
Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5)
Vol. X (2011), 253-268

Finite Galois covers, cohomology jump loci, formality properties,
and multinets

ALEXANDRU DIMCA AND STEFAN PAPADIMA

Abstract. We explore the relation between cohomology jump loci in a finite
Galois cover, formality properties and algebraic monodromy action. We show
that the jump loci of the base and total space are essentially the same, provided
the base space is 1-formal and the monodromy action in degree 1 is trivial. We
use reduced multinet structures on line arrangements to construct components of
the first characteristic variety of the Milnor fiber in degree 1, and to prove that the
monodromy action is non-trivial in degree 1. For an arbitrary line arrangement,
we prove that the triviality of the monodromy in degree 1 can be detected in a
precise way, by resonance varieties.

Mathematics Subject Classification (2010): 32S22 (primary); 52C30 55N25,
55P62 (secondary).

1. Introduction and statement of results

A homogeneous, degree d polynomial Q ∈ C[x0, . . . , xn] defines a hypersurface
in Pn , V = V (Q) = {Q = 0}, its complement M = M(Q), the Milnor fiber in
Cn+1, F = F(Q) = {Q = 1}, and a d-fold cyclic Galois cover, p : F → M , with
geometric monodromy h : F → F . In spite of the abundance of available algebro-
geometric and topological methods, the analysis of the algebraic monodromy action
(over C), h∗ : H∗(F) → H∗(F), remains a challenge, as documented by an ex-
tensive literature. Even when Q completely decomposes into distinct linear factors,
the additional combinatorial tools from the theory of hyperplane arrangements have
not succeeded to elucidate the subject.

Given a connected, finite CW-complex X , one may consider its associated
characteristic varieties V i

m(X) (alias its Green-Lazarsfeld sets, when X is a smooth
projective variety, see [20] for the original setting involving line bundles with trivial
Chern class, and [2] for the reformulation in terms of local systems). They are
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defined as jump varieties in degree i , for the cohomology of X with coefficients in
rank 1 local systems, and live in T(X) := Hom(π1(X), C∗). Their ‘infinitesimal’
approximations, the resonance varieties Ri

m(X) associated to the cohomology ring
of X , are homogeneous subvarieties of H1(X, C). See Section 2 for the precise
definitions. Encouraged by recent progress on jump loci, we aim in this note to
start their study for Milnor fibers, and relate them to the algebraic monodromy.

1.1.

For a ‘general’ hyperplane arrangement in Pn , it is well-known that h∗ = id in
degree ∗ < n. See e.g. [8, 9], [12, Chapter 6], [22, 24], for various (classes of)
examples of this kind. Guided by these examples, we begin our study in Section 2
with jump loci in arbitrary covers, p : F → M , with finite Galois group C , with
emphasis on implications of the (partial) triviality of the algebraic monodromy ac-
tion of C on H∗(F).

We start by showing that p∗ : Hom(π1(M), C∗) → Hom(π1(F), C∗) sends
V i

m(M) into V i
m(F), for all i and m. For the rest of Section 2, we fix q ≥ 1 and

suppose that C acts trivially on H∗(F), for ∗ ≤ q. We first note that under this
assumption the isomorphism p∗ : H1(M, C)

∼−→ H1(F, C) identifies Ri
m(M)

with Ri
m(F), for all i ≤ q and all m. Unfortunately, the proof does not work for

characteristic varieties.
This difficulty may be bypassed by resorting to a recent result from [18]. This

result (recorded here as Theorem 2.7) establishes a natural bijection between the
non-translated irreducible components of V1

m(X) (i.e., those containing the trivial
local system 1) and the irreducible components of R1

m(X), for all m, under a so-
called 1-formality hypothesis on the connected CW-complex X .

We are thus naturally led to examine partial formality properties in finite Galois
covers. Their definition is inspired from D. Sullivan’s [35] homotopy theory for
commutative differential graded algebras in characteristic zero. To any such DGA,
(A∗, dA), one may associate its cohomology algebra H∗(A), viewed as a DGA
with trivial differential. For a fixed q ≥ 1, (A∗, dA) is called q-formal if it can
be connected to (H∗(A), d = 0) by a zigzag of DGA maps, each inducing in
cohomology an isomorphism in degree up to q, and a monomorphism in degree
q + 1. A connected polyhedron X is called q-formal if Sullivan’s DGA of PL
forms on X is q-formal. See Definition 2.3 and Remark 2.4 for another, equivalent,
approach to this notion. For q = ∞, one recovers Sullivan’s celebrated notion of
formality, which implies q-formality, for all q. The 1-formality of X depends only
on π1(X). See Section 2 for more details.

Interesting examples abound. Hyperplane arrangement complements are for-
mal [5]. If a smooth quasi-projective variety X has vanishing Deligne weight fil-
tration W1 H1(X) (which happens e.g. for a projective hypersurface complement),
then X is 1-formal [25]. In particular, pure braid groups are 1-formal. This was
extended to pure welded braid groups in [3]. Finitely generated Artin groups are
also 1-formal [21]. Under certain trivial monodromy assumptions, Artin kernels are
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1-formal, too [27].
The interplay between 1-formality and algebraic monodromy in fibrations was

recently investigated in [28]. We pursue this approach for finite Galois covers with
trivial algebraic monodromy up to degree q, proving that M is q-formal if and only
if F is q-formal. Here is our main result from Section 2.

Theorem 1.1 (Theorem 2.8). Let p : F → M be a finite Galois cover with group
C. Assume that C acts trivially on H1(F), and M is 1-formal. Then p∗ : T(M) →
T(F) gives a natural bijection between non-translated components in V1

m(M) and
V1

m(F), for all m.

1.2.

In Section 3, we specialize our discussion to the Galois cover associated to a line
arrangement in P2, A = {L1, . . . , Ld}, with Li given by the equation fi = 0.
It follows from Theorem 2.7 that the non-translated components of V1

m(M) are
in bijection with the components of R1

m(M), for all m. At the same time, it is
well-known that R1

m(M) depends only on the combinatorics of the arrangement, as
follows from basic work by Orlik and Solomon [26]. A nice recent result of Falk
and Yuzvinsky [19] gives a combinatorial parametrization for global components
of R1

1(M) (i.e., components not coming from a proper subarrangement).
The key combinatorial notion from [19] is that of a multinet supported by A.

It involves two data: a multiplicity function µ on the set {1, . . . , d} with values in
Z>0, and a partition of this set, A1 ∪ · · · ∪ Ak , with at least 3 elements, satisfying
certain axioms. The first axiom requires that

∑
i∈A j

µ(i) = e, independently of j .
Starting with a multinet structure on A, the authors of [19] construct an admissible
map (in the sense of Arapura [1]), f : M → S, where S = P1 \ {k points}, and
the global component f ∗(H1(S)) of R1

1(M), whose corresponding non-translated
component of V1

1 (M) is W := f ∗(T(S)). They also prove that every global com-
ponent of R1

1(M) arises in this way.
We will say that a multinet is reduced if µ takes only the value 1. Classical nets

provide reduced examples. There are also situations when A supports no multinet,
simply because there is no global component of R1

1(M); see Example 10.5 from
[34]. In a recent preprint [36], Yuzvinsky shows that k is 3 or 4, for any multinet.
The only known example with k = 4 comes from the Hesse pencil.

Recall from Theorem 1.1 that p∗(W ) is a non-translated component of V1
1 (F),

if h∗ = id on H1(F), where W is the non-translated component of V1
1 (M) associ-

ated to an arbitrary multinet on A. Our second main result in this note is derived
in Section 3. It establishes a connection between the existence of reduced multinet
structures on a line arrangement, and the triviality of the algebraic monodromy in
degree 1.

Theorem 1.2. Let W be the non-translated component of V1
1 (M) associated to a

reduced multinet on A. Then there is a non-translated component of V1
1 (F), W ′,

strictly containing p∗(W ). In particular, h∗ 
= id, on H1(F).
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See Theorem 3.1 and Corollary 3.2 for more precise statements. We point out
that the existence of a non-reduced multinet is not enough to infer the non-triviality
of the monodromy; see Remark 3.4 (ii).

In Section 4, we examine Galois covers associated to plane projective curves,
and exploit the mixed Hodge structure. When p : F → M comes from an arbitrary
line arrangement, we show that h∗ = id on H1(F) if and only if p∗(R1

1(M)) =
R1

1(F), thereby improving Theorem 1.1 in this case. The proof relies on a general
result that relates the mixed Hodge structure on H∗(F) and the algebraic mon-
odromy action; see Theorem 4.1. Finally, we extend the natural bijection from
Theorem 1.1, for arbitrary plane curves. In this situation, we show that, when
h∗ = id on H1(F), p∗ essentially identifies all components in V1

1 (M) and V1
1 (F),

of dimension at least 2. See Proposition 4.5 for a more precise statement.

In the recent preprint [7], the relation between nets and monodromy of the
Milnor fiber of a line arrangement is considered from an alternative viewpoint, see
especially [7, Theorem 1].

ACKNOWLEDGEMENTS. Much of this work was done during visits at Université
de Nice–Sophia Antipolis by S. Papadima (June 2008 and May 2009). He thanks
the Laboratoire Jean A. Dieudonné for its support and hospitality during his stay in
Nice, France. Additionally, A. Dimca is grateful to ASSMS, Government College
University, Lahore, Pakistan, where part of the work on this paper was done.

2. Finite Galois covers

In this section, we begin our analysis of cohomology jump loci in a purely topolog-
ical context. Let X be a connected CW-complex with finite 1-skeleton, and (finitely
generated) fundamental group G = π1(X). For a characteristic zero field K, denote
by T(X, K) = Hom(G, K∗) = Hom(Gab, K∗) the character torus. (When there is
no explicit mention about coefficients, we mean that K = C.) Clearly, the algebraic
group T(X, K) is the direct product with a finite group of the connected character
torus, T0(X, K) = Hom(Gab/torsion, K∗) = (K∗)b1(G).

The characteristic varieties

V i
m(X, K) = {L ∈ T(X, K) | dimK Hi (X,L) ≥ m} (2.1)

are defined for i ≥ 0 and m > 0. If X has finite q-skeleton (q ≥ 1), they are Zariski
closed subsets of the character torus, for i ≤ q and m > 0. Their approximations,
the resonance varieties

Ri
m(X, K) = {α ∈ H1(X, K) | dimK Hi (H•(X, K), µα) ≥ m} (2.2)

(where µα denotes right-multiplication by α in the cohomology ring of X ) are de-
fined for i ≥ 0 and m > 0. If X has finite q-skeleton (q ≥ 1), they are homoge-
neous, Zariski closed subsets of the affine space H1(X, K) = Kb1(G). We mean
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that i = 1, whenever the upper index i is missing. In this case, both Vm(X, K) and
Rm(X, K) depend only on G, for all m.

Let p : F → M be a connected cover of a complex M having finite 1-skeleton,
with Galois group C .

Proposition 2.1. If C is finite, then

p∗(V i
m(M, K)) ⊆ V i

m(F, K) and p∗(Ri
m(M, K)) ⊆ Ri

m(F, K) ,

for all i ≥ 0 and m > 0.

Proof. Let L be an arbitrary right π1(M)-module. In the Hochschild-Serre spectral
sequence of an arbitrary connected Galois cover of a CW-complex, p : F → M ,

E2
st = Hs(C, Ht (F, p∗L)) ⇒ Hs+t (M,L) ,

see e.g. Brown’s book [6, Proposition 5.6 on page 170 and Theorem 6.3 on page
171]. When C is finite and L is a K-representation in characteristic zero, E2

st = 0,
for all s > 0 and t ≥ 0, and the spectral sequence collapses to the isomorphism
H•(M,L) = H•(F, p∗L)C , where (·)C denotes coinvariants. By duality, we obtain
an injection, p• : H•(M,L) ↪→ H•(F, p∗L), for any L ∈ T(M, K). Our claim
on characteristic varieties follows.

In the particular case when the character (local system) L is trivial, we may
identify the induced algebra map in cohomology, p• : H•(M, K) → H•(F, K),
with the inclusion of fixed points,

p• : H•(F, K)C ↪→ H•(F, K) . (2.3)

For α ∈ H1(F, K)C , the monodromy C-action on H•(F, K) clearly gives rise
to a C-action on the chain complex (H•(F, K), µα), with fixed subcomplex
(H•(M, K), µα). Since C is finite and char K = 0, we obtain an inclusion,
H∗(H•(M, K), µα) ↪→ H∗(H•(F, K), µα). This proves our claim on resonance
varieties.

We continue by examining the algebraic monodromy action, and the impli-
cations of its triviality on cohomology jump loci. We keep the hypotheses from
Proposition 2.1.

Corollary 2.2. If C acts trivially on Hi (F, K), for i ≤ q, where q ≥ 1, then
p∗ : H∗(M, K) → H∗(F, K) is an isomorphism for ∗ ≤ q and a monomorphism
for ∗ = q + 1. In degree ∗ = 1, p∗ identifies Ri

m(M, K) with Ri
m(F, K), for all

i ≤ q and m > 0.

Proof. Everything follows from identification (2.3).
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To obtain a similar result for characteristic varieties, we need to discuss first
partial formality (in the sense from [23]). This notion can be naturally extracted
from Sullivan’s foundational work in rational homotopy theory [35] (see also Mor-
gan [25]). Sullivan associates to a space X , in a natural way, a K-DGA, �∗

P L(X, K);
see also Bousfield and Gugenheim [4]. This is an analog of the usual de Rham DGA
of a manifold. He proves that H•�∗

P L(X, K) = H•(X, K), as graded K-algebras.
Sullivan goes on defining, for each 1 ≤ q ≤ ∞, an important class of K-

DGA’s: the q-minimal ones (simply called minimal, for q = ∞). A DGA map, f :
(A∗, dA) → (B∗, dB), is a q-equivalence (or, quasi-isomorphism, for q = ∞) if
the induced map in cohomology is an isomorphism up to degree q, and an injection
in degree q + 1. Given any homologically connected DGA (A∗, dA) (i.e., such that
H0(A, dA) = K), he shows that there is a q-minimal DGA, (Mq , d), together with
a q-equivalence, ϕ : (Mq , d) → (A, dA). Moreover, these two conditions uniquely
determine (Mq , d), up to DGA isomorphism. The DGA (Mq , d) is called the q-
minimal model of (A, dA) (simply the minimal model, for q = ∞), and will be
denoted by Mq(A, dA) (respectively by M(A, dA), for q = ∞). For 1 ≤ r ≤
q ≤ ∞, Mr (A, dA) is the sub-DGA of Mq(A, dA) generated by the elements of
degree at most r .

Sullivan calls a homologically connected K-DGA(A,dA) formal ifM(A∗,dA)=
M(H∗(A, dA), d = 0) , up to DGA isomorphism. A path-connected space X is
formal (over K) if the DGA �∗

P L(X, K) is formal. Since the appearance of [10],
where the authors prove the formality of compact Kahler manifolds, this notion
played a key role in rational homotopy theory and its applications. The following
notion of partial formality was investigated by Macinic in [23].

Definition 2.3. A K-DGA (A∗, dA) with H0(A, dA) = K is q-formal (1 ≤ q ≤
∞) if Mq(A∗, dA) = Mq(H∗(A, dA), d = 0), up to DGA isomorphism. A path-
connected space X is q-formal (over K) if the DGA �∗

P L(X, K) is q-formal.

Remark 2.4. A couple of useful simple properties follow directly from Definition
2.3, via the discussion preceding it. X is ∞-formal if and only if X is formal in
the sense of Sullivan. For 1 ≤ r ≤ q ≤ ∞, q-formality implies r -formality. If
p : F → M is a continuous map between path-connected spaces, inducing in K-
cohomology an isomorphism up de degre q, and a monomorphism in degree q + 1,
then F is q-formal if and only if M is q-formal, over K. Taking M to be a point,
it follows that F is q-formal, if bi (F) = 0, for i ≤ q. See also the survey [29] for
more details on partial formality.

Corollary 2.5. Let p : F → M be a finite Galois cover, as in Proposition 2.1.
Assume that C acts trivially on Hi (F, K), for i ≤ q (q ≥ 1). Then F is q-formal if
and only if M is q-formal, over K.

Proof. Combine Corollary 2.2 and Remark 2.4.

Corollary 2.6. Let p : F → M be the cyclic Galois cover associated to a hyper-
plane arrangement in Pn (n ≥ 2). If h∗ : H∗(F) → H∗(F) is the identity, for
∗ < n, then the Milnor fiber F is a formal space.
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Proof. By Corollary 2.5, F is (n −1)-formal. Up to homotopy, F is a CW-complex
of dimension at most n. These two facts together imply the formality of F ; see
[23].

Let p : X → K (G, 1) be the classifying map of a connected complex with
fundamental group G = π1(X). By Remark 2.4, X is 1-formal if and only if
K (G, 1) is 1-formal. When this happens, we simply say that the group G is 1-
formal. It is implicit in [35] that a finitely generated group G is 1-formal if and
only if its Malcev Lie algebra (in the sense of Quillen [31]) is a quadratic complete
Lie algebra.

The 1-formality property has many interesting consequences. At the level of
cohomology jump loci, these may be described as follows. Let X be a connected
CW-complex with finite 1-skeleton. For each m >0, denote by V̆m(X)⊆T0(X) the
union of all non-translated irreducible components of Vm(X). Let exp : H1(X) �
T0(X) be the exponential map.

Theorem 2.7 ([18]). If X is 1-formal, then Rm(X) is a finite union of linear sub-
spaces of H1(X), defined over Q, and V̆m(X) = exp(Rm(X)), for all m > 0. More
precisely, if {Ui } are the irreducible components of Rm(X), then {exp(Ui )} are the
irreducible components of V̆m(X).

Theorem 2.8. Let p : F → M be a connected, finite Galois cover with group C,
where M is a CW-complex with finite 1-skeleton. Assume that C acts trivially on
H1(F), and M is 1-formal. Then the following hold.

The morphism p∗ : T0(M) � T0(F) is a surjection with finite kernel. The
space F is 1-formal. The irreducible components of V̆m(F) are {p∗(W )}, where W
runs through the irreducible components of V̆m(M), for all m > 0.

Proof. The first assertion follows from the fact that p∗ : H1(M) → H1(F) is an
isomorphism. The second claim is implied by Corollary 2.2, via Remark 2.4. Again
by Corollary 2.2, the isomorphism p∗ : H1(M) → H1(F) identifies the irreducible
components of Rm(F) with those of Rm(M). Let {Ui } be the irreducible compo-
nents of Rm(M). We infer from Theorem 2.7 that {exp(Ui )} are the irreducible
components of V̆m(M), and {exp ◦p∗(Ui )} = {p∗ ◦ exp(Ui )} are those of V̆m(F),
which proves the last claim.

We point out that the triviality assumption on the algebraic monodromy from
Corollary 2.5 is necessary, since in general the formality properties of the base space
are not inherited by the total space of a finite Galois cover. The following simple
example arose from conversations with Alex Suciu.

Example 2.9. Let F be the free group generated by x and y. Let K be the quotient
of F by 3-fold commutators. Let ϕ be the order 2 automorphism of K induced by
x �→ x−1, y �→ y−1. Using ϕ, we may construct the semidirect product G =
K � (Z/2Z). Let M be the connected, finite 2-complex associate to a presentation
of G. Consider the 2-cover, p : F → M , with π1(F) = K . Clearly, h∗ = − id
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on H1(F). Consequently, b1(M) = 0. By Remark 2.4, M is 1-formal. Hence, M
is formal, see [23]. On the other hand, K (hence F) is not 1-formal, as noticed by
Morgan in [25].

Question 2.10. Is the Milnor fiber of an arbitrary hyperplane arrangement 1-formal?
(Note that smooth affine varieties need not be 1-formal; see [17, Proposition 7.2].)
Hugues Zuber has used our Theorem 4.1 in order to give the first example of a
complex line arrangement in P2 whose Milnor fiber is not 1-formal, see [37].

3. ‘Exceptional’ arrangements

Let A = {L1, . . . , Ld} be a line arrangement in P2, with associated d-fold cyclic
Galois cover p : F → M . Let A1 ∪ ... ∪ Ak be a partition of the set {1, 2, . . . , d}
into k ≥ 3 subsets of the same cardinality e > 0. Let fi = 0 be an equation for
the line Li for i = 1, ..., d, and set Q j = ∏

i∈A j
fi , for j = 1, ..., k. Clearly,

Q = Q1 · · · Qk is the defining polynomial of A.

Theorem 3.1. With the above notation, assume that the vector space 〈Q1, ..., Qk〉
of degree e homogeneous polynomials has dimension 2. Then the following hold.

(i) h∗ : H1(F) → H1(F) is not the identity; more precisely, the eigenspace
H1(F)λ has dimension at least k − 2, for any λ with λk = 1.

(ii) Assume in addition that the pencil f : M → S given by f = (Q1, Q2),
(where S is obtained from P1 by deleting k points) has a connected generic
fiber. Let I = f ∗(H1(S)) be the corresponding maximal isotropic subspace in
H1(M) (with respect to the cup product). Then dim I = k − 1 and there is an
admissible morphism (in the sense of [1]), f ′ : F → S′, where χ(S′) < 0, such
that the corresponding subspace J = f

′∗(H1(S′)) in H1(F) has dimension at
least (k − 1)2 and satisfies J ∩ p∗(H1(M)) = p∗(I ).

Proof. To prove (i), consider the pencil f : M → S given by f = (Q1, Q2). Let
B = {b1, ..., bk} be the finite set such that S = P1 \ B. By the Stein factorization,
there is a finite map p0 : S0 → S and a morphism f0 : M → S0 such that the
generic fiber of f0 is connected, and f = p0 ◦ f0. Note that S0 is a non-compact
curve, and p∗

0 : H1(S) → H1(S0) is injective by [18, Lemma 6.10]. It follows that

χ(S0) ≤ χ(S) = 2 − k ≤ −1.

By Arapura’s work, see [1, 13], it follows that W = f ∗
0 (T(S0)) is an irreducible

component of V1(M) and that for any L ∈ W one has

dim H1(M,L) ≥ dim W − 1 = b1(S0) − 1 ≥ b1(S) − 1 = k − 2.

Note also that f ∗(T(S)) ⊂ W .
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On the other hand, a local system L′ ∈ T(S) is determined by a family of
complex numbers

(λ1, ..., λk) ∈ (C∗)k

satisfying λ1 · ... · λk = 1, where λ j is the monodromy of the local system L′ about
the point b j . For any λ ∈ C satisfying λk = 1, we denote by L′

λ the local system in
T(S) corresponding to the choice

λ1 = ... = λk = λ.

The pull-back local system Lλ = f ∗L′
λ is the unique local system on M whose

monodromy about each line is λ. By [9, 12] we know that

dim H1(F)λ = dim H1(M,Lλ).

This dimension is at least k − 2 since Lλ ∈ W , which proves claim (i).
To prove claim (ii), we proceed as follows. For j = 3, ..., k there are unique

complex numbers α j , β j such that Q j = α j Q1+β j Q2. Consider the homogeneous
polynomial G(u, v) = uv

∏
j=3,k(α j u + β jv). Let S = M(G) and H = F(G) be

the corresponding complement in P1 and Milnor fiber in C2.
The map g : F → H , g(x, y, z) = (Q1(x, y, z), Q2(x, y, z)) is well-defined

(since Q = Q1 · ... · Qk) and surjective. If the generic fiber of g is connected, then
we take S′ = H and f ′ = g. Otherwise, there is a Stein factorization g = p′ ◦ f ′,
where p′ : S′ → H is a finite morphism and f ′ : F → S′ has connected generic
fibers. Note that both p′ and f ′ induce monomorphisms in cohomology, in degree
1, by [18, Lemma 6.10]. Using the same argument as in Part (i), we may infer that
χ(S′) ≤ χ(H) < 0.

To show that J ∩ p∗ (H1(M )) = p∗(I ), use the obvious inclusion J ∩
p∗(H1(M))⊇ p∗(I ), and the fact that I is a maximal isotropic subspace in H1(M),
see [14]. Finally, dim J = dim H1(S′) ≥ dim H1(H) = (k − 1)2. This completes
the proof.

Corollary 3.2. Under the assumptions from Theorem 3.1 (ii), there exist compo-
nents, W ⊆ V1(M) and W ′ ⊆ V1(F), both non-translated, with dim W ′ > dim W ,
whose tangent spaces at 1 satisfy p∗(T1W ) = T1W ′ ∩ p∗(H1(M)). In particular,
the monodromy action on H1(F) is non-trivial.

Proof. Consider the admissible maps, f : M → S and f ′ : F → S′, from
Theorem 3.1 (ii). Since χ(S), χ(S′) < 0, we obtain non-translated components,
W = f ∗(T(S)) and W ′ = f ′∗(T(S′)), by Arapura theory [1]. Clearly, T1W = I
and T1W ′ = J , using the notation from Theorem 3.1. All claims except the last (on
monodromy) follow from Theorem 3.1 (ii). The triviality of h∗ : H1(F) → H1(F)

would imply that p∗(W ) is an irreducible component of V1(F), due to Theorem
2.8. This contradicts the strict inclusion p∗(W ) ⊂ W ′.

Corollary 3.3. The admissible map f ′ : F → S′ from Theorem 3.1 (ii) is not a
rational pencil, i.e., S′ is not an open subset of P1.
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Proof. Consider the induced map on compactifications, p̂′ : Ŝ′ → Ĥ , to infer that
b1(Ŝ′) ≥ b1(Ĥ) = (k − 1)(k − 2) > 0.

Remark 3.4. (i) At this point, it seems worth recalling a couple of relevant facts
from [19]. Firstly, admissible maps may be constructed from arbitrary multinet
structures, in the following way. Set Q j = ∏

i∈A j
f µ(i)
i , for j = 1, . . . , k. Then the

subspace 〈Q1, . . . , Qk〉 is 2-dimensional, and the associated map, f = (Q1, Q2) :
M → S = P1 \ {k points}, has connected generic fiber, as needed in Theorem
3.1. Secondly, a degree e pencil with connected fibers (as defined in [19]), having
k ≥ 3 completely reducible fibers, Q j = ∏

f µ(i)
i (where all factors fi have degree

1), for j = 1, . . . , k, gives rise to a multinet structure with multiplicity function
µ, on the arrangement consisting of the lines { fi = 0}. Finally, every multinet
arises in this way. Clearly, the reduced multinets correspond to the case when all
special fibers are reduced. When such a reduced structure exists, h∗ 
= id, on
H1(F), by Corollary 3.2. The existence of a reduced multinet also implies that
the characteristic varieties of the Milnor fiber F are more subtle than those of a
line arrangement complement, which are known to come from rational pencils; see
Corollary 3.3.

(ii) If only non-reduced multinet structures exist, the monodromy action on
H1(F) may well be trivial. Consider the B3-arrangement, whose defining equation
is given by Q = xyz(x2 − y2)(y2 − z2)(z2 − x2). The pencil

〈Q1 = x2(y2 − z2), Q2 = y2(z2 − x2), Q3 = z2(x2 − y2)〉
gives rise to a multinet on B3, with multiplicities equal to 2 on x , y and z, and equal
to 1, otherwise. See [19, Example 3.6]. As shown in [9], the monodromy action on
H1(F) is trivial.

(iii) We point out that the non-triviality of the monodromy action on H1(F)

may be deduced from the existence of a non-reduced multinet structure, provided its
multiplicity function µ enjoys some special properties. Let us examine the family
of line arrangements Ar from [19, Example 4.6], having defining polynomial

xyz(xr − yr )(yr − zr )(zr − xr ) , and d = 3(r + 1).

The corresponding pencil is

〈Q1 = xr (yr − zr ), Q2 = yr (zr − xr ), Q3 = zr (xr − yr )〉,
and the multiplicity function takes the value r on on x , y and z, and 1, otherwise.
Assume that r ≡ 1 (modulo 3). Let λ be a primitive root of unity of order 3. Then
the local system Lλ constructed as in the proof of Theorem 3.1 (i) has monodromy
λ about every line of Ar (since λr = λ). Consequently, the same argument as in
Theorem 3.1 (i) implies that the eigenspace H1(F)λ has dimension at least 1.

(iv) The inequality dim H1(F)λ ≥ k − 2 from Theorem 3.1 (i) above is shown
to be an equality under some additional condition in [7, Theorem 1 (ii)].



FINITE COVERS, JUMP LOCI, FORMALITY, AND MULTINETS 263

Example 3.5. For the A3-arrangement and the Pappus configuration (93)1, it fol-
lows from [9] that the inequality in Theorem 3.1 (i) is in fact an equality. This is the
case whenever the generic fiber of g : F → H is connected, i.e. f ′ = g, and the lo-
cal system Lλ is 1-admissible, which is equivalent to dim H1(M,Lλ) = dim W −1,
see [16] for this equivalence.

Example 3.6. Consider the Hesse arrangement consisting of the 12 lines that occur
in the 4 special fibers of the Hesse pencil f = (x3 + y3 + z3, xyz); see [19]. Here
d = 12, and there is a partition with k = 4. Theorem 3.1 implies that in this
case H1(F)−1, H1(F)i and H1(F)−i have each dimension at least 2. Using [7,
Theorem 1 (ii)], one finds that all these dimensions are equal to 2.

4. Monodromy action and mixed Hodge structure

We begin this section with a general result on Milnor fibers, valid for a class of
polynomials that includes the case of line arrangements. Let Q ∈ C[x0, ..., xn],
n ≥ 2, be a homogeneous polynomial of degree d defining a hypersurface V (Q) ⊂
Pn having only isolated singularities. Let F = F(Q) (respectively M = M(Q)) be
the corresponding Milnor fiber (respectively complement), and let p : F → M be
the canonical projection. The rational cohomology H∗(F, Q) has a natural direct
sum decomposition

H∗(F, Q) = H∗(F, Q)1 ⊕ H∗(F, Q) 
=1

where H∗(F, Q)1 = ker(h∗ − 1) = p∗H∗(M, Q) is the eigenspace corresponding
to the eigenvalue λ = 1 of the monodromy operator h∗ : H∗(F, Q) → H∗(F, Q),
and H∗(F, Q) 
=1 = ker((h∗)d−1 + ... + 1). A different approach to the next result
in the case of line arrangements can be found in [7, (2.5.3)].

Theorem 4.1. With the above notation, the mixed Hodge structure on Hn−1(F, Q)

is split, i.e., the subspaces Hn−1(F, Q)1 and Hn−1(F, Q) 
=1 inherit pure Hodge
structure from Hn−1(F, Q), such that Hn−1(F, Q)1 (respectively Hn−1(F, Q)
=1)

has weight n (respectively n − 1).

Proof. To study the MHS on H∗(M), one may use the following exact sequence of
MHS, see [30, page 138]

... → Hn(V (Q)) → Hn+1
c (M) → Hn+1(Pn) → ... (4.1)

Since V (Q) has only isolated singularities, it follows that Hn(V (Q)) is pure of
weight n, see [33]. Moreover, the morphism Hn+1(Pn) → Hn+1(V (Q)) is an iso-
morphism, being a monomorphism and the two spaces having the same dimension:
0 for n even and 1 for n odd. Hence Hn+1

c (M) is pure of weight n. Using the
duality between H∗(M) and H∗

c (M), see [30, page 155], it follows that Hn−1(M)

is pure of weight n.
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Let F be the projective hypersurface in Pn+1 defined by Q(x, t) = Q(x) + td = 0.
It is known that dim Hn−1(F)
=1 = dim Hn(M(Q)) = dim coker(Hn+1(Pn+1) →
Hn+1(V (Q)), see [11, page 196 and 206].

Since F is a compactification of F such that F \ F = V (Q), we get the exact
sequence of MHS

. . . → Hn(V (Q)) → Hn+1
c (F) → Hn+1(V (Q)) → Hn+1(V (Q)) → . . . (4.2)

The fact that Hn(V (Q)) (respectively Hn+1(V (Q))) is pure of weight n (respec-
tively n+1), implies that Gr W

n+1H
n+1
c (F) has the same dimension as dim Hn−1(F)
=1.

To see this, note that the morphism

Hn+1(Pn+1) → Hn+1(V (Q))

is injective, while the morphism

Hn+1(V (Q)) → Hn+1(V (Q))

is surjective, and dim Hn+1(Pn+1) = dim Hn+1(V (Q)). It follows that the di-
mension of the cokernel of the first morphism, which is dim Hn−1(F) 
=1 as seen
above, coincides with the dimension of the kernel of the second morphism, which
is precisely the dimension of Gr W

n+1 Hn+1
c (F) by (4.2).

By the duality between Hn−1(F) and Hn+1
c (F), we see that

dim Wn−1 Hn−1(F) = dim Hn−1(F)
=1.

Now, the equality Hn−1(F, Q)1 = p∗Hn−1(M, Q) and our proof above show that
Hn−1(F, Q)1 is a pure HS of weight n.

Consider now the subspace E = Wn−1 Hn−1(F, Q). Then E is h∗ invari-
ant, E ∩ Hn−1(F, Q)1 = 0 and dim E = dim Hn−1(F, Q)
=1. These three
properties imply that E = Hn−1(F) 
=1. Since the proof above implies also that
Wn−2 Hn−1(F, Q) = Wn+2 Hn+1

c (F, Q) = 0, all the claims are proven.

As an application, we offer a converse to Corollary 2.2, for q = 1.

Corollary 4.2. Let p : F → M be the Galois cover associated to an arbitrary line
arrangement. The algebraic monodromy action on H1(F) is trivial if and only if
p∗(R1(M)) = R1(F).

Proof. We will show that R1(F) 
⊆ p∗(R1(M)), if h∗ 
= id on H1(F). Indeed, we
know from Theorem 4.1 that W1 H1(F) = ⊕

λ
=1 H1(F)λ 
= 0. Let us first assume

that H1(F)λ 
= 0, for some λ 
= ±1. Pick linearly independent eigenvectors of
h∗, α ∈ H1(F)λ and β ∈ H1(F)λ−1 . We will conclude in this case by showing
that α ∪ β = 0. Clearly, α ∪ β ∈ W2 H2(F) ∩ p∗(H2(M)) = p∗(W2 H2(M)).
Since the MHS on H2(M) is pure of type (2, 2), by [32], W2 H2(M) = 0, and
we are done. In the remaining case, W1 H1(F) = H1(F)−1 
= 0. Since this
space has even dimension, we may find two linearly independent eigenvectors of
h∗, α, β ∈ H1(F)−1. Then α ∪ β ∈ p∗(W2 H2(M)) = 0, as before.
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We close this section with an addendum to Theorem 2.8, concerning translated
components. Let M = M(Q) be a curve complement in P2, with associated cyclic
Galois cover p : F → M . Assume h∗ = id on H1(F).

We need to briefly recall the general theory, following [1] and [13]. Let X be
a smooth, irreducible, quasi-projective variety. The positive-dimensional compo-
nents, W ′, of V1(X), are intimately related to admissible maps, that is, surjective
regular maps onto smooth curves, f : X → S, having connected generic fiber.
Each W ′ is a (possibly translated) subtorus of the form ρ f ∗(T(S)), where f is ad-
missible, χ(S) ≤ 0, and ρ ∈ T(X) has finite order. The number of components
with the same direction, W := f ∗(T(S)), denoted by n(W ), is computable in terms
of the multiplicities of the fibers of f . For c ∈ S, we denote the corresponding
multiplicity by mc( f ).

A key result due to Arapura, [1, Proposition V.1.7], guarantees that f ∗(T(S))

is a component of V1(X), whenever f is admissible and χ(S) < 0. We will need
the following converse implication.

Proposition 4.3. Let f : X → S be a surjective regular map. If χ(S) < 0 and
f ∗(T(S)) is an irreducible component of V1(X), then f is admissible.

Proof. Take a Stein factorisation, f = q ◦ f ′, where f ′ : X → S′ is admissible,
and q : S′ → S is finite. Now, we will make an estimate for Euler numbers, valid
for an arbitrary finite map q between smooth, irreducible curves.

Let e be the degree of q. Let S = ∪k=1,e Sk be the canonical partition: each Sk
consists of those c ∈ S having exactly k q-preimages. For k < e, Sk is a finite set, of
cardinality sk ≥ 0. Then S′ = ∪k=1,eq−1(Sk), and the restriction q : q−1(Se) → Se
is a non-ramified e-fold cover. Using the additivity of Euler numbers with respect
to constructible partitions (see [12]), we find that

χ(S′) − χ(S) = (e − 1)χ(Se) +
∑

1≤k<e

(k − 1)sk , (4.3)

which leads to

χ(S′) − χ(S) = (e − 1)χ(S) +
∑

1≤k<e

(k − e)sk . (4.4)

We infer from (4.4) that χ(S′) < 0, since χ(S) < 0. Therefore, f ′∗(T(S′))
is an irreducible component of V1(X), containing f ∗(T(S)), which implies that
f ′∗(T(S′)) = f ∗(T(S)). In particular b1(S′) = b1(S), hence χ(S′) = χ(S). Since
(k −e)sk ≤ 0 for any k, and χ(S) < 0, we deduce from (4.4) that e = 1. Therefore,
the generic fiber of f is connected, as asserted, since f ′ has this property.

Going back to the case when X = M(Q) is a curve complement in P2,
and h∗ = id on H1(F), we recall from Theorem 2.8 the correspondence W �→
p∗(W ). This gives a dimension-preserving bijection between non-translated subtori
in T(M) and T(F), that identifies the non-translated irreducible components in
V1(M) and V1(F). In geometric terms, this may be rephrased as follows.
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Corollary 4.4. Let p : F → M be the Galois cover associated to a plane pro-
jective curve. Assume the algebraic monodromy action on H1(F) is trivial. If
f : M → S is admissible and χ(S) < 0, then g := f ◦ p : F → S is admissible,
too.

Note also that any admissible map, f : M → S or g : F → S, must be a
rational pencil (compare to Corollary 3.3). This is due to the fact that W1 H1(M) =
0, and consequently W1 H1(F) = 0; see [18, Proposition 7.2].

Proposition 4.5. Under the assumptions from Corollary 4.4, the following hold.

(i) The bijection W �→ p∗(W ) identifies, for k > 1, the k-dimensional direc-
tions of irreducible components in V1(M) and V1(F). Moreover, n(W ) =
n(p∗(W )).

(ii) If W is a 1-dimensional direction of irreducible component in V1(M), then so
is p∗(W ) in V1(F), and n(W ) ≤ n(p∗(W )).

Proof. (i) For k > 1, it follows from [13] that (for both M and F) the k-dimensional
directions from our statement coincide with the non-translated k-dimensional com-
ponents of V1. Moreover, they are all of the form f ∗(T(S)), where f is an admis-
sible map onto a rational curve with χ(S) = 1 − k, and n( f ∗(T(S))) = ∏

c mc( f ),
where the product is taken over those c ∈ S with mc( f ) > 1. Our claims follow
then from Theorem 2.8, Corollary 4.4, and the remark that mc( f ◦ p) = mc( f ), for
all c ∈ S, since p is a submersion.

(ii) For k = 1, we know from [13] that the 1-dimensional directions (for
both M and F) coincide with the subtori of the form f ∗(T(C∗)), where f is an
admissible map onto C∗, having at least one multiple fiber. In this case, 1 +
n( f ∗(T(C∗))) = ∏

c mc( f ). If f : M → C∗ satisfies the above conditions, let
us consider the map g := f ◦ p.

We may factor it as in the proof of Proposition 4.3, g = q◦g′, with g′ : F → S′
admissible and q : S′ → C∗ finite. We also know from [15, Corollary 3.21]
that f ∗(H1(C∗, C)) is a maximal isotropic subspace in H1(M), which implies the
same property, for g∗(H1(C∗, C)) in H1(F). The inclusion g∗(H1(C∗, C)) ⊆
g′∗(H1(S′, C)) must then be an equality, which forces S′ to be C∗, and q to induce
a cohomology isomorphism. In this case, (4.4) becomes

∑
k<e

(k − e)sk = 0 ,

therefore q is unramified. This implies that mc( f ) = mc(q ◦ g′) = g.c.d. {mc′(g′) |
c′ ∈ q−1(c)}, for all c ∈ C∗.

We thus see that each multiple fiber f −1(c) gives rise to e multiple fibers of g′.
In particular, g′∗(T(C∗)) = g′∗ ◦ q∗(T(C∗)) = p∗ ◦ f ∗(T(C∗)) is a 1-dimensional
direction in V1(F). Clearly,

∏
c mc( f )e ≤ ∏

c′ mc′(g′), which verifies our last
claim.
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