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Regularization of almost complex structures
and gluing holomorphic discs to tori

ALEXANDRE SUKHOV AND ALEXANDER TUMANOV

Abstract. We prove a result on removing singularities of almost complex struc-
tures pulled back by a non-diffeomorphic map. As an application we prove the
existence of global J -holomorphic discs with boundaries attached to real tori.
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1. Introduction

In this paper we prove a general result (Theorem 3.1) on removing singularities of
almost complex structures pulled back by a non-diffeomorphic map. In our joint
paper with Bernard Coupet [3] we use special coordinates in an almost complex
manifold (M, J ) to reduce a boundary value problem for J -holomorphic discs in M
to that for quasi-linear PDE in the plane. In [3] we make a simplifying assumption
that the coordinates are introduced by a locally diffeomorphic map, although it is
not the case in general. The main result of the present work allows to extend the
range of applications of the methods of [3] to the non-diffeomorphic case. We use
Theorem 3.1 in order to obtain results on attaching pseudo-holomorphic discs to
real tori. These results are new even in the complex Euclidean space C2. Thus
the use of almost complex structures leads to new results in the classical complex
analysis.

We now describe the main results and the organization of the paper. In Sec-
tion 2 we recall the notion of an almost complex structure J , in particular, we
include some details on representing J by a complex matrix function. In Section 3
we prove Theorem 3.1 mentioned above. It deals with a map from the standard
bidisc with coordinates (z, w) to an almost complex manifold (M, J ). The map
takes the coordinate lines z = c to a given family of J -holomorphic discs. The map
is not necessarily locally diffeomorphic. Nevertheless, we prove that under natural
assumptions, the pullback of J exists and is sufficiently regular: Hölder in z and
Lipschitz in w. The result is useful even for integrable J ; in this case it also holds
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in higher dimension. As a side production of the proof, we obtain results (Propo-
sitions 3.8 and 3.14) on regularity of generalized analytic functions in the sense of
Vekua [18] and a result (Theorem 3.12) on decomposition of the phase function of
a complex polynomial. We hope that Theorem 3.1 will find further applications, in
particular, in the theory of foliations.

Theorem 3.1 is relevant to blow-up situations. Theory of blow-ups for almost
complex manifolds is not yet fully developed. We would like to mention a result by
Duval [6] in complex dimension 2, in which after a blow-up the resulting structure
is no longer smooth. We hope that our results will be useful in developing blow-up
techniques in almost complex category.

In Section 4 we construct pseudo-holomorphic discs attached to the standard
torus in C2 equipped with a certain almost complex structure. This improves the
corresponding result of [3] by adding a continuous depending statement to it. In
Section 5 we prove existence theorems for pseudo-holomorphic discs (Theorems
5.1 and 5.4) with given boundary conditions. Under various assumptions, we con-
struct pseudo-holomorphic discs with boundary glued to real tori, which are not
Lagrangian in general.

In his pioneering work, Gromov [10] proved the existence of pseudo-holomor-
phic discs glued to smooth Lagrangian submanifolds. Ivashkovich and Shevchishin
[12] extended the result to the case of immersed Lagrangian submanifolds.
Forstnerič [8] constructed discs attached to certain totally real 2-tori in the space C2

with the standard complex structure. Cerne [2] generalized the result of [8] to the
case of bordered Riemann surfaces. On the other hand, Alexander [1] constructed a
totally real 2-dimensional torus in C2 which contains no boundary of a holomorphic
disc. Moreover, Duval [7] gave an example of a torus with the same property and
which in addition is contained in the unit sphere in C2. Thus some restrictions on
the geometry of a torus are necessary for gluing holomorphic discs to it. We stress
that no Lagrangian conditions are required in Theorem 5.1 so our approach pro-
vides a new tool for constructing global pseudo-holomorphic discs with prescribed
boundary conditions.

Abundance and flexibility of real changes of coordinates allowed in Theorem
3.1 represent a contrast with the rigidity of holomorphic maps. The flexibility comes
at a price because the Cauchy–Riemann equations for pseudo-holomorphic discs are
non-linear. However, this analytic difficulty can be handled by the general theory
of elliptic PDE in the plane. We hope that our methods will find other applications.

ACKNOWLEDGEMENTS. We thank the referee for many useful remarks letting us
improve the quality of the paper. In particular, the referee provided us with a simple
proof of Theorem 3.1 for integrable structures, which we include in Appendix.
A large part of the work was done when the first author was visiting the University
of Illinois in the spring of 2008. He thanks this university for support and hospital-
ity.
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2. Almost complex manifolds

Let (M, J ) be a smooth almost complex manifold. Denote by D the unit disc in
C and by Jst the standard complex structure of Cn; the value of n is usually clear
from the context. Recall that a smooth map f : D → M is called J -holomorphic
if d f ◦ Jst = J ◦ d f . We also call such a map f a J -holomorphic disc, a J -disc, a
pseudo-holomorphic disc, or a holomorphic disc if J is fixed.

An important result due to Nijenhuis and Woolf [16] states that for a given
point p ∈ M and a tangent vector v ∈ Tp M there exists a J -holomorphic disc
f : D → M such that f (0) = p and d f (0)( ∂

∂ξ
) = λv for some λ > 0. Here

ξ + iη = ζ ∈ C. The disc f can be chosen smoothly depending on the initial data
(p, v) and the structure J .

In local coordinates z ∈ Cn , an almost complex structure J is represented by
a R-linear operator J (z) : Cn → Cn , z ∈ Cn such that J (z)2 = −I , I being the
identity. Then the Cauchy-Riemann equations for a J -holomorphic disc z : D →
Cn have the form

zη = J (z)zξ , ζ = ξ + iη ∈ D.

Following Nijenhuis and Woolf [16], we represent J by a complex n × n matrix
function A = A(z) so that the Cauchy-Riemann equations have the form

zζ = A(z)zζ , ζ ∈ D. (2.1)

We first discuss the relation between J and A for fixed z. Let J : Cn → Cn be a
R-linear map so that det(Jst + J ) �= 0, here Jstv = iv. Put

Q = (Jst + J )−1(Jst − J ). (2.2)

Lemma 2.1. J 2 = −I if and only if Q Jst + Jst Q = 0, that is, Q is complex
anti-linear.

Proof. Put K = Jst J . Then (2.2) is equivalent to

Q = (I − K )−1(I + K ). (2.3)

Note that (I − K )−1 and I + K commute. Then Q Jst + Jst Q = 0 is equivalent to
(I + K )Jst(I − K ) + (I − K )Jst(I + K ) = 0. Now using J 2

st = −I and K = Jst J
we obtain J 2 = −I . The lemma is proved.

We introduce

J = {J : C
n → C

n : J is R−linear, J 2 = −I, det(Jst + J ) �= 0}
A = {A ∈ Mat(n, C) : det(I − AA) �= 0} .

Let J ∈ J . Then by Lemma 2.1, the map Q defined by (2.2) is anti-linear, hence,
there is a unique matrix A ∈ Mat(n, C) such that

Av = Qv, v ∈ C
n. (2.4)

The following result essentially is contained in [16].
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Proposition 2.2. The map J �→ A is a birational homeomorphism J → A.

Proof. We first note that if Q is anti-linear, then 1 is an eigenvalue of Q if and
only if −1 is an eigenvalue of Q, which in turn holds if and only if 1 is an eigen-
value of the complex linear map Q2. In fact, Q2 = AA because by (2.4) we have
AAv = AAv = AQv = Q2v. Hence Q has eigenvalues ±1 if and only if AA has
eigenvalue 1.

Let J ∈ J . We show that A ∈ A. We again use K = Jst J . Note that
det(Jst + J ) = 0 if an only if 1 is an eigenvalue of K . We claim that Q defined
by (2.3) does not have eigenvalue −1. Indeed, Qv = −v implies (I + K )v =
−(I − K )v and v = 0. Hence 1 is not an eigenvalue of AA, that is, A ∈ A.

Conversely, given A ∈ A, we show that there exists a unique J ∈ J , such
that J �→ A. Define Q by (2.4). Then Q2 = AA does not have eigenvalue 1,
hence Q does not have eigenvalue −1. Then we can find K from (2.3) which yields
K = −(I + Q)−1(I − Q). This implies that 1 is not an eigenvalue of K in the same
way that (2.3) implies −1 is not an eigenvalue of Q. Define J = −Jst K . Then
det(Jst + J ) �= 0. Since Q is anti-linear, then by Lemma 2.1, we have J 2 = −I .
Thus J ∈ J . The proposition is now proved.

The above proof yields a useful formula of J in terms of A that we include for
future references. Since (I + Q)(I − Q) = I − Q2 = I − AA, then (I + Q)−1 =
(I − AA)−1(I − Q). Hence J = −Jst K = Jst (I − AA)−1(I − Q)2 = Jst (I −
AA)−1(I + AA − 2Q). Finally,

Jv = i(I − AA)−1[(I + AA)v − 2Av].

Let J be an almost complex structure in a domain � ⊂ Cn . Suppose J (z) ∈ J ,
z ∈ �. Then by Proposition 2.2, J defines a unique complex matrix function A in
� such that A(z) ∈ A, z ∈ �. We call A the complex matrix of J . The matrix A
has the same regularity properties as J .

3. Removing singularities of almost complex structures

Our construction of discs with prescribed boundary conditions is based on a suitable
choice of coordinate systems. As we will see later, it is useful for applications to
allow changes of coordinates which are not necessarily locally diffeomorphic. This
presumably leads to singularities of almost complex structures obtained by non-
diffeomorphic changes of coordinates. Under some mild assumptions, we prove
that such singularities are removable.

As usual, we denote by Ck,α (k ≥ 0, 0 < α ≤ 1) the class of functions
whose derivatives to order k satisfy a Hölder (Lipschitz) condition with exponent
α. In particular, C0,1 denotes the class of functions satisfying the usual Lipschitz
condition.
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Theorem 3.1. Let H : D2 → (M, J ′) be a C∞ smooth map from the bidisc with
coordinates (z, w) to a smooth almost complex manifold M of complex dimension
2. Let � be the set of all critical points of H. Let J = H∗ J ′ be the pull-back of J ′
on D2\�. Suppose

(i) for every z ∈ D, the map D � w �→ H(z, w) ∈ M is a (Jst, J ′)-holomorphic
immersion;

(ii) for every z ∈ D, the set {z} × D is not contained in �;
(iii) the map H |D2\� preserves the canonical orientations defined by Jst and J ′ on

D2 and M respectively.

Then for every z ∈ D, the set � ∩ ({z} × D) is discrete, and the almost complex
structure J defined on D2\� extends to be continuous on the whole bidisc D2.
Moreover, on every compact K ⊂ D2, for some 0 < α < 1, the extension of J is
Cα in z uniformply in w and C0,1 (Lipschitz) in w uniformly in z. If the structure
J ′ is integrable, then the extension of J is C∞ smooth on D2.

Remarks 3.2.
1. For simplicity we assume that all objects in the hypotheses of Theorem 3.1

are smooth of class C∞, however, the proof goes through for finite smoothness. We
leave the details to the reader. The theorem is used in applications for constructing
pseudo-holomorphic discs in convenient coordinates. After returning to the origi-
nal manifold, the resulting discs will be automatically smooth of class C∞ due to
ellipticity.

2. In some applications we use a version of Theorem 3.1 in which the map H
is smooth on D × D and the conclusion is that J extends to all of D × D with the
stated regularity. That version formally does not follow from Theorem 3.1, but the
proof goes through.

3. The condition (iii) can be replaced by (iii′): the set D2 \ � is connected.
Indeed, if (iii′) holds but (iii) does not, then it means that H changes the orientation
to the opposite. Let σ(z, w) = (z, w). Then H ◦ σ satisfies (i–iii), and the conclu-
sion of Theorem 3.1 holds for H ◦ σ , whence for H . The conditions (ii) and (iii)
can be replaced without much loss by a single condition (ii′): for every z ∈ D, the
set � ∩ ({z} × D) is discrete. On the other hand, without (iii), Theorem 3.1 fails.
We give an example to that effect in Section 3.2.

4. The resulting structure J in Theorem 3.1 does not have to be smooth in
w. We include an example to this effect in Section 3.2. However, we do not know
whether the smoothness in z can drop below C0,1. We admit that our proof of reg-
ularity of J in z might not fully use all the hypotheses of the theorem. Fortunately,
the Hölder continuity of J in z suffices for our applications.

5. Finally, if J ′ is integrable, then a version of Theorem 3.1 holds in higher
dimension. In that version, if dimC M = n ≥ 2, then z ∈ D and w ∈ Dn−1. We
leave the details to the reader.
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3.1. Reduction to PDE

The condition (ii) in Theorem 3.1 has global character. Nevertheless, we observe
that it suffices to prove Theorem 3.1 locally. More precisely, for z ∈ D put

�z = {w ∈ D : (z, w) ∈ �} Kz = D \ �z ∩ D.

According to this definition, if w ∈ Kz , then (ii) holds in every neighborhood of
(z, w).

Lemma 3.3. Suppose the conclusions of Theorem 3.1 hold in a neighborhood of
every point (z, w) ∈ D2 such that w ∈ Kz. Then they hold in all of D2.

Proof. Fix z ∈ D. By definition Kz is closed in D. But it is also open because
Theorem 3.1 concludes that �z is discrete. Hence Kz = D. Since z ∈ D is arbitrary,
then Theorem 3.1 holds in all of D2.

In the following proposition for simplicity we add more assumptions to Theo-
rem 3.1. In the proof of Theorem 3.1 we will use this result locally.

Proposition 3.4. In addition to the hypotheses of Theorem 3.1 we assume that H

is smooth on D
2

and for every z ∈ D, the map w �→ H(z, w) is an embedding on
D. Then the complex matrix A of J on D2\� has the form

A =
(

a 0
b 0

)
, (3.1)

where a = g/ f , b = ah1 + h2 for some f, g, h1, h2 ∈ C∞(D2) satisfying the
inequality | f | ≥ |g|. The singular set � has the form � = {| f | = |g|}, and for
some µ ∈ C∞(D2), the following system holds:

fw = µg, gw = µ f . (3.2)

Proof. The statement involves z as a parameter. We first prove it for fixed z; then it
will be clear that the construction depends smoothly on the parameter z (see remark
after the proof).

For simplicity put z = 0. We introduce local coordinates (z′, w′) in a neigh-
borhood of the J ′-complex curve H({0} × D) and use (z′(z, w), w′(z, w)) for the
coordinate representation of H . We choose the coordinates (z′, w′) so that

z′(0, w) = 0, w′(0, w) = w, (3.3)

and for every w′ ∈ D, the map z′ �→ (z′, w′) is (Jst, J ′)-holomorphic. Then the co-
ordinate system (z′, w′) preserves the orientation of M defined by J ′. Furthermore,
J ′(0, w′) = Jst, and the complex matrix A′ of J ′ satisfies

A′(0, w′) = 0. (3.4)
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Using [17] (Lemma 2.4), we modify the coordinates (z′, w′) so that in addition to
(3.3) and (3.4) we have

A′
z′(0, w′) = 0. (3.5)

Put Z = (z, w), Z ′ = (z′, w′). Then the complex matrix A of the pull-back struc-
ture J is obtained by the following transformation rule ( [17], Lemma 2.3):

A = (Z ′
Z − A′Z ′

Z )−1(A′Z ′
Z − Z ′

Z
) (3.6)

whenever this formula makes sense. We want to describe A(0, w). By (3.3), (3.4)
and (3.6), A(0, w) has the form A = −(Z ′

Z )−1 Z ′
Z

. By (3.3) we have

Z ′
Z =

(
z′

z 0
w′

z 1

)
Z ′

Z
=

(
z′

z 0
w′

z 0

)
.

We denote (for fixed z = 0)

f = z′
z, g = −z′

z, h1 = −w′
z, h2 = −w′

z . (3.7)

The real Jacobian of the map Z �→ Z ′ has the form | f |2 − |g|2, hence by (iii) we
have | f | ≥ |g| and � = {| f | = |g|}. Then f �= 0 on D2 \ �, and we immediately
obtain the form (3.1) of the matrix A with expressions for a and b.

We now derive the differential equations (3.2) for f and g. The condition (i)
of Theorem 3.1 in our coordinates takes the form(

z′
w′

)
w

= A′(z′, w′)
(

z′
w′

)
w

.

Differentiating this equation with respect to z, since A′(0, w′) = 0, we obtain for
z = 0 (

z′
w′

)
wz

= A′
z

(
0
1

)
.

We have A′
z = A′

z′ z′
z + A′

z′ z′
z + A′

w′w′
z + A′

w′w′
z = A′

z′ z′
z because A′

z′(0, w′) = 0
by (3.5), and A′

w′(0, w′) = A′
w′(0, w′) = 0 by (3.4). Hence

(
z′
w′

)
wz

= A′
z′

(
0
1

)
z′

z .

Let µ denote the (1,2) entry of the matrix −A′
z′(0,w). Then z′

zw(0,w)=−µz′
z(0,w).

Using the notation (3.7), we immediately obtain the first equation in (3.2). The
second equation in (3.2) is derived similarly. It remains to add that our construction
including the choice of the coordinates Z ′ depends smoothly on the parameter z.
Proposition 3.4 is proved.
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Remarks 3.5.
1. In the above proof, we use a version of Lemma 2.4 from [17] with smooth

dependence on parameters. A careful examination of the proof in [17] shows that
the desired version holds. In particular, we recall that the only analytic tool used in
the proof is solving the equation uw = p(w)u + q(w). This is similar to solving an
ordinary differential equation dy/dx = p(x)y + q(x). In the procedure of solving
this equation, one replaces integration with respect to x by the Cauchy-Green inte-
gral (3.10). The latter is known to depend smoothly on parameters. Hence if the
coefficients p and q smoothly depend on additional parameters, then there exists a
solution u that smoothly depends on the parameters.

2. We can now conclude the proof of Theorem 3.1 in the important special
case, in which the structure J ′ is integrable. By Lemma 3.3 it suffices to prove
the result locally. Then we can use Proposition 3.4. In its proof we have A′ = 0,
hence µ = 0, and the functions f , g are holomorphic in w. Then, by the maximum
principle, one can see that � = { f = 0}, and � ∩ ({z} × D) is discrete. By
the removable singularity theorem, the ratio a = g/ f is holomorphic in w on the
whole bidisc. Then in fact a is C∞ smooth in both z and w by the Cauchy integral
formula in w. By the maximum principle, |a| < 1 holds for the extension. By
Proposition 2.2, the matrix (3.1) defines an almost complex structure if and only
if |a| �= 1. Hence the extension of J is well defined and C∞, which concludes
the proof. In Appendix we include a proof for integrable structures independent of
Proposition 3.4.

3.2. Two examples

The following simple example shows that the condition (iii) in Theorem 3.1 cannot
be omitted.

Example 3.6. Let M = C2, J ′ = Jst . Define H : D2 → M by

z′ = z − 2zw, w′ = w.

Then f = z′
z = 1, g = −z′

z = 2w, a = g/ f = 2w. The real Jacobian of H has the
form | f |2−|g|2 = 1−4|w|2. It vanishes on the real hypersurface � = {|w| = 1/2}.
Then H∗ J ′ can not be extended to � because |a| = 1 on �. The conditions (iii)
and (iii′) are not fulfilled.

The following example shows that the drop of smoothness with respect to w in
Theorem 3.1 can occur.

Example 3.7. Let M = C2 with coordinates (z′, w′). Let the almost complex
structure J ′ have the complex matrix

A′ =
(

w′ −z′
0 0

)
.
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Consider a blow-up map Z = (z, w) �→ Z ′ = H(z, w) = (zw, w). We find the
complex matrix A of the pull-back J = H∗ J ′ by (3.6). Since H is holomorphic in
the usual sense, we have A = (Z ′

Z )−1 A′Z ′
Z , which yields

A =
(

w−1w2 0
0 0

)
.

The map H satisfies the hypotheses of Theorem 3.1. In particular, for fixed z the
map w �→ H(z, w) is J ′-holomorphic because the matrix A has zeros in the second
column. The singular set � is the line w = 0. We realize that A, whence J is not
smooth but merely Lipschitz in w in accordance with Theorem 3.1.

3.3. Hölder continuity of the logarithmic difference

We consider the equation

hw = µh (3.8)

in a bounded domain G ⊂ C. Although in our applications µ will be smooth, one
can assume that µ is merely bounded and hw in (3.8) is a Sobolev derivative. The
equation is relevant because both f + g and f − g for f and g in (3.2) satisfy an
equation of the form (3.8), which we will use later. Solutions of (3.8) are called
generalized analytic functions in [18]. They have the following representation

h = φeT u, u = µh/h. (3.9)

Here T = TG denotes the Cauchy–Green integral

T u(w) = 1

2π i

∫ ∫
D

u(τ ) dτ ∧ dτ

τ − w
. (3.10)

The function φ is holomorphic in G. Indeed, since ∂wT u = u, then

∂w φ = ∂w (he−T u) = µhe−T u + he−T u(−u) = 0.

In particular, the zero set of h is discrete unless h ≡ 0. The function T u is called
the logarithmic difference of h because it measures the distance from h to a holo-
morphic function φ in the logarithmic scale.

Since µ is bounded, then the logarithmic difference of h and h itself are
bounded in the Hölder norm in w. We now obtain the following result about Hölder
continuity of the logarithmic difference on a parameter.

Proposition 3.8. In the closed bidisc D
2

with coordinates (z,w), let h,µ∈C∞(D
2
)

satisfy (3.8). Suppose h �= 0 on {(z, w) : |w| = 1}. Then h has the representation

(3.9), in which φ ∈ C∞(D
2
) and holomorphic in w. Furthermore, T u ∈ Cα(D

2
)

for some 0 < α < 1. (The operator T = TD is applied with respect to w.)
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Remark 3.9. In the proof we will obtain an estimate α = 1/(n + 1), where n
locally is the maximum number of zeros of h in w. We do not know whether this
estimate is sharp.

We need two lemmas in the proof. We use the notation d2w = i
2 dw ∧ dw for

the area element. We denote by m(E) the area of E ⊂ C.

Lemma 3.10. For every measurable set E ⊂ C, we have∫ ∫
E

|w|−1d2w ≤ 2(π m(E))1/2.

Proof. We have I = ∫ ∫
E |w|−1d2w ≤ ∫ ∫

|w|<r |w|−1d2w, where m(E) = πr2.
Then by evaluating the last integral explicitly and expressing r in terms of m(E),
we get I ≤ 2πr = 2(π m(E))1/2 as desired.

Lemma 3.11. Let p(w) = (w−w1) . . . (w−wn), and let A(δ) = m{w : |p(w)| <

δ}. Then A(δ) ≤ πnδ2/n.

Proof. Let |p(w)| < δ. Then |w − w j | < δ1/n for some j . Then w ∈ ∪k{w :
|w − wk | < δ1/n}, and the lemma follows.

Proof of Proposition 3.8. We use the notation C1, C2, . . . for constants. We have
u = µh/h = v/h, where v = µh. Then |u| ≤ C1 = ||µ||∞. Since u is bounded,
then obviously T u(z, •) ∈ Cα for every 0 < α < 1 uniformly in z.

We need to prove that T u is Cα in z for some 0 < α < 1 uniformly in w. Set
�z = z′ − z′′. Omitting w for simplicity, we have

|u(z′) − u(z′′)| = |(v/h)(z′) − (v/h)(z′′)|
=

∣∣∣∣v(z′) − v(z′′)
h(z′)

− v(z′′)
h(z′′)

· h(z′) − h(z′′)
h(z′)

∣∣∣∣
≤ C2|�z|

|h(z′)| + C1
C2|�z|
|h(z′)| = C3

|�z|
|h(z′)| .

Set �T = |T u(z′, w0) − T u(z′′, w0)|. Using Lemma 3.10 for the second integral
below,

�T ≤ C3|�z| δ−1
∫∫

|h(z′,w)|>δ,|w|<1

d2w

|w − w0| + 2C1

∫∫
|h(z′,w)|<δ,|w|<1

d2w

|w − w0|
≤ C4

(
|�z| δ−1 + m{w : |h(z′, w)| < δ, |w| < 1}1/2

)
.

Define φ = he−T u . Then φ is holomorphic in w. Note that T u is C∞ in (z, w)

outside the zero set of h, in particular, for |w| = 1. By the Cauchy integral formula,

φ ∈ C∞(D
2
).
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Since u is bounded, we put |T u| ≤ C5. Then

|h|e−C5 ≤ |φ| ≤ |h|eC5 .

Let w1, . . . , wn be the zeros of h(z, w) in D for fixed z, and let p(w) = (w −
w1) . . . (w − wn). By the argument principle for φ, the number n does not depend
on z. For |w| = 1 we have |h| ≥ C6 > 0, and |p| ≤ 2n . Then by the minimum
principle

|φp−1| ≥ C6e−C52−n = C7 > 0.

The condition |h| ≤ δ implies |p| ≤ |φ|/C7 ≤ C8|h| ≤ C8δ. By Lemma 3.11
we have the estimate m{|h| ≤ δ} ≤ C9nδ2/n and �T ≤ C10

(|�z| δ−1 + δ1/n
)
.

Put δ = |�z|1−α . Then �T ≤ C11
(|�z|α + |�z|(1−α)/n

)
. Take now α = 1/(n +

1). Then �T ≤ C12|�z|α . Thus T u ∈ Cα(D
2
), which concludes the proof of

Proposition 3.8.

3.4. Decomposition of the phase of a complex polynomial

The results of Sections 3.4–3.5 are needed only for the proof that A, hence J , is
Lipschitz in w. This is used in the proofs of the results of Section 5 about gluing
discs to real tori, which are not immersed in general.

We call 〈w〉 := w/w the phase function of w ∈ C. Let

�n =
{

t = (t1, ..., tn) : t j ≥ 0,
∑

t j = 1
}

be the standard (n − 1) simplex.

Theorem 3.12. For every integer n ≥ 1 there exists a constant Cn > 0 and mea-
sures µnk , 1 ≤ k ≤ n, on �n depending on parameters w1, ..., wn ∈ C such that∫

t∈�n
|dµnk | ≤ Cn and the following identity holds:

〈(w − w1) . . . (w − wn)〉=
n∑

k=1

∫
t∈�n

〈w − t1w1 − · · · − tnwn〉kdµnk(w1, . . . , wn,t)

The above formula can be made much more precise. The singular measures µnk
reduce to integration over some subsimplexes of �n with bounded densities. Theo-
rem 3.12 means that the phase function of a polynomial can be decomposed into a
“sum” of the phase functions of binomials. It is somewhat similar to decomposition
of rational functions into partial fractions, but the sum in fact turns into an integral.
We first prove the result in a special case, in which the polynomial is a product of
just two binomials. Then the general case will follow by induction.
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Lemma 3.13. For every integer n ≥ 1, 1 ≤ k ≤ n, 1 ≤ j ≤ n + 1, there are
constants ck j ∈ R, such that for every w, w0 ∈ C, the following identity holds

〈wn(w − w0)〉 = 〈w0w
n〉 + 〈wn

0(w − w0)〉

+
n∑

k=1

n+1∑
j=1

ck j 〈w0〉n+1− j
∫ 1

0
〈w − w0t〉 j (1 − t)k−1dt.

Proof. Put � = 〈wn(w − w0)〉. We will use the partial fraction decomposition

1

wn(w − w0)
= 1

wn
0(w − w0)

− 1

wn
0w

− · · · − 1

w0wn
.

Then

� = wn(w − w0)

wn
0(w − w0)

−
n∑

k=1

wn(w − w0)

wn−k+1
0 wk

= (w0 + (w − w0))
n(w − w0)

wn
0(w − w0)

−
n∑

k=1

wn(w − w0)

wn−k+1
0 wk

=
n∑

k=0

(
n
k

)
wn−k

0 (w − w0)
k+1

wn
0(w − w0)

−
n∑

k=1

wn(w − w0)

wn−k+1
0 wk

.

Put

Ak
l (w) = wn−k+1

0 wk

wn−l+1
0 wl

.

Then

� = A1
1(w − w0) + An

n(w) +
n∑

k=1

(
n
k

)
Ak+1

1 (w − w0)

−
n∑

k=1

An+1
k (w) +

n−1∑
k=1

An
k (w).

The terms A1
1(w − w0) and An

n(w) are listed separately because they are the only
bounded terms in the above formula. All other terms have the form Ap

q with p > q
so they are unbounded as w0 → 0. Put

f (t) = Ak+1
1 (w − tw0).

We use Taylor’s expansion

f (1) =
k−1∑
n=0

1

n! f (n)(0) + 1

(k − 1)!
∫ 1

0
f (k)(t)(1 − t)k−1dt.
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to express Ak+1
1 (w − w0) in terms of Ap

q (w). Note that

d

dt
Ap

q (w − tw0) = q Ap
q+1(w − tw0) − p Ap−1

q (w − tw0),

d

dt

∣∣∣∣
t=0

Ap
q (w − tw0) = q Ap

q+1(w) − p Ap−1
q (w).

By Taylor’s formula, not keeping track of the exact values of the coefficients, we
have

Ak+1
1 (w − w0)=

∑
1≤q<p≤k+1

α
p
kq Ap

q (w) +
k+1∑
p=1

βkp

∫ 1

0
Ap

p(w − tw0)(1 − t)k−1dt

where α
p
kq and βkp are universal constants. Then

� = A1
1(w − w0) + An

n(w) +
∑

1≤q<p≤n+1

a p
q Ap

q (w)

+
n∑

k=1

n+1∑
p=1

ckp

∫ 1

0
Ap

p(w − tw0)(1 − t)k−1dt

where a p
q and ckp are universal constants.

Since |Ap
p| = 1 and |�| = 1, the sum

∑
1≤q<p≤n+1 a p

q Ap
q (w) is bounded. But

the terms Ap
q (w) with q < p are all unbounded and have different asymptotics as

w0 → 0. Hence a p
q = 0, and Lemma 3.13 follows.

3.5. Lipschitz continuity of the logarithmic difference

Proposition 3.14. For every µ ∈ C1(D), ε > 0, M > 0 and integer n ≥ 0
there exists a constant C > 0 such that every function h ∈ C1(D) satisfying the
conditions

(i) hw = µh
(ii) |h(w)| > ε for |w| > 1/2

(iii) h has n zeros in D

(iv) ||h||C1(D) ≤ M

admits the representation h =φ0 peT u, where u =µh/h, p is a monic polynomial of
degree n, and we have the estimates ||φ0||C1(D) ≤C, |φ0|≥1/C, ||T u||C0,1(D) ≤C.

The goal of Proposition 3.14 is that the estimates on φ0 and T u depend only
on the number of zeros of h, not their location.
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Lemma 3.15. Let λ ∈ Cα(C) for some 0 < α < 1 and λ(0) = 0. Then for every
positive integer n we have

||λ〈w〉n||Cα(C) ≤ nC ||λ||Cα(C)

where C > 0 is an absolute constant.

Lemma 3.15 follows from a more general result [17, Lemma 5.4], which in
place of 〈w〉n has a function whose derivatives have the estimate O(|w|−1).

Lemma 3.16. For every positive integer n and w, w0 ∈ D we have

T 〈w − w0〉n = 1

n + 1

(w − w0)
n+1

(w − w0)n
. (3.11)

Proof. Let f (w) = 〈w − w0〉n , and let g(w) be the right-hand part of (3.11). Then
gw = f . By the Cauchy-Green formula, g(w) = K g(w) + T f (w), w ∈ D. Here

K g(w) = 1

2π i

∫
|ζ |=1

g(ζ )dζ

ζ − w

is the Cauchy type integral over the unit circle. But for |w| = 1 we have

g(w) = 1

n + 1
(w−1 − w0)

n+1

[
w−1

∞∑
k=0

(w0

w

)k
]n

.

Thus the Laurent series of g on the unit circle contains only negative powers of w.
Hence K g ≡ 0, and the lemma follows.

Lemma 3.17. Let u = λ〈p〉, where p(w) = (w − w1)...(w − wn), λ ∈ Cα(D).
Then

||T u||C0,1(D) ≤ C ||λ||Cα(D),

where C depends on n and α only.

Proof. We represent 〈p〉 by Theorem 3.12. (This is the only instance when Theorem
3.12 is used.) Since the integrals

∫ |dµnk | are uniformly bounded, it suffices to
prove the result separately for each term in Theorem 3.12. Hence it suffices to
consider the case where

p(w) = (w − w0)
k, |w0| < 1, 1 ≤ k ≤ n.

Then u(w) = (λ(w) − λ(w0))〈w − w0〉k + λ(w0)〈w − w0〉k , hence

T u(w) = T [(λ(w) − λ(w0))〈w − w0〉k] + λ(w0)

k + 1

(w − w0)
k+1

(w − w0)k
.

The first term is uniformly bounded in C1,α(D), because (λ(w)−λ(w0))〈w−w0〉k

is uniformly bounded in Cα(D) by Lemma 3.15. The second term is obtained by
Lemma 3.16; clearly, it is in C0,1(D). This proves the lemma.



REGULARIZATION OF ALMOST COMPLEX STRUCTURES 403

Proof of Proposition 3.14. Without loss of generality ||µ||C1(D) ≤ M . We use
C1, C2, . . . for constants depending on ε, M and n only. In this proof, the term
“uniformly bounded” means bounded by a constant depending on ε, M and n only.

Since h satisfies the equation (i), then it admits the representation h = φeT u ,
u = µh/h with holomorphic φ. Set φ0 = φ/p = he−T u/p, where p(w) =
(w − w1) . . . (w − wn), w j are the zeros of h, |w j | < 1/2. Then u = λ〈p〉, where

λ = (µφ0/φ0)eT u−T u . We will see that λ is uniformly bounded in Cα(D), and
Proposition 3.14 will follow by Lemma 3.17.

Fix any 0 < α < 1, say, α = 1/2. Since |µ| ≤ M , then |u| ≤ M . Since
the operator T : L∞(D) → Cα(D) is bounded, we have ||T u||Cα(D) ≤ C1 and
||e−T u ||Cα(D) ≤ C2. The condition ε ≤ |h(w)| ≤ M for w ∈ bD implies the
inequality 1/C3 ≤ |φ(w)| ≤ C3 for w ∈ bD. Since |w j | < 1/2, then 2−n ≤
|p(w)| ≤ 2n for w ∈ bD. Therefore for φ0 = φ/p we obtain 1/C4 ≤ |φ0(w)| ≤ C4

for w ∈ bD, hence for all w ∈ D because φ0 is holomorphic and has no zeros. We
now show that ‖ φ0 ‖C1(D) is uniformly bounded. Since

(p−1)′ = −p−1
n∑

j=1

(w − w j )
−1,

then ||p−1||C1(bD) ≤ C5. By splitting
∫ ∫

D
= ∫ ∫

(1/2)D
+ ∫ ∫

D\(1/2)D
we obtain

||T u||C1(bD) ≤ C6(||u||L∞((1/2)D) + ||u||C1(D\(1/2)D).

The last term has the estimate

||u||C1(D\(1/2)D ≤ M ||h/h||C1(D\(1/2)D) ≤ C7ε
−1||h||C1(D) ≤ C8.

Therefore ||T u||C1(bD) ≤ C9 and ||e−T u ||C1(bD) ≤ C10. Then for φ0 = e−T uh/p

we obtain ||φ0||C1(D) ≤ C11. Since |φ0| > 1/C4 we have ||φ0/φ0||C1(D) ≤ C12.

Now for λ = (µφ0/φ0)eT u−T u , we have ||λ||Cα(D) ≤ C13, as desired. Proposition
3.14 is proved.

3.6. Proof of Theorem 3.1

We resume the proof of Theorem 3.1 and return to the notation of Section 3.1. by
Lemma 3.3 it suffices to prove Theorem 3.1 locally. Hence it suffices to prove it in
the settings of Proposition 3.4. Recall that � = {| f | = |g|}, where f and g satisfy
the equations (3.2) and the inequality | f | ≥ |g|. Put �′ = { f = 0}. Then �′ ⊂ �.

Lemma 3.18. For every z ∈ D, the set �′ ∩ ({z} × D) is discrete.

Proof. We prove the lemma for fixed z and treat �′ as a subset of D. Let G :=
D \ �′. Put u = µg/ f in G. Then fw = u f in G. Without loss of generality (by
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the hypotheses of Proposition 3.4) we assume that µ is bounded. Since | f | ≥ |g|,
then u is bounded in G. Put φ = f e−T u , where T = TG is the Cauchy-Green
integral (3.10). Then φ is continuous in D and holomorphic in G. By the definition
of φ, we have �′ = {φ = 0}. By Rado’s theorem, φ is holomorphic on all of D. By
(ii) of Theorem 3.1, �′ �= D. Hence �′ is discrete. The lemma is proved.

Lemma 3.19. �′ = �.

Proof. We again treat � as a subset of D. Arguing by contradiction, let w0 ∈ �\�′.
Then | f (w0)| = |g(w0)| �= 0. By multiplying f by an appropriate constant of
modulus 1, we can assume f (w0) = g(w0). Put h = 1 − g

f . Then Re h ≥ 0. Using
(3.2) we obtain that h in D \ �′ satisfies the following equation:

hw = g fw − f gw

f 2
= λh, λ = −µ

| f |
f

(
1 + |g|

| f |
) | f | − |g|

f − g
.

Note that λ is bounded. Then h = φeT λ, where φ is holomorphic in D \ �′ and
φ(0) = 0. In fact φ is holomorphic in all of D because it is bounded and has
isolated singularities. We claim that h ≡ 0. Otherwise, since T λ is continuous,
then h = φeT λ maps a neighborhood of w0 onto a neighborhood of 0, which is not
possible because Re h ≥ 0. Now h ≡ 0, that is, f ≡ g contradicts � �= D. The
lemma is proved.

To complete the proof of Theorem 3.1 we need to show that the function a =
g/ f extends to all of D2 with the stated regularity properties, and that the extension
satisfies |a| < 1. Then by Proposition 2.2, the complex matrix A of the form (3.1)
will define the desired extension of J = H∗ J ′.

We first note that if a extends continuously to �, then |a| < 1 follows imme-
diately by applying to h = 1 − a the argument from the proof of Lemma 3.19.

We make the substitution

f̃ = f + g, g̃ = f − g, ã = g̃/ f̃ = 1 − a

1 + a
(3.12)

and drop the tildes. The new f , g and a are defined on D2 \ � and satisfy instead
of (3.2) the following equations

fw = µ f , gw = −µg. (3.13)

We need to show that a extends to all of D2 with the stated regularity. It suffices
to prove the theorem locally. Thus without loss of generality we assume that there
exist n, ε, and M such that both f and g satisfy the hypotheses of Proposition 3.14.
Since f and g have the same zero set, then they have the representations

f = φ0 peT u, u = µ f / f,

g = ψ0 peT v, v = −µg/g.
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Here p(z, w) = (w − w1(z)) . . . (w − wn(z)), where w1(z), . . . , wn(z) are the
zeros of f and g for fixed z ∈ D. Then by Propositions 3.8 and 3.14, the formula
a = g/ f = (φ0/ψ0)eT u−T v defines the extension of a with the needed regularity.
The proof is complete.

4. Gluing J -holomorphic discs to the standard torus

Let D2 denote the standard bidisc in C2 with coordinates (z, w). Let J be an almost
complex structure in D2 with complex matrix A of the form (3.1). A map D � ζ �→
(z(ζ ), w(ζ )) ∈ D2 is J -holomorphic if and only if it satisfies the following quasi-
linear system: {

zζ = a(z, w)zζ

wζ = b(z, w)zζ

(4.1)

We assume that |a(z, w)| ≤ a0 < 1, which implies the ellipticity of the system.
The following theorem strengthens one of the main results of [3]. For r > 0 we put
Dr := rD.

Theorem 4.1. Let a, b : D × D1+γ → C, γ > 0. Let 0 < α < 1. Suppose a(z, w)

and b(z, w) are Cα in z uniformly in w and C0,1 (Lipschitz) in w uniformly in z.
Suppose

|a(z, w)| ≤ a0 < 1, a(z, 0) = 0, b(z, 0) = 0.

Then there exist C > 0 and integer N ≥ 1 such that for every integer n ≥ N, real
0 < r ≤ 1 and 0 ≤ t < 2π (alternatively, there exist C > 0 and 0 < r0 ≤ 1 such
that for every n ≥ 0, 0 < r < r0 and 0 ≤ t < 2π), the system (4.1) has a unique
solution (zr , wr ) : D → D × D1+γ of class C1,α with the properties:

(i) |zr (ζ )| = 1, |wr (ζ )| = r for |ζ | = 1; zr (0) = 0, zr (1) = 1 and wr (1) = reit ;
(ii) zr : D → D is a diffeomorphism;

(iii) |wr (ζ )| ≤ Cr |ζ |n, and the winding number of wr |bD is equal to n;
(iv) for fixed r we have {(zr (ζ ), wr (ζ )) : |ζ | = 1, 0 ≤ t < 2π} = bD × bDr .

The solution continuously depends on the parameters r , t and the coefficients a and
b. In particular the map r �→ (zr , wr ) is a homotopy between (ζ, 0) and (z1, w1).

We note that the conclusions (i–iii) remain true if the coefficients a and b are
in Cα in both z and w, that is, without assuming that they are C0,1 in w.

The proof for smooth a and b, r = 1, n big enough and no t is given in [3].
The proof of the present statement is similar; we briefly describe it below.

We look for a solution of (4.1) in the form z = ζeu , w = reitζ nev . Then the
new unknowns u and v satisfy a similar system but with linear boundary conditions.
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We reduce the system of PDE for u and v to a system of singular integral equa-
tions using suitable modifications of the Cauchy–Green operator and the Ahlfors–
Beurling transform [3]. The method in [3] based on the contraction mapping prin-
ciple and the Schauder fixed point theorem goes through under the present assump-
tions on a and b. This gives the existence of solutions z, w with the required prop-
erties (i)-(iii) in the Sobolev class L1,p(D) for some p > 2.

The obtained solution is in C1,α(D) by elliptic bootstrapping. The C1,α regu-
larity up to the boundary follows by the reflection principle [13] about the totally
real torus bD2.

The method of the proof of Theorem 4.1 in [3] based on the Schauder prin-
ciple does not guarantee the continuous dependence of solutions on the boundary
conditions and coefficients of the system (4.1). Instead, we use general results [15]
on quasi-linear elliptic equations in the plane. We reduce the system (4.1) to the
following single equation by eliminating the variable ζ :

wz + a(z, w)wz = b(z, w). (4.2)

Indeed, using the first equation in (4.1) we obtain

wζ = wzzζ + wzzζ = (a(z, w)wz + wz)zζ .

Substituting the latter in the second equation of (4.1) we obtain the equation (4.2).
This equation is equivalent to the original system (4.1) because once the solution of
(4.2) is found, one can find ζ(z) from the linear Beltrami equation

ζz + a(z, w(z))ζz = 0.

The latter is in fact the first equation in (4.1) written for the inverse function ζ(z).
The results of [15] concern a more general quasi-linear equation

wz + a1(z, w)wz + a2(z, w)wz = b(z, w) (4.3)

with a linear boundary condition

Re [G(ζ )w(ζ )] = g(ζ ), ζ ∈ bD. (4.4)

Let ind G denote the winding number of G. It is called the index of the Riemann–
Hilbert problem (4.3–4.4). We assume that

(i) the coefficients a j and b are L∞ in D × C and Lipschitz in w uniformly in z;
(ii) the ellipticity condition |a1| + |a2| ≤ a0 < 1 holds, here a0 is constant;

(iii) the functions G and g in (4.4) are Cβ on the unit circle (for some β > 0 ) and
G �= 0;

(iv) ind G ≥ 0.

Then the following result [15, pages 335–351] holds.
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Proposition 4.2. Under the above assumptions (i)-(iv), the boundary value prob-
lem (4.3–4.4) admits a solution w in the Sobolev class L1,p(D) for some p > 2.
The solution is unique if it satisfies the conditions

w(p j ) = 0, Im w(1) = 0

for some fixed points p j ∈ D, j = 1, . . . , ind G. Furthermore, the solution con-
tinuously depends on perturbations of G, g and a j , b in the Cβ and L∞ norms
respectively.

We point out that in [15] this result is obtained under substantially weaker
regularity assumptions.

Return now to the equation (4.2) with the non-linear boundary condition

|w(z)| = r for |z| = 1. (4.5)

Set w = reit zneu . Then the new unknown u satisfies the equation

uz + a(z, reit zneu)uz =r−1e−i t z−ne−ub(z,reit zneu)−nz−1a(z,reit zneu) (4.6)

with the linear boundary condition

Re u(z) = 0 for |z| = 1,

and the index of the problem is equal to zero. The coefficients of (4.6) are bounded
and still Lipschitz in u uniformly in z, r and t . By Proposition 4.2 the solution u
with u(1) = 0 depends continuously on the parameters r , t and the coefficients a
and b. Hence the solution (z, w) with z(1) = 1 and w(1) = reit in Theorem 4.1
continuously depends on r , t and the coefficients a and b. Since for r = 0 we have
(z, w) = (ζ, 0), then (zn, wn) is homotopic to (ζ, 0). Finally, the conclusion (iv)
follows by the uniqueness and the fact that we can replace the condition w(1) = reit

by w(ζ0) = reit for a fixed ζ0 ∈ bD. Theorem 4.1 is now proved.

5. Gluing J -holomorphic discs to real tori

As the first application of Theorems 3.1 and 4.1 we obtain a result on gluing
pseudo-holomorphic discs to real tori. In [3] we construct J -holomorphic discs
approximately attached to real tori. We recall that for the usual complex structure,
Forstnerič and Globevnik [9] gave constructions for approximately attaching holo-
morphic discs to certain tori in Cn . We improve one of the results of [3] here by
constructing discs attached to tori exactly.

Throughout this section (M, J ) denotes an almost complex manifold of com-
plex dimension 2. Let f0 : D → M be an immersed J -holomorphic disc smooth on
D. Fix R > 1 and consider a family of J -holomorphic immersions hz : RD → M
smooth on RD and smoothly depending on the parameter z ∈ D. Let � denote the
set of all critical points of the map H : D × RD � (z, w) �→ hz(w) ∈ M . Suppose
that the following conditions hold.
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(i) For every z ∈ D we have hz(0) = f0(z) ;
(ii) For every z ∈ D the disc hz is transverse to f0 .

(iii) The map H |(D×RD)\� preserves the canonical orientations defined by Jst and
J on D × RD and M respectively.

Define � = H(bD × bD). We call � a real torus though it is even not immersed in
general.

Theorem 5.1. Let � be a bounded strictly pseudoconvex domain in (M, J ). Let
f0 : D → � be a J -holomorphic immersion smooth in D. Fix R > 1 and consider
a smooth family hz : RD → �, z ∈ D of J -holomorphic immersions satisfying
(i), (ii), and (iii). Let � be a real torus defined above. Suppose that there exists
c0 : 0 < c0 < 1 such that hz(bD) ⊂ b� for every z : c0 < |z| ≤ 1; in particular,
� ⊂ b�. Then there exists a continuous one-parameter family of J -holomorphic
discs f t : D → � of some class C1,α(D) such that f t (bD) ⊂ �, f t (0) = f0(0),
and f t is tangent to f0 at the center. The boundaries of the discs f t fill the whole
torus �.

As we pointed out earlier, the condition (iii) in Theorem 3.1 can be replaced
by (iii′): the set D2\� is connected.

Proof. The conditions (i)-(iii) allow to apply Theorem 3.1 on D× RD. By Theorem

3.1 the pull-back J̃ = H∗(J ) is well defined in the bidisc D
2

and has a complex
matrix of the form (3.1), where the coefficients a(z, w) and b(z, w) are Cα in z and
C0,1 in w for some 0 < α < 1. A map ζ �→ (z(ζ ), w(ζ )), ζ ∈ D, is J̃ -holomorphic
if and only if it satisfies the system (4.1).

We extend the functions a and b to D×C keeping them Cα in z and C0,1 in w.
In the notation of Theorem 4.1, fix an integer n (depending on c0) big enough and
also fix 0 ≤ t < 2π . Let (zr , wr ) = (zt

r , w
t
r ), 0 < r ≤ 1, be a family of solutions of

(4.1) constructed by Theorem 4.1 for these n and t . We claim that the discs (zr , wr )

stay in D
2

for all 0 < r ≤ 1. Then the disc f t (ζ ) = H(zt
1(ζ ), wt

1(ζ )) satisfies the
conclusion of the theorem.

Arguing by contradiction, assume that the disc (z1, w1) is not contained in D
2
,

that is, |w1(ζ )| > 1 for some ζ ∈ D. Fix a constant c1 such that c0 < c1 < 1. By
(ii) and (iii) of Theorem 4.1, |wr (ζ )| < 1 for |zr (ζ )| < c1 if the above n is chosen
large enough. If r is small, then |wr | is also small. Hence, there are r and ζ ∈ D

such that c0 < |zr (ζ )| < 1 and |wr (ζ )| = 1. Then the disc H(zr , wr ) touches the
strictly pseudoconvex hypersurface b� from inside, which is impossible.

The boundaries of the discs f t fill the whole torus � by (iv) in Theorem 4.1.
Theorem 5.1 is proved.

A special but important for applications situation arises if the above map H is
an immersion i.e. the set � is empty. In this case it suffices to require that H is
defined just on bD × RD. For convenience we state the corresponding assertion
explicitly.
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Corollary 5.2. Let � be a bounded strictly pseudoconvex domain in (M, J ). Sup-
pose that for some R > 1 a map H : bD × RD → � is a smooth immersion
satisfying the following assumptions:

(i′) for every z ∈ bD the map H(z, •) : RD → M is J -holomorphic;
(ii′) the map H(•, 0) : D → M is a J -holomorphic immersion.

Suppose that the torus � = H(bD × bD) is contained in b�. Then there exists
a continuous one-parameter family of J -holomorphic discs f t : D → � of class
C∞(D) such that f t (bD) ⊂ �, f t (0) = f0(0), and f t is tangent to f0 at the
center. The boundaries of the discs f t fill the whole torus �.

Proof. It is shown in [3] that after a suitable reparametrization ζ �→ eiσ(z)ζ of the

discs hz , the map H defined above extends smoothly to the whole bidisc D
2

as an
immersion such that the above assumption (i′) is satisfied. Moreover, we choose the
discs hz in such a way that hz(bD) ⊂ b� for c0 < |z| ≤ 1, where c0 is close to 1.
Now we can apply Theorem 5.1. This completes the proof.

Remarks 5.3.
1. We use in the proof that the defining function ρ is strictly plurisubharmonic

in a neighborhood of b�, not necessarily on all of �.
2. A version of Theorem 4.1 still holds with the same proof if w is vector

valued and satisfies the equations (w j )ζ = b j (z, w)zζ and boundary conditions
|w j (ζ )| = r , |ζ | = 1. However, in order to prove the corresponding version of
Theorem 5.1 in higher dimension we need J -complex hypersurfaces in M . They
generally do not exist in higher dimension unless J is integrable.

In Theorem 5.1 we suppose that hz(bD) ⊂ b� for c0 < |z| ≤ 1. In some
applications the stronger condition H(D × bD) ⊂ b� holds i.e. hz(bD) ⊂ b� for
all z ∈ D. In this special case one can construct discs with additional properties.

Theorem 5.4. Let � be a bounded strictly pseudoconvex domain in (M, J ). Let a

smooth map H : D
2 → � satisfies the assumptions of Theorem 3.1. Let the map

z �→ f0(z) := H(z, 0) be J -holomorphic and smooth in D. Suppose that H is an
immersion near D × bD and H(D × bD) ⊂ b�. Set � := H(bD × bD). Fix
finitely many points z j ∈ D, j = 1, . . . , s and integers m j ≥ 0. Finally suppose the
points f0(z j ) are distinct non-critical values of H. Then there exists a continuous
one-parameter family of J -holomorphic discs f t : D → � of some class C1,α(D)

such that f t (bD) ⊂ � and f t is tangent to f0 at the points f0(z j ) with orders m j
respectively. The boundaries of the discs f t fill the whole torus �. The family f t

depends continuously on perturbations of H and J .

The proof is similar to the proof of Theorem 5.1. The only difference is that
we apply Proposition 4.2 instead of Theorem 4.1. We also point out that here we
do not need to assume that H is defined on D × RD for some R > 1. Indeed,
the assumption on the map H to be an immersion near D × bD implies that the
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intersection of � with every set {z} × D, z ∈ D is compact and Theorem 3.1 can be
applied.

Remarks 5.5.
1. If we assume in Theorems 5.1 and 5.4 that H is an immersion on bD2, then

we can prove them without using the continuous dependence statement in Theorem
4.1. Moreover, the resulting disc will be C∞ smooth up to bD by the reflection
principle [13] about the totally real torus �.

2. Theorems 5.1 and 5.4 are new also in the case where the manifold M is the
Euclidean space C2 with the standard complex structure.

A. Appendix. Proof of Theorem 3.1 in the integrable case

Assume that in the setting of Theorem 3.1 the structure J ′ is integrable. Then
without loss of generality M = C2 and J ′ = Jst . By Lemma 3.3 we can restrict to
a local problem near the origin. Let H = (h1, h2). Here the functions h j are Ck in
(z, w) and holomorphic in w; k ≥ 1 is not necessarily an integer.

Since every map w �→ H(z, w) is an immersion, then (h2)w(0, 0) �= 0. Then
we perform a Ck diffeomorphic change of variables (z, w) �→ (z, h2(z, w)) in a
neighborhood of (0, 0) keeping the same notation for the new variables. Note that
the change of variables preserves the coordinate lines z = c, hence it reduces the
problem to the case in which

H(z, w) = (h(z, w), w).

Then the singular set has the form � = {(z, w) : |hz| = |hz|}. Since H is orienta-
tion preserving, then |hz| ≥ |hz|. Since h is holomorphic in w, then so are hz and
hz . By the condition (ii), for every fixed z, the function hz(z, •) is not identically
equal to zero. Let a = −hz/hz . Then for every fixed z the function a(z, w) is
holomorphic in w with isolated singularities at zeros of hz , and |a| ≤ 1. Then the
singularities are removable, and by the maximum principle and condition (ii) again
we have |a| < 1. Then we immediately obtain � = {(z, w) : hz(z, w) = 0}, hence
� is discrete for fixed z.

Let J = H∗ Jst . By the transformation rule (3.6) the complex matrix A of J in
the complement of � has the form

A =
(

a 0
0 0

)
,

where a is defined above. Since |a| < 1, then A, whence J extends to �. The
structure J is Ck−1-smooth in (z, w) by the Cauchy integral formula in w:

a(z, w) = 1

2π i

∫
γ

a(z, τ ) dτ

τ − w

where γ is a simple path in the complex w-plane so that hz(z, w) �= 0 for all w ∈ γ

and z in a small open set. The proof is complete.
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Université des Sciences
et Technologies de Lille
Laboratoire Paul Painlevé
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