so u2 = v2. Finally,
u1u2u3 = v1v2v3; hence u1 = v1. This implies (8.14).

Case (ii). a1 > a2 > a3, b1 = b2 > b3.
Then (8.12) becomes

T a1+a2+a3 − u3T a1+a2 − u2T a1+a3 − u1T a2+a3 + u2u3T a1

+u1u3T a2 + u1u2T a3 − u1u2u3
≡ T 2b1+b3 − v3T 2b1 − (v1 + v2)T b1+b3

+(v1 + v2)v3T b1 + v1v2T b3 − v1v2v3.

By (8.13), the right-hand side consists of 6 terms with different exponents on T
and non-zero coefficients. So on the left-hand side, two terms have to cancel each
other and this is possible only if a2 + a3 = a1 and u1 = u2u3. Comparing the
remaining term with the largest exponent on T on the left with the term with the
largest exponent on T on the right, and also the terms on both sides with the second
largest, third largest exponent on T , etc., we see that a1 + a2 + a3 = 2b1 + b3,
a1 + a2 = 2b1, a1 + a3 = b1 + b3. This implies a3 = b3, a1 = b1, a2 = b1,
contradicting a1 > a2. So Case (ii) is impossible.

Case (iii). a1 > a2 > a3, b1 > b2 = b3.
Then (8.12) becomes

T a1+a2+a3 − u3T a1+a2 − u2T a1+a3 − u1T a2+a3 + u2u3T a1

+u1u3T a2 + u1u2T a3 − u1u2u3
≡ T b1+2b3 − (v2 + v3)T b1+b3 − v1T 2b3

+v2v3T b1 + v1(v2 + v3)T b3 − v1v2v3.

Again, on the left-hand side we must have cancellation of two terms, implying
a2 + a3 = a1 and u1 = u2u3. On the right-hand side, all six terms must have
different exponents on T , so 2b3 6= b1. If 2b3 > b1, then comparing on both sides
the three terms with the largest powers of T , we get a1 + a2 + a3 = b1 + 2b3,
a1 + a2 = b1 + b3, a1 + a3 = 2b3, implying a1 = a3 = b3 which is impossible.
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So b1 > 2b3. Then comparing the exponents on T of the corresponding terms
on the left- and right-hand side does not lead to a contradiction. Comparing the
coefficients of the terms with the second largest exponent on T , i.e., with T a1+a2 ,
T b1+b3 , with the third largest exponent, etc., we get u3 = v2 + v3, u2 = −v2v3,
u1u3 = −v1, u1u2 = v1(v2 + v3), u1u2u3 = v1v2v3. Consequently, v1v2v3 =
u1u2u3 = v1(v2 + v3)

2, hence v2v3 = (v2 + v3)
2, v22 + v2v3 + v23 = 0, v2/v3 is a

primitive cube root of unity. This implies (8.15).

Case (iv). a1 > a2 > a3, b1 = b2 = b3.
In this case, the expansion of the left-hand side of (8.12) gives at least 6 non-zero
terms with distinct powers of T , while the right-hand side cannot have more than 4
terms. So this case is impossible.

Case (v). a1 = a2 > a3, b1 = b2 > b3.
Then (8.12) becomes

T 2a1+a3 − u3T 2a1 − (u1 + u2)T a1+a3

+(u1 + u2)v3T a1 + u1u2T a3 − a1a2a3
≡ T 2b1+b3 − v3T 2b1 − (v1 + v2)T b1+b3

+(v1 + v2)v3T b1 + v1v2T b3 − v1v2v3.

By (8.13) we have on both sides 6 non-zero terms with distinct powers of T . Com-
paring the terms on both sides with the second highest power of T , i.e., T 2a1 and
T 2b1 , we get u3 = v3. Comparing the terms with the third highest power of T , i.e.,
T a1+a3 and T b1+b3 , we obtain u1 + u2 = v1 + v2, and finally, from the terms with
the smallest positive power of T , i.e., T a3 , T b3 , we obtain u1u2 = v1v2. Hence
{u1, u2} = {v1, v2}. This implies (8.14).

Case (vi). a1 = a2 > a3, b1 > b2 = b3.
Then (8.12) becomes

T 2a1+a3 − u3T 2a1 − (u1 + u2)T a1+a3

+(u1 + u2)u3T a1 + u1u2T a3 − u1u2u3
≡ T b1+2b3 − (v2 + v3)T b1+b3 − v1T 2b3

+v2v3T b1 + v1(v2 + v3)T b3 − v1v2v3.

On the left-hand side there are 6 non-zero terms with distinct powers of T . So on
the right-hand side we must also have 6 non-zero terms with distinct powers of T .
We have either 2b3 > b1 or 2b3 < b1. If 2b3 > b1 then, on comparing the terms
with the three largest exponents on T on both sides we get 2a1 + a3 = b1 + 2b3,
2a1 = b1 + b3, a1 + a3 = 2b3, hence a1 = a3 = b3, which is impossible. So b1 >
2b3. Then comparing the coefficients of the terms with the largest exponent on T
on both sides, the terms with the second largest exponent, etc. we get u3 = v2+v3,
u1 + u2 = v3, (u1 + u2)u3 = v2v3, u1u2 = v1(v2 + v3), u1u2u3 = v1v2v3. This
leads to v1v2v3 = v1(v2 + v3)

2, and then similarly as in Case (iii) it follows that
v2/v3 is a primitive cube root of unity. Hence (8.15) holds.
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Case (vii). a1 = a2 > a3, b1 = b2 = b3.
This case is impossible since on the left-hand side of (8.12) we have 6 non-zero
terms with distinct powers of T and on the right-hand side not more than 4 terms.

Case (viii). a1 > a2 = a3, b1 > b2 = b3.
Then (8.12) becomes

T a1+2a3 − (u2 + u3)T a1+a3 − u1T 2a3

+u2u3T a1 + u1(u2 + u3)T a3 − u1u2u3
≡ T b1+2b3 − (v2 + v3)T b1+b3 − v1T 2b3

+v2v3T b1 + v1(v2 + v3)T b3 − v1v2v3.

There are various possibilities depending on whether 2a3 = a1, 2a3 6= a1, u1 =
u2u3, u1 6= u2u3 and similarly for the bi ’s and vi ’s. But in each of these cases,
a1 + a3 is the second largest exponent on T occurring on the left and b1 + b3 the
second largest exponent on the right and so u2 + u3 = v2 + v3. Further, a3 is the
smallest positive exponent on the left and b3 the smallest positive exponent on the
right and so u1(u2 + u3) = v1(v2 + v3); and finally u1u2u3 = v1v2v3. It follows
that u1 = v1, u2u3 = v2v3, and then {u2, u3} = {v2, v3}. This implies (8.14).

Case (ix). a1 > a2 = a3, b1 = b2 = b3.
Then (8.12) becomes

T a1+2a3 − (u2 + u3)T a1+a3 − u1T 2a3 + u2u3T a1

+u1(u2 + u3)T a3 − u1u2u3
≡ T 3b1 − (v1 + v2 + v3)T 2b1 + (v2v3 + v1v3 + v1v2)T b1 − v1v2v3.

Then necessarily, a1 = 2a3 and u1 = u2u3. Further, all terms on the right-hand side
are non-zero. Comparing the terms with the largest and second largest exponent on
T , we see that a1 + 2a3 = 3b1, a1 + a3 = 2b1, hence a1 = a3 = b1 which is
impossible.

Case (x). a1 = a2 = a3, b1 = b2 = b3.
Then (8.12) implies at once (8.14). This completes the proof of Proposition 8.1.

9. Proof of Theorem 3.2

Let as before A be an integrally closed domain with quotient field L of characteristic
0 which is finitely generated overZ, and K an extension of L of finite degree d ≥ 3.
Further, denote by G the normal closure of K over L . In what follows, we consider
pairs (α,β) such that

Ω
L(α) = L(β) = K , α,β are integral over A,
A[α] = A[β], α,β are not A-equivalent. (9.1)

The next lemma implies part (i) of Theorems 3.2 and 1.2.
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Lemma 9.1. Suppose that [K : L] = 3. Let (α,β) be a pair with (9.1). Then there
is a matrix

° a1 a2a3 a4
¢
such that

≥ a1 a2
a3 a4

¥
∈ GL(2, L), β =

a1α + a2
a3α + a4

, a3 6= 0. (9.2)

Further, if A is a principal ideal domain then
° a1 a2a3 a4

¢
can be chosen from GL(2, A).

Proof. Let σi (i = 1, 2, 3) be the L-isomorphisms of K into G, and write α(i) :=
σi (α), β(i) := σi (β) for i = 1, 2, 3. By straightforward linear algebra, there are
a1, a2, a3, a4 ∈ G such that

β(i) =
a1α(i) + a2
a3α(i) + a4

for i = 1, 2, 3.

If we choose the first non-zero element among a1, . . . , a4 equal to 1, then a1, . . . , a4
are uniquely determined. By applying σ ∈ Gal(G/L) and observing that σ per-
mutes the α(i) in the same way as the β(i), we infer that σ (ai ) = ai for i = 1, . . . , 4.
Hence ai ∈ L for i = 1, . . . , 4. The matrix

° a1 a2a3 a4
¢
must have non-zero determinant

since otherwise β(1) = β(2) = β(3), contrary to our assumption L(β) = K . Next,
we must have a3 6= 0. For otherwise, α,β are L-equivalent, hence A-equivalent by
Lemma 6.2, contrary to our assumptions. This proves (9.2).

In case that A is a principal ideal domain, by taking a scalar multiple of
° a1 a2a3 a4

¢
,

we can see to it that a1, . . . , a4 ∈ A and (a1, . . . , a4) = (1). Then
° a1 a2a3 a4

¢
∈

GL(2, A) by Lemma 6.4. This completes the proof of Lemma 9.1.

In what follows, we assume that
Ω

[K : L] = d ≥ 4, Gal(G/L) ∼= S4 if d = 4,
K is four times transitive over L if d ≥ 5. (9.3)

For every pair (α,β) with (9.1) we define, in the usual manner,

εi j :=
α(i) − α( j)

β(i) − β( j) (1 ∑ i, j ∑ d, i 6= j).

We start with a simple, but for our proof important observation.

Lemma 9.2. Let α,β satisfy (9.1), and let (p1, p2, p3, p4), (q1, q2, q3, q4) be two
ordered tuples of distinct indices from {1, . . . , d}. Then there is σ ∈ Gal(G/L) such
that

σ (εpi ,p j ) = εqi ,q j for each distinct i, j ∈ {1, 2, 3, 4}.

Proof. By (9.3), there is σ ∈ Gal(K/L) such that σ (α(pi )) = α(qi ) for i =
1, 2, 3, 4. The same holds with β instead of α. This implies the lemma at once.
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Our next observation is that for any pair (α,β) with (9.1),

εi j

εik
6= 1 for i, j, k ∈ {1, . . . , d}, with i, j, k distinct. (9.4)

Indeed, suppose there are distinct indices i, j, k with εi j = εik . Then by Lemma
9.2 we have ε1 j = ε12 for j = 3, . . . , d. This implies that τ (α) = τ (β), where τ (·)
is given by (6.1). Now Lemma 6.3 (ii) implies that α,β are A-equivalent, contrary
to (9.1).

Lemma 9.3. There is a finite set E such that for every pair (α,β) with (9.1), at
least one of the following alternatives holds:

(i) εi j/εik ∈E for each ordered triple (i, j, k) of distinct indices from {1, . . . , d};
(ii) εi jεkl = εikε jl for each ordered quadruple (i, j, k, l) of distinct indices from

{1, . . . , d};
(iii) d = 4, and εi j = −εkl for each permutation (i, j, k, l) of (1, 2, 3, 4).

Proof. Pick a pair (α,β) with (9.1). We apply Proposition 8.1 to (8.5), with 0 =
A∗
G and with for (x1, x2, x3, y1, y2, y3) the tuple (8.6) with (i, j, k, l) = (1, 2, 3, 4),

i.e., µ
ε13
ε23

,
ε14
ε34

,
ε12
ε24

,
ε12
ε23

,
ε13
ε34

,
ε14
ε24

∂
. (9.5)

Let S be the finite set from Proposition 8.3. Let E consist of all conjugates over L
of the elements from S , as well as all roots of unity of order up to 18.

First suppose that alternative (i) of Proposition 8.1 holds. Then there are dis-
tinct p, q, r ∈ {1, . . . , 4}, such that εpq/εpr ∈ S . By Lemma 9.2 we then have
εi j/εik ∈ E for each triple (i, j, k) of distinct indices from {1, . . . , d}. This is
alternative (i) of our lemma.

Next, suppose that alternative (ii) of Proposition 8.1 holds. Then

ε13
ε23

∈

Ω
ε12
ε23

,
ε13
ε34

,
ε14
ε24

,
ε23
ε12

,
ε34
ε13

,
ε24
ε14

æ
.

By (9.4), ε13/ε23 cannot be equal to ε12/ε23 or ε13/ε34. If ε13/ε23 = ε14/ε24, then
ε13ε24 = ε14ε23. Then by Lemma 9.2 εi jεkl = εikε jl for any four distinct indices
i, j, k, l ∈ {1, . . . , d}. This is alternative (ii) of our lemma.

Assume that ε13/ε23 = ε23/ε12; then ε223 = ε12ε13. By Lemma 9.2, we have
also ε213 = ε12ε23. Hence (ε23/ε13)

3 = 1. Again by Lemma 9.2, and the fact that E
contains all cube roots of unity, this implies alternative (i) of our lemma.

Next, assume that ε13/ε23 = ε34/ε13. Then ε213 = ε23ε34. Then by Lemma
9.2, ε223 = ε13ε34. This implies again (ε13/ε23)

3 = 1 and then alternative (i) of our
lemma.

Finally, assume that ε13/ε23 = ε24/ε14. Then ε13ε14 = ε23ε24. By Lemma 9.2,
the same holds after interchanging the indices 2 and 3, and also after interchanging
2 and 4; that is, we have also ε12ε14 = ε23ε34 and ε13ε12 = ε34ε24. Multiplying
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together the last two identities and dividing by the first, we obtain ε212 = ε234, or
ε12 = ±ε34. First suppose that ε12 = ε34. Then by Lemma 9.2, we have also
ε13 = ε24, ε14 = ε23. Substituting this into (8.4) with (i, j, k, l) = (1, 2, 3, 4), we
obtain

µ
ε13
ε14

− 1
∂µ

ε14
ε12

− 1
∂µ

ε12
ε13

− 1
∂

=

µ
ε12
ε14

− 1
∂µ

ε13
ε12

− 1
∂µ

ε14
ε13

− 1
∂

.

But this is impossible, since by (9.4), both sides are non-zero, and since the left-
hand side is the opposite of the right-hand side. Hence ε12 = −ε34 and then by
Lemma 9.2, also ε13 = −ε24, ε14 = −ε23. If d ≥ 5, then again by Lemma 9.2,
ε12 = −ε35, implying ε34 = ε35, which is impossible by (9.4). Hence d = 4. We
conclude that alternative (iii) of our lemma holds.

Finally, suppose that (iii) of Proposition 8.1 holds. Then if (x1, . . . , y3) is the
tuple (9.5) we have that at least one of the numbers xi x j , xi/x j , yi y j ,
yi/y j (1 ∑ i < j ∑ 3) is −1 or a primitive cube root of unity. All these possibili-
ties can be combined by saying that there is a permutation (i, j, k, l) of (1, 2, 3, 4)
such that εikεil/ε jkεkl or εikεkl/εilε jk is −1 or a primitive cube root of unity. By
Lemma 9.2, we may replace the indices i, j, k, l by 1, . . . , 4, respectively. Then
(ε13ε14/ε23ε34)

6 = 1 or (ε13ε34/ε14ε23)6 = 1.
First suppose that (ε13ε14/ε23ε34)6 = 1. Applying again Lemma 9.2, the same

holds if we interchange the indices 2 and 4, i.e., (ε13ε12/ε34ε23)6 = 1. As a con-
sequence, (ε12/ε14)6 = 1. But then another application of Lemma 9.2 implies that
εi j/εik ∈ E for any three distinct indices i, j, k, i.e., alternative (i) of our lemma.

Finally, suppose that (ε13ε34/ε14ε23)6 = 1. By Lemma 9.2, interchanging the
indices 1 and 3, we get also (ε13ε14/ε34ε12)

6 = 1. Multiplying the two identities
gives (ε213/ε12ε23)

6 = 1. Again by Lemma 9.2, interchanging the indices 2 and
3, we get (ε212/ε13ε23)

6 = 1. Then on dividing the last two identities, we get
(ε13/ε12)

18 = 1. A final application of Lemma 9.2 leads to εi j/εik ∈ E for any
three distinct indices i, j, k, which is alternative (i) of our lemma. This completes
our proof.

Proof of Theorem 3.2, (ii), (iii). Consider the two times monogenic A-orders O =
A[α] = A[β] in K , where α,β satisfy (9.1).

First consider those A-orders O such that the pair (α,β) satisfies alternative
(i) of Lemma 9.3. Then by (8.3), (9.4), there is a finite set F independent of α,β

such that β(i)−β( j)

β(i)−β(k) ∈ F for any three distinct i, j, k ∈ {1, . . . , d}. Hence for the
tuple τ (β) defined by (6.1) there are only finitely many possibilities. Then Lemma
6.3 implies that for the A-orders O under consideration, the corresponding β lie in
only finitely many L-equivalence classes. Subsequently, by Lemma 7.2 these β lie
in only finitely many A-equivalence classes, and thus there are only finitely many
possibilities for the A-orderO.

Next, we consider those A-orders O = A[α] = A[β] such that (α,β) satisfies
alternative (ii) of Lemma 9.3. Take such a pair (α,β). By assumption, εi jεkl =
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εikε jl , hence, in view of (8.1),

(β(i) − β( j))(β(k) − β(l))

(β(i) − β(k))(β( j) − β(l))
=

(α(i) − α( j))(α(k) − α(l))

(α(i) − α(k))(α( j) − α(l))

for every quadruple (i, j, k, l) of distinct indices from {1, . . . , d}. In other words,
the cross ratio of any four numbers among the α(i)’s is equal to the cross ratio of the
corresponding numbers among the β(i)’s. Then by elementary projective geometry,
there is a matrix C =

° a1 a2a3 a4
¢

∈ GL(2,G) such that

β(i) =
a1α(i) + a2
a3α(i) + a4

for i = 1, . . . , d.

If we assume that the first non-zero entry among a1, . . . , a4 is 1, the matrix C is
uniquely determined. Any σ ∈ Gal(G/L) permutes the sequences α(1), . . . ,α(d)

and β(1), . . . ,β(d) in the same manner, hence the above relation holds with σ (C)
instead of C ; so σ (C) = C . It follows that C ∈ GL(2, L). We observe that
a3 6= 0. For otherwise, α,β are L-equivalent and then A-equivalent by Lemma 6.2,
contrary to (9.1). This shows that O = A[α] = A[β] is of type I. Notice that if A
is a principal ideal domain, then by taking a suitable scalar multiple of C we can
arrange that a1, . . . , a4 ∈ A and (a1, . . . , a4) = (1), and thus, C ∈ GL(2, A) by
Lemma 6.4.

Finally, we consider those A-orders O = A[α] = A[β] such that (α,β) sat-
isfies alternative (iii) of Lemma 9.3; then d = 4. Take such a pair (α,β). By
assumption, εi j = −εkl for every permutation (i, j, k, l) of (1, 2, 3, 4). Define

u0 := ε12ε13ε14,

α0 := 1
2u0(ε

−1
12 + ε−1

13 + ε−1
14 ), β0 := 1

2 (ε12 + ε13 + ε14).

By (9.3), the group Gal(G/L) acts on {α(1), . . . ,α(4)} as the full permutation group.
Say that σ (α(i)) = α(σ (i)) for σ ∈ Gal(G/L), i = 1, 2, 3, 4. Then σ (β(i)) =
β(σ (i)) for i = 1, 2, 3, 4 and thus, σ (εi j ) = εσ (i),σ ( j) for 1 ∑ i, j ∑ 4, i 6= j .
Further, Gal(G/K ) consists of those L-automorphisms that permute α(2),α(3),α(4)

and leave α = α(1) unchanged. Hence u0,α0,β0 are invariant under Gal(G/K )
and so belong to K . But u0 is in fact invariant under Gal(G/L), hence belongs to
L . Notice that

β20 = α0 + r0, α20 = u0β0 + s0 with r0, s0 ∈ L . (9.6)

Indeed, (9.6) holds with
r0 := 1

4 (ε
2
12 + ε213 + ε214), s0 := 1

4u
2
0(ε

−2
12 + ε−2

13 + ε−2
14 ),

and these r0, s0 are invariant under Gal(G/L).
A straightforward computation gives

α
(2)
0 = 1

2u0(ε
−1
21 + ε−1

23 + ε−1
24 ) = 1

2u0(ε
−1
12 − ε−1

13 − ε−1
14 )
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and similarly, β(2)
0 = 1

2 (ε12 − ε13 − ε14). Hence

α
(1)
0 − α

(2)
0

β
(1)
0 − β

(2)
0

=
−u0(ε−1

13 + ε−1
14 )

−(ε13 + ε14)
= u0ε−1

13 ε−1
14 = ε12.

By taking conjugates over L we get

α
(i)
0 − α

( j)
0

β
(i)
0 − β

( j)
0

= εi j for 1 ∑ i, j ∑ 4, i 6= j. (9.7)

As a consequence, the four conjugates of α0 over L are distinct, and also the four
conjugates of β0 over L are all distinct. Hence L(α0) = L(β0) = K . Notice that
in the deduction of (8.3), no properties of α,β were used other than that L(α) =
L(β) = K . That is, the same reasoning applies if we replace α,β by α0,β0. But
then, applying (8.3) both with (α,β) and with (α0,β0), using (9.7), (9.4), we obtain

β(i) − β( j)

β(i) − β(k) =
β

(i)
0 − β

( j)
0

β
(i)
0 − β

(k)
0

(1 ∑ i, j, k ∑ d, i, j, k distinct).

By multiplying this identity with εi j/εik we obtain

α(i) − α( j)

α(i) − α(k) =
α

(i)
0 − α

( j)
0

α
(i)
0 − α

(k)
0

(1 ∑ i, j, k ∑ d, i, j, k distinct).

This shows that τ (β) = τ (β0), τ (α) = τ (α0), where τ (·) is defined by (6.1). By
Lemma 6.3, (i), there are ∏, ∏0 ∈ L∗, µ,µ0 ∈ L , such that

α = ∏α0 + µ, β = ∏0β0 + µ0.

By combining this with (9.6), we obtain
β = a0α2 + a1α + a2, α = b0β2 + b1β + b2

with a0, a1, a2, b0, b1, b2 ∈ L and a0b0 6= 0. But in fact, we have a0, . . . , b2 ∈ A
since by assumption, A[α] = A[β]. This shows that O = A[α] = A[β] is an
A-order of type II. This completes the proof of Theorem 3.2.
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[13] K. GYŐRY, Polynomials and binary forms with given discriminant, Publ. Math. Debrecen
69 (2006), 473–499.

[14] L.-C. KAPPE and B. WARREN, An elementary test for the Galois group of a quartic poly-
nomial, Amer. Math. Monthly 96 (1989), 133–137.
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