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Sharp ill-posedness and well-posedness results

for the KdV-Burgers equation: the real line case

LUC MOLINET AND STÉPHANE VENTO

Abstract. We complete the known results on the Cauchy problem in Sobolev
spaces for the KdV-Burgers equation by proving that this equation is well-posed

in H−1(R)with a solution-map that is analytic from H−1(R) toC([0,T ];H−1(R))
whereas it is ill-posed in Hs(R), as soon as s < −1, in the sense that the flow-
map u0 "→ u(t) cannot be continuous from Hs(R) to even D′(R) at any fixed
t > 0 small enough. As far as we know, this is the first result of this type for a
dispersive-dissipative equation. The framework we develop here should be useful
to prove similar results for other dispersive-dissipative models.

Mathematics Subject Classification (2010): 35E15 (primary); 35M11, 35Q53,
35Q60 (secondary).

1. Introduction and main results

The aim of this paper is to establish positive and negative optimal results on the

local Cauchy problem in Sobolev spaces for the Korteweg-de Vries-Burgers (KdV-

B) equation posed on the real line:

ut + uxxx − uxx + uux = 0 (1.1)

where u = u(t, x) is a real-valued function.
This equation has been derived as an asymptotic model for the propagation of

weakly nonlinear dispersive long waves in some physical contexts when dissipative

effects occur (see [17]). It thus seems natural to compare the well-posedness results

on the Cauchy problem for the KdV-B equation with those for the Korteweg-de-

Vries (KdV) equation

ut + uxxx + uux = 0 (1.2)

that corresponds to the case where the dissipative effects are negligible, and for the

dissipative Burgers (dB) equation

ut − uxx + uux = 0 (1.3)

that corresponds to the case where the dissipative effect are dominant.
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To make this comparison more transparent it is convenient to define different

notions of well-posedness (and consequently ill-posedness) related to the smooth-

ness of the flow-map (see in the same spirit [7, 12]).

Throughout this paper we shall say that a Cauchy problem is (locally) C0-well-

posed in some normed function space X if, for any initial data u0 ∈ X , there exist a

radius R > 0, a time T > 0 and a unique solution u, belonging to some space-time

function space continuously embedded in C([0, T ]; X), such that for any t ∈ [0, T ]
the map u0 "→ u(t) is continuous from the ball of X centered at u0 with radius R
into X . If the map u0 "→ u(t) is of class Ck , k ∈ N ∪ {∞}, (respectively analytic)
we will say that the Cauchy isCk-well-posed (respectively analytically well-posed).

Finally a Cauchy problem will be said to be Ck-ill-posed, k ∈ N ∪ {∞}, if it is not
Ck-well-posed.

For the KdV equation on the line the situation is as follows: it is analytically

well-posed in H−3/4(R) (cf. [10, 13, 14] for the limit case) and C3-ill-posed below
this index1 (cf. [4]). On the other hand the results for the dissipative Burgers equa-

tion are much clear. Indeed this equation is known to be analytically well-posed

in Hs(R) for s ≥ −1/2 (cf. [1, 6] for the limit case) and C0-ill-posed in Hs for

s < −1/2 (cf. [6]). At this stage it is interesting to notice that the critical Sobolev
exponents obtained by scaling considerations are respectively −3/2 for the KdV
equation and −1/2 for the dissipative Burgers equation. Hence for the KdV equa-
tion there is an important gap between this critical exponent and the best exponent

obtained for well-posedness.

Now, concerning the KdV-B equation, Molinet and Ribaud [16] proved that

this equation is analytically well-posed in Hs(R) as soon as s > −1. They also
established that the index −1 is critical for C2-well-posedness. The surprising
part of this result was that, according to the above results, the C∞ critical index

s∞c (KdV-B) = −1 was lower than that of the KdV equation s∞c (KdV) = −3/4 and
also lower than the C∞ index s∞c (dB) = −1/2 of the dissipative Burgers equation.

In this paper we want in some sense to complete this study by proving that the

KdV-B equation is analytically well-posed in H−1(R) and C0-ill-posed in Hs(R)
for s < −1 in the sense that the flow-map defined on H−1(R) is not continuous
for the topology induced by Hs , s < −1, with values even in D′(R). It is worth
emphasizing that the critical index s0c = −1 is still far away from the critical index
sc = −3/2 given by the scaling symmetry of the KdV equation. We believe that
this result strongly suggest that the KdV equation should also be C0-ill-posed in

Hs(R) for s < −1.
To reach the critical Sobolev space H−1(R) we adapt the refinement of Bour-

gain’s spaces that appeared in [20] and [19] to the framework developed in [16].

One of the main difficulties is related to the choice of the extension for negative

times of the Duhamel operator (see the discussion at the beginning of Section 4).

The approach we develop here to overcome this difficulty should be useful to prove

optimal results for other dispersive-dissipative models. The ill-posedness result is

1 See also [5] where it is proven that the solution-map is not even uniformly continuous on
bounded sets below this index.
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due to a high to low frequency cascade phenomenon that was first observed in [2]

for a quadratic Schrödinger equation.

At this stage it is worth noticing that, using integrability theory, it was recently

proved in [12] that the flow-map of the KdV equation can be uniquely continuously

extended in H−1(T). Therefore, on the torus, KdV is C0-well-posed in H−1 if one
takes as uniqueness class, the class of strong limit in C([0, T ]; H−1(T)) of smooth
solutions. In the present work we use in a crucial way the global Kato smoothing

effect that does not hold on the torus. However, in a forthcoming paper ( [15])

we will show how one can modify the approach developed here to prove that the

same results hold on the torus, i.e., analytic well-posedness in H−1(T) and C0-ill-
posedness in Hs(T) for s < −1. In view of the result of Kappeler and Topalov
for KdV it thus appears that, at least on the torus, even if the dissipation part of

the KdV-B equation (it is important to notice that the dissipative term −uxx is of
lower order than the dispersive one uxxx ) allows to lower the C

∞ critical index with

respect to the KdV equation, it does not permit to improve the C0 critical index.

Our results can be summarized as follows:

Theorem 1.1. The Cauchy problem associated to (1.1) is locally analytically well-

posed in H−1(R). Moreover, at every point u0 ∈ H−1(R) there exist T = T (u0) >
0 and R = R(u0) > 0 such that the solution-map u0 "→ u is analytic from the

ball centered at u0 with radius R of H−1(R) into C([0, T ]; H−1(R)). Finally, the
solution u can be extended for all positive times and belongs to C(R∗

+; H∞(R)).

Theorem 1.2. The Cauchy problem associated to (1.1) is ill-posed in Hs(R) for
s < −1 in the following sense: there exists T > 0 such that for any 0 < t < T ,

the flow-map u0 "→ u(t) constructed in Theorem 1.1 is discontinuous at the origin
from H−1(R) endowed with the topology induced by Hs(R) into D′(R).

2. Ill-posedness

The ill-posedness result can be viewed as an application of a general result proved

in [2]. Roughly speaking this general ill-posedness result requires the following

two ingredients:

1. The equation is analytically well-posed until some index s∞c with a solution-map

that is also analytic.

2. Below this index one iteration of the Picard scheme is not continuous. The

discontinuity should be driven by high frequency interactions that blow up in

frequencies of order less than or equal to one.

The first ingredient is given by Theorem 1.1 whereas the second one has been de-

rived in [16] where the discontinuity of the second iteration of the Picard scheme in

Hs(R) and Hs(T) for s < −1 is established.
However, due to the nature of the equation, our result is a little better than that

given by the general theory developed in [2]. Indeed, we will be able to prove the
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discontinuity of the flow-map u0 "→ u(t) for any fixed t > 0 less than some T > 0

and not only of the solution-map u0 "→ u. Therefore for sake of completeness we

will prove the result by hand here.

Let us first recall the counter example constructed in [16] that we renormalize

here in H−1(R). We define the sequence of initial data {φN }N≥1 by

φ̂N = N
(
χIN (ξ) + χIN (−ξ)

)
, (2.1)

where IN = [N , N + 2] and φ̂N denotes the space Fourier transform of φN .
Note that ‖φN‖H−1(R) ∼ 1 and φN → 0 in Hs(R) for s < −1. This sequence
yields a counter example to the continuity of the second iteration of the Picard

Scheme in Hs(R), s < −1, that is given by

A2(t, h, h) =
∫ t

0

S(t − t ′)∂x [S(t ′)h]2 dt ′

where S is the semi group associated to the linear part of (1.1) (see (3.2)). Indeed,

computing the space Fourier transform we get

Fx (A2(t,φN ,φN ))(ξ) =
∫

R
e−tξ

2

eitξ
3

φ̂N (ξ1)φ̂N (ξ − ξ1)

(iξ)

∫ t

0

e−(ξ21+(ξ−ξ1)
2−ξ2)t ′ ei(ξ

3
1+(ξ−ξ1)

3−ξ3)t ′ dt ′ dξ1

= (iξ) eitξ
3

e−tξ
2
∫

R
φ̂N (ξ1)φ̂N (ξ − ξ1)

e−(ξ21+(ξ−ξ1)
2−ξ2)t ei3ξξ1(ξ−ξ1)t − 1

−2ξ1(ξ − ξ1) + i3ξξ1(ξ − ξ1)
dξ1 ,

so that

‖A2(t,φN ,φN )‖2Hs ≥
∫ 1/2

−1/2
(1+ |ξ |2)s |Fx (A2(t,φN ,φN ))(ξ)|2 dξ

= N4
∫ 1/2

−1/2
(1+ |ξ |2)s |ξ |2

∣∣∣∣∣

∫

Kξ

e−(ξ21+(ξ−ξ1)
2)t ei3ξξ1(ξ−ξ1)t − e−ξ2 t

−2ξ1(ξ − ξ1) + i3ξξ1(ξ − ξ1)
dξ1

∣∣∣∣∣

2

dξ ,

where

Kξ = {ξ1 / ξ − ξ1 ∈ IN , ξ1 ∈ −IN } ∪ {ξ1 / ξ1 ∈ IN , ξ − ξ1 ∈ −IN } .

Note that for any ξ ∈ [−1/2, 1/2], one has mes(Kξ ) ≥ 1 and

{
3ξξ1(ξ − ξ1) ∼ N2

2ξ1(ξ − ξ1) ∼ N2
, ∀ξ1 ∈ Kξ .
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Therefore, fixing 0 < t < 1 we have

Re (e−(ξ21+(ξ−ξ1)
2)t ei3ξξ1(ξ−ξ1)t − e−ξ2 t ) ≤ −e−t/4 + e−2(N+2)2t ,

which leads for N = N (t) > 0 large enough to

∣∣∣
∫

Kξ

e−(ξ21+(ξ−ξ1)
2)t ei3ξξ1(ξ−ξ1)t − e−ξ2 t

−2ξ1(ξ − ξ1) + i3ξξ1(ξ − ξ1)
dξ1

∣∣∣ ≥ C
e−t/4

N2

and thus

‖A2(t,φN ,φN )‖2Hs ≥ Ce−t/4 ≥ C0 (2.2)

for some positive constant C0. Since φN → 0 in Hs(R), for s < −1, this ensures
that, for any fixed t > 0, the map u0 "→ A2(t, u0, u0) is not continuous at the
origin from Hs(R) into Hs(R). Actually since one can replace A2(tN ,φN ,φN )
by its projection on the low frequencies in (2.2) we also get the discontinuity from

Hs(R) into D′(R).
Now, we will use that A2(t,φN ,φN ) is of order of one in Hs(R) to prove that

somehow A2(t, εφN , εφN ) is the main contribution to u(t, εφN ) in Hs(R) as soon
as s < −1, ε > 0 is small and N is large enough. The discontinuity of u0 "→ u(t)
will then follow from that of u0 "→ A2(t, u0, u0).

According to Theorem 1.1 there exist T > 0 and ε0 > 0 such that for any

|ε| ≤ ε0, any ‖h‖H−1(R) ≤ 1 and 0 ≤ t ≤ T ,

u(t, εh) = εS(t)h +
+∞∑

k=2
εk Ak(t, h

k)

where hk :=(h, . . . , h), hk "→ Ak(t,h
k) is a k-linear continuous map from H−1(R)k

into C([0, T ]; H−1(R)) and the series converges absolutely in C([0, T ]; H−1(R)).
In particular,

u(t, εφN ) − ε2A2(t,φN ,φN ) = εS(t)φN +
+∞∑

k=3
εk Ak(t,φ

k
N ) .

On the other hand, ‖S(t)φN‖Hs(R) ≤ ‖φN‖Hs(R) ∼ N1+s and

∥∥∥
∞∑

k=3
εk Ak(t,φ

k
N )

∥∥∥
H−1 ≤

( ε

ε0

)3 ∞∑

k=3
εk0‖Ak(t,φkN )‖H−1 ≤ Cε3 .

Hence, for s < −1,

sup
t∈[0,T ]

∥∥∥u(t, εφN ) − ε2A2(t,φN ,φN )
∥∥∥
Hs(R)

≤ Cε3 + O(N1+s) .
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In view of (2.2) this ensures that, fixing 0 < t < 1 and taking ε small enough
and N large enough, ε2A2(t,φN ,φN ) is a “good” approximation of u(t, εφN ). In
particular, taking ε ≤ C0C

−1/4 we get

‖u(t, εφN )‖Hs(R) ≥ C0ε
2/2+ O(N1+s) .

Since u(t, 0) ≡ 0 and φN → 0 in Hs(R) for s < −1 this leads to the discontinuity
of the flow-map from Hs(R) into Hs(R) at the origin by letting N tend to infinity.
Again since one can replace u(t, εφN ) by its projection on the low frequencies

in the last inequality, the discontinuity of the flow-map from Hs(R) into D′(R)
follows. Finally, it is worth noticing that since φN ⇀ 0 in H−1(R) we also get that
u0 "→ u(t, u0) is discontinuous from H−1(R) equipped with its weak topology
with values even in D′(R).

3. Resolution space

In this section we introduce some notation and we define our functional framework.

For A, B > 0, A ! B means that there exists c > 0 such that A ≤ cB. When

c is a small constant we use A / B. We write A ∼ B to denote the statement

that A ! B ! A. For u = u(t, x) ∈ S ′(R2), we denote by û (or Fxu) its
Fourier transform in space, and by ũ (or Fu) the space-time Fourier transform of
u. We consider the usual Lebesgue spaces L p, L

p
x L

q
t and abbreviate L

p
x L

p
t as L

p.

Let us define the Japanese bracket 〈x〉 = (1 + |x |2)1/2 so that the standard non-
homogeneous Sobolev spaces are endowed with the norm ‖ f ‖Hs = ‖〈∇〉s f ‖L2 .

We also need a Littlewood-Paley analysis. Let η ∈ C∞
0 (R) be such that η ≥ 0,

supp η ⊂ [−2, 2], η ≡ 1 on [−1, 1]. We next define ϕ(ξ) = η(ξ) − η(2ξ). Any
summation over capitalized variables such as N , L is presumed to be dyadic, i.e.,
these variables range over numbers of the form 2), ) ∈ Z. We set ϕN (ξ) = ϕ(ξ/N )
and define the operator PN by F(PNu) = ϕN û. We introduce ψL(τ, ξ) = ϕL(τ −
ξ3) and, for any u ∈ S ′(R2),

Fx (PNu(t))(ξ) = ϕN (ξ)û(t, ξ), F(QLu)(τ, ξ) = ψL(τ, ξ)ũ(τ, ξ).

Roughly speaking, the operator PN localizes in the annulus {|ξ | ∼ N } whereas QL

localizes in the region {|τ − ξ3| ∼ L}.
Furthermore we define more general projections P!N = ∑

N1!N PN1 , Q4L =∑
L14L QL1 etc.

Let e−t∂xxx be the propagator associated to the Airy equation and define the
two-parameter linear operator W by

Fx (W (t, t ′)φ)(ξ) = exp(i tξ3 − |t ′|ξ2)φ̂(ξ), t ∈ R. (3.1)

The operator W : t "→ W (t, t) is clearly an extension to R of the linear semi group

S(·) associated with (1.1) that is given by
Fx (S(t)φ)(ξ) = exp(i tξ3 − tξ2)φ̂(ξ), t ∈ R+. (3.2)
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We will mainly work on the integral formulation of (1.1):

u(t) = S(t)u0 − 1

2

∫ t

0

S(t − t ′)∂xu2(t ′)dt ′, t ∈ R+. (3.3)

Actually, to prove the local existence result, we will apply a fixed-point argument

to the following extension of (3.3) (see Section 4 for some explanations on this

choice).

u(t) = η(t)

[
W (t)u0 − 1

2
χR+(t)

∫ t

0

W (t − t ′, t − t ′)∂xu2(t ′)dt ′

−1
2
χR−(t)

∫ t

0

W (t − t ′, t + t ′)∂xu2(t ′)dt ′
]

.

(3.4)

It is clear that if u solves (3.4) then u is a solution of (3.3) on [0, T ], T < 1.

In [16], the authors performed the iteration process in the space Xs,b equipped

with the norm

‖u‖Xs,b = ‖〈i(τ − ξ3) + ξ2〉b〈ξ〉s ũ‖L2
which takes advantage of the mixed dispersive-dissipative part of the equation. In

order to handle the endpoint index s = −1 without encountering logarithmic diver-
gence, we will rather work in its Besov version Xs,b,q (with q = 1) defined as the

weak closure of the test functions that are uniformly bounded by the norm

‖u‖Xs,b,q =



∑

N

[
∑

L

〈N 〉sq〈L + N2〉bq‖PN QLu‖q
L2xt

]2/q


1/2

.

This Besov refinement, which usually provides suitable control for the nonlinear

terms, is not sufficient here to get the desired bound especially in the high-high

regime, where the nonlinearity makes interact two components of the solution u

with the same high frequency. To handle these divergences, inspired by [19], we

introduce, for b ∈
{
1
2
,−1

2

}
, the space Y s,b endowed with the norm

‖u‖Y s,b =
(

∑

N

[〈N 〉s‖F−1[(i(τ − ξ3) + ξ2 + 1)b+1/2ϕN ũ]‖L1t L2x ]
2

)1/2
,

so that

‖u‖
Y

−1, 1
2

∼
(

∑

N

[〈N 〉−1‖(∂t + ∂xxx − ∂xx + I )PNu‖L1t L2x ]
2

)1/2
.

We next form the resolution space Ss = Xs,
1
2 ,1 + Y s,

1
2 , and the “nonlinear space”

N s = Xs,−
1
2 ,1 + Y s,−

1
2 in the usual way:

‖u‖X+Y = inf{‖u1‖X + ‖u2‖Y : u1 ∈ X, u2 ∈ Y, u = u1 + u2}.
In the rest of this section we study some basic properties of the function space S−1.
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Lemma 3.1. For any φ ∈ L2,

(
∑

L

[L1/2‖QL(e
−t∂xxxφ)‖L2]2

)1/2
! ‖φ‖L2 .

Proof. From the Plancherel theorem, we have

(
∑

L

[L1/2‖QL(e
−t∂xxxφ)‖L2]2

)1/2
∼ ‖|τ − ξ3|1/2F(e−t∂xxxφ)‖L2 .

Moreover if we set ηT (t) = η(t/T ) for T > 0, then

F(ηT (t)e−t∂xxxφ)(τ, ξ) = η̂T (τ − ξ3)φ̂(ξ).

Thus we obtain with the changes of variables τ − ξ3 → τ ′ and T τ ′ → σ that

‖|τ − ξ3|1/2F(ηT (t)e−t∂xxxφ)‖L2 ! ‖φ‖L2‖|τ ′|1/2T η̂(T τ ′)‖L2
τ ′

! ‖φ‖L2 .

Taking the limit T → ∞, this completes the proof.

Lemma 3.2.

1. For each dyadic N , we have

‖(∂t + ∂xxx )PNu‖L1t L2x ! ‖PNu‖
Y
0, 1
2
. (3.5)

2. For all u ∈ S−1,
‖u‖L2xt ! ‖u‖S−1 . (3.6)

3. For all u ∈ S0, (
∑

L

[L1/2‖QLu‖L2]2
)1/2

! ‖u‖S0 . (3.7)

Proof.

1. From the definition of Y 0,
1
2 , the right-hand side of (3.5) can be rewritten as

‖PNu‖
Y
0, 1
2

= ‖(∂t + ∂xxx − ∂xx + I )PNu‖L1t L2x .

Thus, by the triangle inequality, it is equivalent to prove (3.5) with ∂t + ∂xxx
replaced by I − ∂xx . Using the Plancherel theorem as well as the Young and

Hölder inequalities, we get the

‖(I − ∂xx )PNu‖L1t L2x

!
∥∥∥∥∥F

−1
t

(
ξ2 + 1

i(τ − ξ3) + ξ2 + 1
(i(τ − ξ3) + ξ2 + 1)ϕN ũ

)∥∥∥∥∥
L1t L

2
ξ

.
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In the sequel, it will be convenient to write ϕN for ϕN/2 + ϕN + ϕ2N . With this
slight abuse of notation, we obtain

‖(I − ∂xx )PNu‖L1t L2x

!
∥∥∥∥∥F

−1
t

(
ϕN (ξ)(ξ2 + 1)

i(τ − ξ3) + ξ2 + 1

)∥∥∥∥∥
L1t L

∞
ξ

‖(∂t + ∂xxx − ∂xx + I )PNu‖L1t L2x .

On the other hand, a direct computation yields

∣∣∣∣∣F
−1
t

(
ϕN (ξ)(ξ2 + 1)

i(τ − ξ3) + ξ2 + 1

)∣∣∣∣∣ = CϕN (ξ)(1+ ξ2)e−t (1+ξ2)χR+(t)

so that
∥∥∥∥∥F

−1
t

(
ϕN (ξ)(ξ2 + 1)

i(τ − ξ3) + ξ2 + 1

)∥∥∥∥∥
L1t L

∞
ξ

! ‖〈N 〉2e−t〈N 〉2χR+(t)‖L1t ! 1,

and the claim follows.

2. We show that for any fixed dyadic N , we have

‖PNu‖L2 ! ‖PNu‖S−1 . (3.8)

Estimate (3.6) then follows after square-summing. Observe that (3.8) follows

immediately from the estimate 〈N 〉−1〈L + N2〉1/2 " 1 if the right-hand side is

replaced by ‖PNu‖
X

−1, 1
2

,1 , so it suffices to prove (3.8) with ‖PNu‖
Y

−1, 1
2
in the

right-hand side. But applying again the Young and Hölder inequalities, this is

easily verified:

‖PNu‖L2 =
∥∥∥∥F

−1
t

(
1

i(τ − ξ3) + ξ2 + 1
(i(τ − ξ3) + ξ2 + 1)ϕN ũ

)∥∥∥∥
L2tξ

!
∥∥∥∥F

−1
t

(
ϕN (ξ)

i(τ − ξ3) + ξ2 + 1

)∥∥∥∥
L2t L

∞
x

‖PNu‖
Y
0, 1
2

! ‖e−t〈N 〉2χR+(t)‖L2t ‖PNu‖Y 0, 12
! 〈N 〉−1‖PNu‖

Y
0, 1
2

! ‖PNu‖
Y

−1, 1
2
.

3. First it is clear from definitions that
(∑

L [L1/2‖QLu‖L2]2
)1/2 ! ‖u‖

X
0, 1
2

,1 .

Setting now v = (∂t + ∂xxx )u, we see that u can be rewritten as

u(t) = e−t∂xxx u(0) +
∫ t

0

e−(t−t ′)∂xxx v(t ′)dt ′.
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By virtue of Lemma 3.1, we have

(
∑

L

[L1/2‖QLe
−t∂xxx u(0)‖L2]2

)1/2
! ‖u(0)‖L2 ! ‖u‖L∞

t L2x
.

Moreover, we get as previously

‖u‖L∞
t L2x

!
∥∥∥∥F

−1
t

(
1

i(τ − ξ3) + ξ2 + 1

)∥∥∥∥
L∞
tξ

‖u‖
Y
0, 1
2

! ‖u‖
Y
0, 1
2
. (3.9)

Thanks to estimate (3.5), it remains to show that

(
∑

L

[
L1/2

∥∥∥∥QL

∫ t

0

e−(t−t ′)∂xxx v(t ′)dt ′
∥∥∥∥
L2

]2)1/2
! ‖v‖L1t L2x . (3.10)

In order to prove this, we split the integral
∫ t
0 =

∫ t
−∞ −

∫ 0
−∞. By Lemma 3.1,

the contribution of the first term is bounded by

!
∥∥∥∥∥

∫ 0

−∞
et

′∂xxx v(t ′)dt ′
∥∥∥∥∥
L2x

! ‖v‖L1t L2x .

For the last term, by Minkowski it suffices to show that

(
∑

L

[L1/2‖QL(χt>t ′e
−(t−t ′)∂xxx v(t ′))‖L2t x ]

2

)1/2
! ‖v(t ′)‖L2x .

This can be proved by a time-restriction argument. Indeed, for any T > 0, we

have

(
∑

L

[L1/2‖QL(ηT (t)χt>t ′e
−(t−t ′)∂xxx v(t ′))‖L2]2

)1/2

! ‖|τ |1/2v̂(t ′)Ft (ηT (t)χt>t ′)(τ )‖L2
! ‖v(t ′)‖L2‖|τ |1/2Ft (η(t)χtT>t ′)‖L2
! ‖v(t ′)‖L2 .

We conclude by passing to the limit T → ∞.

We now state a general and classical result which ensures that our resolution space

is well compatible with the dispersive properties of the Airy equation. Actually, it is

a direct consequence of Lemma 4.1 in [19] together with the fact that the resolution

space S0 used by Tao to solve 4-KdV contains our space S0 thanks to estimate (3.5)
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Lemma 3.3 (Extension lemma). Let Z be a Banach space of functions on R × R
with the property that

‖g(t)u(t, x)‖Z ! ‖g‖L∞
t

‖u(t, x)‖Z
holds for any u ∈ Z and g ∈ L∞

t (R). Let T be a spacial linear operator for which

one has the estimate

‖T (e−t∂xxx PNφ)‖Z ! ‖PNφ‖L2
for some dyadic N and for all φ. Then one has the embedding

‖T (PNu)‖Z ! ‖PNu‖S0 .
Combined with the unitarity of the Airy group in L2 and the sharp Kato smoothing

effect

‖∂xe−t∂xxxφ‖L∞
x L2t

! ‖φ‖L2, ∀φ ∈ L2, (3.11)

we deduce the following result.

Corollary 3.4. For any u, we have2

‖u‖
L∞
t H−1

x
! ‖u‖S−1, (3.12)

‖PNu‖L∞
x L2t

! N−1‖PNu‖S0, (3.13)

provided the right-hand side is finite. In particular, S−1 ↪→ L∞
t H−1.

4. Linear estimates

In this section we prove linear estimates related to the operator W as well as to the

extension of the Duhamel operator introduced in (3.4).

At this this stage let us give some explanations on our choice of this extension.

Let us keep in mind that this extension has to be compatible with linear estimates

in both norms Xs,1/2,1 and Y s,1/2. First, since Xs,1/2,1 is a Besov in time space

we are not allowed to simply multiply the Duhamel term by χR+(t). Second, in
order to prove the desired linear estimate in Y s,1/2 the strategy is to use the fact

that the Duhamel term satisfies a forced KdV-B equation. Unfortunately, it turns

out that the extension introduced in [16], that makes the calculus simple, does not

satisfy such a PDE for negative time. The new extension that we introduce in this

work has the properties to satisfy some forced PDE related to KdV-B for negative

times (see (4.14)) and to be compatible with linear estimates in Xs,1/2,1. However

the proof is now a little more complicated even if it follows the same lines as that

of [16, Propositions 2.3], see also [11, Proposition 4.4].

The following lemma is a dyadic version of [16, Proposition 2.1].

2 Note that (3.12) can also be deduced from the estimate (3.9).
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Proposition 4.1. For all φ ∈ H−1(R), we have

‖η(t)W (t)φ‖S−1 ! ‖φ‖H−1 . (4.1)

Proof. We are going to bound the left-hand side in (4.1) by the X−1, 12 ,1-norm of

η(t)W (t)φ. This is equivalent to prove that

∑

L

〈L + N2〉1/2‖PN QL(η(t)W (t)φ)‖L2xt ! ‖PNφ‖L2 (4.2)

for each dyadic N . Using Plancherel, we obtain

∑

L

〈L + N2〉1/2‖PN QL(η(t)W (t)φ)‖L2xt

!
∑

L

〈L + N2〉1/2‖ϕN (ξ)ϕL(τ )φ̂(ξ)Ft (η(t)e−|t |ξ2)(τ )‖L2τξ

! ‖PNφ‖L2
∑

L

〈L + N2〉1/2‖ϕN (ξ)PL(η(t)e−|t |ξ2)‖L∞
ξ L2t

.

Hence it remains to show that
∑

L

〈L + N2〉1/2‖ϕN (ξ)PL(η(t)e−|t |ξ2)‖L∞
ξ L2t

! 1. (4.3)

We split the summand into L ≤ 〈N 〉2 and L ≥ 〈N 〉2. In the former case, we get by
Bernstein

∑

L≤〈N 〉2
〈L + N2〉1/2‖ϕN (ξ)PL(η(t)e−|t |ξ2)‖L∞

ξ L2t

!
∑

L≤〈N 〉2
〈N 〉L1/2 sup

|ξ |∼N
‖η(t)e−|t |ξ2‖L1t .

Noticing that one can bound ‖η(t)e−|t |ξ2‖L1 either by ‖η‖L1 or by ‖e−|t |ξ2‖L1t ∼
|ξ |−2, we infer that

∑

L≤〈N 〉2
〈L + N2〉1/2‖ϕN (ξ)PL(η(t)e−|t |ξ2)‖L∞

ξ L2t
! 〈N 〉2 min(1, N−2) ! 1.

Now we deal with the case L ≥ 〈N 〉2. A standard paraproduct rearrangement

allows us to write

PL(η(t)e−|t |ξ2) = PL




∑

M"L

(PMη(t)P!Me
−|t |ξ2 + P!Mη(t)PMe

−|t |ξ2




= PL(I ) + PL(I I ).
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Using Schur’s test, the term PL(I ) is directly bounded by

∑

L≥〈N 〉2
〈L + N2〉1/2‖ϕN PL(I )‖L∞

ξ L2t

!
∑

L

L1/2
∑

M"L

‖ϕN PMη(t)‖L∞
ξ L2t

‖ϕN P!Me
−|t |ξ2‖L∞

ξ t

!
∑

M

M1/2‖PMη‖L2t ! 1.

Similarly for PL(I I ), we have

∑

L≥〈N 〉2
〈L + N2〉1/2‖ϕN PL(I I )‖L∞

ξ L2t

!
∑

L

L1/2
∑

M"L

‖ϕN P!Mη(t)‖L∞
ξ t

‖ϕN PMe−|t |ξ2‖L∞
ξ L2t

!
∑

M

M1/2‖ϕN PMe−|t |ξ2‖L∞
ξ L2t

.

Moreover, it is not too hard to check that if |ξ | ∼ N , then ‖PMe−|t |ξ2‖L2t !
‖PMe−|t |N2‖L2t , thus

∑

L≥〈N 〉2
〈L + N2〉1/2‖ϕN PL(I I )‖L∞

ξ L2t
!

∑

M

M1/2‖PMe−|t |N2‖L2t ! 1,

where we used the fact that the Besov space Ḃ
1/2
2,1 has a scaling invariance and

e−|t | ∈ Ḃ
1/2
2,1 .

Lemma 4.2. For w ∈ S(R2), consider kξ defined on R by

kξ (t) = η(t)ϕN (ξ)

∫

R

eitτ e(t−|t |)ξ2 − e−|t |ξ2

iτ + ξ2
w̃(τ )dτ.

Then, for all ξ ∈ R, it holds

∑

L

〈L + N2〉1/2‖PLkξ‖L2t !
∑

L

〈L + N2〉−1/2‖ϕL(τ )ϕN (ξ)w̃‖L2τ .
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Proof. Following [16], we rewrite kξ as

kξ (t) = η(t)e(t−|t |)ξ2
∫

|τ |≤1

eitτ − 1

iτ + ξ2
w̃N (τ )dτ

+ η(t)

∫

|τ |≤1

e(t−|t |)ξ2 − e−|t |ξ2

iτ + ξ2
w̃N (τ )dτ

+ η(t)e(t−|t |)ξ2
∫

|τ |≥1

eitτ

iτ + ξ2
w̃N (τ )dτ − η(t)

∫

|τ |≥1

e−|t |ξ2

iτ + ξ2
w̃N (τ )dτ

= I + I I + I I I − I V

where wN is defined by Fx (wN )(ξ) = ϕN (ξ)Fx (w)(ξ).

Contribution of I V . Clearly we have

‖PL(I V )‖L2t ! ‖PL(η(t)e−|t |ξ2)‖L2t
∫

|τ |≥1

|w̃N (τ )|
〈iτ + ξ2〉dτ.

On the other hand, by Cauchy-Schwarz in τ ,

∫

|τ |≥1

|w̃N (τ )|
〈iτ + ξ2〉dτ !

∑

L

〈L + N2〉−1‖ϕLw̃N‖L1τ !
∑

L

〈L + N2〉−1/2‖ϕLw̃N‖L2τ ,

which combined with (4.3) yields the desired bound.

Contribution of I I . By the Cauchy-Schwarz inequality,

‖PL(I I )‖L2t ! ‖PL(η(t)(e(t−|t |)ξ2 − e−|t |ξ |2))‖L2t

×
(∫ |w̃N (τ )|2

〈iτ + ξ2〉dτ

)1/2 (∫

|τ |≤1

〈iτ + ξ2〉
|iτ + ξ2|2 dτ

)1/2

! ‖PL(η(t)(e(t−|t |)ξ2 − e−|t |ξ |2))‖L2t
× N−2〈N 〉

∑

L

〈L + N2〉−1/2‖ϕLw̃N‖L2τ .

(4.4)

Hence we need to estimate

∑

L

〈L + N2〉1/2‖PL(η(t)(e(t−|t |)ξ2 − e−|t |ξ |2))‖L2t

!
∑

L

〈L + N2〉1/2(‖PL(η(t)e(t−|t |)ξ2)‖L2t + ‖PL(η(t)e−|t |ξ2)‖L2t ).
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The second term in the right-hand side is bounded by 1 thanks to estimate(4.3).

Setting θ(t) = η(t)e(t−|t |)ξ2 , it is not too hard to check that one integration by parts
yields |θ̂(τ )| ! 1

|τ | whereas two integrations yield |θ̂(τ )| ! 〈ξ〉2
|τ |2 . We thus infer that

∑

L

〈L + N2〉1/2‖ϕL θ̂‖L2τ !
∑

L≤1
〈N 〉L1/2‖θ‖L1t

+
∑

1≤L≤〈N 〉2

〈N 〉
L1/2

+
∑

L≥〈N 〉2
〈L〉1/2 〈N 〉2

L3/2
! 〈N 〉.

(4.5)

This provides the result for N ≥ 1. In the case N ≤ 1, we use a Taylor expansion

and obtain

‖PL(η(t)(e(t−|t |)ξ2 − 1+ 1− e−|t |ξ2)‖L2t
!

∑

n≥1

|ξ |2n
n!

(
‖PL(|t |nη(t))‖L2t + 2n‖PL(tnη(t)χR−(t))‖L2t

)
.

According to the Sobolev embedding H1↪→B
1/2
2,1 as well as the estimate‖χR− f‖H1!

‖ f ‖H1 provided f (0) = 0, we deduce

∑

L

〈L + N2〉1/2‖PL(η(t)(e(t−|t |)ξ2 − e−|t |ξ2))‖L2t

! ξ2
∑

n≥1

1

n! (‖|t |
nη(t)‖

B
1/2
2,1

+ 2n‖tnη(t)χR−(t)‖
B
1/2
2,1

)

! N2
∑

n≥1

2n

n! ‖|t |
nη(t)‖H1t ! N2.

Gathering this and (4.4) we conclude that

∑

L

〈L + N2〉1/2‖PL(I I )‖L2t !
∑

L

〈L + N2〉−1/2‖ϕLw̃N‖L2τ .

Contribution of I . Since I can be rewritten as

I = η(t)e(t−|t |)ξ2
∫

|τ |≤1

∑

n≥1

(i tτ )n

n!
w̃N (τ )

iτ + ξ2
dτ,

we have

‖PL(I )‖L2t !
∑

n≥1

1

n!‖PL(t
nθ(t))‖L2t

∫

|τ |≤1

|τ |n
|iτ + ξ2| |w̃N (τ )|dτ.
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Using Cauchy-Schwarz we get, for n ≥ 1,

∫

|τ |≤1

|τ |n
|iτ + ξ2| |w̃N (τ )dτ !

(∫ |w̃N (τ )|2
〈iτ + ξ2〉dτ

)1/2 (∫

|τ |≤1

|τ |2〈iτ + ξ2〉
|iτ + ξ2|2 dτ

)1/2

! 〈N 〉−1
∑

L

〈L + N2〉−1/2‖ϕLw̃N‖L2τ .

Therefore, it suffices to show that (see above the contribution of I I for the definition

of θ)
∑

L

〈L + N2〉1/2
∑

n≥1

1

n!‖PL(t
nθ(t))‖L2t ! 〈N 〉.

But again we have |Ft (tnθ(t))| ! 2n min( 1|τ | ,
〈ξ〉2
τ2

) and arguing as in (4.5), we get

∑

L

〈L + N2〉1/2
∑

n≥1

1

n!‖PL(t
nθ(t))‖L2t !

∑

n≥1
〈N 〉2

n

n! ! 〈N 〉.

Contribution of I I I . Setting ĝ(τ ) = w̃N (τ )
iτ+ξ2

χ|τ |≥1, we have to prove

∑

L

〈L + N2〉1/2‖PL(θg)‖L2t !
∑

L

〈L + N2〉1/2‖PLg‖L2t . (4.6)

Using the paraproduct decomposition, we have

PL(θg) = PL

( ∑

M"L

(P!Mθ P∼Mg + P∼Mθ P!Mg)
)

= PL(I I I1) + PL(I I I2)

and we estimate the contributions of these two terms separately.

Contribution of I I I1. The sum over L ≥ 〈N 〉2 is estimated in the following way:
∑

L≥〈N 〉2
〈L + N2〉1/2‖PL(I I I1)‖L2t !

∑

L≥〈N 〉2
〈L〉1/2

∑

M"L

‖P!Mθ‖L∞
t

‖PMg‖L2t

!
∑

M

〈M〉1/2‖PMg‖L2t .

Now we deal with the case where L ! 〈N 〉2. If θ̂ is localized in an annulus {|τ | ∼



SHARP RESULTS FOR THE KDV-BURGERS EQUATION 547

M}, we get from the Bernstein inequality that
∑

L≤〈N 〉2
〈L + N2〉1/2

∑

M"L

‖PL(PMθ PMg)‖L2t

!
∑

M

〈N 〉
∑

L!M

L1/2‖PMθ PMg‖L1t

!
∑

M

〈N 〉M1/2‖PMθ‖L2t ‖PMg‖L2

!
∑

M

〈N 〉‖PMg‖L2t ,

(4.7)

where we used the estimate ‖PMθ‖L2t ! ‖ϕM (τ )
τ ‖L2τ ! M−1/2. If θ̂ is localized in

a ball {|τ | / M}, then we must have M ∼ L and thus
∑

L≤〈N 〉2
〈L + N2〉1/2

∑

M∼L
‖PL(P/Mθ PMg)‖L2t !

∑

L

〈N 〉‖P/Lθ‖L∞
t

‖PLg‖L2t ,

which is acceptable.

Contribution of I I I2. Consider the case L ≥ 〈N 〉2. Since |θ̂ | ! 〈ξ〉2
τ2
, we have

‖PL(PMθ P!Mg)‖L2t ! ‖ϕM θ̂‖L1τ ‖P!Mg‖L2t ! 〈N 〉2
M

‖g‖L2t .

It follows that

∑

L≥〈N2〉
〈L + N2〉1/2‖PL(I I I2)‖L2t !

∑

M"〈N 〉2
M1/2 〈N 〉2

M
‖g‖L2t ! 〈N 〉‖g‖L2t .

It remains to establish the bound in the case L ≤ 〈N 〉2. We may assume that ĝ is
supported in a ball {|τ | / M} since the other case was already treated (cf. estimate
(4.7)). Therefore, M ∼ L and

∑

L≤〈N 〉2
〈L + N2〉1/2

∑

M"L

‖PL(PMθ P/Mg)‖L2t

!
∑

L

〈N 〉‖PLθ P/Lg‖L2t

!
∑

L

〈N 〉‖PLθ‖L2t
∑

M/L

‖PMg‖L∞
t

!
∑

L

〈N 〉L−1/2 ∑

M/L

M1/2‖PMg‖L2t

!
∑

M

〈N 〉‖PMg‖L2t .

This completes the proof of Lemma 4.2.
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Proposition 4.3. Let L : f "→ L f denote the linear operator

L f (t, x) = η(t)

(
χR+(t)

∫ t

0

W (t − t ′, t − t ′) f (t ′)dt ′

+χR−(t)

∫ t

0

W (t − t ′, t + t ′) f (t ′)dt ′
)

.

(4.8)

If f ∈ N−1, then
‖L f ‖S−1 ! ‖ f ‖N−1 . (4.9)

Proof. It suffices to show that

‖L f ‖
X

−1, 1
2

,1 ! ‖ f ‖
X

−1,− 1
2

,−1 (4.10)

and

‖L f ‖
Y

−1, 1
2

! ‖ f ‖
Y

−1,− 1
2
. (4.11)

Taking the x-Fourier transform, we get

L f (t, x) = U(t)

[
χR+(t) η(t)

∫

R
eixξ

∫ t

0

e−|t−t ′|ξ2Fx (U(−t ′) f (t ′))(ξ) dt ′dξ

+ χR−(t) η(t)

∫

R
eixξ

∫ t

0

e−|t+t ′|ξ2Fx (U(−t ′) f (t ′))(ξ) dt ′dξ

]

= U(t)

[
η(t)

∫

R
eixξ

∫ t

0

e−|t |ξ2et
′ξ2Fx (U(−t ′) f (t ′))(ξ) dt ′dξ

]
.

Setting w(t ′) = U(−t ′) f (t ′), and using the time Fourier transform, we infer that

L f (t, x) = U(t)

[
η(t)

∫

R2
eixξ

eitτ e(t−|t |)ξ2 − e−|t |ξ2

iτ + ξ2
w̃(τ, ξ)dτdξ

]
.

Estimate (4.10) follows then easily from Lemma 4.2.

Now we turn to estimate (4.11). It is equivalent to prove that for any dyadic N ,

‖(∂t + ∂xxx − ∂xx + I )PNL f ‖L1t L2x ! ‖PN f ‖L1t L2x . (4.12)

In view of the expression of L it suffices to prove (4.12) separately for χR+L f and
χR−L f . First, a straightforward calculation leads to

(∂t + ∂xxx − ∂xx + I )(χR+L f (t))

= η(t)χR+(t) f (t) + (η′(t) + η(t))χR+(t)

∫ t

0

W (t − t ′, t − t ′) f (t ′)dt ′.
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Computing the L1t L
2
x norm, we get

‖(∂t + ∂xxx − ∂xx + I )PN (χR+L f )‖L1t L2x
! ‖ f ‖L1t L2x + ‖η′ + η‖L1t supt

∫ ∞

0

‖ei(t−t ′)ξ3e−(t−t ′)ξ2 f̂ (t ′)‖L2ξ dt
′,

and estimate (4.12) follows.

Now, let us tackle the proof for χR−L f . We have to work a little more since
clearly L f does not satisfy the same equation for negative times. Actually, one can
check that

(∂t + ∂xxx + ∂xx + I )(χR−L f (t))

= η(t)χR−(t)W (0, 2t) f (t)+ (η′(t)+ η(t))χR−(t)

∫ t

0

W (t − t ′, t + t ′) f (t ′)dt ′.

(4.13)

and thus

(∂t + ∂xxx − ∂xx + I )(χR−L f (t)) = −2∂xx (χR−L f (t))

+ η(t)χR−(t)W (2t, 0) f (t) + (η′(t) + η(t))χR−(t)

∫ t

0

W (t − t ′, t + t ′) f (t ′)dt ′.

(4.14)

Setting w := PN (χR−L f (t)) and

g := η(t)χR−(t)W (2t, 0) f (t) + (η′(t) + η(t))χR−(t)

∫ t

0

W (t − t ′, t + t ′) f (t ′)dt ′

we first note as above that

‖g‖L1t L2x ! ‖ f ‖L1t L2x . (4.15)

Now, according to (4.13), w satisfies

wt − wxxx + wxx + w = g .

Taking the L2x -scalar product with w and using Cauchy-Schwarz yields

1

2

d

dt
‖w‖2

L2x
− ‖wx‖2L2x + ‖w‖2

L2x
≥ −‖g‖L2x‖w‖L2x . (4.16)

By the frequencies’ localization of w and the Bernstein inequality, ‖wx‖L2x ≥
1
2
N‖w‖L2x . Therefore, for t > 0 such that ‖w(t)‖L2x 6= 0, we can divide (4.16)

by ‖w(t)‖L2x to get

N2‖w(t)‖L2x ! d

dt
‖w(t)‖L2x + ‖w(t)‖L2x + ‖g(t)‖L2x . (4.17)
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On the other hand, for t > 0, the smoothness and non-negativity of t "→ ‖w(t)‖L2x
forces d

dt
‖w(t)‖2

L2x
= 0 as soon as ‖w(t)‖L2x = 0. This ensures that (4.17) is

actually valid for all t > 0. Therefore integrating (4.17) on ]0, t[ we infer that

‖wxx‖L1t L2x ∼ N2‖w‖L1t L2x ! ‖w‖L∞
t L2x

+ ‖w‖L1t L2x + ‖g‖L1t L2x .

Since obviously,

‖w‖L1t L2x +‖w‖L∞
t L2x

! sup
t

∫ ∞

0

‖ei(t−t ′)ξ3e−|t+t ′|ξ2 P̂N f (t ′)‖L2ξ dt
′ ! ‖PN f ‖L1t L2x

it follows that

‖wxx‖L1t L2x ! ‖PN f ‖L1t L2x
which concludes the proof together with (4.14) and (4.15).

5. Bilinear estimate

In this section we provide a proof of the following crucial bilinear estimate.

Proposition 5.1. For all u, v ∈ S−1, we have

‖∂x (uv)‖N−1 ! ‖u‖S−1‖v‖S−1 . (5.1)

We first remark that because of the L2ξ -structure of the spaces involved in our anal-

ysis we have the following localization property

‖ f ‖S−1 ∼
(

∑

N

‖PN f ‖2S−1

)1/2
and ‖ f ‖N−1 ∼

(
∑

N

‖PN f ‖2N−1

)1/2
.

Performing a dyadic decomposition for u, v we thus obtain

‖∂x (uv)‖N−1 ∼



∑

N

∥∥∥∥∥
∑

N1,N2

PN∂x (PN1uPN2v)

∥∥∥∥∥

2

N−1




1/2

. (5.2)

We can now reduce the number of cases to analyze by noticing that the right-hand

side vanishes unless one of the following cases holds:

• (high-low interaction) N ∼ N2 and N1 ! N ,

• (low-high interaction) N ∼ N1 and N2 ! N ,

• (high-high interaction) N / N1 ∼ N2.
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The first and the second case are symmetric. In the first case, we can rewrite the

right-hand side of (5.2) as

‖∂x (uv)‖N−1 ∼
(

∑

N

‖PN∂x (P!NuPNv)‖2N−1

)1/2
,

and it suffices to prove the high-low estimate

‖PN∂x (P!NuPNv)‖N−1 ! ‖u‖S−1‖PNv‖S−1 (HL)

for any dyadic N . If we consider now the third case, we easily get

‖∂x (uv)‖N−1 !
∑

N1

‖P/N1∂x (PN1uPN1v)‖N−1,

and it suffices to prove for any N1 the high-high estimate

‖P/N1∂x (PN1uPN1v)‖N−1 ! ‖PN1u‖S−1‖PN1v‖S−1 (HH)

since the claim follows then from the Cauchy-Schwarz inequality.

5.1. Proof of (HL)

We decompose the bilinear term as

PN∂x (P!NuPNv) =
∑

N1!N

∑

L ,L1,L2

PN QL∂x (PN1QL1uPN QL2v).

Using the well-known resonance relation

ξ31 + ξ32 + ξ33 = 3ξ1ξ2ξ3 whenever ξ1 + ξ2 + ξ3 = 0, (5.3)

we see that non-trivial interactions only happen when

Lmax ∼ max(N2N1, Lmed) (5.4)

where Lmax ≥ Lmed ≥ Lmin holds for L , L1, L2.

First we consider the easiest case N1 ! 1. We take advantage of the Y−1,− 1
2

part ofN−1 as well as of the Hölder and Bernstein inequalities to obtain
∑

N1!1
‖PN∂x (PN1uPNv)‖

Y
−1,− 1

2
!

∑

N1!1
〈N 〉−1N‖PN (PN1uPNv)‖L1t L2x

!
∑

N1!1
‖PN1u‖L2t L∞

x
‖PNv‖L2

!
∑

N1!1
N
1/2
1 ‖PN1u‖L2‖PNv‖L2

! ‖u‖S−1‖v‖S−1

where we used (3.6) in the last estimate. One can now assume we have large space

frequencies, i.e., N " N1 " 1.
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5.1.1. Case Lmax = L

In light of (5.4), we are in the region L " N2N1. From the definition of X
−1, 12 ,1

we have
∑

1!N1!N

∑

L"N2N1

‖PN QL∂x (PN1uPNv)‖
X

−1,− 1
2

,1

!
∑

1!N1!N

∑

L"N2N1

N−1〈L〉−1/2N‖PN QL(PN1uPNv)‖L2 .

Then, estimates (3.6) and (3.12) lead to the bound

!
∑

1!N1!N

N−1N−1/2
1 ‖PN1u‖L∞

t L2x
‖PNv‖L2t L∞

x

!
∑

1!N1!N

N
1/2
1 N−1/2‖PN1u‖L∞

t H−1
x

‖PNv‖L2

! ‖u‖S−1‖PNv‖S−1 .

5.1.2. Case Lmax = L1

Here, according to the resonance relation, we must have either L1 ∼ N2N1 or

L1 ∼ Lmed " N2N1. Note that the latter case has been treated in Subsection 5.1.1

when Lmed = L and thus we can assume that Lmed = L2. The contribution for the

former case can be estimated as follows:
∑

1!N1!N

∑

L1∼N2N1
‖PN∂x (PN1QL1uPNv)‖

Y
−1,− 1

2

!
∑

1!N1!N

‖PN1QN2N1
uPNv‖L1t L2x

!
∑

1!N1!N

N
1/2
1 ‖PN1QN2N1

u‖L2‖PNv‖L2 .

Now we can exploit the fact that L1 ∼ N2N1 to obtain

N
1/2
1 ‖PN1QN2N1

u‖L2 ! N−1N1(N−1
1 L

1/2
1 ‖PN1QL1u‖L2), (5.5)

which combined with (3.6), (3.7) and Cauchy-Schwarz in N1 yields the desired

bound.

It remains to treat the case L1 ∼ L2 " N2N1. Arguing as before we get
∑

1!N1!N

∑

L1∼L2"N2N1

‖PN∂x (PN1QL1uPN QL2v)‖
Y

−1,− 1
2

!
∑

1!N1!N

∑

L1"N2N1

N
1/2
1 ‖PN1QL1u‖L2‖PN QL1v‖L2 .
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In this region, (5.5) is still valid if we replace QN2N1
by QL1 . Applying this for u

and v, this provides the bound

!
∑

1!N1!N

N
1/2
1 N−1

(
∑

L1

(N−1
1 L

1/2
1 ‖PN1QL1u‖L2)2

)1/2

×
(

∑

L1

(N−1L1/21 ‖PN QL1v‖L2)2
)1/2

!
∑

1!N1!N

N
1/2
1 N−1‖PN1u‖S−1‖PNv‖S−1,

which is acceptable (with about N−1/2 of spare).

5.1.3. Case Lmax = L2

By (5.4), it suffices to consider the case L2 ∼ N2N1. With a similar argument we

get

∑

N1!N

∑

L2∼N2N1
‖PN∂x (PN1uPN QL2v)‖

Y
−1,− 1

2

!
∑

N1!N

N
1/2
1 ‖PN1u‖L2‖PN QN2N1

v‖L2

!
(

∑

N1

‖PN1u‖2L2
)1/2 (

∑

N1

(N
1/2
1 ‖PN QN2N1

v‖L2)2
)1/2

! ‖u‖S−1

(
∑

L2

(N−1L1/22 ‖PN QL2v‖L2)2
)1/2

,

which achieves the proof of (HL).

5.2. Proof of (HH)

Performing the decomposition

P/N1∂x (PN1uPN1v) =
∑

N/N1

∑

L ,L1,L2

PN QL∂x (PN1QL1uPN1QL2v),

we see from (5.3) that we may restrict ourself to the region where

Lmax ∼ max(N21 N , Lmed). (5.6)
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Moreover, we may assume by symmetry that L1 ≥ L2. Low frequencies N ! 1

are easily handled:

∑

N!1
‖PN∂x (PN1uPN1v)‖

Y
−1,− 1

2
!

∑

N!1
〈N 〉−1N‖PN (PN1uPN1v)‖L1t L2x

!
∑

N!1
‖PN1u‖L2‖PN1v‖L2

! ‖PN1u‖S−1‖PN1v‖S−1 .

Therefore it is sufficient to consider N1 4 N " 1.

5.2.1. Case Lmax = L

In this region one has L " N21 N . Let us assume L1 ! N21 N
1−ε for some ε > 0, so

that we wish to bound

∥∥∥∥∥∥

∑

1!N/N1

PN Q"N21 N
∂x (PN1Q!N21 N

1−εuPN1v)

∥∥∥∥∥∥
X

−1,− 1
2

,1

. (5.7)

According to the triangle inequality, it suffices to estimate

∑

1!N/N1

∑

L"N21 N

L1!N21 N
1−ε

L−1/2‖PN1QL1uPN1v‖L2 .

In order to get a suitable control for this term, we use the Kato smoothing effect

(3.13) together with estimate (3.6) to get

‖PN1QL1uPN1v‖L2 ! ‖PN1QL1u‖L2x L∞
t

‖PN1v‖L∞
x L2t

! L
1/2
1 ‖PN1u‖S−1‖PN1v‖S−1 .

Therefore it remains to establish

∑

1!N/N1

∑

L"N21 N

L1!N21 N
1−ε

L−1/2L1/21 ! 1,

but this is easily verified by Schur’s test for any ε > 0. The situation where L2 !
N21 N

1−ε is identical to the previous one and we suppose now L1, L2 " N21 N
1−ε.

Estimating theN−1-norm by the Y−1,− 1
2 -norm, and using the Hölder and Bernstein
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inequalities we see that the contribution in this case is bounded by

∑

1!N/N1

‖PN (PN1Q"N21 N
1−εuPN1Q"N21 N

1−εv‖L1t L2x

!
∑

1!N/N1

N1/2‖PN1Q"N21 N
1−εu‖L2‖PN1Q"N21 N

1−εv‖L2 . (5.8)

On the other hand the resonance relation and (3.7) yield

N1/2‖PN1Q"N21 N
1−εu‖L2 ! N ε/2

(
∑

L1

[N−1
1 L

1/2
1 ‖PN1QL1u‖L2]2

)1/2

! N ε/2‖PN1u‖S−1,

and similarly for v. Inserting this into (5.8) we deduce

(5.8) !
∑

N"1
N−1/2+ε‖PN1u‖S−1‖PN1v‖S−1,

which is acceptable for ε < 1/2.

5.2.2. Case Lmax = L1

First we consider the region L1 ∼ N21 N and we want to estimate

∥∥∥∥∥
∑

N/N1

PN∂x (PN1QN21 N
uPN1v)

∥∥∥∥∥
Y

−1,− 1
2

!
(

∑

N

[N1/2‖PN1QN21 N
u‖L2‖PN1v‖L2]2

)1/2

where we took care of not using the triangle inequality in order to keep the )2-norm
in N . The term ‖PN1u‖L2 can be handled with the help of (3.6), while the change
of variable N ∼ L1N

−2
1 for fixed N1 leads to the bound

!
(

∑

L1

[N−1
1 L

1/2
1 ‖PN1QL1u‖L2]2

)1/2
‖PN1v‖S−1 ! ‖PN1u‖S−1‖PN1v‖S−1 .



556 LUC MOLINET AND STÉPHANE VENTO

Finally in the case L1 ∼ L2 " N21 N , arguing as in Subsection 5.1.2, we get

∥∥∥∥∥∥

∑

1!N/N1

∑

L1∼L24N21 N

PN∂x (PN1QL1uPN1QL2v)

∥∥∥∥∥∥
Y

−1,− 1
2

!
∑

1!N/N1

∑

L14N21 N

N1/2‖PN1QL1u‖L2‖PN1QL1v‖L2

!
∑

N"1
N−1/2

(
∑

L1

(N−1
1 L

1/2
1 ‖PN1QL1u‖L2)2

)1/2

×
(

∑

L1

(N−1
1 L

1/2
1 ‖PN1QL1v‖L2)2

)1/2
,

which is acceptable (with about N−1/2 of spare).

6. Well-posedness

In this section we prove the well-posedness result. Using a standard fixed-point

procedure, it is clear that the bilinear estimate (5.1) allows us to show local well-

posedness but for small initial data only. This is because H−1 appears as a critical
space for KdV-B and thus we cannot get the desired contraction factor in our esti-

mates. In order to remove the size restriction on the data, we need to change the

metric on our resolution space.

For β ≥ 1, let us define the following norm on S−1,

‖u‖Zβ = inf
u=u1+u2

u1∈S−1,u2∈S0

{
‖u1‖S−1 + 1

β
‖u2‖S0

}
.

Note that this norm is equivalent to ‖ · ‖S−1 . Now we will need the following

modification of Proposition 5.1. This new proposition means that as soon as we

assume more regularity on u we can get a contractive factor for small times in the

bilinear estimate.

Proposition 6.1. There exists ν > 0 such that for all (u, v) ∈ S0 × S−1, with
compact support (in time) in [−T, T ], it holds

‖∂x (uv)‖N−1 ! T ν‖u‖S0‖v‖S−1 . (6.1)

Proof. It suffices to slightly modify the proof of Proposition 5.1 to make use of the

following result that can be found in [9, Lemma 3.1] (see also [16, Lemma 3.6]):
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For any θ > 0, there exists µ = µ(θ) > 0 such that for any smooth function f with

compact support in time in [−T, T ],
∥∥∥∥∥F

−1
t,x

(
f̂ (τ, ξ)

〈τ − ξ3〉θ

)∥∥∥∥∥
L2t,x

! Tµ‖ f ‖
L
2,2
t,x

. (6.2)

According to (3.7) this ensures, in particular, that for any w ∈ S0 with compact
support in [−T, T ] it holds

‖w‖L2t H3/4 ! ‖w‖X0,3/8,2 ! Tµ( 18 )‖w‖X0,1/2,2 ! Tµ( 18 )‖w‖S0 . (6.3)

It is pretty clear that the interactions between high frequencies of u and high or low

frequencies of v can be treated following the proof of Proposition 5.1 and using
(6.3). The region that seems the most dangerous is that of interactions between low

frequencies of u and high frequencies of v, that is the region of (HL) in the proof
of Proposition 5.1. But actually this region can also be easily treated. For instance

in the case 5.1.1 it suffices to notice that

∑

1!N1!N

∑

L"N2N1

‖PN QL∂x (PN1uPNv)‖
X

−1,− 1
2

,1

!
∑

1!N1!N

∑

L"N2N1

N−1〈L〉−1/2N‖PN QL(PN1uPNv)‖L2 .

!
∑

1!N1!N

N−1N−1/2
1 ‖PN1u‖L2t L∞

x
‖PNv‖L∞

t L2x

!
∑

1!N1!N

N
−1/2
1 ‖PN1u‖L2t H1/2x

‖PNv‖
L∞
t H−1

x

! Tµ( 18 )‖u‖S0‖v‖S−1

and in the case 5.1.2 it simply suffices to replace (5.5) by

N
1/2
1 ‖PN1QN2N1

u‖L2 ! N
−1/4
1 ‖PN1u‖L2t H3/4x

! N
−1/4
1 Tµ( 18 )‖u‖S0 .

The other cases can be handled in a similar way.

We are now in a position to prove that the application

FTφ : u "→ η(t)
[
W (t)φ − 1

2
L∂x (ηT u)

2
]
,
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where L is defined in (4.8), is contractive on a ball of Zβ for suitable β > 0

and T > 0 small enough. Assuming this for a while, the local part of Theorem

1.1 follows using standard arguments. Note that the uniqueness will hold in the

restriction spaces S−1
τ endowed with the norm

‖u‖S−1
τ

:= inf
v∈S−1

{‖v‖S−1, v ≡ u on ]0, τ [} .

Finally, to see that the solution u can be extended for all positive times and be-

longs to C(R∗
+; H∞) it suffices to notice that, according to (3.6), u ∈ S−1

τ ↪→
L2(]0, τ [×R) . Therefore, for any 0 < τ ′ < τ there exists t0 ∈]0, τ ′[, such that
u(t0) belongs to L

2(R) . Since according to [16], (1.1) is globally well-posed in
L2(R) with a solution belonging to C(R∗

+; H∞(R)), the conclusion follows.

In order to prove that FTφ is contractive, the first step is to establish the follow-

ing result.

Proposition 6.2. For any β ≥ 1 there exists 0 < T = T (β) < 1 such that for any

u, v ∈ Zβ with compact support in [−T, T ] we have

‖L∂x (uv)‖Zβ ! ‖u‖Zβ ‖v‖Zβ . (6.4)

Assume for the moment that (6.4) holds and let u0 ∈ H−1 and α > 0. Split the data

u0 into low and high frequencies:

u0 = P!Nu0 + P4Nu0

for a dyadic number N . Taking N = N (α) large enough, it is obvious to check that
‖P4Nu0‖H−1 ≤ α. Hence, according to (4.1),

‖η(·)W (·)P4Nu0‖Zβ ! α.

Using now the S0-part of Zβ , we control the low frequencies as follows:

‖η(·)W (·)P!Nu0‖S0 ! 1

β
‖P!Nu0‖L2 ! N

β
‖u0‖H−1 .

Thus we get

‖η(·)W (·)P!Nu0‖Zβ ! α for β " N‖u0‖H−1

α
.

Since α can be chosen as small as needed, we conclude with (6.4) that FTφ is

contractive on a ball of Zβ of radius R ∼ α as soon as β " N‖u0‖H−1/α and
T = T (β).
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Proof of Proposition 6.2. By definition, on the function space Zβ there exist u1,

v1 ∈ S−1 and u2, v2 ∈ S0 such that u = u1 + v1, v = v1 + v2 and

‖u1‖S−1 + 1

β
‖u2‖S0 ≤2‖u‖Zβ ,

‖v1‖S−1 + 1

β
‖v2‖S0 ≤2‖v‖Zβ .

Thus one can decompose the left-hand side of (6.4) as

‖L∂x (uv)‖Zβ ! ‖L∂x (u1v1)‖S−1 + ‖L∂x (u1v2 + u2v1)‖S−1 + ‖L∂x (u2v2)‖S−1

= I + I I + I I I.

From the estimates (4.9) and (5.1) we get

I ! ‖∂x (u1v1)‖N−1 ! ‖u1‖S−1‖v1‖S−1 ! ‖u‖Zβ ‖v‖Zβ .

On the other hand, we obtain from (6.1) that

I I I ! T ν‖u2‖S0‖v2‖S0 ! β2T ν‖u‖Zβ ‖v‖Zβ

and

I I ! T ν(‖u1‖S−1‖v2‖S0 + ‖u2‖S0‖v1‖S−1)

! βT ν‖u‖Zβ ‖v‖Zβ .

We thus get

‖L∂x (uv)‖Zβ ! (1+ (β + β2)T ν)‖u‖Zβ ‖v‖Zβ .

This ensures that (6.4) holds for T ∼ β−2/ν ≤ 1.
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