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1. Introduction

Let D be a domain in Cn and dv the Lebesgue measure defined in Cn. We denote
by P the Bergman projection i.e., the orthogonal projection of the Hilbert space
L2(D, dv) onto its closed subspace A2(D, dv) consisting of holomorphic functions
on D. It is well-known that, under weak assumptions, P is an integral operator
defined on L2(D, dv) by

P f (z) =
∫

D
B(z, w) f (w)dv(w),

where B(·, ·) is the Bergman kernel i.e., the reproducing kernel of A2(D, dv). In
this work we consider the Bergman projection in tube domains over homogeneous
cones and we are interested in the values of p ≥ 1 such that the Bergman projection
P can be extended to a bounded operator on L p(D, dv).

The L p-boundedness of Bergman projections on tube domains over cones has
been studied by many authors. In [1], D. Békollé and A. Bonami considered the tube
domain over the forward light cone; they obtained some sufficient conditions using
Schur’s Lemma. They proved that this condition is necessary and sufficient for
the positive Bergman operator, that is, the Bergman operator with kernel |B(·, ·)|.
Jointly with M. M. Peloso and F. Ricci they improved this result in [5]. To take
care of cancellations, they introduced the mixed-normed spaces L p,q . The consid-
eration of the case p = 2 of these spaces has been used in [2] by D. Békollé,
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A. Bonami and G. Garrigós to generalize this improvement to the case of gen-
eral symmetric cones via a Fourier transform in the x variables. Indeed, they have
found values of p for which the Bergman projection is bounded while the positive
Bergman operator is unbounded. Together with the first author of this paper, they
presented all these results with more details in the Lecture Notes [3] of the Work-
shop “PDE, Classical Analysis and Applications” held in Yaoundé in December
2001. Moreover, D. Debertol in [10] obtained the generalization of the sufficient
conditions above for general weighted measures. We follow the same direction in
this paper.

On the other hand, D. Békollé and A. Temgoua in [7] generalized results in [1]
to the case of Siegel domains of type II, not necessarily symmetric; again they
applied Schur’s Lemma to the positive Bergman operator.

As it is proved in [3] or [5], it is important to mention that all these sufficient
conditions are far from being necessary when the rank of the cone is greater than 1.

However, in [4], an improvement has been obtained in the case of the forward light
cone. This is pursued in [14], where G. Garrigós and A. Seeger improved previous
work of T. Wolff on the cone multiplier.

The aim of our work is the generalization of all the theory to tube domains over
convex homogeneous cones. More precisely, we shall consider general weighted
measures, which coincide in the case of symmetric cones with those obtained by D.
Debertol [10]. A particular case of this work has been done in [6] by D. Békollé
and the first author, who considered the tube domain over the Vinberg cone. This
is the simplest example of a non self-dual cone. In this case and in the case of
rank 2, the sufficient conditions obtained for the positive Bergman operator are also
necessary. We do not know whether this is the case for any arbitrary open convex
homogeneous cone.

In this paper, we prove all the results mentioned above in the case of tube
domains over homogeneous cones. The main difficulty of this work is to develop
for all homogeneous cones, the necessary tools that are well known in the case
of symmetric cones and of the Vinberg cone. Once this is done for any arbitrary
homogeneous cone, one can easily proceed as in the previous cases. We deeply rely
on the Vinberg’s description of homogeneous cones presented in [20].

This paper is divided into 8 sections. In Section 2, we give some geometric
properties of homogeneous cones which are necessary to state our results. Section 3
is devoted to the statement of the results. In Section 4, we recall some useful results
about homogeneous cones, such as the Whitney decomposition and the gamma
function. Section 5 deals with Bergman spaces. In Sections 6 and 7, we give the
proofs of results announced in the third section. The last section is devoted to some
comments about necessary conditions.

ACKNOWLEDGEMENTS. We are grateful to A. Bonami for her critical observa-
tions and fruitful discussions shared on this subject.
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2. Algebraic structure of homogeneous cones

Let V be a n-dimensional real vector space and � be an open convex cone in V i.e.,
for x, y ∈ �, and λ, µ > 0, we have λx ∈ � and λx +µy ∈ �. We assume that �

does not contain straight lines and that it is homogeneous, that is, the group G(�)

of all transformations of GL(V ) which leave invariant � acts transitively on �.

In [20], Vinberg described convex homogeneous cones as the cones of Hermitian
positive matrices in a T -algebra. We recall the definition of a T -algebra.

Definition 2.1. A matrix algebra of rank r is a real algebra1 U bigraded by sub-
spaces Ui j , i, j = 1, . . . , r i.e., U = ⊕

i, j Ui j , such that

Ui jU jk ⊂ Uik

and for j �= l,
Ui jUlk = 0.

As was recalled in [8], if we represent each a ∈ U by the generalized matrix
(ai j )

r
i, j=1, where ai j denotes the projection of a onto Ui j , then the representation

of ab is given by the matrix product (ai j )(bi j ).

Definition 2.2. An involution of a matrix algebra U is a linear mapping � : x �→ x�

of U onto itself that satisfies the following conditions:

(i) x�� = x;
(ii) (xy)� = y�x�;

(iii) U�
i j = U j i for all x, y ∈ U .

In its matrix representation, an involution corresponds to taking the transpose, i.e.,
(a�)i j = a�

j i . A consequence of the existence of an involution is that

ni j = n ji , (2.1)

where
ni j = dimUi j .

Let U be an algebra with an involution �. As in [19], we define the subspace of
“Hermitian matrices” in U ,

X = {x ∈ U : x� = x},
and

T =
⊕

1≤i≤ j≤r

Ui j ,

the subalgebra of U consisting of upper triangular matrices.

1 Associativity of the multiplication is not assumed.
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We shall always assume that Ui i = Rci where c2
i = ci . Let ρ denote the unique

isomorphism of Ui i onto the algebra of real numbers R. For a matrix x ∈ U ,

x =
r∑

i=1

xii +
∑
i �= j

xi j ,

we define its trace by

tr x =
r∑

i=1

ρ(xii ). (2.2)

Definition 2.3. A matrix algebra U with an involution x �→ x� is called a T -algebra
if the following conditions are satisfied:

(i) Ui i = Rci for i = 1, . . . , r;
(ii) for xi j ∈ Ui j , ci xi j = xi j c j = xi j ;

(iii) for all x, y ∈ U , tr(xy) = tr(yx);
(iv) for all x, y, z ∈ U , tr[x(yz)] = tr[(xy)z];
(v) if x �= 0, then tr(xx�) > 0;

(vi) for all t, u, v ∈ T , t (uv) = (tu)v;
(vii) for all t, u ∈ T , t (uu�) = (tu)u�.

Remark 2.4. From (v) in the definition above the formula

(x |y) = tr(xy�)

defines a scalar product in U . Therefore a matrix algebra with an involution is Eu-
clidean. Under this inner product, Ui j is orthogonal to Ukl unless (i, j) = (k, l).

We denote by e the unit element of the matrix T -algebra U , i.e.,

e =
r∑

j=1

c j .

Let
H = {t ∈ T : ρ(ti i ) > 0, i = 1, . . . , r}

be the subgroup of upper triangular matrices whose diagonal elements are positive
and let

�(X ) = {ss� : s ∈ H} ⊂ X .

Note that the product in H is associative by (vi). The transformations

π(w) : uu� �→ (wu)(u�w�) (w, u ∈ H) (2.3)

of �(X ) correspond to the left translations of �(X ) ( [20, page 383]). Note that
from properties (vi) and (vii) of Definition 2.3, for v, w ∈ H,

π(v)π(w) = π(vw). (2.4)

We have the following important result, due to Vinberg, which relates homogeneous
cones to T -algebras.
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Proposition 2.5 ([20, Proposition 1, page 384]). For every T -algebra U , the set
�(X ) is a convex homogeneous cone in which, by (2.3), the group H acts linearly
and transitively. Moreover, all convex homogeneous cones can be described as
�(X ) for some T -algebra.

Therefore, in the sequel, we shall consider the open convex homogeneous cone
� defined by

� = {ss� : s ∈ H},
where the n-dimensional vector space V containing � is

V = {x ∈ U : x� = x}.

Since the mapping H � s �→ ss� ∈ � is one-to-one, the group H acts simply
transitively on � by (2.3). Hence, by homogeneity, one can write � = H · e, where
we use the notation

π(t)e = t · e

for all t ∈ H. As it is mentioned in [19], we have the factorization

H = N A

where

N = {t ∈ H : ∀i, ρ(tii ) = 1}, A = {t ∈ H : ∀i < j, ti j = 0}.

As in [13, page 14 and page 20], we introduce the following notation, related to
the vector space V containing the homogeneous cone �. We recall that ni j is the
dimension of Ui j ; we define

ni =
i−1∑
j=1

n ji

and

mi =
r∑

j=i+1

ni j ;

then

dim V = n = r +
r∑

i=1

mi = r +
r∑

i=1

ni . (2.5)
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2.1. The equation of the cone �

This is exactly what is done in [20, page 385]. In the T -algebra U of rank r, we
consider the subspaces

U k =
⊕

1≤i, j≤k

Ui j ,

and with every element x ∈ V we associate a sequence of matrices to x (k) ∈ U k, as
follows

x (r) = x

x (k−1) =
k−1∑

i, j=1

[
ρ(x (k)

kk )x (k)
i j − x (k)

ik x (k)
k j

]
,

where we consider that the matrix x (k−1) is formed from the second order “minors”
of x (k). We put

pk(x) = ρ(x (k)
kk ), k = 1, . . . , r .

We notice that pk(x) is a homogeneous polynomial of degree 2r−k . In [15] the
polynomials pk are called the determinant-type polynomials associated to the cone
� and p1 is the composite determinant. Since the computation of the composite de-
terminant is hard to carry, H. Ishi in [15, Proposition 1.4] gave recurrence relations
between determinant-type polynomials pk . For k = 1, . . . , r and x ∈ �, we put

Qk(x) = pk(x)∏r
j=k+1 p j (x)

;

the functions Qk are homogeneous of degree 1. These functions are denoted by χk
in [13].

Lemma 2.6 ([20, Proposition 2, Chapter III]). The cone � is determined by the
inequalities

pk(x) > 0, k = 1, . . . , r.

Also
� = {x ∈ V : Qk(x) > 0, k = 1, . . . , r}.

2.2. The adjoint cone

We consider the matrix algebra with involution U ′ which differs from U only in its
grading, and we put

U ′
i j = Ur+1−i, r+1− j (i, j = 1, . . . , r).
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It is proved in [20, Chapter 3, Section 6] that U ′ is also a T -algebra and V ′ = V
where V ′ is the subspace of U ′ consisting of Hermitian matrices. The dual cone of
the convex homogeneous cone � is the set

�∗ = {ξ ∈ V ′ : (x |ξ) > 0, ∀x ∈ � \ {0}}.
The cone �∗ is also convex and homogeneous and the group

H ′ = H � = {t�, t ∈ H}
acts simply transitively in �∗. See [20, Chapter 1, Proposition 9]. Therefore,

�∗ = {t�t, t ∈ H}.
As previously, we write

(U ′)k =
⊕

1≤i, j≤k

(U ′)i j

and to every element ξ ∈ V ′ we associate the determinant-type polynomials de-
noted p∗

k (ξ) of degree 2r−k and the functions

Q∗
k(ξ) = p∗

k (ξ)∏r
j=k+1 p∗

j (ξ)
.

Thus
�∗ = {ξ ∈ V ′ : Q∗

k(ξ) > 0, k = 1, . . . , r}.
In the sequel, we will use the following notations: for all α = (α1, α2, . . . , αr ) ∈
Rr , x ∈ � and ξ ∈ �∗,

Qα(x) =
r∏

j=1

Q
α j
j (x) and (Q∗)α(ξ) =

r∏
j=1

(Q∗
j )

α j (ξ).

We put τ = (τ1, τ2, · · · , τr ) ∈ Rr with

τi = 1 + 1

2
(mi + ni ).

For x ∈ �, we have x = t · e where t ∈ H. Then from [20, Chapter 3, Section 3]
we have

Q j (x) = t2
j j j = 1, . . . , r. (2.6)

Let y ∈ �. We have, for j = 1, . . . , r

Q j (π(t)y) = Q j (x)Q j (y), (2.7)
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since, for y = s · e, by (2.4) and (2.6) we can write

Q j (π(t)y) = Q j (π(ts)e) = t2
j j s

2
j j = Q j (x)Q j (y).

Therefore, for any s ∈ H,

Q j (π(s)x) = Q j (s · e)Q j (x) j = 1, . . . , r, (2.8)

and

Qτ (π(s)x) = det π(s)Qτ (x), (2.9)

since

det π(s) = Qτ (s · e). (2.10)

See [20, page 388].
The above properties are also valid if we replace Q j by Q∗

j and x ∈ � by
ξ ∈ �∗.
Definition 2.7. Let C be an open cone. We say that C is self-dual if C = C∗. A
homogeneous cone that is self-dual is said to be a symmetric cone.

In the following examples, that have been treated in [15], we compute the
determinant-type polynomials.

Example 2.8. The cone of positive-definite symmetric matrices. This is a symmet-
ric cone. We describe the above concepts for the cone � = Sym+(r, R), contained
in the vector space V = Sym(r, R). The matrix algebra of rank r is the usual alge-
bra U = V = V ′ and the involution the transpose map V � X �→ t X . The unit
element of V is the usual identity matrix e = I and c j = D j are diagonal matrices
whose entries are 0 except for the j th which is equal to 1. Obviously, ni j = 1, for
all i, j ∈ {1, . . . , r}.

In this example, the group T consists in the upper triangular matrices in
GL(r, R) and the factorization y = t · I is precisely the Gauss decomposition
of a positive symmetric matrix. See [11, Chapter VI, Section 3]. The subgroup N
consists of all triangular matrices in GL(r, R) with 1s on the diagonal, while A is
given by the diagonal matrices P(a) = diag{a1, . . . , ar }.

Finally, for each matrix X = (xi j )1≤i, j≤r ∈ V, we define the matrix ξ =
(xr+1−i, r+1− j )1≤i, j≤r ∈ V . Then

Q j (X) = 
r+1− j (ξ)


r− j (ξ)

and

Q∗
j (X) = 
r+1− j (X)


r− j (X)
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where Q j and Q∗
j are the functions defined above and 
 j are the usual principal

minors from linear algebra, that is, the determinant of the j × j symmetric subma-
trices obtained by restriction to the first j coordinates. Observe that

det X =
r∏

j=1

Q j (X) =
r∏

j=1

Q∗
j (X).

Henceforth

Sym+(r, R) = {X ∈ Sym(r, R) : 
 j (X) > 0, j = 1, . . . , r}.
Example 2.9. Vinberg’s Cone. This is the simplest example of a convex homoge-
neous non selfadjoint cone of rank 3, given by Vinberg in [20, page 397]. Consider
the Euclidean vector space U = V of 3 × 3 matrices with real entries given by

x =

 x11 x12 x13

x12 x22 0
x13 0 x33


 ;

clearly, n23 = 0, n12 = n13 = 1 so that m1 = 2, m2 = m3 = 0 and n1 =
0, n2 = n3 = 1. As in the case of real symmetric matrices above, the unit element
of V is the usual identity matrix e = I and c j = D j are diagonal matrices whose
entries are 0, except for the j th entry which is equal to 1. We have

H =

s =


 s11 s12 s13

0 s22 0
0 0 s33


 : s j j > 0, j = 1, 2, 3


 .

For every x ∈ V,

p3(x) = x33, p2(x) = x33x22 and p1(x) = x33x22(x33x11 − x2
13) − x2

33x2
12,

so that

Q3(x) = x33, Q2(x) = x22 and Q1(x) = x11 − x2
12

x22
− x2

13

x33
;

the convex homogeneous cone is then equal to the set

{x ∈ V : Q j (x) > 0, j = 1, 2, 3} = {x ∈ V : x is positive definite}.
Note that since n23 = 0, the space V ′ is identified with the set{

ξ = (ξ(2), ξ(3)) : ξ(k) =
(

ξ11 ξ1k
ξ1k ξkk

)
, k = 2, 3

}
,
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and the cone �∗ is the set of elements ξ = (ξ(2), ξ(3)) such that both components
are positive definite; the group H ′ is the set

H ′ =
{

t = (t(2), t(3)) : t(k) =
(

t11 0
t1k tkk

)
; k = 2, 3; t j j > 0, j = 1, 2, 3

}
,

the unit element is e = (e(1), e(2)) with e(1) = e(2) =
(

1 0
0 1

)
. Therefore, for

ξ ∈ V ′, we have

p∗
3(ξ) = ξ11, p∗

2(ξ) = ξ11ξ22 − ξ2
12 and p∗

1(ξ) = (ξ11ξ22 − ξ2
12)(ξ11ξ33 − ξ2

12)

so that

Q∗
3(ξ) = ξ11, Q∗

2(ξ) = ξ22 − ξ2
12

ξ11
and Q∗

1(ξ) = ξ33 − ξ2
13

ξ11
;

observe that det ξ �= ∏3
j=1 Q∗

j (ξ), hence ξ is not positive definite.

Remark 2.10. From [13, page 19], a necessary and sufficient condition for a cone
to be self-conjugate or self-dual is that all ni j are equal when i �= j. Let d denotes
this common dimension for the spaces Ui j . Then for every symmetric cone of rank
r, we have mi = (r − i)d and ni = (i − 1)d so that from (2.5) above, we obtain

(r − 1)
d

2
= n

r
− 1.

In particular, d = 1 for the cone of positive-definite symmetric matrices.

3. Statement of the results

Let T� = V + i� be the tube domain over the open convex homogeneous cone �.

For each w ∈ T�,

Q−2τ (�m w)dv(w)

is the invariant measure with respect to the group of automorphisms of T�. Let
ν = (ν1, ν2, · · · , νr ) ∈ Rr . We denote by L p

ν (T�), 1 ≤ p ≤ ∞, the Lebesgue
space L p(T�, Qν−τ (�m w)dv(w)).

The weighted Bergman space Ap
ν (T�) is the closed subspace of L p

ν (T�) con-
sisting of holomorphic functions. In order to have a non-trivial subspace, we take
ν = (ν1, ν2, · · · , νr ) ∈ Rr such that νi >

mi +ni
2 , i = 1, . . . , r. 2

The orthogonal projection of the Hilbert space L2
ν(T�) on its closed subspace

A2
ν(T�) is the weighted Bergman projection Pν. We recall that Pν is defined by the

integral

Pν f (z) =
∫

T�

Bν(z, w) f (w)Qν−τ (�m w)dv(w),

2 If there is k ∈ {1, . . . , r} such that νk ≤ mk
2 , then A p

ν (T�) = {0}.
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where

Bν(z, w) = dν Qν−τ

(
z − w̄

i

)

is the weighted Bergman kernel i.e., the reproducing kernel of A2
ν(T�).

In this paper, we discuss boundedness of Pν on L p
ν (T�) for values of p differ-

ent from 2. Let us consider the positive Bergman operator P+
ν defined on L2

ν(T�)

by

P+
ν f (z) =

∫
T�

|Bν(z, w)| f (w)Qν−τ (�m w)dv(w).

Theorem 3.1. The operator P+
ν is bounded on L p

ν (T�) when

1 + max
1≤i≤r

ni
2

νi − mi
2

< p < 1 + min
1≤i≤r

νi − mi
2

ni
2

.

Hence Pν is bounded for this range of p.

Recall that this theorem has been proved by D. Békollé and A. Temgoua in [7]. We
give a new proof of this theorem within the framework of T -algebra construction
of convex homogeneous cones. This sufficient condition is also necessary for some
open convex homogeneous cones, for example when the rank is 2 and for the case of
Vinberg cone and its dual. (See [6, Theorem 1.1].) Moreover, for general symmetric
cones, if we assume that ν = (ν, . . . , ν) ∈ Rr , then this sufficient condition is also
necessary. (See [3, Theorem 4.10].)

Moreover, for the case of tube domains over symmetric cones and the tube
domain over the Vinberg cone, the authors of [3] and [6] respectively established
that there are values of p for which Pν is bounded, but P+

ν is unbounded. We extend
this result to the tube domain over open convex homogeneous cones. We have the
following theorem, which is the main result of this paper.

Theorem 3.2.

i) When the Bergman projector is bounded from L p
ν (T�) to Ap

ν (T�), we have

1 + max
1≤i≤r

ni
2

νi + 1 + mi
2 + ni

2

< p < 1 + min
1≤i≤r

νi + 1 + mi
2 + ni

2
ni
2

.

ii) The Bergman projector Pν extends to a bounded operator on L p
ν (T�) for

1 + max
1≤i≤r

ni
2

νi − mi
2 + ni

2

< p < 1 + min
1≤i≤r

νi − mi
2 + ni

2
ni
2

.

The necessary condition is not hard to prove. We describe the main ideas in
the proof of the sufficient condition. As in [3] and [6], we must take advantage of
the oscillations of the Bergman kernel. Hence, we are induced to use the Fourier
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transform in the x variables and consequently to focus on L2-norms in these vari-
ables. For this reason, we introduce mixed norms spaces. For 1 ≤ p, q ≤ ∞,

let L p,q
ν (T�) = Lq(�, Qν−τ (y)dy; L p(V, dx)) be the space of functions f on T�

such that

‖ f ‖L p,q
ν (T�) :=

(∫
�

(∫
V

| f (x + iy)|pdx

) q
p

Qν−τ (y)dy

) 1
q

is finite (with obvious modification if p = ∞.) As before, we call Ap,q
ν (T�) the

closed subspace of L p,q
ν (T�) consisting of holomorphic functions.

For p = 2, we prove that Pν is bounded on L2,q
ν (T�) when

2

(
1 + max

1≤i≤r

ni
2

νi − mi
2

)
< q < 2

(
1 + min

1≤i≤r

νi − mi
2

ni
2

)
.

Then Theorem 3.2 follows by interpolation with Theorem 3.1. Note that in the
case of symmetric cones, which Debertol considered, the necessary condition of the
L2,q

ν (T�)-boundedness of the weighted Bergman projector Pν has been left open.
We still have the same difficulty here. Nevertheless, we observe that, for the case
of rank 2 and the Vinberg cone [6], the sufficient condition above is also necessary.

4. Some useful results in a convex homogeneous cone

In this section, we recall some important facts about homogeneous cones such as
the Riemannian structure that yields an isometry between the cone and its dual and
the Whitney decomposition of the cone. Most of these results have been established
in [3] and [6].

4.1. The Riemannian structure � and its dual

We denote by ϕ (respectively ϕ∗) the characteristic function of the cone � (respec-
tively �∗); then for x ∈ � and ξ ∈ �∗,

ϕ(x) =
∫

�∗
e−(x |ξ)dξ and ϕ∗(ξ) =

∫
�

e−(ξ |x)dx .

Recall that the gradient of a differentiable function f at the point x ∈ Rn is defined
by

(∇ f (x)|u) = Du f (x) = d

dt
f (x + tu)

∣∣∣∣
t=0

for all u ∈ Rn.
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For x ∈ � we define x ′ ∈ �∗ by

x ′ = −∇ log ϕ(x).

Similarly, for ξ ∈ �∗ we define

ξ ′ = −∇ log ϕ∗(ξ).

Note that for each x ∈ � and ξ ∈ �∗, we have x ′′ = x and ξ ′′ = ξ. (See [20,
Chapter 1, Section 4].)

For x = t · e,

(x ′|π(t)y) = (−∇ log ϕ(x)|π(t)y) = − d

du
log ϕ(x + uπ(t)y)

∣∣∣∣
u=0

= − d

du
log ϕ(π(t)(e + uy))

∣∣∣∣
u=0

= − d

du
log(ϕ ◦ π(t))(e + uy)

∣∣∣∣
u=0

= − d

du
log ϕ(e + uy)

∣∣∣∣
u=0

= (e′|y)

so that
x ′ = t�−1 · e′.

Moreover, for all t ∈ H, we have

Q j (t · e)Q∗
j (t

�−1 · e) = 1,

where j = 1, . . . , r. Let e0 be the unique fixed point of the map σ : x �→ x ′,
(cf. [11, Proposition I.3.5]). Since � is a homogeneous cone, every x ∈ � can be
written as x = π(t)e0; therefore, x ′ = π(t�−1)e0 and by (2.8) we have

Q j (x)Q∗
j (x ′) = Q j (e0)Q∗

j (e0) = constant (4.1)

for j = 1, . . . , r.
Since the function log ϕ is strictly convex (cf. [11, Proposition I.3.3]), the sym-

metric bilinear form on Rn

Gx (u, v) = Du Dv log ϕ(x) (respectively Gξ ′(u, v) = Du Dv log ϕ∗(ξ))

where u, v ∈ Rn defines on � (respectively �∗) a structure of Riemannian mani-
fold. The corresponding Riemannian distances are given by

d(x, y) = inf
γ

{∫ 1

0

√
Gγ (t)(γ̇ (t), γ̇ (t))dt

}
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and

d∗(ξ, η) = inf
γ ∗

{∫ 1

0

√
G∗

γ ∗(t)(γ̇
∗(t), γ̇ ∗(t))dt

}
,

where the infimum is taken on the smooth paths γ : [0, 1] → � (respectively γ ∗ :
[0, 1] → �∗) such that γ (0) = x, γ (1) = y (respectively γ ∗(0) = ξ, γ ∗(1) = η).

The Riemannian distances d and d∗ are invariant under the action of G(�) and
G(�∗) respectively, i.e.,

∀x, y ∈ �, ∀g ∈ G(�), d(gx, gy) = d(x, y)

and
∀ξ, η ∈ �∗, ∀g ∈ G(�), d∗(g∗ξ, g∗η) = d∗(ξ, η).

(See [11, pages 15-16].) We have the following:

Theorem 4.1. The map σ : x �→ x ′ between the Riemannian manifolds � and �∗
is an isometry; that is

d∗(x ′, y′) = d(x, y).

4.2. The invariant measure on �

Since we also have the identification �∗ ≡ H ′ · e, we deduce from (2.9) that the
measure

dm(x) = Q−τ (x)dx (respectively dm∗(ξ) = (Q∗)−τ (ξ)dξ)

is H -invariant on � (respectively H ′-invariant on �∗).

Lemma 4.2. Given λ > 0, there is a constant C = C(λ) > 0 such that:

i) if d(y, t) ≤ λ then 1
C ≤ Q j (y)

Q j (t)
≤ C for all j = 1, . . . , r and x, y ∈ �;

ii) if d∗(ξ, η) ≤ λ then 1
C ≤ Q∗

j (ξ)

Q∗
j (η)

≤ C for all j = 1, . . . , r and ξ, η ∈ �∗.

Let λ > 0, y ∈ � (respectively ξ ∈ �∗) and d (respectively d∗) the G(�)-invariant
(respectively G(�∗)-invariant) distance defined in � (respectively �∗). We denote
by

Bλ(y) = {x ∈ � : d(y, x) < λ}
and

B∗
λ(ξ) = {η ∈ �∗ : d∗(η, ξ) < λ}

the d-ball (respectively d∗-ball) centered at the point y (respectively ξ ) with radius
λ.

Lemma 4.3. Let 0 < λ < 1. Then

m(Bλ(y)) ∼ λn and m∗(B∗
λ(ξ)) ∼ λn.
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Proof. By the G(�)-invariance of the distance, we have, for all t ∈ H, Bλ(e) =
t · Bλ(e), so that m(Bλ(y)) = m(Bλ(e)) for all y ∈ �. We have

m(Bλ(e)) =
∫

Bλ(e)
dm(y) =

∫
Bλ(e)

Q(y)−τ dy ∼
∫

Bλ(e)
dy.

It is well known that the distance d is equivalent to the Euclidean distance on com-
pact subsets of V (cf. [17]); hence there are two positive constants c1 and c2 such
that

{y ∈ V : |y − e| ≤ c1λ} ⊂ Bλ(e) ⊂ {y ∈ V : |y − e| ≤ c2λ}
and the result follows.

4.3. The Whitney decomposition of the cone �

We give now the Whitney decomposition of the cone �, which is obtained, for
instance, as in Lemma 3.5 of [6].

Lemma 4.4. Given 0 < λ < 1, there exists a sequence {y j } j of points of � such
that the following three properties hold:

i) the balls B λ
2
(y j ) are pairwise disjoint;

ii) the balls Bλ(y j ) form a covering of �;
iii) there is an integer N = N (�) such that every y ∈ � belongs to at most N

balls Bλ(y j ).

Remark 4.5. This lemma is also true for the dual cone �∗.
Definition 4.6. Sequences {y j } j (respectively {ξ j } j ) of points of � (respectively
�∗) that satisfy properties of Lemma 4.4 are called λ-lattices of � (respectively
�∗.).

The family {Bλ(y j )} j (respectively {B∗
λ(ξ j )} j ) is called the Whitney decompo-

sition of the cone � (respectively �∗).

Proposition 4.7. The sequence {y j } j is a λ-lattice of � if and only if {y′
j } j is a

λ-lattice in �∗. The sequence {y′
j } j is called the dual lattice of the λ-lattice {y j } j .

Lemma 4.8. Let (y0, ξ0) ∈ � × �∗; then

|Bλ(y0)| = CλQτ (y0) and |B∗
λ(ξ0)| = Cλ(Q∗)τ (ξ0). (4.2)

Proof. We know that y0 = t · e with t ∈ H ; if we use the change of variables y =
π(t)x, dy = Qτ (y0)dx and since the distance d is G(�)-invariant, d(y, y0) =
d(π(t)x, π(t)e) = d(x, e). Hence,

|Bλ(y0)| = Qτ (y0)

∫
Bλ(e)

dx = CλQτ (y0).

The same argument holds for B∗
λ(ξ0).
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Proposition 4.9. Let y ∈ � (respectively ξ ∈ �∗). There is a constant γ =
γ (�, �∗) ≥ 1 such that

1

γ
<

(y|ξ)

(y|ξ0)
< γ

(
respectively

1

γ
<

(y|ξ)

(y0|ξ)
< γ

)

whenever ξ ∈ B∗
λ(ξ0) (respectively y ∈ Bλ(y0)).

Corollary 4.10. Let (y0, ξ0) ∈ � × �∗. There is a constant γ > 0 such that

n

γ
≤ (y|ξ) ≤ nγ

for all (y, ξ) ∈ Bλ(y0) × B∗
λ(ξ0).

Lemma 4.11. There is a constant c > 0 such that for all t ∈ H,

‖π(t)x‖ ≤ c(t · e|e)‖x‖,
where x ∈ �.

Proof. Let us first remark that, since the function (x, y) ∈ U × U �→ ‖xy‖ is
continuous, there is C > 0 such that, for all x, y ∈ U ,

‖xy‖ ≤ C‖x‖‖y‖. (4.3)

Let x ∈ �. Then x = s · e with s ∈ H. Then, by (2.4) and (4.3),

‖π(t)x‖ = ‖π(ts)e‖ = ‖(ts)(ts)�‖ ≤ C3‖t‖2‖s‖2 = C3(t · e|e)(s · e|e).
Applying the Cauchy-Schwarz inequality, we obtain

(s · e|e) = (x |e) ≤ √
r‖x‖;

hence
‖π(t)x‖ ≤ C3√r(t · e|e)‖x‖.

4.4. The gamma function of a homogeneous cone

The following lemmas are given in order to define the holomorphic determination
of the logarithm of Q

α j
j and hence define the gamma function of � and �∗. We

consider once more the T -subalgebras

U k =
⊕

1≤i, j≤k

Ui j ,

with the units
ek = c1 + · · · + ck,

and we denote by �(k) the associated open convex homogeneous cone.
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Lemma 4.12. For y ∈ ⊕r−1
i=1 Uir , we have

er−1 + yy� ∈ �(r−1) (4.4)

and

yy� ∈ �(r−1). (4.5)

Proof. Let δ ∈ R+. Then er−1 + y + δcr ∈ H and we have

(er−1 + y + δcr ) · e = er−1 + yy� + δy + δy� + δ2cr ∈ �.

Let ξ ∈ (�(r−1))∗. Then ξ = t�t, with t ∈ H (r−1); moreover, ξ + cr = (t +
cr )

�(t + cr ), so that ξ + cr ∈ �∗. It follows that

(ξ + cr |er−1 + yy� + δy + δy� + δ2cr ) = (ξ |er−1 + yy�) + δ2 > 0.

Taking δ → 0, we see that

er−1 + yy� ∈ �(r−1).

Replacing y by ε−1 y, we can write

ε2er−1 + yy� ∈ �(r−1).

Thus, as ε tends to 0 we get (4.5). Finally, since er−1 ∈ �(r−1), we get (4.4).

Lemma 4.13. For x ∈ � and y ∈ �, we have

Q j (x + y) ≥ Q j (x)

for all j = 1, . . . , r.

Proof. We prove this by induction on the rank r. Since by (2.8), we have
Q j (π(t)y) = Q j (π(t)e)Q j (y) for t ∈ H, we may take x = e. Then Qr (e + y) =
1 + ρ(yrr ) ≥ 1 = Qr (e). Now, assume that for any 1 ≤ k ≤ r − 1, we have
Q(k)

j (ek +v(k)) ≥ 1 = Q(k)
j (ek) where j = 1, . . . , k and v(k) ∈ �(k). Let u = e+ y

and

w = 1

1 + ρ(yrr )
u(r−1).

Then w = er−1 + 1
1+ρ(yrr )

v(r−1) where v = y + cr . Since v ∈ �, we have v(r−1) ∈
�(r−1) and so, by the induction hypothesis,

Q(r−1)
j (w) ≥ 1

for j = 1, . . . , r − 1. The functions Q(r−1)
j are homogeneous of degree 1, so that

Q(r−1)
j (w) = 1

1 + ρ(yrr )
Q(r−1)

j (u(r−1)) = Q j (u).
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Lemma 4.14. For x ∈ V and y ∈ �, we have

�m Q j (x + iy) ≥ Q j (y) (4.6)

for j = 1, . . . , r.

Proof. The proof of (4.6) is inductive over the rank r. By (2.8),

Q j (π(t)(x + iy)) = Q j (π(t)e)Q j (x + iy),

so that we can assume y = e. Let z = x + ie. We have

�m Qr (z) = �m pr (z) = 1.

Now, assume that for any 1 ≤ k ≤ r − 1 we have �m Q(k)
j (x + iv(k)) ≥ Q(k)

j (v(k))

where j = 1, . . . , k and v(k) ∈ �(k). Put w = 1
pr (z)

z(r−1). Then

w j j = x j j − ρ(xrr )x jr xr j

1 + ρ(xrr )2
+ i

(
c j + x jr xr j

1 + ρ(xrr )2

)

and

w jk = x jk − ρ(xrr )x jr xrk

1 + ρ(xrr )2
+ i

(
x jr xrk

1 + ρ(xrr )2

)
.

Observe that �m w = er−1 + 1
1+ρ(xrr )2 yy� where y ∈ ⊕r−1

i=1 Uir . Hence, by

Lemma 4.12, �m w ∈ �(r−1). Thus, by the induction hypothesis and Lemma 4.13,
we have

�m Q(r−1)
j (w) ≥ Q(r−1)

j (�m w) ≥ 1.

Since Q(r−1)
j are homogeneous of degree 1, we have

Q(r−1)
j (w) = 1

pr (z)
Q(r−1)

j (z(r−1)) = Q j (z).

Notation : For ν = (ν1, . . . , νr ) ∈ Rr , we shall denote

Q
ν j
j (z/ i) (z ∈ T�)

the determination of the ν j -th power that corresponds to the holomorphic determi-
nation of the logarithm of Q

ν j
j (z/ i) which is real and positive on i�.

Likewise, for the dual cone we use the notation

(Q∗
j )

ν j (z/ i) (z ∈ T�∗).

We now define the gamma functions.
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Proposition 4.15 ([13, Theorem 2.1]). Let α = (α1, . . . , αr ) ∈ Rr .

i) The integral

��(α) =
∫

�

e−(e|x)Qα−τ (x)dx

converges if and only if αi >
mi
2 . In this case,

��(α) = π
n−r

2

r∏
i=1

�
(
αi − mi

2

)

where � is the usual gamma function.
ii) The integral

��∗(α) =
∫

�∗
e−(e|ξ)(Q∗)α−τ (ξ)dξ

converges if and only if αi >
ni
2 . In this case,

��∗(α) = π
n−r

2

r∏
i=1

�
(
αi − ni

2

)

where � is the usual gamma function.

Corollary 4.16. Let ν = (ν1, ν2, . . . , νr ) ∈ Rr . The integral∫
�

e−(ξ |y)Qν−τ (y)dy

(
respectively

∫
�∗

e−(y|ξ)(Q∗)ν−τ (ξ)dξ

)

is finite for all ξ ∈ �∗ (respectively y ∈ �) if and only if

ν j >
m j

2
, j = 1, . . . , r

(
respectively ν j >

n j

2
, j = 1, . . . , r

)
.

For these values of ν and for all ζ = η + iξ ∈ T�∗ (respectively z = x + iy ∈ T�),∫
�

ei(ζ |y)Qν−τ (y)dy = ��(ν)(Q∗)−ν

(
ζ

i

)
(4.7)

(
respectively

∫
�∗

ei(z|ξ)(Q∗)ν−τ (ξ)dξ = ��∗(ν)Q−ν
( z

i

))
. (4.8)

Proof. To prove (4.7) and (4.8), by homogeneity, it suffices to compute the integrals∫
�

e−(e|y)Qν−τ (y)dy and
∫

�∗
e−(e|ξ)(Q∗)ν−τ (ξ)dξ

respectively. The result then follows by Proposition 4.15.
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Remark 4.17. From the previous corollary, we deduce the characteristic function
of the cone � and of its dual �∗.

ϕ(x) = ϕ(e)Q−τ (x) = ��∗(τ )Q−τ (x) (4.9)

and

ϕ∗(ξ) = ϕ∗(e)(Q∗)−τ (ξ) = ��(τ)(Q∗)−τ (ξ) (4.10)

for all x ∈ � and ξ ∈ �∗.
Remark 4.18. Let α = (α1, α2, . . . , αr ) ∈ Rr be such that α j >

m j +n j
2 , j =

1, . . . , r ; for all (x, y, t) ∈ V × � × �,∣∣∣∣Q−α

(
x + iy

i

)∣∣∣∣ ≤ Q−α(y) (4.11)

Q−α(y + t) < Q−α(y). (4.12)

Inequality (4.11) is a direct application of Lemma 4.14 and inequality (4.12) follows
from Corollary 4.16.

Lemma 4.19. Let µ = (µ1, µ2, . . . , µr ) ∈ Rr and λ = (λ1, λ2, . . . , λr ) ∈ Rr .

i) For all y ∈ �, the integral

Jµλ(y) =
∫

�

Qµ(y + v)Qλ−τ (v)dv

is finite if and only if

λ j >
m j

2
, µ j + λ j < −n j

2
, j = 1, . . . , r.

In this case,
Jµλ(y) = MλµQµ+λ(y)

where

Mλµ = ��(λ)��∗(−µ − λ)

��∗(−µ)
.

ii) For all ξ ∈ �∗, the integral

Kµλ(y) =
∫

�∗
(Q∗)µ(ξ + η)(Q∗)λ−τ (η)dη

is finite if and only if

λ j >
n j

2
, µ j + λ j < −m j

2
, j = 1, . . . , r.

In this case,

Kµλ(ξ) = ��∗(λ)��(−µ − λ)

��(−µ)
(Q∗)µ+λ(ξ).
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Proof. One can observe that the convergence of the integral Jλµ(y) is established
for y = e; the rest follows from the identification � ≡ H · e and the fact that
Q(π(t)x) = Q(y)Q(x) where y = t · e, with t ∈ H.

By (4.8), we write

Qµ(e + v) = 1

��∗(−µ)

∫
�∗

e−(e+v|ξ)(Q∗)−µ−τ (ξ)dξ,

if and only if µ j < − n j
2 , j = 1, . . . , r. According to Fubini’s Theorem, (4.7) and

(4.8), we obtain that

Jµλ(e) = 1

��∗(−µ)

∫
�∗

e−(e|ξ)(Q∗)−µ−τ (ξ)

(∫
�

e−(v|ξ)Qλ−τ (v)dv

)
dξ

= ��(λ)

��∗(−µ)

∫
�∗

e−(e|ξ)(Q∗)−µ−λ−τ (ξ)dξ < +∞

if and only if

λ j >
m j

2
, µ j + λ j < −n j

2
, j = 1, . . . , r.

This prove i). The proof of ii) is the same.

Lemma 4.20. Let α = (α1, α2, . . . , αr ) ∈ Rr .

i) The integral

Jα(y) =
∫

V

∣∣∣∣Q−α

(
x + iy

i

)∣∣∣∣ dx (y ∈ �) (4.13)

converges if and only if α j > 1 + n j + m j
2 , j = 1, . . . , r. In this case,

Jα(y) = cα Q−α+τ (y),

where

cα = (2π)n2−|α|+|τ |��∗(α − τ)

[��∗(α/2)]2
.

ii) The function

F(z) = Q−α

(
z + i t

i

)
(z ∈ T�),

with t ∈ �, belongs to Ap,q
ν (T�) if and only if

α j > max

{
1 + n j + m j

2

p
,
ν j + n j

2

q
+ τ j

p

}
, j = 1, . . . , r.
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Proof. For fixed y ∈ �, interpret (4.13) as the L2-norm in dx of Q
−α
2

(
x+iy

i

)
.

By (4.8) and Plancherel’s formula, the integral in (4.13) is finite if and only if the
integral ∫

�∗
e−2(y|ξ)(Q∗)α−2τ (ξ)dξ

is finite. This proves (i). The rest follows by Lemma 4.19.

Lemma 4.21. Let α = (α1, . . . , αr ) ∈ Rr and 0 < λ < 1
4 . There is a constant Cα

such that for all y ∈ �, ‖y‖ < λ,∫
{x∈V : ‖x‖<1}

∣∣∣∣Q−α

(
x + iy

i

)∣∣∣∣ dx ≥ Cα Q−α+τ (y).

Proof. We set x = π(t)u where y = π(t)e = t · e the fact that dx = Qτ (y)du.

Then∫
{x∈V :‖x‖<1}

∣∣∣∣Q−α

(
x+iy

i

)∣∣∣∣dx = Q−α+τ (y)

∫
{u∈V :‖π(t)u‖<1}

∣∣∣∣Q−α

(
u+ie

i

)∣∣∣∣du

≥ Q−α+τ (y)

∫
{u∈�: ‖π(t)u‖<1}

∣∣∣∣Q−α

(
u+ie

i

)∣∣∣∣du

≥ Cα Q−α+τ (y),

with

Cα =
∫

{u∈�: ‖u‖<4/c
√

r}

∣∣∣∣Q−α

(
u + ie

i

)∣∣∣∣ du.

In fact, by our assumption, ‖y‖ < 1
4 ; so Lemma 4.11 states that ‖π(t)u‖ < c

√
r/4.

It follows that set {u ∈ � : ‖π(t)u‖ < 1} contains the set {u ∈ � : ‖u‖ <

4/c
√

r}.

5. The Bergman spaces

Here we recall some basic facts about Bergman spaces. Once we have the prelim-
inary results above, the proof of all these results are basically the same as those
obtained in the papers [5] and [6]. The reader can look at these papers to have
more details of proofs omitted here. For ν = (ν1, ν2, . . . , νr ) ∈ Rr such that
ν j >

m j +n j
2 , j = 1, . . . , r; we shall denote L2

(ν)(�
∗) = L2(�∗, (Q∗)ν(ξ)dξ) and

by

Lg(z) = (2π)−
n
2

∫
�∗

ei(z|ξ)g(ξ)dξ

the Laplace transform of a locally integrable function g. We have this Paley-Wiener
type theorem, whose proof is analogous to [11, Proposition IX.3.3].
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Theorem 5.1. Let ν = (ν1, ν2, . . . , νr ) ∈ Rr with ν j >
m j +n j

2 , j = 1, . . . , r.
A function F belongs to A2

ν(T�) if and only if F = Lg, with g ∈ L2
(−ν)(�

∗).
Moreover

‖F‖2
A2

ν(T�)
= eν‖g‖2

L2
(−ν)

(�∗) (5.1)

where
eν = 2−|ν|��(ν).

We denote by 〈, 〉ν the Hermitian form induced by the A2
ν(T�)-norm. Since the

Bergman kernel is a reproducing kernel of A2
ν(T�), it follows, by polarization of

(5.1), that for F ∈ A2
ν(T�),

F(w) = 〈F, Bν(·, w)〉ν = eν〈g, gw〉L2
(−ν)

(�∗) =
∫

�∗
g(ξ)eνgw(ξ)(Q∗)−ν(ξ)dξ.

Since F = Lg, one has

gw(ξ) = (2π)−
n
2 e−1

ν e−i(w̄|ξ)(Q∗)ν(ξ).

Hence, by (4.8),

Bν(z, w) = (2π)−
n
2 Lgw(z) = dν Q−ν−τ

(
z − w̄

i

)
,

with

dν = (2π)n2−|ν|��∗(ν + τ)

��(ν)
.

The operator

Pν f (z) =
∫

T�)

Bν(z, w) f (w)Qν−τ (�m w)dv(w)

is the identity of A2
ν(T�); it provides the orthogonal projection of L2

ν(T�) onto
A2

ν(T�) i.e., it is the Bergman projection.

Lemma 5.2. Let F ∈ Ap,q
ν (T�). The following assertions hold:

i) There is a constant C = C(p, q, ν) > 0 such that, for all z = x + iy ∈ T�,

|F(x + iy)| ≤ C Q− ν
q − τ

2p (y)‖F‖Ap,q
ν (T�). (5.2)

ii) There is a constant C = C(p, q, ν) > 0 such that, for all y ∈ �,

‖F(· + iy)‖p ≤ C Q− ν
q (y)‖F‖Ap,q

ν (T�). (5.3)
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iii) There is a constant C = C(p, q, ν) > 0 such that, for all y ∈ � and all
s > p,

‖F(· + iy)‖s ≤ C Q
− ν

q − τ
2

(
1
p − 1

s

)
(y)‖F‖Ap,q

ν (T�). (5.4)

Corollary 5.3. The Bergman space Ap,q
ν (T�) is a Banach space.

Proof. Taking s = ∞ in Lemma 5.2, we see that convergence in Ap,q
ν (T�) im-

plies convergence over compact subsets of T�. So Ap,q
ν (T�) is a closed subspace of

L p,q
ν (T�). This one is known to be a Banach space.

Corollary 5.4. Let ν = (ν1, ν2, . . . , νr ) ∈ Rr be such that ν j >
m j +n j

2 , j =
1, . . . , r , and F ∈ Ap,q

ν (T�);
i) for every t ∈ �, the function Ft (z) = F(z + i t) belongs to the Hardy space

Hs(T�) for s ≥ p;
ii) for y, t ∈ �,

‖F(· + i(y + t))‖s ≤ ‖F(· + iy)‖s;
iii) for α = (α1, α2, . . . , αr ) ∈ Rr such that α j >

m j +n j
2 , j = 1, . . . , r and

ε > 0, let

Fε,α(z) = F(z + iεe)Q−α

(
εz + ie

i

)
.

Then Fε,α ∈ Ap,q
ν (T�) and we have

lim
ε→0

‖F − Fε,α‖Ap,q
ν (T�) = 0.

Corollary 5.5. Let ν = (ν1, . . . , νr ) ∈ Rr and µ = (µ1, . . . , µr ) ∈ Rr such
that ν j >

m j +n j
2 , j = 1, . . . , r and µ j >

m j +n j
2 , j = 1, . . . , r. The subspace

Ap,q
ν (T�) ∩ As,r

µ (T�) of the Bergman spaces Ap,q
ν (T�) and As,r

µ (T�) is dense in
each of them.

6. Proof of Theorem 3.1

In order to prove Theorem 3.1, we will state that the L p,q
ν (T�)-boundedness of the

operator P+
ν is related to the Lq(�, Qν−τ (y)dy)-boundedness of a positive integral

operator on the cone �.

Consider the positive integral operator S defined on � by

Sg(y) =
∫

�

Q−ν(y + v)g(v)Qν−τ (v)dv. (6.1)

It is easy to verify that S is a self-adjoint operator. We put

qν = 1 + min
1≤i≤r

νi − mi
2

ni
2

.
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Theorem 6.1. Let ν = (ν1, . . . , νr ) ∈ Rr be such that ν j >
m j +n j

2 , j = 1, . . . , r.
The operator S is bounded on Lq(�, Qν−τ (v)dv) when q ′

ν < q < qν.

Proof. We will use Schur’s Lemma (see [12]). The kernel of the operator S relative
to the measure Qν−τ (v)dv is given by

N (y, v) = Q−ν(y + v)

and it is positive. By Schur’s Lemma, it is sufficient to find a positive and measur-
able function ϕ defined on � such that∫

�

N (y, v)ϕ(v)q ′
Qν−τ (v)dv ≤ Cϕ(y)q ′

(6.2)

and ∫
�

N (y, v)ϕ(y)q Qν−τ (y)dy ≤ Cϕ(v)q . (6.3)

We take as test functions ϕ(v) = Qγ (v) where γ = (γ1, . . . , γr ) ∈ Rr has to be
determined. An application of Lemma 4.19 gives that (6.2) holds whenever

−ν j + m j
2

q ′ < γ j <
− n j

2

q ′ , j = 1, . . . , r

and (6.3) holds when

−ν j + m j
2

q
< γ j <

− n j
2

q
, j = 1, . . . , r.

The inequalities (6.2) and (6.3) are simultaneously satisfied if each γ j , j =1, . . . , r,
satisfies the condition

γ j ∈
]

−ν j + m j
2

q ′ ,
− n j

2

q ′

[ ⋂ ]
−ν j + m j

2

q
,
− n j

2

q

[
. (6.4)

The intersection in (6.4) is not empty if
−ν j + m j

2
q ′ <

− n j
2

q and
−ν j + m j

2
q <

− n j
2

q ′ ; that
is if, for any j = 1, . . . , r,

ν j + −m j +n j
2

ν j − m j
2

< q <
ν j + −m j +n j

2
n j
2

i.e.,

1 +
n j
2

ν j − m j
2

< q < 1 + ν j − m j
2

n j
2

.

Theorem 3.1 is obtained by taking p = q in the following theorem, whose proof is
analogous to [6, Theorem 6.2].

Theorem 6.2. Let 1 ≤ p ≤ +∞ and 1 ≤ q < +∞. The operator P+
ν is bounded

on L p,q
ν (T�) when q ′

ν < q < qν. Moreover, the weighted Bergman projector Pν is
bounded from L p,q

ν (T�) to Ap,q
ν (T�) when q ′

ν < q < qν.
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7. L p-estimates of the Bergman projector Pν

In this section we prove Theorem 3.2. We shall start by the necessity. Assume
that Pν is bounded from L p,q

ν (T�) to L p,q
ν (T�), since Pν is self-adjoint, then Pν is

also bounded from L p′,q ′
ν (T�) to L p′,q ′

ν (T�). Consider the test function f (z) =
Q−ν+τ (�m z)χD(ie,δ)(z) where χD(ie,δ) is the characteristic function of the Eu-
clidean ball centered at ie with radius δ. Then f ∈ ⋂

L p,q
ν (T�) and, by the mean

value formula,

Pν f (z) = Cδ Q−ν−τ

(
z + ie

i

)
.

Therefore, by ii) of Lemma 4.20, Pν f ∈ Ap,q
ν (T�) if and only if for every j =

1, . . . , r,

ν j + τ j > max

{
1

p

(
1 + n j + m j

2

)
,

1

q

(
ν j + n j

2

)
+ τ j

p

}
.

It follows that, for p = q, if the weighted Bergman projection is bounded, then, for
every j = 1, . . . , r,

ν j + τ j >
1

p

(
ν j + n j

2
+ τ j

)
.

Since Pν is self-adjoint, we also have that, for every j = 1, . . . , r,

ν j + τ j >
1

p′
(
ν j + n j

2
+ τ j

)
.

This proves part i) of Theorem 3.2.
For the sufficiency, we shall find values of p for which the Bergman projec-

tor Pν is bounded whenever the operator P+
ν is not bounded. We will use the

Paley-Wiener Theorem (Theorem 5.1) to prove that the Laplace transform is an
isomorphism between A2,q

ν (T�) and the space bq
ν (�∗). We then conclude by inter-

polation. The results here are the analogues of those in [3] and [6]. We will only
give statements of the proofs that emphasize differences.

In the sequel, we consider the following disjoint covering of the cone �∗,

E∗
1 = B∗

1 , E∗
j = B∗

j \
j⋃

k=1

B∗
k , j = 2, . . . ,

where B∗
j = B∗

λ(y′
j ) and {y′

j } j is the dual lattice of the λ-lattice {y j } j . We have
�∗ = ⋃

j E∗
j and

|E∗
j | ∼ |B∗

j | ∼ (Q∗)τ (y′
j ).
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Definition 7.1. Let q ≥ 1, 0 < λ < 1 and {ξ j } a λ-lattice in �′. We denote by
bq
ν (�∗) the space of all measurable functions g which are locally square integrable

and satisfy the estimate

‖g‖bq
ν (�∗) :=


∑

j

(Q∗)−ν(ξ j )

(∫
E∗

j

|g(ξ)|2dξ

) q
2



1
q

< +∞.

We say that a sequence {λ j } j belongs to lq
ν if it satisfies∑

j

|λ j |q(Q∗)−ν(ξ j ) < +∞.

Lemma 7.2. The space bq
ν (�∗) is a Banach space.

Proof. Just remark that bq
ν (�∗) = lq

ν (L2(E∗
j )).

Remark 7.3. Let {a j } j be a positive sequence. Then(∑
j

a j

)δ

≤
∑

j

aδ
j if 0 < δ ≤ 1 (7.1)

and

∑
j

aδ
j ≤

(∑
j

a j

)δ

if δ ≥ 1. (7.2)

7.1. The boundedness of the Bergman projector Pν on L2,q
ν (T�)

We shall show that the Laplace transform L is isomorphically bounded from bq
ν (�∗)

onto A2,q
ν (T�).

The following proposition proves the statement for q = 2.

Proposition 7.4. There is a constant C =C(ν) > 1 such that for all F ∈ A2,2
ν (T�),

1

C

∑
j

(Q∗)−ν(ξ j )

∫
E∗

j

|g(ξ)|2dξ ≤ ‖F‖2
A2,2

ν
≤ C

∑
j

(Q∗)−ν(ξ j )

∫
E∗

j

|g(ξ)|2dξ ;

where F = Lg with g ∈ L2
(−ν)(�

∗).

Lemma 7.5. Let q ≥ 1. There is a constant C = C(ν, τ, q) > 0 such that for all
g ∈ bq

ν (�∗) and all y ∈ �,∫
�∗

|g(ξ)|e−(y|ξ)dξ ≤ C‖g‖bq
ν (�∗)Q− ν

q − τ
2 (y).

In particular, g is locally integrable on �∗.
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Theorem 7.6. Let q ≥ 1. For all F ∈ A2,q
ν (T�) there is a unique function g ∈

bq
ν (�∗) such that F = Lg and

‖g‖bq
ν (�∗) ≤ C‖F‖

A2,q
ν (T�)

.

Proof. By density (see Corollary 5.5), take F ∈ A2,q
ν (T�)∩A2,2

ν (T�). By the Paley-
Wiener Theorem (Theorem 5.1), there exists a function g ∈ L2

(−ν)(�
∗) such that

F(x + iy) = Lg(x + iy) = (2π)−
n
2

∫
�∗

g(ξ)ei(x+iy|ξ)dξ.

Let {y j } j be a λ-lattice of � and let {y′
j } j be the dual lattice of the λ-lattice {y j } j .

We saw that the map x �→ x ′ is an isometry from � on �∗ (cf. Theorem 4.1). Thus,
for y ∈ B j = Bλ(y j ), one has y′ ∈ B∗

j = B∗
λ(y′

j ); moreover, by Corollary 4.10,

there is a constant γ such that 1
γ

≤ (y|ξ) ≤ γ whenever y ∈ B j and ξ ∈ B∗
j . Then,

for y ∈ B j , according to Corollary 4.10, we have∫
E∗

j

|g(ξ)|2dξ ≤ cγ

∫
�∗

|g(ξ)|2e−2(y|ξ)dξ = C ′
∫

V
|F(x + iy)|2dx,

by Plancherel’s formula. It follows from (4.2) that

(∫
E∗

j

|g(ξ)|2dξ

) q
2

≤ c′
q Q−τ (y j )

∫
B j

(∫
V

|F(x + iy)|2dx

) q
2

dy.

If we denote by {ξ j } j the dual λ-lattice of {y j } j , then by (4.1) and i) of Lemma 4.2,

(Q∗)−ν(ξ j )

(∫
E∗

j

|g(ξ)|2dξ

)q
2

≤ cq(Q∗)−ν(ξ j )Q−τ (y j )

∫
B j

(∫
V
|F(x+iy)|2dx

)q
2

dy

≤ cνq Qν−τ (y j )

∫
B j

(∫
V

|F(x + iy)|2dx

) q
2

dy

≤ c′
νq

∫
B j

(∫
V

|F(x + iy)|2dx

) q
2

Qν−τ (y)dy;

hence

‖g‖bq
ν (�∗) ≤ Cν,q‖F‖

A2,q
ν (T�)

. (7.3)

This finishes the proof.

We prove now the converse of the previous theorem.
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Theorem 7.7. Assume 1 ≤ q < 2qν. Given g ∈ bq
ν (�∗), then Lg ∈ A2,q

ν (T�) and

‖Lg‖
A2,q

ν (T�)
≤ C‖g‖bq

ν (�∗).

Proof. Write F(x+iy) = Fy(x) = Lg(x+iy). For every y ∈ �, the function x �→
Fy(x) is the inverse Fourier transform of the function ξ �→ ψy(ξ) = g(ξ)e−(y|ξ).

By Plancherel’s formula,

‖F‖q

A2,q
ν (T�)

=
∫

�

(∫
�∗

|g(ξ)|2e−2(y|ξ)dξ

) q
2

Qν−τ (y)dy.

By (ii) of Lemma 4.4 and Proposition 4.9, we deduce that

‖F‖q

A2,q
ν (T�)

≤
∫

�

(∑
j

e−2γ (y|ξ j )

∫
E∗

j

|g(ξ)|2dξ

) q
2

Qν−τ (y)dy. (7.4)

First assume that 1 ≤ q ≤ 2. Since q
2 ≤ 1, we deduce from inequality (7.1) and

Corollary 4.16 that

‖F‖q

A2,q
ν (T�)

≤
∫

�

∑
j

e−qγ (y|ξ j )

(∫
E∗

j

|g(ξ)|2dξ

)q
2

Qν−τ (y)dy

≤
∑

j

(∫
E∗

j

|g(ξ)|2dξ

)q
2 ∫

�

e−qγ (y|ξ j )Qν−τ (y)dy ≤ Cνqγ ‖g‖q
bq
ν (�∗).

Assume next that 2 ≤ q < 2qν. Let ρ = q
2 and α = (α1, . . . , αr ) ∈ Rr . By

Hölder’s inequality,

∑
j

e−2γ (y|ξ j )

(∫
E∗

j

|g(ξ)|2dξ

)
≤

(∑
j

e−2γ (y|ξ j )

(∫
E∗

j

|g(ξ)|2dξ

)ρ

(Q∗)−αρ(ξ j )

)1
ρ

×
(∑

j

e−2γ (y|ξ j )(Q∗)αρ′
(ξ j )

) 1
ρ′

.

It follows from (7.4) that

‖F‖q

A2,q
ν (T�)

≤
∫

�

[(∑
j

e−2γ (y|ξ j )

(∫
E∗

j

|g(ξ)|2dξ

)ρ

(Q∗)−αρ(ξ j )

)

×
(∑

j

e−2γ (y|ξ j )(Q∗)αρ′
(ξ j )

) ρ

ρ′

 Qν−τ (y)dy.

(7.5)
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By (4.2), ii) of Lemma 4.2, Proposition 4.9 and iii) of Lemma 4.4, we have

∑
j

e−2γ (y|ξ j )(Q∗)αρ′
(ξ j ) ≤ c

∑
j

e−2γ (y|ξ j )(Q∗)αρ′−τ (ξ j )

∫
E∗

j

dξ

≤ C N
∫

�∗
e−2(y|ξ)(Q∗)αρ′−τ (ξ)dξ.

We deduce from (4.8) that∑
j

e−2γ (y|ξ j )(Q∗)αρ′
(ξ j ) ≤ Cαρ Q−αρ′

(y),

whenever α jρ
′ >

n j
2 , j = 1, . . . , r.

So for α jρ
′ >

n j
2 , j = 1, . . . , r , from inequality (7.5) we obtain:

‖F‖q

A2,q
ν (T�)

≤Cαρ

∫
�

(∑
j

e−2γ (y|ξ j )

(∫
E∗

j

|g(ξ)|2dξ

)ρ

(Q∗)−αρ(ξ j )

)
Q−αρ+ν−τ (y)dy

≤Cαρ

∑
j

(∫
E∗

j

|g(ξ)|2dξ

)ρ

(Q∗)−αρ(ξ j )

∫
�

e−2γ (y|ξ j )Q−αρ+ν−τ (y)dy.

Moreover, if −α jρ + ν j >
m j
2 , j = 1, . . . , r , by (4.7), we have∫

�

e−2γ (y|ξ j )Q−αρ+ν−τ (y)dy = cανρ(Q∗)αρ−ν(γ ξ j );

it follows that

‖F‖q

A2,q
ν (T�)

≤ Cανρ‖g‖q
bq
ν (�∗).

Therefore, the conclusion follows if we choose α1, . . . , αr such that

α jρ
′ >

n j

2
, −α jρ + ν j >

m j

2
, j = 1, . . . , r.

Each parameter α j , j = 1, . . . , r must lie in

]
n j
2ρ′ ,

ν j − m j
2

ρ

[
which is a non-empty

interval.

We have proved that the Laplace transform L maps bq
ν (�∗) isomorphically

onto A2,q
ν (T�) whenever 1 ≤ q < 2qν. Let us now consider the operator R =

L−1 Pν. We will now show that the operator R is bounded from L2,q
ν (T�) to bq

ν (�∗).
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Let φ ∈ L2
ν(T�); by Paley-Wiener Theorem, F ∈ A2

ν(T�) if and only if F =
Lg with g ∈ L2

(−ν)(�
∗). The self-adjointness of Pν implies

〈Pνφ, F〉A2
ν(T�) = 〈φ, F〉L2

ν(T�) = 〈φ,Lg〉L2
ν(T�).

Now, by Plancherel’s formula and Fubini’s Theorem

〈φ,Lg〉L2
ν(T�)=

∫
�

(∫
V

φy(x)F−1(g(ξ)e−(y|ξ))(x)dx

)
Qν−τ (y)dy

=
∫

�

(∫
�∗

F(φy)(ξ)g(ξ)e−(y|ξ)dξ

)
Qν−τ (y)dy

=
∫

�∗

(
(Q∗)ν(ξ)

∫
�

F(φy)(ξ)e−(y|ξ)Qν−τ (y)dy

)
g(ξ)(Q∗)−ν(ξ)dξ,

(7.6)

where F is the Fourier transform. Therefore, for g ∈ L2
(−ν)(�

∗), equality (7.6) and
the polarization of isometry (5.1) in the Paley-Wiener Theorem imply that

〈φ,Lg〉L2
ν(T�) = 〈Pνφ, F〉A2

ν(T�)

= eν〈L−1 Pν, g〉L2
(−ν)

(�∗)

= eν〈Rφ, g〉L2
(−ν)

(�∗).

(7.7)

Comparing (7.6) and (7.7) then gives

Rφ(ξ) = e−1
ν (Q∗)ν(ξ)

(∫
�

Fφy(ξ)e−(y|ξ)Qν−τ (y)dy

)
.

We shall need the following lemma:

Lemma 7.8. If q ≥ 2, then R extends into a bounded operator from L2,q
ν (T�) to

bq
ν (�∗) i.e.,

‖Rφ‖bq
ν (�∗) ≤ C‖φ‖

L2,q
ν (T�)

.

Let

Qν = 2qν = 2 + 2 min
1≤ j≤r

ν j − m j
2

n j
2

;

we can prove now the following result:

Corollary 7.9. The Bergman projector Pν extends to a bounded operator from
L2,q

ν (T�) to A2,q
ν (T�) when Q′

ν < q < Qν.
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Proof. Assume that 2 ≤ q < Qν. By Lemma 7.8, the operator R is bounded
from L2,q

ν (T�) to bq
ν (�∗) and, according to the Theorem 7.7, the Laplace transform

L is bounded from bq
ν (�∗) to A2,q

ν (T�). We conclude that the Bergman projector
Pν = L ◦ R is bounded from L2,q

ν (T�) to A2,q
ν (T�). We obtain the other part by the

self-adjointness of Pν.

7.2. Proof of Theorem 3.2

Theorem 7.10. The Bergman projector Pν extends to a bounded operator from
L p,q

ν (T�) to Ap,q
ν (T�) if




0 ≤ 1

p
≤ 1

2
1

qν p′ <
1

q
< 1 − 1

qν p′

or




1

2
≤ 1

p
≤ 1

1

qν p
<

1

q
< 1 − 1

qν p
.

Proof. For a fixed ν = (ν1, . . . , νr ) ∈ Rr that satisfies ν j >
m j +n j

2 , j = 1, . . . , r
let us consider the following picture

�

�

��������������������

��������������������

O

A

D

E

B

C

F

1
qν+1

1
2

qν

qν+1 1 1
p

1
Qν

1
q ′
ν

1
Q′

ν

1
qν

1
2

1
q

1
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By interpolation, Pν is bounded on L p,q
ν (T�) for

(
1
p , 1

q

)
in the interior of the

hexagon of vertices

A

(
0,

1

qν

)
, D

(
1

2
,

1

Qν

)
, E

(
1,

1

qν

)

and their symmetric points with respect to
(

1
2 , 1

2

)
.

Theorem 3.2 is the particular case p = q of Theorem 7.10. It is important to
say that, for the dual cone �∗, we obtain

qν = 1 + min
1≤ j≤r

ν j − n j
2

m j
2

.

Note that, for symmetric cones, this value is the same as the one we obtained in this
paper. However, this is not the case for homogeneous nonself-dual cone as shown
by Vinberg’s cone (see [6]).

8. Final remarks

The techniques that have been exposed in this paper reveal some shortcomings,
since we were expecting necessary and sufficient conditions in Theorem 3.1, The-
orem 6.1 and Corollary 7.9. Unfortunately, with the method exposed here, the con-
verse of Theorem 3.1 can be stated as follows: when the positive Bergman operator
P+

ν is bounded in L p
ν (T�, dv), then

1 + max
1≤ j≤r

n j/2

ν j
< q < 1 + min

1≤ j≤r

ν j

n j/2
. (8.1)

Moreover, the converse of Corollary 7.9 can be stated: when the Bergman projector
Pν is bounded from L2,q

ν (T�) to A2,q
ν (T�), then

2

(
1 + max

1≤ j≤r

n j/2

ν j

)
< q < 2

(
1 + min

1≤ j≤r

ν j

n j/2

)
. (8.2)

Thus, we realise that conditions (8.1) and (8.2) are somehow linked. As a matter
of fact, if � is an open convex homogeneous cone such that m j0 = 0 where j0 ∈
{1, . . . , r} satisfies

1 + min
1≤ j≤r

ν j − m j
2

n j
2

= 1 + ν j0 − m j0
2

n j0
2

= qν,
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then conditions (8.1) and (8.2) are necessary and sufficient in Theorem 3.1 (or The-
orem 6.1) and Corollary 7.9 respectively. This is exactly what has happened in [3],
[5] and [6]. Moreover, it is also the case for general symmetric cones, using general
weighted measures, when ν j ≥ νr − r− j

r−1

(
νr − (r − 1) d

2

)
for j = 1, . . . , r − 1.

On the other hand, whether the necessary condition of Theorem 3.2 coincides
with the sufficient condition is still an open problem even for the symmetric cones
of rank 2.

Finally, even for the positive Bergman operator P+
ν , for the values of p satis-

fying 1 + max1≤ j≤r
n j /2
ν j

< p < 1 + max1≤ j≤r
n j /2

ν j − m j
2

or 1 + min1≤ j≤r
ν j − m j

2
n j /2 <

p < 1 + min1≤ j≤r
ν j

n j /2 (which are not always empty intervals), we do not know

whether there is L p
ν -boundedness.
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[1] D. BÉKOLLÉ and A. BONAMI, Estimates for the Bergman and Szegö projections in two
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