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Quantitative uniqueness estimates for the shallow shell system

and their application to an inverse problem

MICHELE DI CRISTO, CHING-LUNG LIN AND JENN-NAN WANG

Abstract. In this paper we derive some quantitative uniqueness estimates for the
shallow shell equations. Our proof relies on appropriate Carleman estimates. For
applications, we consider the size estimate inverse problem.

Mathematics Subject Classification (2010): 53J58 (primary); 35R30 (sec-
ondary).

1. Introduction

In this work we study a quantitative uniqueness for the shallow shell system and its

application to the inverse problem of estimating the size of an embedded inclusion

by boundary measurements. To begin, we let ! be a bounded domain in R2. With-
out loss of generality, we assume 0 ∈ !. Let θ̄ : ! → R satisfy an appropriate

regularity assumption which will be specified later. For a shallow shell, its middle

surface is described by {(x1, x2, ερ0θ̄(x1, x2)) : (x1, x2) ∈ !} for ε > 0, where

ρ0 > 0 is the characteristic length of ! (see Section 3.1). From now on, we set

θ = ρ0θ̄ . Let u = (u1, u2, u3) = (u′, u3) : ! → R3 represent the displacement
vector of the middle surface. Then u satisfies the following equations:

{
−∂ j n

θ
i j (u) = 0 in !,

∂2i jmi j (u3) − ∂ j (n
θ
i j (u)∂iθ) = 0 in !,

(1.1)

where

mi j (u3) = ρ20

{
4λµ

3(λ + 2µ)
('u3)δi j + 4µ

3
∂2i j u3

}
,

nθ
i j (u) = 4λµ

λ + 2µ
eθkk(u)δi j + 4µeθi j (u), (1.2)

eθi j (u) = 1

2
(∂i u j + ∂ j ui + (∂iθ)∂ j u3 + (∂ jθ)∂i u3),

Lin and Wang’s work was supported in part by the National Science Council of Taiwan.

Received December 2, 2010; accepted May 20, 2011.



44 MICHELE DI CRISTO, CHING-LUNG LIN AND JENN-NAN WANG

and λ, µ are Lamé coefficients. Hereafter, the Roman indices (except n) belong to
{1, 2} and the Einstein summation convention is used for repeated indices.

Assume that D is a measurable subdomain of ! with D ⊂ !. We consider
Lamé parameters

λ̃ = λ + χDλ0 and µ̃ = µ + χDµ0,

where χD is the characteristic function of D. The domain D represents the inclusion
inside of !. With such parameters λ̃, µ̃, we denote the displacement field ũ =
(̃u′, ũ3)t satisfying (1.1) and the Neumann boundary conditions on ∂!:






ñθ
i jν j = ρ−1

0 T̂i ,

m̃i jνiν j = M̂ν,

(∂i m̃i j − ñθ
i j∂iθ)ν j + ∂s(m̃i jνiτ j ) = −∂s M̂τ ,

(1.3)

where m̃i j = m̃i j (̃u3) and ñ
θ
i j = ñθ

i j (̃u) are defined in (1.2) with λ, µ, u replaced

by λ̃, µ̃, ũ. Hereafter, ν = (ν1, ν2), τ = (τ1, τ2) are, respectively, the normal and
the tangent vectors along ∂!, and s is the arclength parameter of ∂!. Precisely,
the tangent vector τ is obtained by rotating ν counterclockwise of angle π/2. The
boundary field M̂ = M̂τ ν + M̂ντ , i.e., M̂τ = M̂ · ν and M̂ν = M̂ · τ . We remark
that in the plate theory, M̂τ and M̂ν are the twisting and bending moments applied

on ∂!. The field T̂ satisfies the compatibility condition which will be specified in
the following section. An interesting inverse problem is to determine geometric in-

formation on D from a pair {T̂ , M̂; ũ′|∂!, (̃u3|∂!, ∂ν ũ3|∂!)}, i.e., from the Cauchy
data of the solution ũ. Despite its practical value, the fundamental global unique-

ness, even for the scalar equation, is yet to be proved. For the development of the

uniqueness issue for this kind of inverse problems, we refer to [13] and references

therein for details.

In this paper we are interested in estimating the size of the area of D in terms of

the Cauchy data of ũ. This type of problem has been studied for the scalar equation

and for systems of equations such as the isotropic elasticity and plate. We refer to

the survey article [3] for the early developments and [20, 21] for the latest results

on the plate equations. Specifically, the size of D is estimated by the following two

quantities:

W̃ =
∫

∂!
ρ−1
0 T̂ · ũ′ + M̂ν∂ν ũ3 + ∂s M̂τ ũ3

and

W =
∫

∂!
ρ−1
0 T̂ · u′ + M̂ν∂νu3 + ∂s M̂τu3,

where u = (u′, u3)t is the displacement vector satisfing (1.1) and (1.3) with D = ∅,
i.e., λ̃ = λ and µ̃ = µ. Here we assume that λ, µ are given a priori , thus, both W̃
and W are known. To be more precise, in this paper, we will show that under some
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a priori assumptions, there exist positive constants C1, C2 such that

C1

∣∣∣∣∣
W̃ − W

W

∣∣∣∣∣ ≤ area(D) ≤ C2

∣∣∣∣∣
W̃ − W

W

∣∣∣∣∣ , (1.4)

where C1, C2 depend on the a priori data.

The derivation of the volume bounds on D relies on the following integral

inequalities

1

K

∫

D

∑

i j

|eθi j (u)|2 + ρ20 |∂2i j u3|2 ≤ |W − W̃ |

≤ K

∫

D

∑

i j

|eθi j (u)|2 + ρ20 |∂2i j u3|2,
(1.5)

where the constant K depends on the a priori data. The lower bound for area(D)
is a consequence of the second inequality of (1.5) and the elliptic regularity es-

timate for u. To derive the upper bound for area(D), we shall use the first in-
equality of (1.5). As indicated in all previous related results, we need to estimate∫
D

∑
i j |eθi j (u)|2 + ρ20 |∂2i j u3|2 from below. This can be achieved by the quantitative

uniqueness estimates of solutions u solving (1.1), which is one of the themes of the

paper.

For the second order elliptic operator, using the Carleman or the frequency

functions methods, quantitative estimates for the strong unique continuation under

different assumptions on coefficients were derived in [8–11, 14, 16, 18]. For the

isotropic elasticity, similar estimates can be found in [1, 4, 19]. Further, for the

elastic plate, quantitative uniqueness estimates were derived in [20, 21]. Note that

global versions of quantitative uniqueness estimates, in the form of doubling in-

equality, were given in [4] and [21], where their arguments rely on a local version

for the power of Laplacian derived in [17].

In this paper, we will derive three-ball inequalities and doubling inequalities

for the shallow shell system (1.1) with λ, µ ∈ C1,1(!). Since the first and the
second equations in (1.1) have different orders, it seems that the Carleman method

is the most efficient way to derive those quantitative uniqueness estimates for (1.1).

We will give detailed derivations of quantitative uniqueness estimates based on the

Carleman estimates in Section 4. The investigation of the inverse problem is given

in Section 5. Since the Neumann boundary value problem for (1.1) is not standard,

we will first study this forward problem in Section 3.

2. Notation

Definition 2.1. Let ! be a bounded domain in Rn with n ≥ 2. Given k ∈ Z+, we
say that ∂! is of class Ck,1 with constants ρ0, A0, if, for any point z ∈ ∂!, there



46 MICHELE DI CRISTO, CHING-LUNG LIN AND JENN-NAN WANG

exists a rigid coordinate transformation under which z = 0 and

! ∩ Bρ0(0) = {x = (x1, · · · , xn−1, xn) = (x ′, xn) ∈ Bρ0(0) : xn > ϕ(x ′)},

where ϕ(x ′) is a Ck,1 function on B′
ρ0

(0) = Bρ0(0) ∩ {xn = 0} satisfying ϕ(0) = 0

and ∇ϕ(0) = 0 if k ≥ 1 and

‖ϕ‖Ck,1(B′
ρ0

(0)) ≤ A0ρ0.

Throughout the paper, we will normalize all norms such that they are dimension-

ally homogeneous and coincide with the standard definitions when the dimensional

parameter is one. With this in mind, we define

‖ϕ‖Ck,1(B′
ρ0

(0)) =
k∑

j=0
ρ
j

0‖∇ jϕ‖L∞(B′
ρ0

(0)) + ρk+10 ‖∇k+1ϕ‖L∞(B′
ρ0

(0)).

Similarly, when ! with ∂! defined above and w : ! → R, we define

‖w‖Ck,1(!) =
k∑

j=0
ρ
j

0‖∇ jw‖L∞(!) + ρk+10 ‖∇k+1w‖L∞(!),

‖w‖2
L2(!)

= ρ−n
0

∫

!
w2,

‖w‖2
Hk(!)

= ρ−n
0

k∑

j=0
ρ
2 j
0

∫

!
|∇ jw|2, k ≥ 1.

In particular, if ! = Bρ(0), then ! satisfies Definition 2.1 with ρ0 = ρ.
Let A be an open connected component of ∂!. For any given point z0 ∈ A,

we define the positive orientation ofA associated with an arclength parametrization
ζ(s) = (x1(s), x2(s)), s ∈ [0, length(A)] such that ζ(0) = z0 and ζ ′(s) = τ (ζ(s)).
Finally, we define for any h > 0

!h = {x ∈ ! | dist(x, ∂!) > h}.

3. The forward problem

3.1. The Neumann boundary value problem for the shallow shell equation

At this moment, we assume ∂! ∈ C1,1 with constants A0, ρ0. Also, let ! satisfy

|!| ≤ A1ρ
2
0 (3.1)

throughout the article, and

‖∇θ‖L∞(!) = ρ0‖∇θ̄‖L∞(!) ≤ A2 (3.2)
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for some positive constants A1 and A2. We will investigate the Neumann boundary

value problem, the forward problem, for the shallow shell system. To begin, let us

assume that Lamé coefficients λ, µ ∈ L∞(!) satisfying

0 < δ0 ≤ µ(x), δ0 ≤ λ(x), ∀ x ∈ !. (3.3)

We aim to find u = (u1, u2, u3) = (u′, u3) satisfying
{

−∂ j n
θ
i j (u) = 0 in !,

∂2i jmi j (u3) − ∂ j (n
θ
i j (u)∂iθ) = 0 in !,

(3.4)

with boundary conditions






nθ
i j (u)ν j = ρ−1

0 T̂i ,

mi j (u3)νiν j = M̂ν,

(∂imi j (u3) − nθ
i j (u)∂iθ)ν j + ∂s(mi j (u3)νiτ j ) = −∂s M̂τ .

(3.5)

Now assume that u = (u′, u3) satisfies (3.4)-(3.5). Let v = (v′, v3) ∈ (H1(!))2 ×
H2(!), then multiplying the first and second equations of (3.4) by v′ and v3, re-
spectively, and using the standard integration by parts, we can obtain that

∫

!

∑

i j

(nθ
i j (u)e

θ
i j (v)+mi j (u3)∂

2
i jv3) =

∫

∂!
ρ−1
0 T̂ · v′ + ∂s M̂τv3+ M̂ν∂νv3. (3.6)

The boundary field M̂ = M̂τ ν + M̂ντ in the cartesian coordinates is written as

M̂ = M̂1e2 + M̂2e1.

In view of the relation

∂s M̂τv3 = ∂s(M̂τv3) − M̂τ ∂sv3,

one can see that the right-hand side of (3.6) becomes

∫

∂!
ρ−1
0 T̂ · v′ − M̂τ ∂sv3 + M̂ν∂νv3.

Recall that ∂ jv3 = ∂sv3τ j + ∂νv3ν j for j = 1, 2. Using the relation τ = (−ν2, ν1)
if ν = (ν1, ν2), we get that

M̂1∂1v3 − M̂2∂2v3 = M̂1(∂sv3τ1 + ∂νv3ν1) − M̂2(∂sv3τ2 + ∂νv3ν2)

= (M̂1τ1 − M̂2τ2)∂sv3 + (M̂1ν1 − M̂2ν2)∂νv3

= −M̂τ ∂sv3 + M̂ν∂νv3
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In view of the above computations, we deduce that

∫

!

∑

i j

(nθ
i j (u)e

θ
i j (v) +mi j (u3)∂

2
i jv3) =

∫

∂!
ρ−1
0 T̂ · v′ + M̂1∂1v3 − M̂2∂2v3 (3.7)

(see the similar derivation for the plate equation in [20]). Let v′ = a + W · x + bθ
and v3 = c − b · x , where a = (a1, a2), b = (b1, b2) are two-dimensional vectors,
W is a 2× 2 skew-symmetric matrix, and c is a scalar. Then eθi j (v) = ∂2i jv3 = 0 for

all i, j . Thus, to solve (3.4) and (3.5), the pair (T̂ , M̂)must satisfy the compatibility
condition ∫

∂!
ρ−1
0 T̂ · (a + W · x + bθ) − b1M̂1 + b2M̂2 = 0. (3.8)

Note that taking b = 0, we have the usual compatibility condition for the traction

of the elasticity equation, i.e.,

∫

∂!
T̂ · (a + W · x) = 0.

On the other hand, to guarantee uniqueness for the forward problem, we impose the

following normalization conditions

∫

!
u = 0,

∫

!
∇u3 = 0,

∫

!
(∂1u2 − ∂2u1) + (∂1θ∂2u3 − ∂2θ∂1u3) = 0. (3.9)

To solve the forward problem, the following Poincaré-Korn inequality is very im-

portant.

Proposition 3.1. There exists an absolute constantC>0, depending on A0,A1,A2,
such that for all u = (u′, u3) ∈ (H1(!))2 × H2(!) satisfying (3.9) we have

‖u′‖2
H1(!)

+ ‖u3‖2H2(!)
≤ C

∫

!

∑

i j

|eθi j (u)|2 + ρ20 |∂2i j u3|2. (3.10)

Proof. The inequality (3.10) is a combination of Poincaré’s and Korn’s inequalities.

By abuse of notation, the variable x in our proof stands for (x1, x2, x3) = (x ′, x3).
Now let / = ! × (−ρ0, ρ0) ⊂ R3 and introduce new variables x̃ ′ = x ′ and
x̃3 = x3+θ(x ′). Denote by /̃ the domain of! under the coordinate transformation

x /→ x̃ , i.e., /̃ = ! × (−ρ0 + θ, ρ0 + θ). Both domains / and /̃ are clearly

Lipschitz. On /̃, we have the standard Korn’s inequality: there exists a constant
K0 > 0 such that for any 3 vector v ∈ H1(/̃) satisfying

∫

/̃
vdx̃ = 0,

∫

/̃

(
∇x̃v − (∇x̃v)T

)
dx̃ = 0, (3.11)

we have

ρ−2
0 ‖v‖2

L2(/̃)
+ ‖∇x̃v‖2

L2(/̃)
≤ K0‖∇̂x̃v‖2

L2(/̃)
, (3.12)



QUANTITATIVE ESTIMATES FOR THE SHALLOW SHELL SYSTEM 49

where ∇̂x̃v =
(
∇x̃v + (∇x̃v)t

)
/2 and K0 depends on A0, A1, A2. Let w(x) =

w(x1, x2, x3) ∈ H1(/), then v(̃x) := w(̃x1, x̃2, x̃3−θ (̃x ′)) ∈ H1(/̃). By observing
that the Jacobian of the coordinate transformation x /→ x̃ is 1, we can write (3.11),

(3.12) in terms of x and get that for all w ∈ H1(/) satisfying






∫
/ wdx = 0,∫
/(∂1w2 − ∂1θ∂3w2 − ∂2w1 + ∂2θ∂3w1)dx = 0,∫
/(∂1w3 − ∂1θ∂3w3 − ∂3w1)dx = 0,∫
/(∂2w3 − ∂2θ∂3w3 − ∂3w2)dx = 0,

(3.13)

we have

ρ−2
0 ‖w‖2

L2(/)
+ ‖∇θ

xw‖2
L2(/)

≤ K0‖∇̂θ
xw‖2

L2(/)
, (3.14)

where

∇θ
xw =




(∂1 − ∂1θ∂3)w1 (∂1 − ∂1θ∂3)w2 (∂1 − ∂1θ∂3)w3
(∂2 − ∂2θ∂3)w1 (∂2 − ∂2θ∂3)w2 (∂2 − ∂2θ∂3)w3

∂3w1 ∂3w2 ∂3w3





and the symmetric part ∇̂θ
xw of ∇θ

xw is defined similarly. In fact, by the form of

∇θ
xw, (3.14) can be improved to

ρ−2
0 ‖w‖2

L2(/)
+ ‖∇xw‖2

L2(/)
≤ K1‖∇̂θ

xw‖2
L2(/)

(3.15)

for some constant K1, also depending on A0, A1, A2. Now let u = (u′, u3)t ∈
(H1(!))2 × H2(!), we apply (3.13) and (3.15) to

w(x) = (u1(x
′) − x3∂1u3(x

′), u2(x ′) − x3∂2u3(x
′), u3(x ′)),

where (x ′, x3) ∈ ! × (−ρ0, ρ0). It is easy to check that the constraints (3.13) are
reduced to the normalization conditions (3.9). On the other hand, easy computations

show that (3.15) becomes

ρ0

∫

!

(
ρ−2
0 |u|2 + |∇u|2 + ρ20

∑

i j

|∂2i j u3|2
)

≤C

∫

!

∑

i j

(
ρ0|eθi j (u)|2 + ρ30 |∂2i j u3|2

)

with C only depending on A0, A1, A2.

3.2. Existence and uniqueness

We will use the variational method to solve the forward problem. This seems to be

standard. But we could not find any literature discussing the Neumann boundary

value problem for the shallow shell. For the sake of completeness, we give a proof
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of this forward problem. The arguments used here are adapted from [20]. To begin,

let us introduce

H(u, v) =
∫

!

∑

i j

nθ
i j (u)∂ jvi + mi j (u3)∂

2
i jv3 + nθ

i j (u)∂iθ∂ jv3

=
∫

!

∑

i j

nθ
i j (u)e

θ
i j (v) + mi j (u3)∂

2
i jv3

and

L(v) =
∫

∂!
ρ−1
0 T̂ · v′ + ∂s M̂τv3 + M̂ν∂νv3.

We now give a weak formulation of the Neumann boundary value problem (3.4)-

(3.5).

Definition 3.2. A vector valued function u = (u′, u3)t ∈ (H1(!))2 × H2(!) is a
weak solution to (3.4)-(3.5) if and only if

H(u, v) = L(v) for all v = (v′, v3)t ∈ H1(!) × H2(!). (3.16)

From the above computations, we know that

L(v) =
∫

∂!
ρ−1
0 T̂ · v′ + M̂1∂1v3 − M̂2∂2v3 := L̃(v).

In other words, (3.16) is equivalent to

H(u, v) = L̃(v) for all v = (v′, v3)t ∈ (H1(!))2 × H2(!). (3.17)

Theorem 3.3. Assume that θ satisfies (3.2) and λ, µ ∈ L∞(!) satisfy (3.3). Given
any boundary field (T̂ , M̂) ∈ H−1/2(∂!) and the compatibility condition (3.8)
holds. Then (3.4)-(3.5) admits a unique weak solution u = (u′, u3)t satisfying the
conditions (3.9) and

‖u′‖H1(!) + ‖u3‖H2(!) ≤ C‖(T̂ , M̂)‖(H−1/2(∂!))3, (3.18)

where C depends on A0, A1, A2, δ0.

Proof. Let V be the subspace of (H1(!))2 × H2(!) characterized by

V = {w = (w′, w3) ∈ (H1(!))2 × H2(!) : w satisfies (3.9)}.
In view of (3.10), we have that

∫

!

∑

i j

|eθi j (u)|2 + ρ20 |∂2i j u3|2 ≤ ‖u′‖2
H1(!)

+ ‖u3‖2H2(!)

≤ C

∫

!

∑

i j

|eθi j (u)|2 + ρ20 |∂2i j u3|2
(3.19)
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for all u ∈ V . We now define a functional J : V → R by

J (u) = 1

2
H(u, u) − L̃(u).

We first want to prove that J has a unique minimizer on V . To this end, it suffices

to show that J is coercive and strictly convex on V . It is easy to see that

H(u, u) =
∫

!
nθ
i j (u)e

θ
i j (u) + mi j (u3)∂

2
i j u3

=
∫

!

4λµ

λ + 2µ

∣∣
∑

k

eθkk(u)
∣∣2 + 4µ

∑

i j

|eθi j (u)|2

+ 4λµρ20
3(λ + 2µ)

|'u3|2 + 4µρ20
3

∑

i j

|∂2i j u3|2

≥ 4δ0

3

∫

!

∑

i j

|eθi j (u)|2 + ρ20 |∂2i j u3|2.

Thus, (3.19) implies

H(u, u) ≥ C(‖u′‖2
H1(!)

+ ‖u3‖2H2(!)
) (3.20)

with C depending only on A0, A1, A2, δ0. On the other hand, the trace inequality
leads to

L̃(u) ≤ C‖(T̂ , M̂)‖(H−1/2(∂!))3(‖u′‖H1(!) + ‖u3‖H2(!)).

Consequently, we obtain that

J (u) ≥ C
(
‖u′‖2

H1(!)
+ ‖u3‖2H2(!)

−‖(T̂ , M̂)‖(H−1/2(∂!))3(‖u′‖H1(!) + ‖u3‖H2(!))
)
,

which shows that J is coercive and bounded from below on V .

Now for t ∈ [0, 1] and u, v ∈ V , we have that

H(tu + (1− t)v, tu + (1− t)v) − t H(u, u) − (1− t)H(v, v)

= −t (1− t)H(u − v, u − v) ≤ 0

and for t ∈ (0, 1)

H(tu + (1− t)v, tu + (1− t)v) = t H(u, u) + (1− t)H(v, v)

if and only if

H(u − v, u − v) = 0.
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Since u, v ∈ V , we see that H(u − v, u − v) = 0 if and only if u = v in
(H1(!))2× H2(!). In other words, we have shown that H(u, u) is strictly convex
on V . Taking into account that L̃(u) is linear, we have that J (u) is strictly convex
on V . Therefore, J (u) has a unique minimizer, denoted byw, on V . In other words,
J ′(w)[v] = 0 for all v ∈ V , i.e.,

H(w, v) = L̃(v) (3.21)

for all v ∈ V . Now we need to show that (3.21) is valid for all v ∈ (H1(!))2 ×
H2(!), that is, w indeed a weak solution. Given any z = (z′, z3) ∈ H1(!) ×
H2(!), one can easily check that z̃ satisfies (3.9), where

z̃′ = z′ − 1

|!|

∫

!
z′−

[
1

|!|

∫

!

(∇z′ − (∇z′)t )
2

]
(x − x!) + (θ − θ!)

1

|!|

∫

!
∇z3,

z̃3 = z3 − 1

|!|

∫

!
z3 −

(
1

|!|

∫

!
∇z3

)
· (x − x!),

and

θ! = 1

|!|

∫

!
θ, x! = 1

|!|

∫

!
x .

Since (T̂ , M̂) satisfies the compatibility condition (3.8), we conclude that

H(w, z) = H(w, z̃) = L̃(z) = L̃(z) ∀ z ∈ (H1(!))2 × H2(!).

The estimate (3.18) is an easy consequence of (3.20) and the trace inequality.

3.3. Global regularity

To study the inverse problem, we also need a global regularity theorem for the

shallow shell equations. To simplify our presentation, we impose a technical as-

sumption on θ̄ (or θ) in this section. Assume that θ̄ satisfies

θ̄ = ∇ θ̄ = 0 on ∂!. (3.22)

We shall prove the following theorem.

Theorem 3.4. Assume that ! is a bounded domain in R2 satisfying (3.1) whose
boundary ∂! is of class C4,1 with constants A0 and ρ0. Let λ, µ ∈ C1,1(!̄) satisfy
(3.3) and θ̄ ∈ C2,1(!̄) satisfy (3.22) and

‖λ‖C1,1(!̄) + ‖µ‖C1,1(!̄) + ‖θ̄‖C2,1(!̄) ≤ A2. (3.23)

Let u ∈ (H1(!))2 × H2(!) be the weak solution of (3.4), (3.5) with Neumann
boundary condition (T̂ , M̂) ∈ (H1/2(∂!))2 × H3/2(∂!) satisfying (3.8). Assume
that u satisfies the normalization conditions (3.9). Then there exists a constant

C > 0, depending on A0, A1, A2, δ0 such that

‖u′‖H2(!) + ‖u‖H4(!) ≤ C‖(T̂ , M̂)‖(H1/2(∂!))2×H3/2(∂!). (3.24)
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Proof. To prove this theorem, it suffices to consider (3.4) with homogeneous Neu-

mann boundary conditions. In view of (3.22), the boundary conditions (3.5) are

simplified to






ni j (u
′)ν j = ρ−1

0 T̂i ,

mi j (u3)νiν j = M̂ν,

∂imi j (u3)ν j + ∂s(mi j (u3)νiτ j ) = −∂s M̂τ ,

(3.25)

where

ni j (u
′) = 4λµ

λ + 2µ
ekk(u

′)νi + 4µei j (u
′)ν j = ρ−1

0 T̂i on ∂!

with ei j (u
′) = 1

2
(∂i u j + ∂ j ui ). It is clear that boundary conditions (3.25) are

decoupled. Using the result in [20, Proposition 8.1], one can find w̃3 satisfying

{
mi j (w̃3)νiν j = M̂ν,

∂imi j (w̃3)ν j + ∂s(mi j (w̃3)νiτ j ) = −∂s M̂τ

on ∂! and the estimate

‖w̃3‖H4(!) ≤ C‖M̂‖H3/2(∂!). (3.26)

Similarly, we can choose w̃′ such that

ni j (w̃
′)ν j = ρ−1

0 T̂i on ∂!

and

‖w̃′‖H2(!) ≤ C‖T̂‖(H1/2(∂!))2 . (3.27)

The constant C in (3.26) and (3.27) depend on A0, A1, A2, δ0. By setting

w′ = w̃′− 1

|!|

∫

!
w̃′−

[
1

|!|

∫

!

(∇w̃′ − (∇w̃′)t )
2

]
(x−x!)+(θ −θ!)

1

|!|

∫

!
∇w̃3

and

w3 = w̃3 − 1

|!|

∫

!
w̃3 −

(
1

|!|

∫

!
∇w̃3

)
· (x − x!),

we can see that (w′, w3) satisfies the boundary condition (3.25), the normalization
conditions (3.9), and the estimate

‖w′‖H2(!) + ‖w3‖H4(!) ≤ C‖(T̂ , M̂)‖(H1/2(∂!))2×H3/2(∂!), (3.28)

where C depends on A0, A1, A2, δ0.
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So now by letting u = w + v, we obtain that v satisfies

{
−∂ j n

θ
i j (v) = fi in !,

∂2i jmi j (v3) − ∂ j (n
θ
i j (v)∂iθ) = f3 in !,

(3.29)

with homogeneous Neumann boundary conditions on ∂!





ni j (v
′)ν j = 0,

mi j (v3)νiν j = 0,

∂imi j (v3)ν j + ∂s(mi j (v3)νiτ j ) = 0,

(3.30)

where f = ( f1, f2, f3) = ( f ′, f3) is given by
{
fi = ∂ j n

θ
i j (w), i = 1, 2,

f3 = −∂2i jmi j (w3) + ∂ j (n
θ
i j (w)∂iθ).

Using the integration by parts, it is not hard to check that f satisfies the following

compatibility conditions

∫

!
f = 0,

∫

!
( f1x2 − f2x1) = 0,

∫

!
( f1θ + f3x1) = 0,

∫

!
( f2θ + f3x2) = 0.

(3.31)

Now to obtain a global estimate for v, we decouple (3.29) as follows

{
−∂ j ni j (v

′) = fi + 1
2
∂ j (∂iθ∂ jv3 + ∂ jθ∂iv3) := f̃i in !,

∂2i jmi j (v3) = f3 + ∂ j (n
θ
i j (v)∂iθ) := f̃3 in !.

(3.32)

By (3.31) and straightforward computations, we can deduce that f̃ = ( f̃1, f̃2, f̃3) =
( f̃ ′, f̃3) satisfy

∫

!
f̃ = 0,

∫

!
( f̃1x2 − f̃2x1) = 0,

∫

!
f̃3x1 =

∫

!
f̃3x2 = 0, (3.33)

which are the compatibility conditions for the existence of the boundary value prob-

lem (3.32) and (3.30). Recall the global estimate for the isotropic elasticity with

homogeneous Neumann boundary condition, we have

‖v′‖H2(!) ≤ C(ρ20‖ f̃ ′‖L2(!) + ‖v′‖H1(!))

≤ C(ρ20‖ f ′‖L2(!) + ‖v3‖H2(!) + ‖v′‖H1(!)), (3.34)

where C depend on A0, A1, A2, δ0. For v3, we use [20, Proposition 8.2] to obtain
that

‖v3‖H4(!) ≤ C(ρ20‖ f̃3‖L2(!) + ‖v3‖H2(!))

≤ C(ρ20‖ f̃3‖L2(!) + ‖v3‖H2(!) + ‖v′‖H1(!)). (3.35)



QUANTITATIVE ESTIMATES FOR THE SHALLOW SHELL SYSTEM 55

The dependence of C is the same as above. Putting (3.34) and (3.35) together yields

‖v′‖H2(!) + ‖v3‖H4(!) ≤ C(ρ20‖ f ‖L2(!) + ‖v3‖H2(!) + ‖v′‖H1(!)). (3.36)

Now using the weak formulation of the boundary value problem (3.32), (3.30), the

Poincaré-Korn inequality (3.10), (3.28), we get from (3.36) that

‖v′‖H2(!) + ‖v3‖H4(!) ≤ C(ρ20‖ f ‖L2(!) + ‖v3‖H2(!) + ‖v′‖H1(!))

≤ Cρ20‖ f ‖L2(!)

≤ C‖(T̂ , M̂)‖(H1/2(∂!))2×H3/2(∂!). (3.37)

Finally, combining (3.28) and (3.37) gives (3.24).

4. Quantitative uniqueness estimates

4.1. Main theorems

In this section, we would like to derive the three-ball inequalities for (1.1), which

is a form of quantitative uniqueness estimate. The regularity of ∂! is irrelevant

for the estimates derived here. But to make the paper consistent, we assume that

! is at least a Lipschitz domain with constant A0 and ρ0. Let λ(x), µ(x) satisfy
(3.3) and λ, µ, θ̄ satisfy estimate (3.23). We now first state the main results of this
section. Assume that Bρ0 R̄0

⊂ ! with R̄0 ≤ 1. Let us denote Ur = (ru′, u3) =
(ru1, ru2, u3). Then the following local estimates hold.

Theorem 4.1. There exists a positive number R1, depending on δ0, K1, K2, such
that if 0 < r1 < r2 < r3 ≤ ρ0 R̄0 and r1/r3 < r2/r3 < R1, then

∫

|x |<r2
|Ur2 |2dx ≤ C1

(∫

|x |<r1
|Ur1 |2dx

)τ (∫

|x |<r3
|Ur3 |2dx

)1−τ

(4.1)

for (u′, u3) ∈ (H1(Bρ0 R̄0
))2 × H3(Bρ0 R̄0

) satisfying (1.1) in Bρ0 R̄0
, where C1 > 0

and 0 < τ < 1 depend on r1/r3, r2/r3, δ0, A2.

Remark 4.2. The estimate (4.1) is the three-ball inequality. Constants C1 and τ
appeared above can be explicitly written as τ = B/(E + B) and

C1 = max{C0[(log(r1/r3))2/(log(r2/r3))2](r2/r1)2, exp(Bβ0)}(r3/r1)2τ ,

where C0 > 1 and β0 are constants depending on δ0, A2 and

E = E(r1/r3, r2/r3) = (log(r1/r3) − 1)2 − (log(r2/r3))
2,

B = B(r2/r3) = −1− 2 log(r2/r3).
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Remark 4.3. If r3 ≤ 1, then (4.1) is reduced to

∫

|x |<r2
|U |2dx ≤ C1

r22

(∫

|x |<r1
|U |2dx

)τ (∫

|x |<r3
|U |2dx

)1−τ

. (4.2)

By abuse of notation, we denote U = (u′, u3).

Using the three-ball inequality, we can prove

Theorem 4.4. If (u′, u3) ∈ (H1(Bρ0 R̄0
))2 × H3(Bρ0 R̄0

) is a nontrivial solution
to (1.1), then we can find a constant R2 depending on δ0, A2 and a constant m1
depending on δ0, A2 and ‖UR22

‖L2(|x |<ρ0R
2
2)

/‖UR42
‖L2(|x |<ρ0R

4
2)
such that

∫

|x |<R

|U |2dx ≥ K Rm1, (4.3)

where R is sufficiently small and the constant K depends on R2 and U .

In view of the standard unique continuation property for (1.1) in a connected

domain containing the origin, if u vanishes in a neighborhood of the origin then it

vanishes identically in !. Theorem 4.4 provides an upper bound on the vanishing
order of a nontrivial solution to (1.1). The following doubling inequality is another

quantitative estimate of the strong unique continuation for (1.1).

Theorem 4.5. Let (u′,u3)∈(H1(Bρ0 R̄0
))2×H3(Bρ0 R̄0

) be a nonzero solution to (1.1).
Then there exist positive constants R3, depending on δ0, A2, ‖UR22

‖L2(|x |<ρ0R
2
2)

/

‖UR42
‖L2(|x |<ρ0R

4
2)
, and C2, depending on δ0, A2, m1, such that if 0 < r ≤ ρ0R3,

then ∫

|x |≤2r
|U |2dx ≤ C2

∫

|x |≤r
|U |2dx, (4.4)

where R2 and m1 are the constants obtained in Theorem 4.4.

The rest of this section is devoted to the proofs of Theorem 4.1, 4.4, and 4.5.

4.2. Preliminaries

From now on, it suffices to take ρ0 = 1. The first step is to transform the system

(1.1) into a new system with uncoupled principal parts. To simplify the notation

in the following proofs, we denote u = u′ = (u1, u2) (suppress the prime), w =
u3, and v = divu′ = divu. Putting (1.1) and the equation obtained by taking

the divergence of the first system of (1.1) together, we come to the following new

system 




'u = P1(Du, Dv) + P2(D
2w, Dw),

'v = P3(Du, Dv) + P4(D
3w, D2w, Dw),

'2w = P5(D
3w, D2w, Dw) + P6(Du),

(4.5)
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where P1 − P6 are zeroth order operators with at least L
∞ coefficients which are

bounded by a constant depending on δ0, A2.
To prove Theorem 4.1, the following interior estimate is useful. From now on,

the notation X ! Y or X " Y means that X ≤ CY or X ≥ CY with some constant

C which could only depend on δ0, A2.

Lemma 4.6. Let (u, w) ∈ (H1loc(BR̄0))
2 × H3loc(BR̄0) be a solution of (1.1). Then

for any 0 < a3 < a1 < a2 < a4, there exists a constant r0 with a4r0 < R̄0(< 1)
such that if r ≤ r0

∑

|α|≤2

∫

a1r<|x |<a2r
|x |2|α||Dαu|2dx +

∑

|α|≤4

∫

a1r<|x |<a2r
|x |2|α||Dαw|2dx

≤ C3

∫

a3r<|x |<a4r
(|u|2 + |w|2)dx, (4.6)

where C3 is independent of r and (u, w).

Proof. The proof here is motivated by the ideas used in [12, Corollary 17.1.4]. Let

X = Ba4r\Ba3r and d(x) be the distant from x ∈ X to R2\X . We obtain from (1.1)
that u ∈ (H2loc(BR̄0\{0}))2 and w ∈ H4loc(BR̄0\{0}. Denote

L(x, D)u := 4λµ

λ + 2µ
∇(divu) + 4µdiv(Sym(∇u)).

Since L(x, D) and '2 are uniformly elliptic, it is obvious that

{
‖ f ‖H2(Rn) ! ‖L(y, D) f ‖L2(Rn) + ‖ f ‖L2(Rn)

‖g‖H4(Rn) ! ‖'2g‖L2(Rn) + ‖g‖L2(Rn)

(4.7)

for all f ∈ H2(Rn), g ∈ H4(Rn) and any fixed y in !. Note that the absolute
constant appearing in the first estimate of (4.7) can be chosen to be uniformly in

y ∈ !. By changing variables x → B−1x in (4.7), we will have

{ ∑
|α|≤1 B

2−|α|‖ f ‖H2(Rn) ! ‖L(y, D) f ‖L2(Rn) + B2‖ f ‖L2(Rn)∑
|α|≤3 B

4−|α|‖Dαg‖L2(Rn) ! ‖'2g‖L2(Rn) + B4‖g‖L2(Rn)

(4.8)

for all f ∈ H2(Rn) and g ∈ H4(Rn). To apply (4.8) on (u, w), we need to cut-off
(u, w). So let ξ(x) ∈ C∞

0 (Rn) satisfy 0 ≤ ξ(x) ≤ 1 and

ξ(x) =
{
1, |x | < 1/4,

0, |x | ≥ 1/2.
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Let us denote ξy(x) = ξ((x − y)/d(y)). For y ⊂ X , we apply (4.8) to ξy(x)u(x)
and use the first equation of (1.1) to get that

∑

|α|≤2
B4−2|α|

∫

|x−y|≤d(y)/4
|Dαu|2dx

!
∑

|α|≤1

∫

|x−y|≤d(y)/2
d(y)−4+2|α||Dαu|2dx +

∫

|x−y|≤d(y)/2
|L(x, D)u|2dx

+
∫

|x−y|≤d(y)/2
|L(x, D)u − L(y, D)u|2 dx + B4

∫

|x−y|≤d(y)/2
|u|2dx

+
∑

|α|≤2

∫

|x−y|≤d(y)/2
|Dαw|2dx

!
∑

|α|≤1

∫

|x−y|≤d(y)/2
d(y)−4+2|α||Dαu|2dx + r

∑

|α|=2

∫

|x−y|≤d(y)/2
|Dαu|2dx

+B4
∫

|x−y|≤d(y)/2
|u|2dx +

∑

|α|≤2

∫

|x−y|≤d(y)/2
|Dαw|2dx . (4.9)

Now taking B = Md(y)−1 for some positive constant M and multiplying d(y)4 on
both sides of (4.9), we have

∑

|α|≤2
M4−2|α|

∫

|x−y|≤d(y)/4
d(y)2|α||Dαu|2dx

!
∑

|α|≤1

∫

|x−y|≤d(y)/2
d(y)2|α||Dαu|2dx + r

∑

|α|=2

∫

|x−y|≤d(y)/2
d(y)4|Dαu|2dx

+M4

∫

|x−y|≤d(y)/2
|u|2dx +

∑

|α|≤2

∫

|x−y|≤d(y)/2
d(y)4|Dαw|2dx . (4.10)

Integrating d(y)−2dy over X on both sides of (4.10) and using Fubini’s Theorem,
we get that

∑

|α|≤2
M4−2|α|

∫

X

∫

|x−y|≤d(y)/4
d(y)2|α|−2|Dαu|2dydx

!
∑

|α|≤1

∫

X

∫

|x−y|≤d(y)/2
d(y)2|α|−2|Dαu|2dydx

+M4

∫

X

∫

|x−y|≤d(y)/2
d(y)−2|u|2dydx+r

∑

|α|=2

∫

X

∫

|x−y|≤d(y)/2
d(y)2|Dαu|2dydx

+
∑

|α|≤2

∫

X

∫

|x−y|≤d(y)/2
d(y)2|Dαw|2dydx . (4.11)
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Note that |d(x) − d(y)| ≤ |x − y|. If |x − y| ≤ d(x)/3, then

2d(x)/3 ≤ d(y) ≤ 4d(x)/3. (4.12)

On the other hand, if |x − y| ≤ d(y)/2, then

d(x)/2 ≤ d(y) ≤ 3d(x)/2. (4.13)

By (4.12) and (4.13), we have
{ ∫

|x−y|≤d(y)/4 d(y)−2dy ≥ 9/16
∫
|x−y|≤d(x)/6 d(x)−2dy ≥ 1/64

∫
|y|≤1 dy,∫

|x−y|≤d(y)/2 d(y)−2dy ≤ 4
∫
|x−y|≤3d(x)/4 d(x)−2dy ≤ 9/4

∫
|y|≤1 dy

(4.14)

Combining (4.11)–(4.14), we obtain

∑

|α|≤2
M4−2|α|

∫

X

d(x)2|α||Dαu|2dx

!
∑

|α|≤1

∫

X

d(x)2|α||Dαu|2dx + r
∑

|α|=2

∫

X

d(x)4|Dαu|2dx

+M4

∫

X

|u|2dx +
∑

|α|≤2

∫

X

d(x)4|Dαw|2dx . (4.15)

We can take M large enough and r small enough to absorb the first two terms on

the right-hand side of (4.15). Thus we conclude that

∑

|α|≤2
M4−2|α|

∫

X

d(x)2|α||Dαu|2dx

! M4

∫

X

|u|2dx +
∑

|α|≤2

∫

X

d(x)4|Dαw|2dx . (4.16)

Similarly, we can apply (4.8) to ξy(x)w(x) and use the second equation of (1.1) to
get that

∑

|α|≤4
M8−2|α|

∫

X

d(x)2|α||Dαw|2dx

! M8

∫

X

|w|2dx +
∑

|α|≤1

∫

X

d(x)8|Dαu|2dx . (4.17)

Combining (4.16), (4.17) and letting M be sufficiently large, we can eliminate the

last terms of (4.16) and (4.17). After that we fix M and obtain

∑

|α|≤2

∫

X

d(x)2|α||Dαu|2dx +
∑

|α|≤4

∫

X

d(x)2|α||Dαw|2dx

!
∫

X

|u|2dx +
∫

X

|w|2dx . (4.18)
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We recall that X = Ba4r\Ba3r and note that d(x) ≥ Ĉr if x ∈ Ba2r\Ba1r , where Ĉ
is independent of r . Hence, (4.6) is an easy consequence of (4.18).

The next result follows from Lemma 4.6:

Corollary 4.7. Let (u, w) ∈ (H1loc(BR̄0))
2 × H3loc(BR̄0) be a solution of (1.1) and

v = div u. Then for any 0 < a3 < a1 < a2 < a4, there exists a constant r0
satisfying a4r0 < R̄0 such that if r ≤ r0, we have

∑

|α|≤1

∫

a1r<|x |<a2r
|x |2|α|+2|Dαv|2dx

≤ C3

∫

a3r<|x |<a4r
(|u|2 + |w|2)dx, (4.19)

where the constant C3 is independent of r and (u, w).

4.3. Proof of Theorem 4.1

To begin, we recall a Carleman estimate with weight ϕβ =ϕβ(x)=exp(β
2
(log |x |)2)

given in [15].

Lemma 4.8. [15, Corollary 3.2]Given σ1 ∈ Z and σ2 ∈ Z there exist a sufficiently

large number β0 > 0 and a sufficiently small number r0 > 0 depending on n, l, σ1
and σ2 such that for all u ∈ Ur0 with 0 < r0 < e−1, β ≥ β0, we have that

∑

|α|≤2l
β3l−2|α|

∫
ϕ2β |x |2σ1+2|α|−n(log |x |)2σ2+2l−2|α||Dαu|2dx

≤ C̃0

∫
ϕ2β |x |2σ1+4l−n(log |x |)2σ2 |'lu|2dx, (4.20)

where Ur0 = {u ∈ C∞
0 (Rn \ {0}) : supp(u) ⊂ Br0} and C̃0 is a positive constant

depending on n and l. Here e = exp(1).

Remark 4.9. The estimate (4.20) in Lemma 4.8 remains valid if we assume u ∈
H2lloc(Rn \ {0}) with compact support. This can be easily seen by cutting off u for
small |x | and regularizing.

We first consider the case where 0 < r1 < r2 < R < 1/e and BR ⊂ !. The
constant R will be chosen later. To use the estimate (4.20), we need to cut-off u. So

let ξ(x) ∈ C∞
0 (Rn) satisfy 0 ≤ ξ(x) ≤ 1 and

ξ(x) =






0, |x | ≤ r1/e,

1, r1/2 < |x | < er2,

0, |x | ≥ 3r2.
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It is easy to check that for all multi-index α
{

|Dαξ | = O(r
−|α|
1 ) for all r1/e ≤ |x | ≤ r1/2

|Dαξ | = O(r
−|α|
2 ) for all er2 ≤ |x | ≤ 3r2.

(4.21)

Noting that the commutator ['l , ξ ] is a 2l − 1 order differential operator and using
the estimate (4.20) on ξu with parameters σ1 = 0, σ2 = 0, l = 1, n = 2, we can

derive from the first equations of (4.5) and (4.21) that

∑

|α|≤1
β3−2|α|

∫

r1/2<|x |<er2
ϕ2β |x |2|α|−2(log |x |)2−2|α||Dαu|2dx

!
∑

|α|≤2
β3−2|α|

∫
ϕ2β |x |2|α|−2(log |x |)2−2|α||Dα(ξu)|2dx

!
∫

ϕ2β |x |2|'(ξu)|2dx

!
∫

ϕ2β |x |2
(

|'u|2 +
∑

|α|≤1
|[', ξ ]u|2

)
dx (4.22)

!
∫

r1/2<|x |<er2
ϕ2β |x |2

[
∑

|α|≤1
(|Dαu|2 + |Dαv|2) +

∑

|α|≤2
|Dαw|2

]
dx

+
∫

r1/e<|x |<r1/2
ϕ2β |x |2

[
∑

|α|≤1
(|x |2|α|−4|Dαu|2 + |Dαv|2) +

∑

|α|≤2
|Dαw|2

]
dx

+
∫

er2<|x |<3r2
ϕ2β |x |2

[
∑

|α|≤1
(|x |2|α|−4|Dαu|2 + |Dαv|2) +

∑

|α|≤2
|Dαw|2

]
dx .

Similarity, applying (4.20) to ξv with parameters σ1 = 1, σ2 = 0, l = 1, n = 2, we

can derive from the second equation of (4.5) and (4.21) that

∑

|α|≤1
β3−2|α|

∫

r1/2<|x |<er2
ϕ2β |x |2|α|(log |x |)2−2|α||Dαv|2dx

!
∫

r1/2<|x |<er2
ϕ2β |x |4

[
∑

|α|≤1
(|Dαu|2 + |Dαv|2) +

∑

|α|≤3
|Dαw|2

]
dx

+
∫

r1/e<|x |<r1/2
ϕ2β |x |4

[
∑

|α|≤1
(|x |2|α|−4|Dαv|2 + |Dαu|2) +

∑

|α|≤3
|Dαw|2

]
dx

+
∫

er2<|x |<3r2
ϕ2β |x |4

[
∑

|α|≤1
(|x |2|α|−4|Dαv|2 + |Dαu|2) +

∑

|α|≤3
|Dαw|2

]
dx .

(4.23)
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Finally, applying (4.20) to ξw with parameters σ1 = 0, σ2 = 1, l = 2, n = 2, we

obtain from the third equation of (4.5) and (4.21) that

∑

|α|≤3
β6−2|α|

∫

r1/2<|x |<er2
ϕ2β |x |2|α|−2(log |x |)6−2|α||Dαw|2dx

!
∫

r1/2<|x |<er2
ϕ2β |x |6(log |x |)2

[
∑

|α|≤1
|Dαu|2 +

∑

|α|≤3
|Dαw|2

]
dx

+
∫

r1/e<|x |<r1/2
ϕ2β |x |6(log |x |)2

[
∑

|α|≤1
|Dαu|2 +

∑

|α|≤3
|x |2|α|−8|Dαw|2

]
dx

+
∫

er2<|x |<3r2
ϕ2β |x |6(log |x |)2

[
∑

|α|≤1
|Dαu|2 +

∑

|α|≤3
|x |2|α|−8|Dαw|2

]
dx .

(4.24)

Putting (4.22), (4.23), (4.24) together, we can take β ≥ β̃0 0 1 and R ≤ R̃0 1 1

such that the terms
∫
r1/2<|x |<er2(· · · )dx on the right-hand side are absorbed by the

corresponding terms on the left-hand side. In other words, for β ≥ β0 and R ≤ R̃0,

we have that

∑

|α|≤1
β3−2|α|

∫

r1/2<|x |<er2
ϕ2β |x |2|α|−2(log |x |)2−2|α||Dαu|2dx

+
∑

|α|≤1
β3−2|α|

∫

r1/2<|x |<er2
ϕ2β |x |2|α|(log |x |)2−2|α||Dαv|2dx

+
∑

|α|≤3
β6−2|α|

∫

r1/2<|x |<er2
ϕ2β |x |2|α|−2(log |x |)6−2|α||Dαw|2dx

!
∫

r1/e<|x |<r1/2
ϕ2β |x |−2

(
∑

|α|≤1
|x |2|α||Dαu|2 + |x |2|α|+2|Dαv|2

)
dx (4.25)

+
∫

r1/e<|x |<r1/2
ϕ2β(log |x |)2|x |−2

∑

|α|≤3
|x |2|α||Dαw|2dx

+
∫

er2<|x |<3r2
ϕ2β |x |−2

(
∑

|α|≤1
|x |2|α||Dαu|2 + |x |2|α|+2|Dαv|2

)
dx

+
∫

er2<|x |<3r2
ϕ2β(log |x |)2|x |−2

∑

|α|≤3
|x |2|α||Dαw|2dx .
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Now using (4.6) and (4.19) in (4.25) leads to

(log r2)
2r−2
2 ϕ2β(r2)

∫

r1/2<|x |<r2
|U |2dx

! (log r1)
2r−2
1 ϕ2β(r1/e)

∫

r1/4<|x |<r1
|U |2dx (4.26)

+(log r2)
2r−2
2 ϕ2β(er2)

∫

2r2<|x |<4r2
|U |2dx .

Here U = (u1, u2, w) = (u1, u2, u3). Note that we have used the restriction r1 <
r2 < 1/e in the above computations. Dividing by (log r2)

2r−2
2 ϕ2β(r2) on both sides

of (4.26) implies

∫

r1/2<|x |<r2
|U |2dx

! [(log r1)2/(log r2)2](r2/r1)2[ϕ2β(r1/e)/ϕ
2
β(r2)]

∫

r1/4<|x |<r1
|U |2dx

+[ϕ2β(er2)/ϕ
2
β(r2)]

∫

2r2<|x |<4r2
|U |2dx (4.27)

! [(log r1)2/(log r2)2](r2/r1)2[ϕ2β(r1/e)/ϕ
2
β(r2)]

∫

|x |<r1
|U |2dx

+[(log r1)2/(log r2)2](r2/r1)2[ϕ2β(er2)/ϕ
2
β(r2)]

∫

|x |<1
|U |2dx .

Adding
∫
|x |<r1/2 |U |2dx to both sides of (4.27), we get for β ≥ β0 that

∫

|x |<r2
|U |2dx

! [(log r1)2/(log r2)2](r2/r1)2[ϕ2β(r1/e)/ϕ
2
β(r2)]

∫

|x |<r1
|U |2dx (4.28)

+[(log r1)2/(log r2)2](r2/r1)2[ϕ2β(er2)/ϕ
2
β(r2)]

∫

|x |<1
|U |2dx .

By denoting

E = β−1 log[ϕ2β(r1/e)/ϕ
2
β(r2)] = (log r1 − 1)2 − (log r2)

2 > 0,

B = −β−1 log[ϕ2β(er2)/ϕ
2
β(r2)] = −1− 2 log r2 > 0,
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(4.28) becomes

∫

|x |<r2
|U |2dx

! [(log r1)2/(log r2)2](r2/r1)2 × (4.29)(
exp(Eβ)

∫

|x |<r1
|Ur1 |2dx + exp(−Bβ)

∫

|x |<1
|U |2dx

)
.

To further simplify the terms on the right-hand side of (4.29), we consider two

cases. If ∫

|x |<r1
|U |2dx 2= 0

and

exp (Eβ0)

∫

|x |<r1
|U |2dx < exp (−Bβ0)

∫

|x |<1
|U |2dx,

then we can pick a β > β0 such that

exp (Eβ)

∫

|x |<r1
|U |2dx = exp (−Bβ)

∫

|x |<1
|U |2dx .

Using such β, we obtain from (4.29) that

∫

|x |<r2
|U |2dx

! [(log r1)2/(log r2)2](r2/r1)2 exp (Eβ)

∫

|x |<r1
|U |2dx (4.30)

! [(log r1)2/(log r2)2](r2/r1)2
(∫

|x |<r1
|U |2dx

) B
E+B

(∫

|x |<1
|U |2dx

) E
E+B

.

If ∫

|x |<r1
|U |2dx = 0,

then it follows from (4.29) that

∫

|x |<r2
|U |2dx = 0

since we can take β arbitrarily large. The three-sphere inequality obviously holds.
On the other hand, if

exp (−Bβ0)

∫

|x |<1
|U |2dx ≤ exp (Eβ0)

∫

|x |<r1
|U |2dx,



QUANTITATIVE ESTIMATES FOR THE SHALLOW SHELL SYSTEM 65

then we have
∫

|x |<r2
|U |2dx

≤
(∫

|x |<1
|U |2dx

) B
E+B

(∫

|x |<1
|U |2dx

) E
E+B

(4.31)

≤ exp (Bβ0)

(∫

|x |<r1
|U |2dx

) B
E+B

(∫

|x |<1
|U |2dx

) E
E+B

.

Putting together (4.30), (4.31), we arrive at

∫

|x |<r2
|U |2dx ≤ C̃3

(∫

|x |<r1
|U |2dx

) B
E+B

(∫

|x |<1
|U |2dx

) E
E+B

, (4.32)

where C̃3 = max{C̃2[(log r1)2/(log r2)2](r2/r1)2, exp (Bβ0)} for some positive
constant C̃2, depending on δ0, A2.

Now for the general case, we take R1 = R̃0 and consider 0 < r1 < r2 < r3 ≤
ρ0 R̄0 < 1 with r1/r3 < r2/r3 ≤ R1. By defining û(y) := r3u(r3y), ŵ(y) :=
w(r3y), λ̂(y) := λ(r3y), µ̂(y) := µ(r3y), θ̂(y) = θ(r3y), we can see that the
system (1.1) is invariant under this scaling. On the other hand, λ̂(y), µ̂(y) and θ̂(y)
satisfy (3.23), respectively, with the same constants. Therefore, from (4.32), we get

that

∫

|y|<r2/r3
|Û |2dy ≤ C̃1

(∫

|y|<r1/r3
|Û |2dy

)τ (∫

|y|<1
|Û |2dy

)1−τ

(4.33)

where |Û |2 = |̂u|2 + |ŵ|2, τ = B/(E + B) with

E = E(r1/r3, r2/r3) = (log(r1/r3) − 1)2 − (log(r2/r3))
2,

B = B(r2/r3) = −1− 2 log(r2/r3),

and C̃1=max{C̃2[(log r1/r3)2/(log r2/r3)2](r2/r1)2, exp(Bβ0)}. Rewriting (4.33)
with the original variables yields

∫

|x |<r2
|Ur2 |2dx ≤ C1

(∫

|x |<r1
|Ur1 |2dx

)τ (∫

|x |<r3
|Ur3 |2dx

)1−τ

with C1 = C̃1(r3/r1)
2τ .

4.4. Proof of Theorems 4.4 and 4.5

In this section we prove Theorem 4.4 and 4.5. We begin with another Carleman

estimate derived in [15, Lemma 2.1]: for any f ∈ C∞
0 (Rn\{0}) and for any m ∈
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{ j + 1
2
, j ∈ N} we have

∑

|α|≤2l

∫
m2l−2|α||x |−2m+2|α|−n|Dα f |2dx ≤ C

∫
|x |−2m+4l−n|3l f |2dx, (4.34)

where C depends only on the dimension n and the power l.

Remark 4.10. Using the cut-off function and regularization, estimate (4.34) re-

mains valid for any fixed m if f ∈ H2lloc(Rn\{0}) with compact support.

In view of Remark 4.10, we define χ(x) ∈ C∞
0 (R2\{0}) such that

χ(x) =






0 if |x | ≤ δ/3,

1 in δ/2 ≤ |x | ≤ (R0 + 1)R0R/4 = r4R,

0 if 2r4R ≤ |x |,

where δ ≤ R20R/4, R0 > 0 is a small number which will be chosen later and R is

given by R = (γm)−1, where γ > 0 is a large constant which will be chosen later.

In view of the definition of χ , it is easy to see that for all multi-index α

{
|Dαχ | = O(δ−|α|) for all δ/3 < |x | < δ/2,

|Dαχ | = O((r4R)−|α|) for all r4R < |x | < 2r4R.
(4.35)

Using the estimate (4.34) to χu with parameters l = 1, n = 2 and the equations

(4.5), (4.35), the same arguments as (4.22) arrive that

∑

|α|≤2
m2−2|α|

∫

δ/2≤|x |≤r4R
|x |−2m+2|α|−2|Dαu|2dx

!
∫

δ/2≤|x |≤r4R
|x |−2m+2

[
∑

|α|≤1
(|Dαu|2 + |Dαv|2) +

∑

|α|≤2
|Dαw|2

]
dx

+
∫

δ/3<|x |<δ/2
|x |−2m+2

[
∑

|α|≤1
(|x |2|α|−4|Dαu|2 + |Dαv|2) +

∑

|α|≤2
|Dαw|2

]
dx

+
∫

r4R<|x |<2r4R
|x |−2m+2

[
∑

|α|≤1
(|x |2|α|−4|Dαu|2+|Dαv|2) +

∑

|α|≤2
|Dαw|2

]
dx .

(4.36)
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Similarity, applying (4.34) to χv with parameters m = m−1, l = 1, n = 2, we can

derive from (4.5) and (4.35) that

∑

|α|≤2
(m − 1)2−2|α|

∫

δ/2≤|x |≤r4R
|x |−2m+2|α||Dαv|2dx

!
∫

δ/2≤|x |≤r4R
|x |−2m+4

[
∑

|α|≤1
(|Dαu|2 + |Dαv|2) +

∑

|α|≤3
|Dαw|2

]
dx

(4.37)

+
∫

δ/3<|x |<δ/2
|x |−2m+4

[
∑

|α|≤1
(|x |2|α|−4|Dαv|2 + |Dαu|2) +

∑

|α|≤3
|Dαw|2

]
dx

+
∫

r4R<|x |<2r4R
|x |−2m+4

[
∑

|α|≤1
(|x |2|α|−4|Dαv|2+|Dαu|2) +

∑

|α|≤3
|Dαw|2

]
dx .

Next applying (4.34) to χw with parameters l = 2, n = 2, we get from (4.5) and

(4.35) that

∑

|α|≤3
m4−2|α|

∫

δ/2≤|x |≤r4R
|x |−2m+2|α|−2|Dαw|2dx

!
∫

δ/2≤|x |≤r4R
|x |−2m+6

[
∑

|α|≤1
|Dαu|2 +

∑

|α|≤3
|Dαw|2

]
dx

(4.38)

+
∫

δ/3<|x |<δ/2
|x |−2m+6

[
∑

|α|≤1
|Dαu|2 +

∑

|α|≤3
|x |2|α|−8|Dαw|2

]
dx

+
∫

r4R<|x |<2r4R
|x |−2m+6

[
∑

|α|≤1
|Dαu|2 +

∑

|α|≤3
|x |2|α|−8|Dαw|2

]
dx .
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Adding (4.36), K1×(4.37) and K2m2×(4.38) together, we obtain that

∑

|α|≤2
m2−2|α|

∫

δ/2≤|x |≤r4R
|x |−2m+2|α|−2|Dαu|2dx

+K1
∑

|α|≤2
(m − 1)2−2|α|

∫

δ/2≤|x |≤r4R
|x |−2m+2|α||Dαv|2dx

+K2
∑

|α|≤3
m4−2|α|

∫

δ/2≤|x |≤r4R
|x |−2m+2|α|−2|Dαw|2dx

!
∫

δ/2≤|x |≤r4R
|x |−2m+2

[
∑

|α|≤1
(|Dαu|2 + |Dαv|2) +

∑

|α|≤2
|Dαw|2

]
dx (4.39)

+K1
∫

δ/2≤|x |≤r4R
|x |−2m+4

[
∑

|α|≤1
(|Dαu|2 + |Dαv|2) +

∑

|α|≤3
|Dαw|2

]
dx

+K2
∫

δ/2≤|x |≤r4R
|x |−2m+6

[
∑

|α|≤1
|Dαu|2 +

∑

|α|≤3
|Dαw|2

]
dx

+
∫

δ/3<|x |<δ/2
(· · · ) +

∫

r4R<|x |<2r4R
(· · · ).

Now we choose K1 sufficiently large such that the terms

∫

δ/2≤|x |≤r4R
|x |−2m+2 ∑

|α|=1
|Dαv|2dx

on the right-hand side of (4.39) are absorbed by its left-hand side. After that the

constant K1 is fixed. We continue to choose K2 large enough such that

K1

∫

δ/2≤|x |≤r4R
|x |−2m+4 ∑

|α|=3
|Dαw|2dx

on the right-hand side of (4.39) are absorbed by its left-hand side. Then we fix K2.

To eliminate other terms inside the integral
∫
δ/2≤|x |≤r4R on the right-hand side of

(4.39), we recall that R = (γm)−1. So by choosing γ ≥ γ0 and m ≥ m′
0 with large
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γ0 and m
′
0, we have that

∑

|α|≤2
m2−2|α|

∫

δ/2≤|x |≤r4R
|x |−2m+2|α|−2|Dαu|2dx

+
∑

|α|≤2
(m − 1)2−2|α|

∫

δ/2≤|x |≤r4R
|x |−2m+2|α||Dαv|2dx

+
∑

|α|≤3
m6−2|α|

∫

δ/2≤|x |≤r4R
|x |−2m+2|α|−2|Dαw|2dx

!
∫

δ/3<|x |<δ/2
|x |−2m−2

(
∑

|α|≤1
|x |2|α||Dαu|2 + |x |2|α|+2|Dαv|2

)
dx (4.40)

+
∫

δ/3<|x |<δ/2
|x |−2m−2m2

∑

|α|≤3
|x |2|α||Dαw|2dx

+
∫

r4R<|x |<2r4R
|x |−2m−2

(
∑

|α|≤1
|x |2|α||Dαu|2 + |x |2|α|+2|Dαv|2

)
dx

+
∫

r4R<|x |<2r4R
|x |−2m−2m2

∑

|α|≤3
|x |2|α||Dαw|2dx .

Note that R20 ≤ r4 provided R0 ≤ 1/3. Also, if R0 ≤ 1/3, it is obvious that

2r4 ≤ R0. Dividing m
2 on both sides of (4.40) and using (4.19) and (4.6) in (4.40),

it obtains that

(2δ)−2m−2
∫

δ/2<|x |≤2δ
|U |2dx + (R20R)−2m−2

∫

2δ<|x |≤R20R
|U |2dx

!
∫

δ/2≤|x |≤r4R
|x |−2m−2|U |2dx (4.41)

≤ C ′(δ/3)−2m−2
∫

|x |≤δ
|U |2dx + C ′′(r4R)−2m−2

∫

|x |≤R0R
|U |2dx,

where C ′ and C ′′ absolute constants. From now on, we need to trace the constants
to make the estimates more clearly. Adding (2δ)−2m−2 ∫

|x |≤δ/2 |U |2dx to both sides
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of (4.41), we have that

1

2
(2δ)−2m−2

∫

|x |≤2δ
|U |2dx + (R20R)−2m−2

∫

|x |≤R20R
|U |2dx

= 1

2
(2δ)−2m−2

∫

|x |≤2δ
|U |2dx + (R20R)−2m−2

∫

|x |≤2δ
|U |2dx

+(R20R)−2m−2
∫

2δ<|x |≤R20R
|U |2dx

≤ 1

2
(2δ)−2m−2

∫

|x |≤2δ
|U |2dx + 1

2
(2δ)−2m−2

∫

|x |≤2δ
|U |2dx (4.42)

+(R20R)−2m−2
∫

2δ<|x |≤R20R
|U |2dx

≤ (C ′ + 1)(δ/3)−2m−2
∫

|x |≤δ
|U |2dx + C ′′(r4R)−2m−2

∫

|x |≤R0R
|U |2dx

= (C ′ + 1)(δ/3)−2m−2
∫

|x |≤δ
|U |2dx

+(R20R)−2m−2C ′′(
R20

r4
)2m+2

∫

|x |≤R0R
|U |2dx .

We now observe that

C ′′(
R20

r4
)2m+2 = C ′′

(
4R0

R0 + 1

)2m+2

≤ C ′′(4R0)2m+2 ≤ exp(−2m)

for all R0 < e−1/4 and m ≥ m0, where m0 depends on C
′′ and R0. Thus, we obtain

that

1

2
(2δ)−2m−2

∫

|x |≤2δ
|U |2dx + (R20R)−2m−2

∫

|x |≤R20R
|U |2dx

≤ (C ′ + 1)(δ/3)−2m−2
∫

|x |≤δ
|U |2dx (4.43)

+(R20R)−2m−2 exp(−2m)

∫

|x |≤R0R
|U |2dx .

It should be noted that (4.43) is valid for all m = j + 1
2
with j ∈ N and j ≥ j0,

where j0 depends on R0. Setting R j = (γ ( j + 1
2
))−1 and using the relation m =
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(γ R)−1, we get from (4.43) that

1

2
(2δ)−2m−2

∫

|x |≤2δ
|U |2dx + (R20R j )

−2m−2
∫

|x |≤R20R j
|U |2dx

≤ (C ′ + 1)(δ/3)−2m−2
∫

|x |≤δ
|U |2dx (4.44)

+(R20R j )
−2m−2 exp(−2cR−1

j )

∫

|x |≤R0R j
|U |2dx

for all j ≥ j0 and c = γ −1. We now observe that

R j+1 < R j < 2R j+1 for all j ∈ N.

Thus, if R j+1 < r ≤ R j , we can conclude that






∫

|x |≤R20r
|U |2dx ≤

∫

|x |≤R20R j
|U |2dx,

exp(−2cR−1
j )

∫

|x |≤R0R j
|U |2dx ≤ exp(−cr−1)

∫

|x |≤r
|U |2dx,

(4.45)

where we have used the inequality R0R j < 2R0R j+1 ≤ R j+1/(2e) < R j+1 to
derive the second inequality above. Namely, we have from (4.44) and (4.45) that

1

2
(2δ)−2m−2

∫

|x |≤2δ
|U |2dx + (R20R j )

−2m−2
∫

|x |≤R20r
|U |2dx

≤ (C ′ + 1)(δ/3)−2m−2
∫

|x |≤δ
|U |2dx (4.46)

+(R20R j )
−2m−2 exp(−cr−1)

∫

|x |≤r
|U |2dx .

If there exists s ∈ N such that

R j+1 < R2s0 ≤ R j for some j ≥ j0, (4.47)

then replacing r by R2s0 in (4.46) leads to

1

2
(2δ)−2m−2

∫

|x |≤2δ
|U |2dx + (R20R j )

−2m−2
∫

|x |≤R2s+20

|U |2dx

≤ (C ′ + 1)(δ/3)−2m−2
∫

|x |≤δ
|U |2dx (4.48)

+(R20R j )
−2m−2 exp(−cR−2s

0 )

∫

|x |≤R2s0
|U |2dx .
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Here s and R0 are yet to be determined. The trick now is to find suitable s and R0
satisfying (4.47) and the inequality

exp(−cR−2s
0 )

∫

|x |≤R2s0
|U |2dx ≤ 1

2

∫

|x |≤R2s+20

|U |2dx (4.49)

holds with such choices of s and R0.

It is time to use the three-ball inequality (4.1). To this end, we choose r1 =
R2k+20 , r2 = R2k0 and r3 = R2k−20 for k ≥ 1 and require R20 ≤ min{(1/4e)2, R1}.
Thus (4.1) implies

∫

|x |<R2k0

|UR2k0
|2dx/

∫

|x |<R2k+20

|U
R2k+20

|2dx

≤ C1/τ

(∫

|x |<R2k−20

|U
R2k−20

|2dx/
∫

|x |<R2k0

|UR2k0
|2dx

)a

,

(4.50)

where

C = max{4C0R−4
0 , exp(β0(−1− 4 log R0))}R−8τ

0

and

a = 1− τ

τ
= A

B
= (log(r1/r3) − 1)2 − (log(r2/r3))

2

−1− 2 log(r2/r3)

= (4 log R0 − 1)2 − (2 log R0)
2

−1− 4 log R0
.

It is not hard to see that {
1 < C ≤ C0R

−β1
0 ,

2 < a ≤ −4 log R0,
(4.51)

where β1 = 32max{1,β0} (note τ < 1). Combining (4.51) and using (4.50) recur-

sively, we have that

∫

|x |≤R2s0
|UR2s0

|2dx/
∫

|x |≤R2s+20

|U
R2s+20

|2dx

≤ C1/τ (

∫

|x |<R2s−20

|U
R2s−20

|2dx/
∫

|x |<R2s0

|UR2s0
|2dx)a (4.52)

≤ C
as−1−1
τ (a−1) (

∫

|x |<R20

|UR20
|2dx/

∫

|x |<R40

|UR40
|2dx)as−1

for all s ≥ 1. Now from the definition of a, we have τ = 1/(a + 1) and thus

as−1 − 1

τ (a − 1)
= a + 1

a − 1
(as−1 − 1) ≤ 3as−1.
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Then it follows from (4.52) that

∫

|x |≤R2s0
|UR2s0

|2dx/
∫

|x |≤R2s+20

|U
R2s+20

|2dx

≤ C3(−4 log R0)
s−1

(∫

|x |<R20

|UR20
|2dx/

∫

|x |<R40

|UR40
|2dx

)as−1

(4.53)

≤ (C30(R0)
−3β1)(−4 log R0)

s−1
(∫

|x |<R20

|UR20
|2dx/

∫

|x |<R40

|UR40
|2dx

)as−1

.

Note that ∫

|x |≤R2s0
|U |2dx ≤ R−4s

0

∫

|x |≤R2s0
|UR2s0

|2dx,
∫

|x |≤R2s+20

|U
R2s+20

|2dx ≤
∫

|x |≤R2s+20

|U |2dx .
(4.54)

Thus, by (4.53) and (4.54), we can get that

exp(−cR−2s
0 )

∫

|x |≤R2s0
|U |2dx

≤ exp(−cR−2s
0 )R−4s

0 (C30(R0)
−3β1)(−4 log R0)

s−1

(∫

|x |<R20

|UR20
|2dx/

∫

|x |<R40

|UR40
|2dx

)as−1 ∫

|x |≤R2s+20

|U |2dx .

(4.55)

Let µ = − log R0, then if R0 is sufficiently small, i.e., µ is sufficiently large, we

can see that
c

4
exp(2µt) > 4tµ + (4µ)t−1(logC30 + 3β1µ)

for all t ∈ N. In other words, we have that for R0 small

R−4t
0 (C30 R

−3β1
0 )(−4 log R0)

t−1
< exp(cR−2t

0 /4) < (1/2) exp(cR−2t
0 /2) (4.56)

for all t ∈ N. We now fix a R0 ≤ min{1/4e,√R1} so that (4.56) holds. The
constants m0(R0) and j0(R0) are then fixed as well. It is a key step in our proof that
we can find a universal constant R0. After fixing R0, we then define a number t0,

depending on R0 and U , by

t0 = inf

{
t ∈ R : t ≥

(
log 2− log(ac)

+ log log

(∫

|x |<R20

|UR20
|2dx/

∫

|x |<R40

|UR40
|2dx

))
(−2 log R0 − log a)−1

}
.
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By (4.51), one can easily check that−2 log R0− log a > 0 for all R0 ≤ 1/16. With
the choice of t0, we can see that

(∫

|x |<R20

|UR20
|2dx/

∫

|x |<R40

|UR40
|2dx

)at−1

≤ exp(cR−2t
0 /2) (4.57)

for all t ≥ t0.

Let s1 be the smallest positive integer such that s1 ≥ t0. If

R
2s1
0 ≤ R j0 = (γ ( j0 + 1/2))−1, (4.58)

then we can find a j1 ∈ N with j1 ≥ j0 such that (4.47) holds, i.e.,

R j1+1 < R
2s1
0 ≤ R j1 .

On the other hand, if

R
2s1
0 > R j0, (4.59)

then we pick the smallest positive integer s2 > s1 such that R
2s2
0 ≤ R j0 and thus we

can also find a j1 ∈ N with j1 ≥ j0 for which (4.47) holds. We now define

s =
{
s1 if (4.58) holds,

s2 if (4.59) holds.

It is important to note that with such an s, (4.47) is satisfied for some j1 and (4.56),

(4.57) hold. Now we set m1 = 2+ 2( j1 + 1/2) and m = (m1 − 2)/2. Combining
(4.55), (4.56) and (4.57) yields that

exp(−cR−2s
0 )

∫

|x |≤R2s0
|U |2dx

≤ exp(−cR−2s
0 )R−4s

0 (C30(R0)
−3β1)(−3 log R0)

s−1

(∫

|x |<R20

|UR20
|2dx/

∫

|x |<R40

|UR40
|2dx

)a(s−1) ∫

|x |≤R2s+20

|U |2dx .

≤ 1

2

∫

|x |≤R2s+20

|U |2dx

which is (4.49). Using (4.49) in (4.48), we have that

1

2
(2δ)−2m−2

∫

|x |≤2δ
|U |2dx + 1

2
(R20R j1)

−2m−2
∫

|x |≤R2s+20

|U |2dx

≤ (C ′ + 1)(δ/3)−2m−2
∫

|x |≤δ
|U |2dx .

(4.60)
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It follows from (4.60) that

1

2(C ′ + 1)
(3R20R j1)

−m1
∫

|x |≤R2s+20

|U |2dx ≤ δ−m1
∫

|x |≤δ
|U |2dx (4.61)

and

1

2
(2δ)−2m−2

∫

|x |≤2δ
|U |2dx ≤ (C ′ + 1)(δ/3)−2m−2

∫

|x |≤δ
|U |2dx

which implies

∫

|x |≤2δ
|U |2dx ≤ 1

2(C ′ + 1)
6m1

∫

|x |≤δ
|U |2dx . (4.62)

The estimates (4.61) and (4.62) are valid for all δ ≤ R2s+20 /4. Nowwe choose R2 =
R0 in Theorem 4.4 and R3 = R2s+20 /4 in Theorem 4.5. The proof is complete.

4.5. Lipschitz propagation of smallness

To study our inverse problem, we need to obtain three-ball inequalities in terms

of
∑

i j |eθi j (u)|2 + ρ20 |∂2i j u3|2 instead of |u′|2 + |u3|2. To this end, the following
Caccioppoli-type inequality is useful.

Lemma 4.11. Assume that λ(x), µ(x) ∈ L∞(Bρ) satisfying (3.3) and there exists
K3 > 0 such that

‖λ‖L∞(Bρ) + ‖µ‖L∞(Bρ) + ‖∇θ‖L∞(Bρ) ≤ K3.

Let (u′, u3) ∈ (H1(Bρ))2 × H2(Bρ) be a solution of (1.1) in Bρ . Then there exists

a constant C > 0, depending on δ0, K3 such that

∫

Bρ/2

∑

i j

|eθi j (u)|2+ρ20 |∂2i j u3|2 ≤ C

ρ2

∫

Bρ

|u′|2+C

(
1

ρ4
+ 1

ρ2

)∫

Bρ

|u3|2. (4.63)

Proof. The proof of this lemma is adopted from [21]. Let η ∈ C40(Bρ) with 0 ≤
η ≤ 1 and η ≡ 1 on Bρ/2 satisfying

∑

|α|≤3
ρ|α||∂αη| ≤ C1 in Bρ (4.64)

for some positive constant C1. Multiplying the first equation of (1.1) by η4u′ and
the second equation of (1.1) by η4u3 and performing integration by parts, we can
get that

∫

Bρ

nθ
i j (u)∂ j (η

4ui )+
∫

Bρ

mi j (u3)∂
2
i j (η

4u3)+
∫

Bρ

nθ
i j (u)∂iθ∂ j (η

4u3) = 0. (4.65)
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It is easy to see that (4.65) is equivalent to

∫

Bρ

nθ
i j (u)[η4∂ j ui + 4(∂ jη)η3ui ]

+ mi j (u3)[η4∂2i j u3 + 8(∂ jη)η3∂i u3 + (∂i jη
4)u3]

+ nθ
i j (u)∂iθ[η4∂ j u3 + 4(∂ jη)η3u3] = 0.

(4.66)

It follows from (4.66) that

∫

Bρ

η4
∑

i j

(
nθ
i j (u)e

θ
i j (u) + mi j (u3)∂

2
i j u3

)

= −4
∫

Bρ

nθ
i j (u)(∂ jη)η3ui − 8

∫

Bρ

mi j (u3)(∂ jη)η3∂i u3

−
∫

Bρ

mi j (u3)(∂
2
i jη

4)u3

− 4

∫

Bρ

nθ
i j (u)(∂iθ)(∂ jη)η3u3.

(4.67)

Observe that

∣∣∣∣∣

∫

Bρ

nθ
i j (u)(∂ jη)η3ui

∣∣∣∣∣ ≤ ε

2

∫

Bρ

η4
∑

i j

|nθ
i j |2 + C2

ερ2

∫

Bρ

|u′|2 (4.68)

for some C2 > 0, depending on C1. Likewise, we can obtain that

∣∣∣∣∣

∫

Bρ

mi j (u3)(∂
2
i jη

4)u3

∣∣∣∣∣ ≤ ε

2

∫

Bρ

η4
∑

i j

|mi j (u3)|2 + C3

ερ4

∫

Bρ

|u3|2 (4.69)

for some C3 > 0, and

∣∣∣∣∣

∫

Bρ

nθ
i j (u)(∂iθ)(∂ jη)η3u3

∣∣∣∣∣ ≤ ε

2

∫

Bρ

η4
∑

i j

|nθ
i j (u)|2 + C4

ερ2

∫

Bρ

|u3|2 (4.70)

for some C4 > 0, also depending on K3. Finally, we have

∣∣∣∣∣

∫

Bρ

mi j (u3)(∂ jη)η3∂i u3

∣∣∣∣∣ ≤ ε

2

∫

Bρ

η4
∑

i j

|mi j (u3)|2

+ 1

2ε

∫

Bρ

η2
∑

i j

(∂ jη∂i u3)
2.

(4.71)
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Using the same computations on page 10-11 of [21], we get that

∫

Bρ

η2
∑

i j

(∂ jη∂i u3)
2 ≤ C5

ρ4

(
1+ 1

ε2

)∫

Bρ

|u3|2 + ε2

2

∫

Bρ

η4
∑

i j

|∂2i j u3|2 (4.72)

for some C5 > 0. Putting (4.67)-(4.72) together and taking ε sufficiently small, we
immediately arrive at the desired estimate (4.63).

Remark 4.12. If ρ ≤ 1, then (4.63) can be written as

∫

Bρ/2

∑

i j

|eθi j (u)|2 + ρ20 |∂2i j u3|2 ≤ C

ρ4

∫

Bρ

|u′|2 + |u3|2. (4.73)

Our aim here is to derive another version of the three sphere inequality. We will

make use of arguments introduced in [5]. For any scalar or vector valued function

f , we denote ( f )r = 1
|Br |

∫
Br
f . Then we define an operator T : (H1(BR))2 ×

H2(BR) → (H1(BR))2 × H2(BR) by Tu = T (u′, u3) = (v′(x; r), v3(x; r)),
where

v′(x; r) = (u′)r + 1

2
(∇u′ − (∇u′)t )r x

+ 1

2
[(∇θ)r ⊗ (∇u3)r − ((∇θ)r ⊗ (∇u3)r )t ]x

− (θ − (θ)r )(∇u3)r

(4.74)

and

v3(x; r) = (u3)r + (∇u3)r · x . (4.75)

Here the tensor product of two vectors ξ and η is defined as

ξ ⊗ η =
(

ξ1η1 ξ1η2
ξ2η1 ξ2η2

)
.

Note that (x)r = 0.

We now denote the space

R = {w = (w′, w3) | w′ = a + Wx − θc, w3 = b + c · x},

where a, c are two-dimensional vectors, b is a scalar, and W is a 2 × 2 skew-

symmetric matrix. It is readily seen that Tu = u for all u ∈ R. Denote Lu =
((eθi j (u))1≤i≤2,1≤ j≤2, (∂2i j u3)1≤i≤2,1≤ j≤2). It is also easy to check that R is the

null space of L . We need to compute the norm of T . Recall that

‖v′‖2
H1(BR)

+ ‖v3‖2H2(BR)

= 1

R2

∫

BR

|v′|2 +
∫

BR

|∇v′|2 + 1

R2

∫

BR

|v3|2 +
∫

BR

|∇v3|2 + R2
∫

BR

|∇2v3|2.
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In view of (4.74), (4.75) and the assumption on θ , we obtain that

‖T‖ ≤ C

(
1+ R2

r2
+ 1

r2

)1/2

with an absolute constant C > 0. Assume that BR ⊂ ! and so (3.2) holds on BR .

Now if we take r = R, then (u′ −v′(·; R), u3−v3(·; R)) satisfies the normalization
conditions (3.9) with ! be replaced by BR and therefore (3.10) becomes

‖u′ −v′(·; R)‖2
H1(BR)

+‖u3−v3(·; R)‖2
H2(BR)

≤ C

∫

BR

∑

i j

|eθi j (u)|2+ R2|∂2i j u3|2,

where C depends on A2. Using Lemma 2.1 in [5], we conclude that

‖u′ − v′(·; r)‖2
H1(BR)

+ ‖u3 − v3(·; r)‖2H2(BR)

≤ C(1+ ‖T‖)2
∫

BR

∑

i j

|eθi j (u)|2 + R2|∂2i j u3|2

≤ C(1+ R2

r2
+ 1

r2
)

∫

BR

∑

i j

|eθi j (u)|2 + R2|∂2i j u3|2.

In particular, we have that

∫

BR

|u′ − v′(·; r)|2 + |u3 − v3(·; r)|2

≤ CR2

(
1+ R2

r2
+ 1

r2

)(
1+ R2

ρ20

)∫

BR

∑

i j

|eθi j (u)|2 + ρ20 |∂2i j u3|2.
(4.76)

We now prove the following three-ball inequalities.

Theorem 4.13. Assume that R̄0 and R1 are given in Theorem 4.1. If 0 < r1 <
r2 < 2r2 < r3 ≤ min{ρ0 R̄0, 1} and r1/r3 < 2r2/r3 < R1, then

∫

Br2

∑

i j

|eθi j (u)|2 + ρ20 |∂2i j u3|2

≤ C

r62

(
r3

r1

)2−2τ (∫

Br1

∑

i j

|eθi j (u)|2 + ρ20 |∂2i j u3|2
)τ

×
(∫

Br3

∑

i j

|eθi j (u)|2 + ρ20 |∂2i j u3|2
)1−τ

(4.77)

for (u′, u3) ∈ (H1(Bρ0 R̄0
))2 × H3(Bρ0 R̄0

) satisfying (1.1), where C > 0 and 0 <
τ < 1 depend on r1/r3, r2/r3, δ0, A2.
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Proof. Let ũ′ = u′ − v′(x; r1), ũ3 = u3 − v3(x; r1). Note that (ũ′, ũ3) satisfies the
normalization condition (3.9) on Br1 . Recall that R̄0 ≤ 1. Now combining (4.73),

(4.76), (4.2), and (3.10) implies that

∫

Br2

∑

i j

|eθi j (u)|2 + ρ20 |∂2i j u3|2

=
∫

Br2

∑

i j

|eθi j (ũ)|2 + ρ20 |∂2i j ũ3|2

≤ C

r42

∫

B2r2

|ũ′|2 + |ũ3|2

≤ C ′

r62

(∫

Br1

|ũ′|2 + |ũ3|2
)τ (∫

Br3

|ũ′|2 + |ũ3|2
)1−τ

≤ C ′′

r62

(
r21 (1+ 1

r21

)(1+ r21

ρ20
)

)τ (
r23 (1+ r23

r21

+ 1

r21

)(1+ r23

ρ20
)

)1−τ

×
(∫

Br1

∑

i j

|eθi j (u)|2 + ρ20 |∂2i j u3|2
)τ (∫

Br3

∑

i j

|eθi j (u)|2 + ρ20 |∂2i j u3|2
)1−τ

≤ C ′′′ 1
r62

(
r3

r1

)2−2τ

×
(∫

Br1

∑

i j

|eθi j (u)|2 + ρ20 |∂2i j u3|2
)τ (∫

Br3

∑

i j

|eθi j (u)|2 + ρ20 |∂2i j u3|2
)1−τ

.

A key ingredient in solving our inverse problem is a continuation estimate from the

interior for the solution u of (3.4), (3.5). To do this, we need some assumptions the

coupled field (T̂ , M̂). We assume that (T̂ , M̂) satisfies

supp (T̂ , M̂) ⊂ /0, (4.78)

where /0 is an open subarc of ∂! with

|/0| ≤ (1− γ0)|∂!| (4.79)

for some γ0 > 0. We first prove the following lemma.

Lemma 4.14. Let ! be a bounded domain in R2 with C2,1 boundary ∂! charac-

terized by constants A0 and ρ0. Assume that λ, µ ∈ L∞(!) satisfy (3.3), ∇θ ∈
L∞(!), and

‖λ‖L∞(!) + ‖µ‖L∞(!) + ‖∇θ‖L∞(!) ≤ A2
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for some A2 > 0. Let (u′, u3) ∈ (H1(!))2 × H2(!) be the unique weak solution
of (3.4), (3.5) satisfying (3.9), with (T̂ , M̂) ∈ H−1/2(∂!) × H−1/2(∂!) satisfying
(4.78), (4.79), and (3.8). Then we have

‖(T̂ , M̂)‖(H−1/2(∂!))3 ≤ C

(∫

!

∑

i j

|eθi j (u)|2 + ρ20 |∂2i j u3|2
)1/2

, (4.80)

where C depends on δ0, A0, A1, A2, γ0.

Proof. We follow the arguments used in the proof of [20, Lemma 7.1]. For any

( f, g) ∈ (H1/2(∂!))3, one can find (v′, v3) ∈ (H1(!))2×H2(!) such that v′|∂! =
f, v3|∂! = 0, ∂νv3|∂! = g and

‖(v′, v3)‖(H1(!))2×H2(!) ≤ C‖( f, ρ0g)‖(H1/2(∂!))3, (4.81)

where C depends on A0 and A1. In view of the weak formulation of the solution,

we can compute

∫

∂!

1

ρ0
T̂ · f + M̂νg = 1

ρ0

∫

∂!
T̂ · v′ + M̂νρ0g

= 1

ρ0

∫

∂!
T̂ · v′ + ρ0M̂ν∂νv3 + ρ0∂s M̂τv3

= 1

ρ20

∫

!

∑

i j

(ρ20n
θ
i j (u)e

θ
i j (v) + ρ40mi j (u3)∂

2
i jv3)

≤ C

(
1

ρ20

∫

!

∑

i j

ρ20 |eθi j (u)|2 + ρ40 |∂2i j u3|2
)1/2

×
(
1

ρ20

∫

!

∑

i j

ρ20 |eθi j (v)|2 + ρ40 |∂2i jv3|2
)1/2

≤ C

(
1

ρ20

∫

!

∑

i j

ρ20 |eθi j (u)|2 + ρ40 |∂2i j u3|2
)1/2

‖(v′, v3)‖(H1(!))2×H2(!)

≤ C

(
1

ρ20

∫

!

∑

i j

ρ20 |eθi j (u)|2 + ρ40 |∂2i j u3|2
)1/2

‖( f, ρ0g)‖(H1/2(∂!))3,

where C depends on δ0, A0, A1, A2. Consequently, we obtain

‖(T̂ , M̂ν)‖(H−1/2(∂!))3 ≤ C

(∫

!

∑

i j

|eθi j (u)|2 + ρ20 |∂2i j u3|2
)1/2

. (4.82)
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On the other hand, for any given g ∈ H1/2(∂!), let h ∈ H3/2(/0) satisfy ∂sh =
g on /0 and ‖h‖H3/2(/0) ≤ C‖ρ0g‖H1/2(/0) ≤ C‖ρ0g‖H1/2(∂!), where C here

depends on A0 and A1. Now let h̃ ∈ H3/2(∂!) be such that h̃ = h on /0 and

‖h̃‖H3/2(∂!) ≤ C‖h‖H3/2(/0), where C depends on A0, A1, γ0. Moreover, let v3 ∈
H2(!) satisfy v3 = h̃, ∂νv3 = 0 on ∂! and ‖v3‖H2(!) ≤ C‖h̃‖H3/2(∂!), where C

depends on A0 and A1. Let f ∈ (H1/2(∂!))2 be the same function given above.
Now we can derive that

∫

∂!

1

ρ0
T̂ · (− f ) + M̂τ g = 1

ρ0

∫

/0

T̂ · (− f ) + ρ0M̂τ ∂sh

= − 1

ρ0

∫

/0

T̂ · f + ρ0∂s M̂τ h̃

= − 1

ρ0

∫

∂!
T̂ · f + ρ0∂s M̂τv3 + ρ0M̂ν∂νv3

≤ C

(
1

ρ20

∫

!

∑

i j

ρ20 |eθi j (u)|2 + ρ40 |∂2i j u3|2
)1/2

‖( f, ρ0g)‖(H1/2(∂!))3

with C depending on δ0, A0, A1, A2, γ0, which implies

‖(T̂ , M̂)‖(H−1/2(∂!))3 ≤ C

(∫

!

∑

i j

|eθi j (u)|2 + ρ20 |∂2i j u3|2
)1/2

. (4.83)

Finally, combining (4.82) and (4.83) leads to (4.80).

We are now ready to prove the following theorem.

Theorem 4.15 (Lipschitz propagation of smallness). Assume that! is a bounded

domain having boundary ∂! ∈ C4,1 with constants A0, ρ0. Let λ, µ ∈ C1,1(!̄)
satisfy (3.3) and θ̄ ∈ C2,1(!̄) satisfy (3.22) and (3.23) hold. Let u ∈ (H1(!))2 ×
H2(!) be the weak solution of (3.4), (3.5) satisfying (3.9) with Neumann boundary
condition (T̂ , M̂) ∈ (H1/2(∂!))2×H3/2(∂!) satisfying (3.8), (4.78), (4.79). Then
for every ρ > 0 and every x ∈ ! 7

ϑ ρρ0
, we have

∫

Bρρ0
(x)

∑

i j

|eθi j (u)|2 + ρ20 |∂2i j u3|2 ≥ Cρ

∫

!

∑

i j

|eθi j (u)|2 + ρ20 |∂2i j u3|2, (4.84)

where Cρ depends on A0, A1, A2, δ0, γ0, ρ, and ‖(T̂ , M̂)‖2
(L2(∂ !))2 × H1/2(∂ !)

/

‖(T̂ , M̂)‖(H−1/2(∂!))3 . Here ϑ = R1 and R1 is the constant given in Theorem 4.1.

Proof. There is no restriction to take ρ0 = 1. The general case can be proved by a

simple scaling argument. Note that ! 7ρ
ϑ
is connected for all 0 < ρ ≤ ζ , where ζ



82 MICHELE DI CRISTO, CHING-LUNG LIN AND JENN-NAN WANG

depends on δ0, A0, A2. It suffices to prove the result for small ρ. We now choose
a ρ such that 7ρ/ϑ ≤ R̄0. Let y ∈ ! 7ρ

ϑ
and γ (t) be an arc in ! 7ρ

ϑ
joining y and

x . We now define {xi }, i = 1, · · · , L , as follows: x1 = x , xi+1 = γ (ti ) with
ti = max{t | |γ (t) − xi | = 2ρ} if |xi − y| > 2ρ, otherwise, let i = L and stop the

process. By construction, we can see that the spheres Bρ(xi ) are pairwise disjoint
and |xi+1 − xi | = 2ρ for i = 1, · · · , L − 1, |xL − y| ≤ 2ρ.

Since xi ∈ ! 7ρ
ϑ
, we use the three-sphere inequality (4.77) with x = xi , r1 = ρ,

r2 = 3ρ, r3 = 7ρ
ϑ ≤ R̄0 < 1 for i = 1, · · · , L − 1 to obtain

∫
Bρ(xi+1)

∑
i j |eθi j (u)|2 + |∂2i j u3|2∫

!

∑
i j |eθi j (u)|2 + |∂2i j u3|2

≤C

(
1

ρ

)6 (∫
Bρ(xi )

∑
i j |eθi j (u)|2 + |∂2i j u3|2∫

!

∑
i j |eθi j (u)|2 + |∂2i j u3|2

)τ

,

where C > 0 depends on δ0, A2. Induction on i implies

∫
Bρ(y)

∑
i j |eθi j (u)|2+|∂2i j u3|2∫

!

∑
i j |eθi j (u)|2+|∂2i j u3|2

≤C
1
1−τ

(
1

ρ

) 6
1−τ

(∫
Bρ(x)

∑
i j |eθi j (u)|2+|∂2i j u3|2∫

!

∑
i j |eθi j (u)|2 + |∂2i j u3|2

)τ L

.

(4.85)

Note that L ≤ |!|/(πρ2) ≤ A1/π .
Let us now cover ! 8ρ

ϑ
with internally nonoverlapping closed cubes of side

7 =
√
2ρ/ϑ . It is clear that any such cube is contained in a sphere of radius ρ with

center in ! 7ρ
ϑ
and the number of such cube is controlled by N = 2|!|ϑ2/(4ρ2). It

follows from (4.85) that

∫
!8ρ/ϑ

∑
i j |eθi j (u)|2+|∂2i j u3|2∫

!

∑
i j |eθi j (u)|2 + |∂2i j u3|2

≤C

(
1

ρ

)8−2τ
1−τ

(∫
Bρ(x)

∑
i j |eθi j (u)|2 + |∂2i j u3|2∫

!

∑
i j |eθi j (u)|2 + |∂2i j u3|2

)τ L

.

(4.86)

Here C depends on δ0, A2, |!|.
Now we want to estimate the left-hand side of (4.86) from below by a positive

constant. Obviously, we have

∫
!8ρ/ϑ

∑
i j |eθi j (u)|2 + |∂2i j u3|2∫

!

∑
i j |eθi j (u)|2 + |∂2i j u3|2

= 1−
∫
!\!8ρ/ϑ

∑
i j |eθi j (u)|2 + |∂2i j u3|2∫

!

∑
i j |eθi j (u)|2 + |∂2i j u3|2

. (4.87)

It suffices to show that there exists ρ > 0 such that

∫
!\!8ρ/ϑ

∑
i j |eθi j (u)|2 + |∂2i j u3|2∫

!

∑
i j |eθi j (u)|2 + |∂2i j u3|2

≤ 1

2
, (4.88)

for every ρ, 0 < ρ ≤ ρ. The proposition, then, follows from (4.86) and (4.88).
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By Hölder’s inequality and Sobolev’s inequality

‖w‖2
L4(!)

≤ C‖w‖2
H1/2(!)

with C depending on A0, A1, we have
∫

!\!8ρ/ϑ

∑

i j

|eθi j (u)|2 + |∂2i j u3|2

≤ |! \ !8ρ/ϑ |1/2
∑

i j

(∫

!\!8ρ/ϑ

(
|eθi j (u)|2 + |∂2i j u3|2

)2
)1/2

≤
√
2|! \ !8ρ/ϑ |1/2

∑

i j




(∫

!\!8ρ/ϑ

|eθi j (u)|4
)1/2

+
(∫

!\!8ρ/ϑ

|∂2i j u3|4
)1/2



≤ C|! \ !8ρ/ϑ |1/2‖(u′, u3)‖2(H3/2(!))2×H5/2(!)
.

(4.89)

Interpolating the global estimates (3.18) and (3.24) yields

‖(u′, u3)‖(H3/2(!))2×H5/2(!)

≤ ‖(u′, u3)‖(H3/2(!))2×H3(!)

≤ C‖(T̂ , M̂)‖(L2(∂!))2×H1/2(∂!)

(4.90)

where C depends on A0, A1, A2, δ0.
Following the argument of [6] (see [6, A.3] for details), there exists a positive

constant C , depending on A0, A1, A2, δ0, such that

|! \ !8ρ/ϑ | ≤ Cρ . (4.91)

It follows from (4.89), (4.90), and (4.91) that
∫

!\!8ρ/ϑ

∑

i j

|eθi j (u)|2 + |∂2i j u3|2 ≤ Cρ1/2‖(T̂ , M̂)‖2
(L2(∂!))2×H1/2(∂!)

. (4.92)

From (4.80), we can obtain that
∫
!\!8ρ/ϑ

∑
i j |eθi j (u)|2 + |∂2i j u3|2∫

!

∑
i j |eθi j (u)|2 + |∂2i j u3|2

≤ Cρ1/2
‖(T̂ , M̂)‖2

(L2(∂!))2×H1/2(∂!)

‖(T̂ , M̂)‖(H−1/2(∂!))3
,

where C depends on A0, A1, A2, δ0, γ0. Finally, we can choose ρ̄, depending
on A0, A1, A2, δ0, γ0, and ‖(T̂ , M̂)‖2

(L2(∂!))2×H1/2(∂!)
/‖(T̂ , M̂)‖(H−1/2(∂!))3 , such

that ∫
!\!8ρ/ϑ

∑
i j |eθi j (u)|2 + |∂2i j u3|2∫

!

∑
i j |eθi j (u)|2 + |∂2i j u3|2

≤ 1

2

for all 0 < ρ < ρ̄. The proof now is complete.
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5. The inverse problem

In this section, we would like to study the problem of estimating the size of inclu-

sion embedded in a shallow shell by one boundary measurement. Let ! ⊂ R2 be
an open bounded domain with boundary ∂!, which is of class C4,1 with constants
A0, ρ0. Assume that (3.1) holds. Now let D be a possibly disconnected measurable
subdomain of ! satisfying

dist(D, ∂!) ≥ d0ρ0 (5.1)

for some given constant d0. Let λ, µ ∈ C1,1(!̄) satisfy (3.3) and θ̄ ∈ C2,1(!̄)
satisfy (3.22). Besides, assume that the estimate (3.23) holds. For measurable

functions λ0, µ0, we define

λ̃ = λ + χDλ0 and µ̃ = µ + χDµ0,

where χD is the characteristic function of D. To guarantee the well-posedness of
the forward problem, we assume

0 < δ̃0 ≤ λ̃ and δ̃0 ≤ µ̃ ∀ x ∈ !.

To describe the jump condition, we introduce some shorthand notations. We set

a = 4λµ

λ + 2µ
, b = 4µ, c = 4λµ

3(λ + 2µ)
, d = 4µ

3
(5.2)

and the corresponding ã, b̃, c̃, d̃ replacing λ, µ with λ̃, µ̃ respectively. We assume
the following condition on the jump at the interface ∂D. There exists a constant
k0 > 0 such that

( f̃ − f ) ≤ k0 f ∀ x ∈ ∂D, (5.3)

where f = a, b, c, d and f̃ = ã, b̃, c̃, d̃. On the prescribed boundary field (T̂ , M̂),
we assume

(T̂ , M̂) ∈ (H1/2(∂!))2 × H3/2(∂!) and supp (T̂ , M̂) ⊂ /0, (5.4)

where /0 is an open subarc of ∂! with

|/0| ≤ (1− γ0)|∂!| (5.5)

for some γ0 > 0 and satisfies the compatibility condition (3.8). We consider two

boundary value problems. Let u = (u′, u3) satisfy
{

∂ j n
θ
i j (u) = 0 in !,

∂2i jmi j (u3) − ∂ j (n
θ
i j (u)∂iθ) = 0 in !,

(5.6)
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with boundary conditions





nθ
i j (u)ν j = ρ−1

0 T̂i ,

mi j (u3)νiν j = M̂ν,

(∂imi j (u3) − nθ
i j (u)∂iθ)ν j + ∂s(mi j (u3)νiτ j ) = −∂s M̂τ .

(5.7)

Next we let ũ = (̃u′, ũ3) satisfy
{

∂ j ñ
θ
i j (̃u) = 0 in !,

∂2i j m̃i j (̃u3) − ∂ j (̃n
θ
i j (̃u)∂iθ) = 0 in !,

(5.8)

with boundary conditions





ñθ
i j (̃u)ν j = ρ−1

0 T̂i ,

m̃i j (̃u3)νiν j = M̂ν,

(∂i m̃i j (̃u3) − ñθ
i j (̃u)∂iθ)ν j + ∂s(m̃i j (̃u3)νiτ j ) = −∂s M̂τ .

(5.9)

To ensure the uniqueness of the solution, we impose the normalization conditions

(3.9). Let

W̃ =
∫

∂!
ρ−1
0 T̂ · ũ′ + M̂ν∂ν ũ3 + ∂s M̂τ ũ3,

W =
∫

∂!
ρ−1
0 T̂ · u′ + M̂ν∂νu3 + ∂s M̂τu3

=
∫

!

∑

i j

nθ
i j (u)e

θ
i j (u) + mi j (u3)∂

2
i j u3,

(5.10)

represent the work exerted by the boundary field when the inclusion is present or

absent, respectively. For r > 0 we shall use the notation

Dr = {x ∈ D : dist(x, ∂D) > r}.
We can now state our main result.

Theorem 5.1. Suppose that all the hypotheses stated in this section hold. More-

over, we assume ρ0 < 1. Let D be an inclusion satisfying the following fatness

condition

|Dh1ρ0 | ≥ 1

2
|D| (5.11)

for a given positive constant h1. Then we have the estimate

C1ρ
2
0

∣∣∣∣∣
W − W̃

W

∣∣∣∣∣ ≤ |D| ≤ C2ρ
2
0

∣∣∣∣∣
W − W̃

W

∣∣∣∣∣ , (5.12)

where C1 depends on A0, A1, A2, d0, k0 and δ0 and C2 depends on A0, A1, A2, δ0,
γ0, d0, h1 and the ratio

‖(M̂, T̂ )‖(L2(∂!))2×H1/2(∂!)/‖(M̂, T̂ )‖(H−1/2(∂!))3 .
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The key ingredients in the proof of Theorem 5.1 are the energy estimate for the

Neumann problems (5.6)-(5.7), (5.8)-(5.9), and the Lipschitz propagation of small-

ness.

Lemma 5.2. Let (M̂, T̂ ) ∈ L2(∂!) satisfy (5.4), (5.5) and (3.8). Let λ, µ, λ̃, µ̃ ∈
L∞(!) satisfy (3.3) and (5.3). Let u, ũ ∈ (H1(!))2 × H2(!) solutions to (5.6)–
(5.7) and (5.8)–(5.9) respectively. Then there exist positive constants C̃1, C̃2 de-
pending on A0, A1, A2, δ0, k0 such that

C̃1

∫

D

∑

i j

|eθi j (u)|2+ρ20 |∂2i j u3|2≤W−W̃ ≤ C̃2

∫

D

∑

i j

|eθi j (u)|2+ρ20 |∂2i j u3|2. (5.13)

With the help of Lemma 5.2 and Theorem 4.15, we first prove Theorem 5.1.

Proof of Theorem 5.1. By the interior regularity theorem and the Sobolev embed-

ding, we have that

∥∥∥
∑

i j

|eθi j (u)|2 + ρ20 |∂2i j u3|2
∥∥∥
L∞(D)

≤ C

ρ20

(
‖u′‖2

H1(!)
+ ‖u3‖2H2(!)

)
, (5.14)

with C depending on A2, d0, δ0. From (5.14), Proposition 3.1, (5.10), we obtain

that ∥∥∥
∑

i j

|eθi j (u)|2 + ρ20 |∂2i j u3|2
∥∥∥
L∞(D)

≤ C

ρ20
W, (5.15)

where C depends on A0, A1, A2, d0, δ0. The lower bound on |D| in (5.12) follows
from the right-hand side of (5.13) and from (5.15).

Let us prove the upper bound for |D|. Let ε = min{2d0ϑ/7, h1/
√
2} and let

us cover Dh1ρ0 with internally non overlapping closed squares Ql of side ερ0 for

l = 1, . . . , L . By choice of ε the squares Ql are contained in D. Let l be such that

∫

Ql

∑

i j

|eθi j (u)|2 + ρ20 |∂2i j u3|2 = min
l

∫

Ql

∑

i j

|eθi j (u)|2 + ρ20 |∂2i j u3|2.

Noticing that |Dh1ρ0 | ≤ Lε2ρ20 , we have

∫

D

∑

i j

|eθi j (u)|2 + ρ20 |∂2i j u3|2 ≥
∫

∪L
l=1Ql

∑

i j

|eθi j (u)|2 + ρ20 |∂2i j u3|2

≥ L

∫

Ql

∑

i j

|eθi j (u)|2 + ρ20 |∂2i j u3|2

≥ |Dh1ρ0 |
ρ20ε

2

∫

Ql

∑

i j

|eθi j (u)|2 + ρ20 |∂2i j u3|2.

(5.16)
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Let x be the center of Ql . From (5.16), estimate (4.84) with x = x and ρ = ε/2,
and hypothesis (5.11), we conclude that

∫

D

∑

i j

|eθi j (u)|2 + ρ20 |∂2i j u3|2 ≥ K |D|
ρ20

W, (5.17)

where K is a positive constant depending on A0, A1, A2, d0, δ0, γ0, h1 and
‖(M̂, T̂ )‖(L2(∂!))2×H1/2(∂!)/‖(M̂, T̂ )‖(H−1/2(∂!))3 . The upper bound for D follows

from the left-hand side of (5.13) and from (5.17).

To end this section, we give a proof of Lemma 5.2.

Proof of Lemma 5.2. Let w = (w′, w3). From the first equation of (5.6), we have
that ∫

!
nθ
i j (u)∂ jw

′
i =

∫

∂!
ρ−1
0 T̂iw

′
i . (5.18)

On the other hand, by the second equation of (5.6), the integration by parts leads to

∫

!
mi j (u3)∂

2
i jw3 + nθ

i j (u)∂iθ∂ jw3

=
∫

∂!
−∂imi j (u3)ν jw3 + mi j (u3)νi∂ jw3 + nθ

i j (u)∂iθν jw3.

(5.19)

Replacing ∂ jw3 by ν j∂νw3 + τ j∂sw3 in (5.19) gives

∫

!
mi j (u3)∂

2
i jw3 + nθ

i j (u)∂iθ∂ jw3

=
∫

∂!
−∂imi j (u3)ν jw3 + mi j (u3)νi (ν j∂νw3 + τ j∂sw3)

+ nθ
i j (u)∂iθν jw3

=
∫

∂!
−∂imi j (u3)ν jw3 − ∂s(mi j (u3)νiτ j )w3 + nθ

i j (u)∂iθν jw3

+ mi j (u3)νiν j∂νw3

=
∫

∂!
∂s M̂τw3 + M̂ν∂νw3.

(5.20)

Thus, by combining (5.18) and (5.19), we get

∫

!
nθ
i j (u)∂ jw

′
i + mi j (u3)∂

2
i jw3 + nθ

i j (u)∂iθ∂ jw3

=
∫

∂!
ρ−1
0 T̂iw

′
i + ∂s M̂τw3 + M̂ν∂νw3.

(5.21)
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Likewise, we can deduce

∫

!
ñθ
i j (̃u)∂ jw

′
i + m̃i j (̃u3)∂

2
i jw3 + ñθ

i j (̃u)∂iθ∂ jw3

=
∫

∂!
ρ−1
0 T̂iw

′
i + ∂s M̂τw3 + M̂ν∂νw3.

(5.22)

and therefore,

∫

!
nθ
i j (u)∂ jw

′
i + mi j (u3)∂

2
i jw3 + nθ

i j (u)∂iθ∂ jw3

=
∫

!
ñθ
i j (̃u)∂ jw

′
i + m̃i j (̃u3)∂

2
i jw3 + ñθ

i j (̃u)∂iθ∂ jw3.

In turn, we obtain

∫

!
ñθ
i j (̃u − u)∂ jw

′
i + m̃i j (̃u3 − u3)∂

2
i jw3 + ñθ

i j (̃u − u)∂iθ∂ jw3

=
∫

!
(nθ
i j − ñθ

i j )(u)∂ jw
′
i + (mi j − m̃i j )(u)∂

2
i jw3

+ (nθ
i j − ñθ

i j )(u)∂iθ∂ jw3.

(5.23)

Substituting w = ũ into (5.23), we get that

∫

!
ñθ
i j (̃u − u)∂ j ũ

′
i + m̃i j (̃u3 − u3)∂

2
i j ũ3 + ñθ

i j (̃u − u)∂iθ∂ j ũ3

=
∫

!
(nθ
i j − ñθ

i j )(u)∂ j ũ
′
i + (mi j − m̃i j )(u)∂

2
i j ũ3

+ (nθ
i j − ñθ

i j )(u)∂iθ∂ j ũ3.

(5.24)

By straightforward computations, we can see that

∫

!
ñθ
i j (̃u − u)∂ j ũ

′
i + m̃i j (̃u3 − u3)∂

2
i j ũ3 + ñθ

i j (̃u − u)∂iθ∂ j ũ3

=
∫

∂!
ρ−1
0 T̂i (̃u

′
i − u′

i ) + ∂s M̂τ (̃u3 − u3) + M̂ν∂ν (̃u3 − u3)

and it follows from (5.24) that

∫

!
(nθ
i j − ñθ

i j )(u)∂ j ũ
′
i + (mi j − m̃i j )(u)∂

2
i j ũ3 + (nθ

i j − ñθ
i j )(u)∂iθ∂ j ũ3.

=
∫

∂!
ρ−1
0 T̂i (̃u

′
i − u′

i ) + ∂s M̂τ (̃u3 − u3) + M̂ν∂ν (̃u3 − u3).

(5.25)
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Now replacing w = ũ − u in (5.23) and using (5.25), we obtain that

∫

!
ñθ
i j (̃u − u)∂ j (̃u

′
i − u′

i ) + m̃i j (̃u3 − u3)∂
2
i j (̃u3 − u3)

+ ñθ
i j (̃u − u)∂iθ∂ j (̃u3 − u3)

=
∫

!
(nθ
i j − ñθ

i j )(u)∂ j (̃u
′
i − u′

i ) + (mi j − m̃i j )(u)∂
2
i j (̃u3 − u3)

+ (nθ
i j − ñθ

i j )(u)∂iθ∂ j (̃u3 − u3)

=
∫

∂!
ρ−1
0 T̂i (̃u

′
i − u′

i ) + ∂s M̂τ (̃u3 − u3) + M̂ν∂ν (̃u3 − u3)

+
∫

D

(̃nθ
i j − nθ

i j )(u)∂ j u
′
i + (m̃i j − mi j )(u)∂

2
i j u3

+ (̃nθ
i j − nθ

i j )(u)∂iθ∂ j u3.

(5.26)

Exchanging the role of ũ and u, we can deduce that

∫

!
nθ
i j (u − ũ)∂ j (u

′
i − ũ′

i ) + mi j (u3 − ũ3)∂
2
i j (u3 − ũ3)

+ nθ
i j (u − ũ)∂iθ∂ j (u3 − ũ3)

=
∫

∂!
ρ−1
0 T̂i (u

′
i − ũ′

i ) + ∂s M̂τ (u3 − ũ3) + M̂ν∂ν(u3 − ũ3)

+
∫

D

(nθ
i j − ñθ

i j )(̃u)∂ j ũ
′
i

+ (mi j − m̃i j )(̃u)∂
2
i j ũ3 + (nθ

i j − ñθ
i j )(̃u)∂iθ∂ j ũ3.

(5.27)

Finally, plugging w = ũ into (5.21) and w = u into (5.22), respectively, we have

that
∫

D

(̃nθ
i j − nθ

i j )(̃u)∂ j ui + (m̃i j − mi j )(̃u3)∂
2
i j u3 + (̃nθ

i j − nθ
i j )(̃u)∂iθ∂ j u3

=
∫

∂!
ρ−1
0 T̂i (u

′
i − ũ′

i ) + ∂s M̂τ (u3 − ũ3) + M̂ν∂ν(u3 − ũ3).

(5.28)

The following identity is useful in our further arguments. Let a, b, c and d be any

functions. It is easy to compute that

(
aeθkk(w)δi j + beθi j (w)

)
∂ jwi +

(
c('w3)δi j + d∂2i jw3

)
∂2i jw3

+
(
aeθkk(w)δi j + beθi j (w)

)
∂iθ∂ jw3 (5.29)

= a|∇ · w′ + ∇θ · ∇w3|2 + b
∑

i j

|eθi j (w)|2 + c|'w3|2 + d
∑

i j

|∂2i jw3|2
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Now let a, b, c, d be given in (5.2) and ã, b̃, c̃, d̃ be defined similarly. Putting w =
ũ − u, using (5.29), (5.26), we get that

W−W̃ ≤
∫

D

(̃nθ
i j−nθ

i j )(u)∂ j u
′
i+(m̃i j−mi j )(u)∂

2
i j u3+(̃nθ

i j−nθ
i j )(u)∂iθ∂ j u3

=
∫

D

(̃a − a)|∇ · u′ + ∇θ · ∇u3|2 + (̃b − b)
∑

i j

|eθi j (u)|2

+ (̃c − c)|'u3|2 + (d̃ − d)
∑

i j

|∂2i j u3|2.

(5.30)

On the other hand, for any ε > 0, one can easily compute that
∫

D

(̃a − a)|∇ · u′ + ∇θ · ∇u3|2 + (̃b − b)
∑

i j

|eθi j (u)|2 + (̃c − c)|'u3|2

+ (d̃ − d)
∑

i j

|∂2i j u3|2

≤ (1+ ε−1)
∫

D

(̃a − a)|∇ · (̃u′ − u′) + ∇θ · ∇ (̃u3 − u3)|2

+ (̃b − b)
∑

i j

|eθi j (̃u − u)|2 + (̃c − c)|'(̃u3 − u3)|2

+(d̃−d)
∑

i j

|∂2i j (̃u3 − u3)|2 + (1+ ε)

∫

D

(̃a − a)|∇ · ũ′ + ∇θ · ∇ũ3|2

+ (̃b − b)
∑

i j

|eθi j (̃u)|2 + (̃c − c)|'ũ3|2 + (d̃ − d)
∑

i j

|∂2i j ũ3|2.

(5.31)

By (5.3) we can choose ε∗ > 0 such that

1+ ε−1
∗

1+ ε∗
= 1

k0
.

Therefore, from (5.31) and (5.29), we deduce that
∫

D

(̃a − a)|∇ · u′ + ∇θ · ∇u3|2 + (̃b − b)
∑

i j

|eθi j (u)|2 + (̃c − c)|'u3|2

+ (d̃ − d)
∑

i j

|∂2i j u3|2

≤ (1+ ε∗)
(∫

D

nθ
i j (u − ũ)∂ j (u

′
i − ũ′

i ) + mi j (u3 − ũ3)∂
2
i j (u3 − ũ3)

+ nθ
i j (u − ũ)∂iθ∂ j (u3 − ũ3)

+
∫

D

(̃nθ
i j−nθ

i j )(̃u)∂ j ũ
′
i+(m̃i j−mi j )(̃u)∂

2
i j ũ3+(̃nθ

i j−nθ
i j )(̃u)∂iθ∂ j ũ3

)
.

(5.32)
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Now combining (5.27) and (5.32) immediately yields

1

1+ ε∗

∫

D

(̃a − a)|∇ · u′ + ∇θ · ∇u3|2 + (̃b − b)
∑

i j

|eθi j (u)|2

+ (̃c − c)|'u3|2 + (d̃ − d)
∑

i j

|∂2i j u3|2

≤ W − W̃

(5.33)

and we obtain (5.13).

Remark 5.3. It is tempting to estimate the size of D without the a priori fatness

condition (5.11) as in [2,7], and [21]. The important tool in these papers is a global

doubling inequality. It seems possible to derive the size estimate without the fat-

ness condition for the shallow shell system since we have derived local doubling

inequalities (4.4). Like Theorem 4.13, to investigate this inverse problem, we actu-

ally need global doubling inequalities in terms of
∑

i j |eθi j (u)|2+ρ20 |∂2i j u3|2 instead
of |u′|2+|u3|2. However, attempts to derive such global doubling inequalities were
unsuccessful. The difficulty is due to the fact that u′ and u3 in (3.4) have different
scalings.
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