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Varieties with q(X) = dim (X) and P2(X) = 2
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Abstract. We give a complete description of all smooth projective complex
varieties with q(X) = dim(X) and P2(X) = 2.
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It has always been a goal of algebraic geometers to classify algebraic varieties,

and a good part of their work in the twentieth century was devoted to the classifica-

tion of algebraic surfaces. Of course, one can obtain a complete description only in

particular cases, such as when the numerical invariants of the surface are small.

In the past thirty years, the development of new techniques made it possible to

obtain results in higher dimensions as well. The numerical (birational) invariants of

a smooth projective complex variety X that are commonly used are its irregularity

q(X) := h1(X,OX ) and its plurigenera Pm(X) := h0(X,ωm
X ).

One can quote for example a beautiful result of Kawamata ([13]), who proved

that X is birational to an Abelian variety if and only if q(X) = dim(X) and the
Kodaira dimension κ(X) is 0 (this means maxm>0 Pm(X) = 1). This result has

been improved on by many authors, and the optimal version can be found in [2]

and [12]: X is birational to an Abelian variety if and only if q(X) = dim(X), and
P2(X) = 1 or 0 < Pm(X) ≤ m − 2 for some m ≥ 3.

When q(X) = dim(X), but the numerical invariants of X are a little bit higher
than these bounds, one can still obtain a complete birational description of X . Ha-

con and Pardini treated the case P3(X) = 2 and proved that X is birational to a

smooth double cover of its Albanese variety Alb(X), with explicit and very specific
branch locus ( [11]). Hacon then gave an equally precise description in the case

P3(X) = 3 (X is birational to a smooth bidouble cover of Alb(X)) in [9], and Chen
and Hacon dealt with the case P3(X) = 4, where the description obtained is still

complete but more complicated ([4]).

In this article, following the strategy of Chen and Hacon in [4], but building

on the results of [12], we give a complete birational description of X in the case

P2(X) = 2 (Theorem 3.3).

Theorem. Let X be a smooth projective variety with q(X)=dim(X) and P2(X)=2.
Then κ(X) = 1 and X is birational to a quotient (K×C)/G, where K is an Abelian
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variety, C is a curve, G is a finite group which acts diagonally and freely on K ×C ,

and C → C/G is branched at 2 points.

A main ingredient in the above classifications is to bound the possible Kodaira

dimensions of X . In this direction, we have the following result (Theorem 2.4).

Theorem. Let X be a smooth projective variety with q(X) = dim(X) and 0 <
Pm(X) ≤ 2m − 2, for some m ≥ 4. Then κ(X) ≤ 1.

Throughout this article, we work over the field of complex numbers.

ACKNOWLEDGEMENTS. I am grateful to my thesis advisor, O. Debarre, for his

generous help.

1. Preliminaries

In this section we recall some definitions and prove preliminary results. Let X be a

smooth projective variety.

1.1. Albanese variety

There is an Abelian variety Alb(X), called the Albanese variety of X , together with
a morphism aX : X → Alb(X) called the Albanese morphism of X , which has a
universal property for morphisms from X to Abelian varieties ( [16], Section 4.4).

We say that X has maximal Albanese dimension if dim(aX (X)) = dim(X). We
recall a criterion for the surjectivity of the Albanese morphism ([12, Theorem 2.9]).

Theorem 1.1. Let X be a smooth projective variety. If

0 < Pm(X) ≤ 2m − 2,

for some m ≥ 2, the Albanese morphism aX : X → Alb(X) is surjective.

1.2. Cohomological loci

Let X be a smooth projective variety and let F be a coherent sheaf on X . The

cohomological support loci of F are defined as

Vi (F) = {P ∈ Pic0(X) | Hi (X, F ⊗ P) (= 0}.

1.3. Iitaka fibration

We denote by X !!" I (X) the Iitaka fibration of X , where I (X) has dimension
κ(X) ( [16, Definition 2.1.36]). Given a surjective morphism f : X → Y , we say
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that the Iitaka model of X dominates Y if there exist an integer N > 0 and an ample

divisor H on Y such that NKX ) f ∗H .
The following proposition is [12, Lemma 2.2].

Proposition 1.2. Let f : X → Y be a surjective morphism between smooth pro-

jective varieties and assume that the Iitaka model of X dominates Y . Fix a torsion

element Q ∈ Pic0(X) and an integer m ≥ 2. Then h0(X,ωm
X ⊗ Q ⊗ f ∗P) is

constant for all P ∈ Pic0(Y ).

We deduce a corollary in the case where Y is a curve, which we will use several

times.

Corollary 1.3. Let f : X → C be a surjective morphism between a smooth pro-

jective variety X and a smooth projective curve C of genus ≥ 1 and assume that

the Iitaka model of X dominates C . If for some torsion element Q ∈ Pic0(X) and
some integer m ≥ 2, we have h0(X,ωm

X ⊗ Q) (= 0, then f∗(ωm
X ⊗ Q) is an ample

vector bundle on C .

Proof. Since C is a smooth curve, the torsion-free sheaf f∗(ωm
X ⊗Q) is locally free.

Since Q is torsion, there exists an étale cover π : X ′ → X such that ωm
X ⊗ Q is a

direct summand of π∗ωm

X
′ . By [19, Corollary 3.6], the vector bundle ( f ◦π)∗ωm

X
′
/C

is nef, hence so is f∗(ωm
X/C ⊗ Q).

If g(C) ≥ 2, ωC is ample, hence so is f∗(ωm
X ⊗ Q).

If g(C) = 1, we claim the following standard fact for which we could not find

a reference:

♣ for any nef vector bundle F on an elliptic curve C , the cohomological locus

V1(F) is finite.

We prove the claim by induction on the rank of F . The rank-1 case is trivial. Let

r > 0 be an integer. Assuming ♣ proved for all nef vector bundles of rank ≤ r , we

will prove ♣ for any nef vector bundle F of rank r + 1.

We consider the Harder-Narasimhan filtration ([16, Proposition 6.4.7])

0 = Fn ⊂ Fn−1 ⊂ · · · ⊂ F1 ⊂ F0 = F,

where Fi are subbundles of F with the properties that Fi/Fi+1 is a semistable bun-
dle for each i and

µ(Fn−1/Fn) > · · · > µ(F1/F2) > µ(F0/F1).

Since F = F0 is nef, so is F0/F1, hence µ(F0/F1) ≥ 0. So Fi/Fi+1 is a semistable
vector bundle with positive slope, for each i ≥ 1. Hence, for each i ≥ 1, Fi/Fi+1
is an ample vector bundle (see Main Claim in the proof of [16, Theorem 6.4.15]).

Thus F1 is also ample, and V1(F1) is empty. We just need to prove that V1(F0/F1)
is finite.
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If µ(F0/F1) > 0, we again have that F0/F1 is ample and V1(F) is empty; so
we are done. If µ(F0/F1) = 0, take P ∈ V1(F0/F1). Then h

1(C, F0/F1⊗ P) (= 0.

Hence, by Serre duality, there exists a non-trivial homomorphism of bundles

πP : F0/F1 → P∨.

Since F0/F1 is semistable and µ(F0/F1) = 0, πP is surjective. We have an exact

sequence of vector bundles:

0 → G → F0/F1 → P∨ → 0.

The rank of G is ≤ r . Since F0/F1 is semistable and µ(G) = µ(F0/F1) = 0,

G is also semistable. Hence G is a nef vector bundle (by the Main Claim quoted

above) of rank ≤ r and, by induction, V1(G) is finite. We conclude that V1(F) ⊂
V1(G) ∪ {P} is finite. We have finished the proof of the Claim.

Let the line bundle Q and the integer m be as in the assumptions. By Propo-

sition 1.2, for m ≥ 2, h0(X,ωm
X ⊗ Q ⊗ f ∗P) = h0(C, f∗(ωm

X ⊗ Q) ⊗ P) is

constant for all P ∈ Pic0(C), hence h1(C, f∗(ωm
X ⊗Q)⊗ P) is also constant for all

P ∈ Pic0(C). By the claim ♣, h1(C, f∗(ωm
X ⊗ Q) ⊗ P) = 0 for all P ∈ Pic0(C).

Hence f∗(ωm
X ⊗ Q) is an I.T. vector bundle of index 0, hence is ample ( [5, Corol-

lary 3.2]).

1.4. Iitaka fibration of a variety of maximal Albanese dimension

We assume in this section that X has maximal Albanese dimension and we consider

a model f : X → Y of the Iitaka fibration of X , where Y is a smooth projective

variety. We have the commutative diagram:

X

f

!!

aX "" Alb(X)

f∗
!!

Y
aY "" Alb(Y ).

(1.1)

By [11, Proposition 2.1], aY is generically finite, f∗ is an algebraic fiber space,
Ker( f∗) is an Abelian variety denoted by K , and a general fiber of f is birational to
an Abelian variety K̃ isogenous to K . Let G be the kernel of the group morphism

Pic0(X) = Pic0(Alb(X)) → Pic0(K ) → Pic0(K̃ ).

Then f ∗ Pic0(Y ) is contained in G, and G = G/ f ∗ Pic0(Y ) is a finite group con-
sisting of elements χ1, . . . ,χr . Let Pχ1, . . . , Pχr ∈ G be torsion line bundles rep-

resenting lifts of the elements of G, so that

G =
r⊔

i=1
(Pχi + f ∗ Pic0(Y )).
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There is an easy observation:

Lemma 1.4. Under the above assumptions and notation, let moreover P ∈Pic0(X).
If H0(X,ωm

X ⊗ P) (= 0 for some m > 0, we have P ∈ G.

Proof. If P /∈ G, since a general fiber F of f is birational to the Abelian variety K̃

and P|K̃ is non-trivial, any section of ωm
X ⊗ P vanishes on F . Hence H0(X,ωm

X ⊗
P) = 0, which is a contradiction.

Chen and Hacon made several useful observations about the cohomological

locus V0(ωX ) ([3, Lemma 2.2]) which we summarize in the following proposition.

Proposition 1.5 (Chen-Hacon). Under the above assumptions and notation, we

have the following.

(1) V0(ωX ) ⊂ G.
(2) Denote by V0(ωX ,χi ) the union of irreducible components of V0(ωX ) con-

tained in Pχi + f ∗ Pic0(Y ). Then for each i , V0(ωX ,χi ) is not empty.

(3) If Pχi /∈ f ∗ Pic0(Y ), the dimension of V0(ωX ,χi ) is positive.

Since every component of V0(ωX ) is a translate by a torsion point of an Abelian
subvariety of Pic0(X) ( [7, 8, 18]), we can write by item (1):

V0(ωX ) =
⋃

1≤i≤r

⋃

s

(Pχi,s + Tχi,s ) ⊂ G,

where Pχi,s ∈ Pχi + f ∗ Pic0(Y ) is a torsion point and Tχi,s is an Abelian subvariety

of f ∗ Pic0(Y ).

Definition 1.6. We call Tχi,s a maximal component of V0(ωX ) if Tχi,s is maximal

for the inclusion among all Tχ j,t .

By [3, Theorem 2.3], note that necessarily, if κ(X) > 0 and Tχi,s is a maximal

component of V0(ωX ), we have dim(Tχi,s ) ≥ 1.

We conclude this section with a technical result on the structure of the locus

V0(ωX ) when κ(X) > 0.

Proposition 1.7. Let X be a smooth projective variety with maximal Albanese di-

mension, such that κ(X) > 0. Let Tχi,s be a maximal component of V0(ωX ). Then,
for any ( j, t) such that dim(Tχ j,t ) ≥ 1, we have dim(Tχi,s ∩ Tχ j,t ) ≥ 1.

Proof. Let T̂χi,s and T̂χ j,t be the dual of Tχi,s and Tχ j,t respectively. Let π1 and π2 be

the natural morphisms of Abelian varieties Alb(X) → T̂χi,s and Alb(X) → T̂χ j,t .

Take an étale cover t : X̃ → X which is induced by an étale cover of Alb(X) such
that t∗Pχi,s and t

∗Pχ j,t are trivial. Let f1 and f2 be the compositions of morphisms
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π1 ◦ aX ◦ t and π2 ◦ aX ◦ t , respectively. We then take the Stein factorizations of f1
and f2:

X̃

g1

!!

f1

##
!!

!!
!!

!!

X1
h1 "" T̂χi,s

X̃

g2

!!

f2

$$
""

""
""

""

X2
h2 "" T̂χ j,t .

After modifications, we can assume that X1 and X2 are smooth. We claim the

following:

• h0(X1,ωX1 ⊗h∗
1P) > 0 for all P ∈ Tχi,s , and similarly h

0(X2,ωX2 ⊗h∗
2Q) > 0

for all Q ∈ Tχ j,t .

The argument to prove the claim is due to Chen and Debarre. Let c be the codi-

mension of Tχi,s in Pic
0(X). By the proof of [6, Theorem 3], Pχi,s + Tχi,s is an

irreducible component of Vc(ωX ). Hence

hc(X̃ ,ωX̃ ⊗ t∗P) ≥ hc(X,ωX ⊗ P ⊗ Pχi,s ) > 0

for any P ∈ Tχi,s .

Again by the proof of [6, Theorem 3], the dimension of a general fiber of g1
is also c. Since g1 is an algebraic fiber space, we have R

cg1∗ωX̃ = ωX1 ( [14,

Proposition 7.6]), and

Rc f1∗ωX̃ = h1∗(Rcg1∗ωX̃ ) = h1∗ωX1

([15, Theorem 3.4]). Moreover, the sheaves Rk f1∗ωX̃ , satisfy the generic vanishing

theorem ([10, Corollary 4.2]), hence Vj (R
k f1∗ωX̃ ) (= Tχi,s for any j > 0. Pick

P ∈ Tχi,s − ⋃
j>0,k Vj (R

k f1∗ωX̃ ), so that

H j (T̂χi ,s, R
k f1∗ωX̃ ⊗ P) = 0

for all j > 0 and all k. By the Leray spectral sequence, we have

0 (= hc(X̃ ,ωX̃ ⊗ f ∗
1 P) = h0(T̂χi,s , R

c f1∗ωX̃ ⊗ P) = h0(T̂χi,s , h1∗ωX1 ⊗ P).

Hence we conclude the claim by semicontinuity.

If dim(Tχi,s ∩ Tχ j,t ) = 0, the morphism

Alb(X)
(π1,π2)−−−−→ T̂χi,s × T̂χ j,t

is surjective. Now we consider the following diagram

X̃
t

""

g1

!!

X
aX ""

%%
##

##
##

##
# Alb(X)

π1
!!

X1
h1 "" T̂χi,s .



VARIETIES WITH q(X) = dim(X) AND P2(X) = 2 249

From the proof of [6, Theorem 3], we know that the fibers of g1 fill up the fibers of

π1. Hence we have a surjective morphism X̃
(g1,g2)−−−−→ X1 × X2. Since aX ◦ t : X̃ →

Alb(X) and (h1, h2) : X1× X2 → T̂χi,s × T̂χ j,t are generically finite and surjective,

by the proof of [2, Lemma 3.1], KX̃/X1×X2
is effective. Therefore, it follows from

the claim that

h0(X̃ ,ωX̃ ⊗ t∗P ⊗ t∗Q) > 0 (1.2)

for all P ∈ Tχi,s and Q ∈ Tχ j,t . Since t : X̃ → X is birationally equivalent to an

étale cover of X induced by an étale cover of Alb(X), t∗OX̃ = ⊕
α Pα , where Pα

is a torsion line bundle on X for every α. Let

T = Tχi,s + Tχ j,t

be the Abelian variety generated by Tχi,s and Tχ j,t . Then (1.2) implies that there

exists an α such that
Pα + T ⊂ V0(ωX ).

Since dim(Tχ j,t ) ≥ 1 and dim(Tχi,s ∩ Tχ j,t ) = 0, we obtain Tχi,s ! T , contradicting

the assumption that Tχi,s is a maximal component of V0(ωX ). This finishes the
proof of the proposition.

2. Varieties with q(X) = dim(X) and 0 < Pm(X) ≤ 2m − 2

In this section, we prove that the Iitaka model of a smooth projective variety X with

q(X) = dim(X) and 0 < Pm(X) ≤ 2m − 2 for some m ≥ 2 is birational to an

Abelian variety. We begin with a useful easy lemma ([11, Lemma 2.14]).

Lemma 2.1. Let X be a smooth projective variety, let L and M be line bundles

on X , and let T ⊂ Pic0(X) be an irreducible subvariety of dimension t . If for
some positive integers a and b and all P ∈ T , we have h0(X, L ⊗ P) ≥ a and

h0(X,M ⊗ P−1) ≥ b, then h0(X, L ⊗ M) ≥ a + b + t − 1.

Our next result is a consequence of the proof of [4, Proposition 3.6 and Propo-

sition 3.7], although not explicitly stated there.

Proposition 2.2. Let X be a smooth projective variety with q(X) = dim(X) and
0 < Pm(X) ≤ 2m− 2 for some m ≥ 2. Let f : X → Y be an algebraic fiber space

onto a smooth projective variety Y , which is birationally equivalent to the Iitaka

fibration of X . Then Y is birational to an Abelian variety.

Proof. Since we have 0 < Pm(X) ≤ 2m − 2 for some m ≥ 2, aX is surjective by

Theorem 1.1. Since q(X) = dim(X), we saw in Section 1.4 that aX and aY are
both surjective and generically finite. We then use diagram (1.1) and the notation

of Section 1.4.

If κ(X) = 1, then Y is an elliptic curve, because aY is surjective.
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If κ(X) ≥ 2, we use the same argument as in the proof of [4, Proposition 3.6].

We claim that

(†) V0(ωX ) ∩ f ∗ Pic0(Y ) = {OX }.

Let δ be the maximal dimension of a component of V0(ωX ) ∩ f ∗ Pic0(Y ).
If δ = 0, V0(ωX ) ∩ f ∗ Pic0(Y ) = {OX } by [3, Proposition 1.3.3].
If δ ≥ 2, by Lemma 2.1, there exists P0 ∈ f ∗ Pic0(Y ) such that

h0(X,ω2X ⊗ P0) ≥ 1+ 1+ 2− 1 = 3.

By Proposition 1.2, h0(X,ω2X⊗P) = h0(X,ω2X⊗P0) ≥ 3 for any P ∈ f ∗ Pic0(Y ).
We iterate this process and get Pm(X) ≥ 2m − 1, which is a contradiction.

If δ = 1, there is a 1-dimensional component T of V0(ωX ) ∩ f ∗ Pic0(Y ). Let
E = Pic0(T ) and let g : X → E be the induced surjective morphism. By [4,

Corollary 2.11 and Lemma 2.13], for some torsion element P ∈ T , there exist a

line bundle L of degree 1 on E and an inclusion g∗L ↪→ ωX ⊗ P , and P|F = OF ,

where F is a general fiber of g. Since κ(X) ≥ 2, we have κ(F) ≥ 1. Again by [2,

Theorem 3.2], rank(g∗(ω2X ⊗ P2)) = P2(F) ≥ 2. Consider the exact sequence of

sheaves on E :

0 → L2 → g∗(ω2X ⊗ P2) → Q→ 0,

where rank(Q) ≥ 1. Since g : X → E is dominated by f : X → Y , the Iitaka

model of X (i.e. Y) dominates E , hence g∗(ω2X ⊗ P2) is ample by Corollary 1.3,

thus so isQ and h0(X,Q) ≥ 1. Hence h0(X,ω2X ⊗ P2) ≥ 3.

For any k ≥ 3, we apply Lemma 2.3 (to be proved below) to get

h0(X,ωk
X ⊗ Pk) ≥ h0(X,ωk−1

X ⊗ Pk−1) + 2.

By induction, we have h0(X,ωm
X ⊗ Pm) ≥ 2m − 1 for all m ≥ 2. Since P ∈ T ⊂

f ∗ Pic0(Y ), we have, by Proposition 1.2, Pm(X) = h0(X,ωm
X ⊗ Pm) ≥ 2m − 1,

which is a contradiction. We have proved claim (†).
Since X and Y are of maximal Albanese dimension, KX/Y is effective (see the

proof of [2, Lemma 3.1]). This implies

f ∗V0(ωY ) ⊂ V0(ωX ) ∩ f ∗ Pic0(Y ) = {OX },

and hence κ(Y ) = 0 by [3, Theorem 1]. By Kawamata’s Theorem ([13]), aY is

birational.

We still need to prove the following result used in the proof of the proposition.

It is an analogue of [4, Corollary 3.2].

Lemma 2.3. Let X be a smooth projective variety of maximal Albanese dimension

with κ(X) ≥ 2. Suppose that there exist a surjective morphism g : X → C onto an
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elliptic curveC and an ample line bundle L onC with an inclusion g∗L ↪→ ωX⊗P2
for some torsion line bundle P2 ∈ Pic0(X). Then we have

h0(X,ωm
X ⊗ P1 ⊗ P2) ≥ h0(X,ωm−1

X ⊗ P1) + 2,

for all torsion line bundles P1 ∈ V0(ωX ) and all m ≥ 3.

Proof. From the inclusion, we obtain H0(X,ωX ⊗ P2) (= 0, and by items (1) and

(2) in Proposition 1.5, we conclude that P2 ∈ V0(ωX ,χi ) for some i and we get an
exact sequence of sheaves on C :

0 → g∗(ωm−1
X ⊗ P1) ⊗ L ↪→ g∗(ωm

X ⊗ P1 ⊗ P2) → Q→ 0. (2.1)

By item (2) in Proposition 1.5, we have h0(X,ωX ⊗ P∨
2 ⊗ P) (= 0 for some P ∈

f ∗ Pic0(Y ) such that P∨
2 ⊗ P ∈ V0(ωX ,−χi ). Hence we have an inclusion g

∗L ↪→
ω2X⊗P . Moreover, since P2 is a torsion line bundle and each irreducible component

of V0(ωX ) is a subtorus of Pic0(X) translated by a torsion point, we may assume
that P ∈ f ∗ Pic0(Y ) is also a torsion line bundle. Therefore the Iitaka model of X

dominates C . Thus, by Corollary 1.3, both g∗(ωm−1
X ⊗ P1) and g∗(ωm

X ⊗ P1 ⊗ P2)
are ample, and so is Q. By Serre duality, for any ample vector bundle V on C , we
have H1(C, V ) = 0. Hence, Riemann-Roch gives

h0(X,ωm−1
X ⊗ P1) = h0(C, g∗(ωm−1

X ⊗ P1)) = deg(g∗(ωm−1
X ⊗ P1)),

and

h0(ωm
X ⊗ P1 ⊗ P2) = h0(C, g∗(ωm−1

X ⊗ P1) ⊗ L) + h0(C,Q).

Let F be a connected component of a general fiber of g. Since κ(X) ≥ 2, we

have κ(F) ≥ 1 by the easy addition formula ([17, Corollary 1.7]). Hence we have

P2(F) ≥ 2 by [2, Theorem 3.2] (see also Remark 3.2). Since P1 ∈ V0(ωX ), we have

h0(X,ωm
X ⊗ P1⊗ P2) ≥ h0(X,ωm−1

X ⊗ P2) > 0. Hence we have h0(F,ωm
F ⊗ P1⊗

P2) (= 0. Then, by Lemma 1.4 and Proposition 1.5, there exists P ′ ∈ Pic0(F)which
is pulled back by the Iitaka fibration of F such that (P1 ⊗ P2)|F ⊗ P ′ ∈ V0(ωF ).
On the other hand, since P1 ⊗ P2 is torsion, we have h

0(F,ωm
F ⊗ P1 ⊗ P2) =

h0(F,ωm
F ⊗ P1 ⊗ P2 ⊗ P

′
) by Proposition 1.2. Therefore, we conclude

h0(F,ωm
F ⊗ P1 ⊗ P2) = h0(F,ωm

F ⊗ P1 ⊗ P2 ⊗ P
′
) ≥ Pm−1(F) ≥ 2,

where the last inequality holds since m ≥ 3. Hence,

rank(g∗(ωm
X ⊗ P1 ⊗ P2)) = h0(F,ωm

F ⊗ P1 ⊗ P2) ≥ 2.

Since P1 ∈ V0(ωX ) by assumption, we have rank(g∗(ωm−1
X ⊗ P1)) ≥ 1.
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If rank(g∗(ωm−1
X ⊗ P1)) ≥ 2, we have

h0(C, g∗(ωm
X ⊗ P1 ⊗ P2)) ≥ h0(C, g∗(ωm−1

X ⊗ P1) ⊗ L)

≥ deg(g∗(ωm−1
X ⊗ P1)) + rank(g∗(ωm−1

X ⊗ P1))

≥ h0(X,ωm−1
X ⊗ P1) + 2.

If rank(g∗(ωm−1
X ⊗ P1)) = 1, Q has rank ≥ 1. Since Q is ample, h0(C,Q) ≥ 1.

We also have

h0(X,ωm
X ⊗ P1 ⊗ P2) = h0(C, g∗(ωm−1

X ⊗ P1) ⊗ L) + h0(C,Q)

≥ h0(X,ωm−1
X ⊗ P1) + rank(ωm−1

X ⊗ P1) + 1

= h0(X,ωm−1
X ⊗ P1) + 2.

Hence the lemma is proved.

Under the hypotheses of Proposition 2.2, it turns out that when m ≥ 4, we

can bound the Kodaira dimension of X by 1 (the case m = 2 is the object of the

next section; when m = 3, the bound κ(X) ≤ 2 was obtained in [4] and there are

examples when there is equality).

Theorem 2.4. Let X be a smooth projective variety with q(X) = dim(X) and
0 < Pm(X) ≤ 2m − 2 for some m ≥ 4. Then κ(X) ≤ 1.

Proof. By Theorem 1.1, the Albanese morphism aX : X → Alb(X) is surjective
and hence generically finite. We then use diagram (1.1). By Proposition 2.2, we

may assume that Y , the image of the Iitaka fibration of X , is an Abelian variety.

We assume κ(X) ≥ 2 and under this assumption we will deduce a contradic-

tion.

Let Tχ1,s be a maximal component of V0(ωX ) in the sense of Definition 1.6.
If dim(Tχ1,s ) = 1, by Proposition 1.7, we conclude that Tχi,t ⊂ Tχ1,s for any (i, t)

such that dim(Tχi,t ) > 0. By [3, Theorem 2.3], Pic0(Y ) = Tχ1,s . Then dim(Y ) =
dim(Pic0(Y )) = 1, which contradicts our assumption that κ(X) ≥ 2. Hence we get

dim(Tχ1,s ) ≥ 2.

We then iterate Lemma 2.1 to get

h0(X,ωm−i
X ⊗ Pm−i

χ1,s
) ≥ (m − i − 1) dim(Tχ1,s ) + 1.

By Proposition 1.2, we have

h0(X,ωm−i
X ⊗ Pm−i

χ1,s
⊗ f ∗P) ≥ (m − i − 1) dim(Tχ1,s ) + 1, (2.2)

for all 0 ≤ i ≤ m−2 and all P ∈ Pic0(Y ). According to item (2) in Proposition 1.5,
V0(ωX ,−(m − 1)χ1) is not empty, namely there exists P0 ∈ Pic0(Y ) such that
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h0(X,ωX ⊗ P
−(m−1)
χ1,s ⊗ P0) > 0. Thus h0(X,ωm

X ⊗ P0) ≥ h0(X,ωm−1
X ⊗ Pm−1

χ1,s
).

Again by Proposition 1.2, we have

Pm(X) = h0(X,ωm
X ⊗ P0) ≥ h0(X,ωm−1

X ⊗ Pm−1
χ1,s

).

We also have

2m − 2 ≥ Pm(X) ≥ h0(X,ωm−1
X ⊗ Pm−1

χ1,s
) ≥ (m − 2) dim(Tχ1,s ) + 1,

where the last inequality holds by taking i = 1 in (2.2). Hence we deduce that

dim(Tχ1,s ) = 2.

Claim 1: (m − 1)χ1 = 0.

If (m − 1)χ1 (= 0, by item (3) in Proposition 1.5, there exists a torsion

point P−(m−1)χ1,t ∈ Pic0(X) such that P−(m−1)χ1,t + T−(m−1)χ1,t ⊂ V0(ωX ) with
dim(T−(m−1)χ1,t ) ≥ 1.

If dim(T−(m−1)χ1,t ) ≥ 2, by (2.2) (let i = 1) and Lemma 2.1, we get Pm(X) ≥
2m − 3+ 1+ 2− 1 = 2m − 1, which is a contradiction.

Hence dim(T−(m−1)χ1,t ) = 1. Let C = T̂−(m−1)χ1,t and let π : Alb(X) → C

be the dual of the inclusion T−(m−1)χ1,t ↪→ Pic0(X). Then we set f = π ◦ aX as in
the following commutative diagram:

X

aX

!!

f

&&$$$$$$$$$

Alb(X)
π

"" C.

Since we assume κ(X) ≥ 2 and dim(T−(m−1)χ1,t ) = 1, we have V0(ωX ) (= Pic0(X),
therefore χ(ωX ) = 0. By [4, Lemma 2.10 and Corollary 2.11], there exists an ample

line bundle L on C such that f ∗L ↪→ ωX ⊗ P−(m−1)χ1,t . We then apply Lemma 2.3
to conclude that

Pm(X) = h0(X,ωm
X ⊗ Pm−1

χ1,s
⊗ P−(m−1)χ1,t )

≥ h0(X,ω
(m−1)
X ⊗ Pm−1

χ1,s
) + 2

≥ 2m − 1,

where the last inequality holds by (2.2). This is a contradiction. We have proved

Claim 1.

Let G be defined as in the beginning of Section 1.4.

Claim 2: G 2 Z/2, namely G contains only one nonzero element χ1. In particular,
by Claim 1, m is an odd number.

Assuming the claim is not true, there exists 0 (= χ2 ∈ G such that (m−2)χ1+
χ2 (= 0. According to item (3) in Proposition 1.5, there exists Pχ2,t + Tχ2,t ⊂
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V0(ωX ,χ2) with dim(Tχ2,t ) ≥ 1. Then as in the proof of Claim 1, by Lemma 2.1

and Lemma 2.3, we conclude

h0(X,ωm−1
X ⊗ Pm−2

χ1,s
⊗ Pχ2,t ) ≥ h0(X,ωm−2

X ⊗ Pm−2
χ1,s

) + 2 ≥ 2m − 3,

where the last inequality holds because of (2.2).

Since (m − 2)χ1 + χ2 (= 0, we may repeat the above process to get

Pm(X) ≥ h0(X,ωm−1
X ⊗ Pm−2

χ1,s
⊗ Pχ2,t ) + 2 ≥ 2m − 1,

which is a contradiction. Hence we have proved Claim 2.

As m ≥ 4 is odd, m − 2 ≥ 3 and (m − 3)χ1 = 0. By (2.2) (with i = 3),

Pm−3(X) ≥ 2m − 7. Since κ(X) ≥ 2, by Proposition 1.2 and Lemma 2.1, we have

2m − 2 ≥ Pm(X) ≥ Pm−3(X) + P3(X) + κ(X) − 1

≥ 2m − 6+ P3(X).

Hence P3(X) ≤ 4. According to Chen and Hacon’s classification of these varieties

(see [4, Theorems 1.1 and 1.2]) and Claim 2, the only possibility is that X is a

double cover of its Albanese variety and κ(X) = 2, as described in [4, Example 2].

Namely, there exists an algebraic fiber space

q : Alb(X) → S

from an Abelian variety of dimension ≥ 3 to an Abelian surface, and aX : X →
Alb(X) is birational to a double cover of Alb(X) such that aX∗OX = OAlb(X) ⊕
(q∗L ⊗ P)∨, where L is an ample divisor of S with h0(S, L) = 1 and P ∈
Pic0(A) Pic0(S) and 2P ∈ Pic0(S). However, for such a variety, we have the
inclusion of sheaves a∗

X (q∗L ⊗ P) ↪→ ωX (see the proof of [4, Claim 4.6]). Thus,

as m ≥ 4 is odd,

Pm(X) = h0(X,ωm
X )

≥ h0(Alb(X), q∗Lm ⊗ Pm ⊗ aX∗OX )

= h0(Alb(X), q∗Lm−1 ⊗ Pm−1)

= (m − 1)2 > 2m − 2,

which is a contradiction. This concludes the proof of Theorem 2.4.

3. Varieties with q(X) = dim(X) and P2(X) = 2

In this section, we describe explicitly all smooth projective varieties X with q(X) =
dim(X) and P2(X) = 2. We first show that the Iitaka model of X is an elliptic curve.

In particular, κ(X) = 1.
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Proposition 3.1. Let X be a smooth projective variety with q(X) = dim(X) and
P2(X) = 2. Assume that f : X → Y is a birational model of the Iitaka fibration of

X and Y is a smooth projective variety. Then Y is an elliptic curve.

Proof. We use diagram (1.1). By Theorem 1.1, aX is surjective and hence gener-

ically finite. By Proposition 2.2, we may assume that aY : Y → Alb(Y ) is an
isomorphism.

If dim(Y ) = 1, Y is an elliptic curve and we are done. We now assume that

dim(Y ) ≥ 2 and deduce a contradiction.

Let Tχi,s be a maximal component of V0(ωX ). By the claim (†) in the proof

of Proposition 2.2, we know that Pχi /∈ f ∗ Pic0(Y ). By item (3) of Proposi-

tion 1.5, there exist a torsion line bundle P−χi,t ∈ P∨
χi

+ f ∗ Pic0(Y ) and a positive-

dimensional Abelian subvariety T−χi,t ⊂ f ∗ Pic0(Y ) such that P−χi,t + T−χi,t is a

connected component of V0(ωX ). Let T be the neutral component of Tχi,s ∩ T−χi,t .

By Proposition 1.7, dim(T ) ≥ 1.

If dim(T ) ≥ 2, then by Lemma 2.1,

h0(X,ω2X ⊗ P ⊗ Q) ≥ 1+ 1+ 2− 1 = 3,

for all P ∈ Pχi,s + T and all Q ∈ P−χi,t + T . Since Pχi,s ⊗ P−χi,t ∈ f ∗ Pic0(Y ),
we obtain, by Proposition 1.2, P2(X) ≥ 3, which is a contradiction.

Hence T is an elliptic curve and we denote by T̂ its dual. There exists a pro-

jection π : Y → T̂ . We then consider the commutative diagram:

X

f

!!

f̄

''
%%

%%
%%

%%

Y
π

"" T̂

and define

F1 = f̄∗(ωX ⊗ Pχi,s ),

F2 = f̄∗(ωX ⊗ P−χi,t ),

F3 = f̄∗(ω2X ⊗ Pχi,s ⊗ P−χi,t ).

These are vector bundles on the elliptic curve T̂ and by [19, Corollary 3.6] and

Corollary 1.3, F1 and F2 are nef and F3 is ample.

Since Pχi,s ⊗ P−χi,t ∈ f ∗ Pic0(Y ) and f : X → Y is a model of the Iitaka

fibration of X , we have

2 = P2(X) = h0(X,ω2X ⊗ Pχi,s ⊗ P−χi,t ) = h0(T̂ , F3).

There exists a natural morphism

F1 ⊗ F2
υ−→ F3,
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corresponding to the multiplication of sections. Let R1, R2, and R3 be the respective

ranks of F1, F2, and F3. I claim:

♠ R3 > min{R1, R2}.
Indeed if R1 ≥ 2 and R2 ≥ 2, then by Lemma 2.1, R3 ≥ R1 + R2 − 1. If either R1
or R2 is 1, we just need to prove R3 ≥ 2. Let f |Xt : Xt → Yt be the restriction of

f to a general fiber of f̄ . Since f : X → Y is a model of the Iitaka fibration of X ,

fixing an ample divisor H on Y , there exists an integer N > 0 such that NKX − H

is effective. Hence (NKX −H)|Xt ) 0, therefore the Iitaka model of Xt dominates

Yt . Indeed, f |Xt : Xt → Yt is a birational model of the Iitaka fibration of Xt since

a general fiber of f |Xt is isomorphic to a general fiber of f which is birational to an
Abelian variety. As we have assumed dim(Y ) ≥ 2, we have dim(Yt ) ≥ 1. Thus Xt
is of maximal Albanese dimension and κ(Xt ) ≥ 1, hence P2(Xt ) ≥ 2 ([2, Theorem

3.2]). Since (Pχi,s ⊗ P−χi,t )|Xt is pulled back from Yt , we have

R3 = h0(Xt , (ω
2
X ⊗ Pχi,s ⊗ P−χi,t )|Xt ) = P2(Xt ) ≥ 2,

where the second equality holds again because of Proposition 1.2. This proves the

claim ♠.
Consider the Harder-Narasimhan filtration of F1 (respectively F2) and let G1

(respectively G2) be the unique maximal subbundle of F1 (respectively F2) of

largest slope. By definition, G1 and G2 are semistable. Let r1 and r2 be their

respective ranks. I claim:

♣ r1 > 0 and r2 > 0 and therefore G1 and G2 are ample.

If deg(G1) = 0, we conclude from the definition of G1 that 0 = µ(G1) ≥ µ(F1).
Since F1 is nef, deg(F) = µ(F) = 0, hence V0(F1) = V1(F1). By the generic
vanishing theorem (see for example [10]), V1(F1) is finite. However, since T ⊂
Tχi,s , we have h

0(F1 ⊗ P) > 0 for all P ∈ T , which is a contradiction. So r1 > 0

and similarly, r2 > 0. Since G1 and G2 are semistable, they are ample (see the

Main Claim in the [16, proof of Theorem 6.4.15]). This proves the claim ♣.
Set G3 = υ(G1 ⊗ G2) and let r3 be its rank. Again by Lemma 2.1, we have

r3 ≥ r1 + r2 − 1 ≥ max{r1, r2}.
Since G1 and G2 are semistable and ample, so is G1⊗G2 ([16, Corollary 6.4.14]).

Therefore the slopes satisfy

µ(G3) ≥ µ(G1 ⊗ G2) = µ(G1) + µ(G2),

and G3 is also ample.

We then apply Riemann-Roch,

h0(T̂ ,G3) ≥ r3(µ(G1) + µ(G2))

≥ deg(G1) + deg(G2)

≥ 2,
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where the second inequality holds because r3 ≥ max{r1, r2} and the third inequality
holds because deg(G1) > 0 and deg(G2) > 0.

Since G3 is a subbundle of F3 and h
0(T̂ , F3) = 2, we have h0(T̂ ,G3) = 2,

hence all the inequalities above should be equalities. In particular, r3 = r1 = r2.

Hence by the claim ♠, r3 ≤ min{R1, R2} < R3. Therefore, F3/G3 is a sheaf of
rank ≥ 1. Since F3 is ample, so is F3/G3, hence h

0(T̂ , F3/G3) ≥ 1. Since G3 is

ample, h1(T̂ ,G3) = 0. Hence,

h0(T̂ , F3) = h0(T̂ ,G3) + h0(T̂ , F3/G3) ≥ 3,

which is a contradiction. Thus dim(Y ) = 1. This finishes the proof of Proposi-

tion 3.1.

Remark 3.2. It is easy to see that combining Proposition 1.7 and the proof of

Proposition 3.1, one can give another proof of Chen and Hacon’s characterization

of Abelian varieties ([2]): a smooth projective variety X with maximal Albanese

dimension and P2(X) = 1 is birational to an Abelian variety.

The following theorem is the main result of this article. It describes explicitly

all smooth projective varieties X with q(X) = dim(X) and P2(X) = 2.

Theorem 3.3. Let X be a smooth projective variety with P2(X) = 2 and q(X) =
dim(X). Then κ(X) = 1 and X is birational to a quotient (K × C)/G, where K is

an Abelian variety and C is a smooth projective curve, G is a finite group that acts

diagonally and freely on K × C , and C → C/G is branched at 2 points.

Proof. Since we know by Proposition 3.1 that Y is an elliptic curve, the proof is

parallel to the [4, proof of Theorem 5.1]. By [13], Theorem 13, there exists a curve

C of genus g ≥ 2, an Abelian variety K̃ , and a finite Abelian group G, which

acts faithfully on C and K̃ , such that X is birational to (K̃ × C)/G, where G acts

diagonally and freely on K̃ × C .

We then consider the induced morphism φ : C → C/G = Y . Following [1],

Section VI.12, we have

2 = P2(X) = dim(H0(C,ω2C)G) = h0

(
Y,OY

(
∑

P∈Y

⌊
2

(
1− 1

eP

)⌋
P

))
,

where P is a branch point of φ, and eP is the ramification index of a ramification
point lying over P .

Since
⌊
2(1 − 1

eP
)
⌋

= 1 for any branch point P , we have only two branch

points.

Example 3.4. Let C be a bi-elliptic curve of genus 2, let φ : C → E be the

morphism such that φ is branched at two points, and let τ be the induced involution.
Take an Abelian variety K and set G = Z2. Let G act on C by τ and on K by

translation by a point of order 2. Set X = (K × C)/G, where G acts diagonally.

Then P2(X) = h0(C,ω2C)τ = 2 (this construction actually gives all varieties with

q(X) = dim(X) and P3(X) = 2; see [11]).
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Remark 3.5. The family of varieties with q(X) = dim(X) and P2(X) = 2 is not

bounded (see [4, Example 1]).
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