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Quantitative isoperimetric inequalities

and homeomorphisms with finite distortion

KAI RAJALA

Abstract. We prove quantitative isoperimetric inequalities for images of the unit
ball under homeomorphisms of exponentially integrable distortion. We show that
the metric distortions of such domains can be controlled by their Fraenkel asym-
metries. An application of the quantitative isoperimetric inequality proved by
Hall and Fusco, Maggi, and Pratelli then shows that for these domains a version
of Bonnesen’s inequality holds in all dimensions.

Mathematics Subject Classification (2010): 30C65 (primary); 46E35 (secondary).

1. Introduction

The classical Bonnesen inequality states that for a planar Jordan domain ! the

inequality

"(∂!)2 − 4π |!| ≥ 4π(R − ρ)2 (1.1)

holds, where R and ρ are the circumradius and the inradius of !, respectively, see
Osserman [13]. There are several related inequalities which show that if a planar

Jordan domain is almost a disk in the sense of the isoperimetric inequality, then it is

also geometrically close to a disk, with quantitative bounds. Such inequalities are

called Bonnesen-style inequalities in [13].

By considering cusp domains, one can see that inequalities like (1.1) do not

hold in dimensions higher than two. However, Hall [5] (see also [6]) showed that

another natural quantitative isoperimetric inequality holds in all dimensions. Let

! ⊂ Rn be a bounded domain. The Fraenkel asymmetry λ(!) is

λ(!) = min
x∈Rn

|! \ B(x, r)|
rn

,
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where r is defined by |B(x, r)| = |!|. The isoperimetric deficit of ! is

δ(!) = Hn−1(∂!)

nα
1/n
n |!|(n−1)/n

− 1 ≥ 0, αn = |Bn|.

Here Hn−1 is the Hausdorff (n − 1)-measure. Hall proved that the isoperimetric
deficit controls the Fraenkel asymmetry, and conjectured that the sharp inequality

is

λ(!) ≤ C(n)
√

δ(!). (1.2)

A beautiful solution to this problem was given in [3], where it was shown that (1.2)

indeed holds. Recently, progress has been made in understanding related inequali-

ties, cf. the references in [3]. For convex domains, Fuglede [2] proved essentially

sharp higher-dimensional versions of (1.1).

In [14] we applied Hall’s result in our study of the branching of quasiregular

mappings in space. In particular, we showed that an inequality like (1.1) holds

for images of the unit ball under global K -quasiconformal maps. This was done

by proving that the Fraenkel asymmetry of such a domain ! controls its metric

distortion

β(!) = min
{ R − r

r
: ∃ x ∈ Rn so that B(x, r) ⊂ ! ⊂ B(x, R)

}
:

β(!)n ≤ C(n, K )λ(!), (1.3)

and then applying Hall’s theorem. In this paper we consider the more general case

where the class of quasiconformal maps is replaced by the class of homeomor-

phisms with exponentially integrable distortion. From the point of view of con-

formal analysis, this is essentially the largest class for which inequalities like (1.3),

and, consequently, inequalities like (1.1) hold true. Our main objectives are to prove

fairly sharp extensions of (1.3), and to demonstrate, again relying on (1.2), that be-

sides convex domains there are also other natural classes of domains in the n-space

which satisfy Bonnesen-style inequalities.

Denote by |Df | and J f the operator norm and the Jacobian determinant of the
distributional differential of a W 1,1-homeomorphism f , respectively, and assume

that J f ≥ 0 almost everywhere. Then K (x) = K f (x) = |Df (x)|n/J f (x) if
J f (x) > 0, K (x) = 1 if |Df (x)| = J f (x) = 0, and K (x) = ∞ otherwise. Our

main theorem reads as follows.

Theorem 1.1. Let f : B(2) → f B(2) ⊂ Rn be a W 1,1-homeomorphism so that

J f ≥ 0 almost everywhere, and

∫

B(2)
exp(µK (x)) dx ≤ K (1.4)

for some K and µ > 0. Then

β( f Bn)n+n
2/µ ≤ C(n, µ, K )λ( f Bn). (1.5)
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In Section 6 we prove a similar result for the preimage of the unit ball under

a polynomial integrability condition on K . The following example demonstrates

that, except for the constant n2 in (1.5), there is not much room for improvement in

Theorem 1.1.

Theorem 1.2. There exists c(n) > 0 so that if n ≥ 2 and µ > 0, there exist

K = K (n, µ) > 0 and a sequence ( f j ), so that each f j satisfies the assumptions

of Theorem 1.1, λ( f j B
n) → 0 as j → ∞, and

β( f j B
n)n+c(n)/µ ≥ λ( f j B

n)

for every j .

By combining Theorem 1.1 with the sharp inequality (1.2) proved in [3], we

have the following Bonnesen-style inequality. Recall that a homeomorphism f is

by definition K -quasiconformal, 1 ≤ K < ∞, if the distortion K (x) defined above
satisfies K (x) ≤ K almost everywhere.

Corollary 1.3. Let f be as in Theorem 1.1. Then

β( f Bn)2n+2n
2/µ ≤ C(n, µ, K )δ( f Bn). (1.6)

If f is K -quasiconformal, then

β( f Bn)2n ≤ C(n, K )δ( f Bn). (1.7)

In [15] we prove a sharp form of (1.7). It is not difficult to prove (1.3) for qua-

siconformal maps using the local-to-global principle (quasisymmetry) which says

that the distortions of images of balls are bounded in all scales, at least away from

the boundary, see Remark 4.5 below. One can also prove versions of (1.3) for non-

homeomorphic mappings in small scales, but this is more technical, see [14].

In the case of unbounded distortion considered in this paper, results like The-

orem 1.1 cannot be proved using the local-to-global principle, because the cor-

responding estimates are quite inefficient unless the distortion is assumed to be

uniformly bounded. Therefore, in order to prove Theorem 1.1 we have to use a

different method. We briefly outline the proof of Theorem 1.1.

We first fix a ball B which realizes the Fraenkel asymmetry of f Bn . Our

goal then is to estimate maxy∈ f Sn−1 dist(y, ∂B) in terms of | f Bn \ B|. This is
done using the conformal invariance of the modulus of concentric spheres and their

preimages, and coarea-type estimates. On the image side, we get a lower bound for

the modulus depending on τ and λ. We then need to prove an efficient upper bound
on the domain side. Here we need the exponential integrability of the distortion,

and the sharp modulus of continuity, proved in [12]. Combining the two estimates

shows that f Bn cannot be too cusplike, which is the main property needed to prove

the theorem.
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Notation

We denote an n-ball with center x and radius r by B(x, r), and B(r) = B(0, r),
Bn = B(0, 1). The corresponding notations for (n − 1)-spheres are S(x, r) and
S(r) = S(0, r). The Lebesgue measure of E ⊂ Rn is |E |, and αn = |Bn|. The
matrix D+ f −1(x) is the adjoint matrix of the differential Df −1(x). Under the as-
sumptions of Theorem 1.1 we have

|D+ f −1|n ≤ K Jn−1f (1.8)

almost everywhere, see [8].

We note that inequality (1.2) holds for general Borel sets, and it is stated, as

isoperimetric inequalities usually are, in terms of the perimeter measure. One can

apply [1, Proposition 3.62], to show that the estimates above can be stated in terms

of the Hausdorff (n − 1)-measure.

2. Conformal modulus of surface families

The main technical tool used in the proofs of Theorem 1.1 and Theorem 6.1 below

is the conformal modulus of suitable (n − 1)-dimensional surfaces. Let first f :
B(2) → f B(2) be a homeomorphism. Moreover, let G ⊂ f B(2) be open, y ∈ Rn ,

E ⊂ (0,∞) a Borel set, and

, = {Ut : t ∈ E} = {G ∩ S(y, t) : t ∈ E}.
We denote by Y the family of all Borel functions ρ : Rn → [0,∞] for which

∫

Ut

ρ(y) dHn−1(y) ≥ 1 for every t ∈ E,

and by X the corresponding family with the requirement
∫

f −1(Ut )
ρ(x) dHn−1(x) ≥ 1 for every t ∈ E .

Lemma 2.1. Let f : B(2) → f B(2) be as in Theorem 1.1. Then

M, := inf
ρ∈Y

∫

Rn

ρ(y)n/(n−1) dy

≤ inf
ρ∈X

∫

Rn

ρ(x)n/(n−1)K (x)1/(n−1) dx =: MK f
−1,.

Proof. Let ρ ∈ X . Under our assumptions we have f −1 ∈ W
1,n
loc ( f B(2), Rn),

see [7]. In particular, the restriction of f −1 toUt locally belongs toW 1,n for almost

every t . In such Ut , the change of variables inequality
∫

Ut

|D+ f −1(y)|ρ( f −1(y)) dHn−1(y) ≥
∫

f −1(Ut )
ρ(x) dHn−1(x) ≥ 1
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holds, see [11]. Thus the function

y *→ |D+ f −1(y)|ρ( f −1(y))

belongs to Y (after redefining the function in a set of measure zero). The n-

dimensional change of variables formula holds under our assumptions, see [8], and

by (1.8) we have

∫

f B(2)

(
|D+ f −1(y)|ρ( f −1(y))

)n/(n−1)
dy

=
∫

f B(2)

|D+ f −1(y)|n/(n−1)
J f −1(y)

ρ( f −1(y))n/(n−1) J f −1(y) dy

≤
∫

f B(2)
K ( f −1(y))1/(n−1)ρ( f −1(y))n/(n−1) J f −1(y) dy

=
∫

B(2)
K (x)1/(n−1)ρ(x)n/(n−1) dx .

The lemma follows by taking the infimum with respect to ρ ∈ X .

For the proof of Theorem 6.1, we need an inequality as above for the inverse

of f . Let f : f −1B(2) → B(2) be a homeomorphism. Let G ⊂ f −1B(2) be open,
x ∈ Rn , and E ⊂ (0,∞) a Borel set. We consider the family

, = {Ut : t ∈ E} = {S(x, t) ∩ G : t ∈ E}, (2.1)

and define the quantities

M1/K, = inf
ρ∈X

∫

Rn

ρ(x)n/(n−1)K (x)−1 dx,

where X is the family of all Borel functions for which

∫

Ut

ρ(x) dHn−1(x) ≥ 1 for every t ∈ E,

and M f, as before.

Lemma 2.2. Let f : f −1B(2) → B(2) be a W 1,1
loc -homeomorphism so that J f ≥ 0

almost everywhere and K f ∈ L
p

loc for some p > n − 1. Then

M1/K, ≤ M f,.

Proof. We may assume that K = K f is globally p-integrable. By Hölder’s in-

equality and the change of variables inequality

∫

U

g( f (x))J f (x) dx ≤
∫

f U

g(y) dy, (2.2)
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valid for all W 1,1-homeomorphisms,

∫

f −1B(2)
|Df (x)|q dx =

∫

f −1B(2)
K (x)q/n J f (x)

q/n dx

≤
( ∫

f −1B(2)
K (x)p dx

)(n−q)/n( ∫

f −1B(2)
J f (x) dx

)q/n
(2.3)

≤
( ∫

f −1B(2)
K (x)p dx

)(n−q)/n
|B(2)|q/n,

where q = np/(p + 1) > n − 1 when p > n − 1.

We conclude that f ∈ W 1,q( f −1B(2), Rn) for some q > n − 1, and therefore
the (n − 1)-dimensional change of variables formula

∫

Ut

|Df (x)|n−1ρ(x) dHn−1(x) ≥
∫

f Ut

ρ(y) dHn−1(y)

holds on almost every Ut , see [11]. The proof can now be carried out as the proof

of Lemma 2.1. Notice that the n-dimensional change of variables formula is not

needed here; inequality (2.2) suffices.

3. Distortion estimates

We first prove a version of the local-to-global principle for mappings with expo-

nentially integrable distortion. As mentioned in the introduction, this geometric

estimate does not by itself lead to results like Theorem 1.1, and it will not play a

major role in the proof. It will be used in a qualitative way; for instance, it will used

in the proof of Theorem 1.1 to show that we can assume the Fraenkel asymmetry to

be as small as we wish. Similar estimates have been proved in [9].

Lemma 3.1. Let f be as in Theorem 1.1. If B(x, t) ⊂ B(3/2), then

L

"(x, t)
= maxy∈S(3/2) | f (x) − f (y)|
miny∈S(x,t) | f (x) − f (y)| ≤ exp

(
C(n, µ, K )t−1/(n−3/2)

)
.

Proof. We show that

L

L(x, t)
≤ exp

(
C(n, µ, K )t−1/(n−3/2)

)
, (3.1)

where L(x, t) = maxy∈S(x,t) | f (x) − f (y)|. We choose a point x0 ∈ S(3/2) such
that | f (x0) − f (x)| = L , and

I = f −1({ f (x0) + T ( f (x0) − f (x)) : T ≥ 0}).
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Then | f (z) − f (x)| ≥ L for z ∈ I . Now a simple geometric argument shows that

there exist p ∈ B(2) and t/4 ≤ r ≤ 3/2 such that, for every r < s < r + t/8, the
sphere S(p, s) contains a spherical cap Q(s) ⊂ B(2) such that

Q(s) ∩ I += ∅ and Q(s) ∩ B(x, t) += ∅. (3.2)

Let

g(z) = max{min{log | f (z) − f (x)|, log L}, log L(x, t)},
and Et = {z : L(x, t) ≤ | f (z) − f (x)| ≤ L}. Then, by (3.2) and the Sobolev
embedding theorem on spheres,

t

8

(
log

L

L(x, t)

)n−1/2
≤ C(n)

∫ r+t/8

r

∫

Q(s)∩Et
|∇g(z)|n−1/2 dHn−1(z) ds

≤ C(n)

∫

Et

|Df (z)|n−1/2
| f (z) − f (x)|n−1/2 dz.

By Hölder’s inequality and the distortion inequality |Df |n ≤ K J f , the last integral

is bounded from above by

( ∫

B(2)
K (z)2n−1 dz

)1/(2n)( ∫

Et

J f (z)

| f (z) − f (x)|n dz
)(n−1/2)/n

.

By Jensen’s inequality and (1.4), the first integral is bounded by C(n, µ, K ). Also,
by change of variables, the second term is bounded by

(
log

L

L(x, t)

)(n−1/2)/n
.

Combining the estimates gives (3.1). We also have

L(x, t)

"(x, t)
≤ exp

(
C(n, µ, K )t−1/(n−3/2)

)
. (3.3)

Inequality (3.3) is proved in a similar way as (3.1), and we thus omit the proof.

See [9, Theorem 3.6] for a more general result. The lemma follows by combining

(3.1) and (3.3).

The validity of inequality (1.5) will ultimately depend on the sharp local mod-

ulus of continuity of mappings with exponentially integrable distortion.

Theorem 3.2 ([12]). Let f be as in Theorem 1.1. If x and y ∈ B(5/4), then

| f (x) − f (y)| ≤ C(n, µ, K )

logµ/n 1
|x−y|

| f B(3/2)|1/n.
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Similarly, we use a sharp continuity estimate for the inverse mapping to prove

Theorem 6.1. In the case n = 2 this was proved in [10], and the case n ≥ 3 is

proved similarly; we omit the proof.

Theorem 3.3. Let f be as in Theorem 6.1 below, and x and y in B(5/4). Then

| f −1(x) − f −1(y)| ≤ C(n, p, K , | f −1B(3/2)|)
logα 1

|x−y|
,

where α = p(n − 1)/n.

4. Proof of Theorem 1.1

We now begin to prove Theorem 1.1. We may assume that | f Bn| = αn . We choose
x0 so that λ( f Bn) = | f Bn \ B(x0, 1)|. Without loss of generality, x0 = 0. Lemma

3.1 applied to the unit ball now shows that β( f Bn) ≤ C(n, µ, K ). Thus we may
assume that

λ = λ( f Bn) < ε = ε(n, µ, K ), (4.1)

where ε > 0 is to be determined later. Let

R = min{s : f Bn ⊂ B(s)}, (4.2)

and

r = max{s : B(s) ⊂ f Bn}. (4.3)

Then β( f Bn) ≤ R/r − 1. Theorem 1.1 now follows if we can bound both R − 1

and 1−r in terms of | f Bn \ Bn| = |Bn \ f Bn|. We first give an estimate for R−1.

4.1. Estimate for the outer radius

We choose a ∈ Sn−1 so that | f (a)| = R. Without loss of generality, a = e1 and

f (e1) = Re1.

Lemma 4.1. There exists κ ′ = κ ′(n, µ, K ) > 0 such that

f −1B(Re1, κ
′) ⊂ B(e1, 1/4).

Proof. Since | f Bn| = αn , we have | f (e1)− f (x)| ≥ 1 for some x ∈ B(3/2). Thus
by Lemma 3.1,

| f (x) − f (e1)| = | f (x) − Re1| ≥ κ ′(n, µ, K )

for every x /∈ B(e1, 1/4).
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Now let

κ = min{R − 1, κ ′}, and Ut = f Bn ∩ S(Re1, t).

We may assume that κ is so small that s < 1/10 in Lemma 4.2 below.

Lemma 4.2. There exists C = C(n, µ, K ) > 0 so that if s = exp(−Cκ−n/µ), then
f −1Ut separates Bn \ B(e1, 1/4) and B

n ∩ B(e1, s) in B
n for every κ/2 < t < κ .

Proof. Let κ/2 < t < κ . From Lemma 3.1 it follows that

| f B(3/2)| ≤ C(n, µ, K )| f Bn| = C(n, µ, K )αn.

Combining this with Theorem 3.2 shows that |x − e1| ≥ s whenever x ∈ f −1Ut .
Lemma 4.1 then shows that

s ≤ |x − e1| ≤ 1/4 (4.4)

for every x ∈ f −1Ut . Since Ut separates B(Re1, κ/2) and any point y ∈ f Bn \
B(Re1, t) in f Bn , the lemma follows by (4.4).

We now estimate the conformal moduli of the family {Ut } and its preimage.
We first show that the conformal modulus of {Ut } gets larger the more cusplike
f Bn is.

Lemma 4.3. Let κ and Ut be as in Lemma 4.2, and

, = {Ut : κ/2 < t < κ}.

Then

M, ≥ κn/(n−1)

2n/(n−1)λ1/(n−1)
.

Proof. Let ρ ∈ Y , see Lemma 2.1. Now

κ/2 ≤
∫ κ

κ/2

∫

Ut

ρ(z) dHn−1(z) dt ≤
∫

f Bn\Bn
ρ(y) dy

≤ | f Bn \ Bn|1/n
( ∫

f Bn\Bn
ρ(y)n/(n−1) dy

)(n−1)/n

by Hölder’s inequality. The lemma follows, since λ = | f Bn \ Bn|.

Lemma 4.2 now shows that the preimages of the sets Ut lie on on annulus

whose fatness is controlled. This together with the exponential integrability shows

that the corresponding (weighted) conformal modulus on the domain is not very

large, depending on κ .
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Lemma 4.4. Let , be as in Lemma 4.3. Then

MK f
−1, ≤ C(n, µ, K )κ−n2/((n−1)µ).

Proof. By the separation property in Lemma 4.2 and a simple calculation,

ρ(x) = 10n|x − e1|1−nχBn\B(e1,s)(x)

satisfies ρ ∈ X , where s is as in Lemma 4.2. We may assume that log 1
s
is an

integer. Then

MK f
−1, ≤

∫

Rn

ρ(x)n/(n−1)K (x)1/(n−1) dx

≤ C(n)

log 1
s∑

j=0
|Bj |−1

∫

Bj

K (x)1/(n−1) dx,

where Bj = B(e1, exp(− j)). Since the function t *→ exp(µtn−1) is convex, we
can use Jensen’s inequality as follows:

|Bj |−1
∫

Bj

K (x)
1

n−1 dx ≤ µ
−1
n−1 log

1
n−1

(
|Bj |−1

∫

Bj

exp(µK (x)) dx
)

≤ µ
−1
n−1 log

1
n−1 (α−1

n exp(nj)K ) ≤ C(n, µ, K ) j
1

n−1 .

Thus

MK f
−1, ≤ C(n, µ, K )

log 1
s∑

j=0
j

1
n−1 ≤ C(n, µ, K ) log

n
n−1

1

s

= C(n, µ, K )κ
−n2

(n−1)µ .

Combining Lemmas 2.1, 4.3 and 4.4 yields

κn+n
2/µ ≤ C(n, µ, K )λ.

When we assume that ε in (4.1) is small enough depending on n, µ and K , we have
κ = R − 1. Then

(R − 1)n+n
2/µ ≤ C(n, µ, K )λ, (4.5)

as desired.

Remark 4.5. In the case of quasiconformal homeomorphisms, it is not difficult to

prove (4.5), with exponent n on the left, using the local-to-global principle. Indeed,
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let f be as above, but K -quasiconformal. Then, for every x ∈ B(3/2) and 0 < r <
1/4,

L(x, r)

"(x, r)
=: maxy∈S(x,r) | f (y) − f (x)|

miny∈S(x,r) | f (y) − f (x)| ≤ H, (4.6)

where H depends only on n and K , cf. [16]. By Lemma 4.1, |Re1− f (0)| > κ , with
the above notation. Therefore we can choose 0 < t < 1 such that f B(te1, 1− t) ⊂
f Bn \ Bn and diam f B(te1, 1 − t) = κ . Then, by (4.6), f B(te1, 1 − t) and,
consequently, f Bn \ Bn , contains a ball of radius κ/H . Thus, when λ is assumed
to be small enough depending on n and K , (R − 1)n ≤ C(n, K )λ. Using similar
arguments for the inner radius, one can prove (1.3).

4.2. Estimate for the inner radius

We now give an estimate for 1 − r . Notice that we could have r = 0 in general,

i.e. 0 /∈ f Bn . However, we will soon see that this does not happen when λ is small
enough. We denote

a′ = inf{| f (x)| : x ∈ B(2) \ B(3/2)}.
Lemma 4.6. We have

1− a′ ≤ C(n, µ, K )λ1/n.

Proof. Wemay assume that a′<1. Let η=min{1−a′, 1/2}. Since max
x∈B(3/2)

| f(x)|>1,
for every 1− η < t < 1 there exists

p(t) ∈ S(t) ∩ f (B(2) \ B(3/2)).

We may assume that λ < ε(n), so that S(t) ∩ f Bn += ∅ for every 1 − η < t < 1.

We choose a point

q(t) ∈ S(t) ∩ f Bn

so that

s(t) = |p(t) − q(t)| = min{|p(t) − y| : y ∈ S(t) ∩ f Bn}.
Since f −1 belongs to W 1,n by [7], also the restriction of f −1 to S(t) ∩ f B(2)
belongs to W 1,n for almost every t . We denote

Q(t) = S(t) ∩ B(p(t), s(t)).

Then, by the Sobolev embedding theorem in Q(t),

1

2
≤ | f −1(p(t)) − f −1(q(t))|

≤ C(n)s(t)1/n
( ∫

Q(t)
|∇| f −1|(y)|n dHn−1(y)

)1/n
(4.7)

≤ C(n)s(t)1/n
( ∫

Q(t)
K f −1(y)J f −1(y) dHn−1(y)

)1/n
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for almost every t , 1 − η < t < 1. Since K f −1(y) ≤ K ( f −1(y))n−1 almost
everywhere, see [8], (4.7) yields

C(n)−1s(t)−1 ≤
∫

Q(t)
K ( f −1(y))n−1 J f −1(y) dHn−1(y).

By integrating over t , using Fubini’s theorem and changing variables (the change

of variables formula holds under our assumptions, see [8]), we have

∫ 1

1−η

dt

s(t)
≤ C(n)

∫

B(2)
K (x)n−1 dx ≤ C(n, µ, K ). (4.8)

Here the last inequality follows from Jensen’s inequality and our assumption on K .

By Hölder’s inequality, and (4.8),

η =
∫ 1

1−η

s(t)(n−1)/n

s(t)(n−1)/n
dt

≤
( ∫ 1

1−η
s(t)n−1 dt

)1/n( ∫ 1

1−η

dt

s(t)

)(n−1)/n

≤ C(n, µ, K )
( ∫ 1

1−η
Hn−1(S(t) ∩ Bn \ f Bn) dt

)1/n
(4.9)

≤ C(n, µ, K )λ1/n.

Thus, when λ is small enough depending on n, µ and K , η = 1− a′ and the lemma
follows from (4.9).

Now we continue in a similar way as in the proof of (4.5). We claim that

(1− r)n+n
2/µ ≤ C(n, µ, K )λ. (4.10)

We may assume that f (e1) = min{| f (x)| : x ∈ S(1)} =: r ′. Notice that if r ′ < 1

is close to one and if λ is small, then r ′ = r . The argument given below will show

that r ′ is indeed close to one. Hence we will from now on abuse notation and denote
r ′ by r . By Lemma 4.6, we may assume that a′ ≥ (1 + r)/2. Let b = min{1, a′}.
Then, if we denote

r0 = r + (1− r)/4,

b − r0 ≥ (1− r)/4. Let

Wt = S(t) ∩ f (B(2) \ Bn).

Then

f −1Wt ⊂ B(3/2) \ B(e1, s)
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for every r0 < t < b by Theorem 3.2 and Lemma 4.6, where

s = exp(−C(n, µ, K )(1− r)−n/µ).

Therefore, f −1Wt separates B(e1, s)\Bn and S(3/2) in B(3/2)\Bn for every such
t . We denote , = {Wt : r0 < t < b}. Then Lemma 2.1 gives

M, ≤ MK f
−1,. (4.11)

We estimate M, from below as follows: if ρ ∈ Y , then

1− r

4
≤

∫ b

r0

∫

Wt

ρ(z) dHn−1(z) dt ≤
∫

Bn\ f Bn
ρ(y) dy

≤ λ1/n
( ∫

Rn

ρ(y)n/(n−1)
)(n−1)/n

,

and so

M, ≥ (1− r)n/(n−1)

4n/(n−1)λ1/(n−1)
. (4.12)

In order to give an upper bound for MK f
−1,, we notice that the separation prop-

erty mentioned above implies that the function ρ : B(2) → [0,∞),

ρ(x) = 100n|x − e1|1−nχB(3/2)\B(e1,s)(x)

belongs to the test function space X . By calculating as in Lemma 4.4, we see that

MK f
−1, ≤ C(n, µ, K )(1− r)−n

2/((n−1)µ). (4.13)

Combining (4.11), (4.12) and (4.13) then yields (4.10). Since r ≥ 1/2 for small
enough λ, Theorem 1.1 follows by combining (4.5) and (4.10).

5. Proof of Theorem 1.2

The example we construct below maps the unit ball onto the union of a ball and a

narrow cone. The shape of the cone will then determine the metric distortion and the

Fraenkel asymmetry of the image set. The narrowness of the cone is controlled by

the exponential integrability requirement of the map. In order to get a sequence of

maps we take a sequence of such cones whose diameters tend to zero. For technical

convenience we will work on half-spaces instead of balls and then use compositions

with Möbius transformations that map half-spaces onto balls.

We fix µ > 0 and a small a > 0, and denote ε = aε1(n)/µ << 1, where ε1(n)
will be determined later. The main part of the proof will be the construction of a
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Lipschitz continuous homeomorphism g : Rn → Rn
with the following properties.

Denote Ha = {x1 ≤ −a}, and by V the truncated cone

{−a ≤ x1 ≤ −|x | cos ε}.

Then we require that

g(H0) = Ha ∪ V and g(0) = 0. (5.1)

Also, we require that

∫

Bn
exp(µKg(x)) dx ≤ C(µ, n), (5.2)

and that g is K (n)-quasiconformal in R
n \ Bn .

Suppose for the moment that such a g exists. Denote τa(x) = x + ae1, and

letM : Rn → Rn
be a Möbius transformation that maps Bn onto H0 and e1 to 0.

Then consider

f =M−1 ◦ τa ◦ g ◦M.

Then, sinceM|B(e1,1/2) is bi-Lipschitz continuous, f maps B
n onto the union of

Bn and a bi-Lipschitz image of V when a is small enough. Thus

λ( f Bn) ≤ C(n)anεn−1 = C(n)an+(n−1)ε1(n)/µ ≤ C(n)β( f Bn)n+(n−1)ε1(n)/µ,

which is the desired estimate (when a → 0). Also, assuming (5.2), we can use the

conformality and the local bi-Lipschitz property ofM to show that

∫

B(2)
exp(µK f (x)) dx ≤ C(µ, n).

We conclude that in order to prove Theorem 1.2 it suffices to construct, for any

given small a > 0, a homeomorphism g as above.

Let µ0 = C0(n)µ, where C0(n) is determined later. We will consider the case
n ≥ 3; the case n = 2 is an easy modification. Let x = (r,ϕ,φ), where r = |x |
and 0 ≤ ϕ ≤ π is the angle ∠(x, 0, e1). Also, φ ∈ Sn−2, φ = x̂/|x̂ | when x̂ += 0,

where x̂ = (x2, . . . , xn). Then the map g is of the form

g(r,ϕ,φ) = (gr , η(r,ϕ),φ)

when x̂ += 0, g(0) = 0, and g(x) = gr x1/|x1| otherwise. Here

gr =






r exp(1) exp(−1) ≤ r ≤ ∞,

log−µ0 1
r
, exp(−(2a)−1/µ0) ≤ r ≤ exp(−1),

2a exp((2a)−1/µ0)r 0 ≤ r ≤ exp(−(2a)−1/µ0).
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In order to define η, we first set

η0 =





π − arccos

( a
gr

)
, r ≥ exp

(
−

( a

cos ε

)−1/µ0)
,

π − ε otherwise.

Then

η =






2η0ϕ

π
, 0 ≤ ϕ ≤ π/2,

(2− 2η0/π)ϕ − π + 2η0, π/2 ≤ ϕ ≤ π.

Now g is a Lipschitz homeomorphism and satisfies (5.1). We next estimate Kg.

The Jacobian determinant Jg is given by

Jg = ∂r gr · gr∂ϕη

r
·
(gr sin η

r sinϕ

)n−2
,

and

|Dg| ≤ C(n)max
{
∂r gr ,

gr∂ϕη

r
,
gr sin η

r sinϕ

}
.

Thus g is K (n)-quasiconformal when r ≥ exp(−1). Let A1 be the set where gr =
log−µ0 1

r
. Then

∂r gr = µ0 log
−1 1

r
· gr
r

,

|Dg| ≤ C(n)
gr

r

in A1. Also, since η0 ≤ 2π/3 in A1,

∂ϕη
( sin η

sinϕ

)n−2
≥ C(n)−1.

Therefore,

Kg ≤ max
{
C(n),

C(n)

µ0
log

1

r

}
,

and ∫

A1

exp(µKg(x)) dx ≤ 100n+µ +
∫

A1

|x |−α dx,

where α = C(n)/C0(n). Thus, when C0 is chosen to be large enough so that α ≤ 1,

the integral is bounded by 200n+µ.

Let A2 be the set where gr = 2a exp((2a)−1/µ0)r . Then

|Dg| ≤ C(n)gr

r
, ∂r gr = gr

r
, and ∂ϕη

( sin η

sinϕ

)n−2
≥ C(n)−1εn−1
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in A2. Therefore,

Kg ≤ C(n)ε1−n,

and

∫

A2

exp(µKg(x)) dx ≤ exp
(
C(n)µε1−n

)
|A2|

≤ exp
(
C(n)µε1−n − C(n, µ)a−1/µ0

)
.

If we now choose ε1(n) to be small enough depending on C0(n), then the integral
is smaller than 1 for small a. By combining the estimates we see that (5.2) holds

when a is small. The proof is complete.

6. Theorem 1.1 for inverse images

In this section we show that, when a suitable polynomial integrability condition on

K is assumed, an estimate similar to Theorem 1.1 holds for the inverse of a ball

under f .

Theorem 6.1. Let f : f −1B(2)→B(2) be aW 1,1-homeomorphism so that J f ≥ 0

almost everywhere, and

∫

f −1B(2)
K (x)p dx ≤ K | f −1Bn| (6.1)

for some K > 0 and p > n−1. Then there exists ε > 0, depending only on n, such

that

β( f −1Bn)n+n
2/(p−n+1) ≤ C(n, p, K )λ( f −1Bn)

whenever

λ( f −1Bn) < ε. (6.2)

We do not know if assumption (6.2) is really needed. Recall that in Theorem

1.1 such assumption is not needed thanks to Lemma 3.1.

The proof of Theorem 6.1 is similar to the proof of Theorem 1.1. Therefore,

we will leave out some details to avoid unnecessary repetition.

We may assume that | f −1Bn| = αn and that

λ = λ( f −1Bn) = | f −1(Bn) \ Bn|.

Let

R = min{s : f −1Bn ⊂ B(s)},
and

r = max{s : B(s) ⊂ f −1Bn}.
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We first claim that

(R − 1)n+n
2/(p−n+1) ≤ C(n, p, K )λ. (6.3)

We may assume that Re1 = f −1(e1). We choose Ut and , in (2.1) so that x = 0,

G = f −1Bn , and E = (1, 1+ (R − 1)/2).
We first establish the existence of a continuum with fixed diameter. This aux-

iliary result is later needed in to guarantee efficient modulus estimates.

Lemma 6.2. There exist κ = κ(n, p, K ) > 0 and a continuum γ in Bn ∩ f −1Bn
so that diam f γ ≥ κ .

Proof. If λ is small enough, then there exists p ∈ B(1/2) ∩ f −1Bn . Consequently,
p and S(1) ∩ f −1Bn can be connected in Bn ∩ f −1Bn by a continuum γ . Since
diam γ ≥ 1/2, diam f γ ≥ κ(n, p, K ) by Theorem 3.3.

Next we use the continuity estimate 3.3 for the inverse of f in order to guar-

antee that the image of the family {Ut } lies on annulus whose fatness is controlled
by the data. This will later lead to an upper bound for the corresponding conformal

modulus.

Lemma 6.3. There exists C = C(n, p, K ) > 0 so that if

s = exp(−C(R − 1)−n/((n−1)p)),

then f Ut separates f γ and F = Bn ∩ B(e1, s) in B
n for every 1 < t < 1+ (R −

1)/2.

Proof. Apply Theorem 3.3 as in the proof of Lemma 4.2.

Now we show that the weighted conformal modulus detects the cusplike be-

havior of f −1Bn in a suitable manner when the distortion is p-integrable.

Lemma 6.4. We have

C(n, p, K )M1/K, ≥ (R − 1)n/(n−1)λ(n−1−p)/(p(n−1)).

Proof. Let ρ ∈ X , where X is the test function space in Section 2. Then, by polar

coordinates and Hölder’s inequality,

R − 1

2
≤

∫

f −1(Bn)\Bn
ρ(x)K (x)−(n−1)/nK (x)(n−1)/n dx

≤
( ∫

f −1B(2)
ρ(x)n/(n−1)K (x)−1 dx

)(n−1)/n

×
( ∫

f −1B(2)
K (x)p dx

)(n−1)/(np)
| f −1(Bn) \ Bn|τ ,

where τ = (p − n + 1)/(np). The lemma follows.
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Next we prove an upper bound for the modulus on the image side. Instead of

giving the full calculation, which is a bit technical, we refer to some basic properties

of surface and path families. In particular, we use the Loewner estimate which gives

a lower bound for the conformal modulus of paths joining two disjoint continua in

terms of the diameters and distances of the continua, see [4].

Lemma 6.5. We have

M f, ≤ C(n, p, K )min{1, (R − 1)−n/((n−1)p)}.

Proof. We use the duality of the modulus M, of separating surfaces and conformal

capacity, and apply a classical estimate for conformal capacity. Namely, by Lemma

6.3 and [17], and the so-called Loewner property of the unit ball (cf. [4]), we have

M f, ≤ C(n) log
1

s
(6.4)

when s < κ (s is as in Lemma 6.3 and κ as in Lemma 6.2), and

M f, ≤ C(n, p, K )

otherwise. The lemma follows.

The estimate (6.3) now follows by combining Lemmas 2.2, 6.4 and 6.5. Now

we give an estimate for 1− r . We claim that

(1− r)n+n
2/(p−n+1) ≤ C(n, p, K )λ. (6.5)

Again, we need to assume that λ is small in order to guarantee that 0 ∈ f −1Bn . We
denote

a = inf{| f −1(x)| : x ∈ B(2) \ B(3/2)}.
Lemma 6.6. We have

1− a ≤ C(n, p, K )λ(p−n+1)/(np).

Proof. Wemay assume that a<1. Let η = min{1−a, 1/2} and s(t) = Hn−1(S(t)\
f −1Bn). As in the proof of Lemma 4.6, we apply the Sobolev embedding theorem
on spheres to conclude that

1 ≤ C(n)s(t)q−n+1
∫

S(t)∩ f −1B(2)
|∇| f |(x)|q dHn−1(x)

for almost every 1− η ≤ t ≤ 1, where q = np/(p + 1). Therefore, by integration
with respect to t , and (2.3),

∫ 1

1−η
s(t)n−1−q dt ≤ C(n, p, K ).
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By Hölder’s inequality,

η ≤
( ∫ 1

1−η
s(t)n−1−q dt

)1/τ( ∫ 1

1−η
s(t)n−1 dt

)(τ−1)/τ

≤ C(n, p, K )λ(τ−1)/τ ,

where τ = q/(n − 1). The lemma follows.

We now prove (6.5). Notice that

np

p − n + 1
≤ n + n2

p − n + 1
.

Thus we may assume that a ≥ (1 + r)/2 by Lemma 6.6. Also, as in the proof of
(4.10), we may assume that

r = min{| f −1(y)| : y ∈ S(1)}.

Let b = min{1, a} and r0 = r + (1− r)/4. Moreover, let

, = {Wt : r0 < t < b},

where

Wt = S(t) ∩ f −1(B(2) \ Bn).
Then, as in the proofs of (4.10) and (6.3), we have

C(n, p, K )M1/K, ≥ (1− r)n/(n−1)λ(n−1−p)/(p(n−1)),

and

M f, ≤ C(n, p, K )(1− r)−n/(p(n−1)).

Combining these estimates with Lemma 2.2 gives (6.5). The proof is complete.
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