
Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5)
Vol. IX (2010), 833-850

Some Siegel threefolds
with a Calabi-Yau model

EBERHARD FREITAG AND RICCARDO SALVATI MANNI

Abstract. We describe some examples of projective Calabi-Yau manifolds which
arise as desingularizations of Siegel threefolds. There is a certain explicit product
of six theta constants which defines a cusp form of weight three for a certain sub-
group of index two of the Hecke group �2,0[2]. This form defines an invariant
differential form for this group and for any subgroup of it. We study the ques-
tion whether the Satake compactification for such a subgroup admits a projective
desingularization on which this differential form is holomorphic and without ze-
ros. Then this desingularization is a Calabi-Yau manifold. We shall prove: For
any group between �2[2] and �2,0[2] there exists a subgroup of index two which
produces a (projective) Calabi-Yau manifold. The proof rests on a detailed study
of this cusp form and on Igusa’s explicit desingularization of the Siegel three-
folds with respect to the principal congruence subgroup of level q > 2 (we need
q = 4). For a particular case we produce the equations for the corresponding
Siegel threefold.

Mathematics Subject Classification (2010):11F46 (primary); 14J32 (secondary).

1. Introduction

In the following we describe some examples of Calabi-Yau manifolds that arise
as desingularizations of certain Siegel threefolds. Here by a Calabi-Yau manifold
we understand a smooth complex projective variety which admits a holomorphic
differential form of degree three without zeros and such that the first Betti number
is zero. This differential form is unique up to a constant factor, and we call it the
Calabi-Yau form. Our interest in this subject is influenced by work of Gritsenko
and many discussions with him. The first Siegel modular variety with a Calabi-Yau
model and the essentially only one up to now has been discovered by Barth and
Nieto. They showed that the “Nieto quintic” {x ∈ P5(C), σ1(x) = σ5(x) = 0},
where σi denote the elementary symmetric polynomials, has a Calabi-Yau model
and they derived that the Siegel modular variety A1,3(2) of polarization type (1, 3)

and a certain level-two structure has a Calabi-Yau model. Since the Jacobian of a
symplectic substitution is det(C Z + D)−3, the Calabi-Yau three-form, produces a
modular form of weight three and this must be a cusp form, since it survives on a
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non-singular model as a holomorphic differential form [3, III.2.6]. In the paper [5]
Gritsenko and Hulek gave a direct construction of this modular form and obtained
a new proof for the fact that A1,3(2) has a Calabi-Yau model. We also refer to
[8] for further investigations. Besides this example and some small extensions of
this group with the same three-form no other examples of Siegel threefolds with
Calabi-Yau model seem to be known. Gritsenko raised the problem of determing
all Siegel threefolds which admit a Calabi-Yau model. As we mentioned already,
such a threefold will produce a certain cusp form of weight three for the considered
modular group �. This cusp form has very restrictive properties. Since the induced
differential form should have no zero at least at the regular locus of the quotient
H2/�, all zeros of the form must be contained in the ramification of H2 → H2/�.
Gritsenko gave examples of such modular forms: we refer to the paper [4] which
contains some systematic study of them. One example that Gritsenko and Cléry
describe is the form ∇3, which is a cusp form of weight three for the Hecke group
�2,0[2] with respect to a certain quadratic character χ . Hence a subgroup of index
two is a candidate for producing a Calabi-Yau manifold. We will prove that this is
the case. We will show more: for any group between �2[2] and �2,0[2] there exists
a subgroup of index two (the kernel of χ ) which produces a Calabi-Yau manifold.

The modular form ∇3 will come up in a completely different manner. It is sim-
ply the product T of 6 (of the 10 classical) theta constants with suitable properties.
In this form it has already been described in [7] and these expressions occur also
in [6]. This approach has the advantage that we can easily describe the action of the
full modular group, which is necessary, since we need information about this form
at all boundary components. Another advantage of this description is that we can
use the work of Igusa about the structure of the ring of modular forms with respect
to his group �2[4, 8] and of some groups containing this group. Igusa used the
ten theta constants of the first kind. If one is concerned with groups in the region
of the principal congruence subgroup of level two, there are advantages in using
the theta constants of the second kind. We use the very nice approach given by
Runge [15, 16].

We also make use of Igusa’s method of desingularization of the Siegel threefold
with respect to the principal congruence subgroup of level q > 2 (we need q = 4).

Using Igusa’s results or Runge’s approach, it is easy to determine the rings of
modular forms for the groups in question, and in this way one can produce equations
for the Siegel threefolds. The main example is the subgroup of index two of �2[2].

In this introduction we only describe the equations of this Siegel threefold in a
purely algebraic way.

Theorem 1.1. Let X be the subvariety of P5(C) given by the intersection of the
quartic

y4
5 = y0 y1 y2(y0 + y1 + y2 + y3 + y4)

and the quadric
2y2

5 = y0 y1 + y0 y2 + y1 y2 − y3 y4.

This is a normal projective variety of dimension three. There exists a desingular-
ization X̃ → X which is a Calabi-Yau manifold.
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The variety X together with the Calabi-Yau form have some symmetries. They
are easier to describe in another coordinate system (see Theorem 5.5 for the ex-
plicit description). In this coordinate system we also will give an explicit algebraic
expression for the Calabi-Yau form. We will see:

Theorem 1.2. There is a subgroup G ⊂ PGL(5, C), isomorphic to the semidirect
product S3 · (Z/2Z)2, which leaves X and the form ω invariant. For each sub-
group H of G the quotient X/H admits a desingularization which is a Calabi-Yau
manifold.

It is not difficult to determine the singular locus of X :

Proposition 1.3. The singular locus of X is the union of 15 smooth curves. It
consists of two G-orbits. One orbit consists of three quadrics, the other of 12 lines.
Representatives are given by the ideals

(y0 + y4, y1 + y4, y3 − y4, y2 y4 + y2
5), (y0, y2, y3, y5).

The main problem is to find a good resolution of the singularities of X . It might
be possible to do this by hand or with the help of a computer. We will find it by
interpreting X as a Siegel modular variety.

ACKNOWLEDGEMENTS. We would like to thank T. Bridgeland, A. Corti, S. Cynk
and C. Meyer for useful discussions.

2. The Siegel modular group of genus two

Recall that the real symplectic group

Sp(n, R) = {
M ∈ GL(2n, R); t M I M = I

} (
I =

(
0 −E
E 0

))

acts on the generalized half-plane

Hn := {
Z = X + iY ; Z = t Z , Y > 0 (positive definite)

}

by

M Z = (AZ + B)(C Z + D)−1, M =
(

A B
C D

)
.

Let �n := Sp(n, Z) be the Siegel modular group. The principal congruence sub-
group of level l iy

�n[l] := kernel(Sp(n, Z) −→ Sp(n, Z/ lZ))
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and Igusa’s subgroup is

�n[l, 2l] := {
M ∈ �n[l]; At B/ l and Ct D/ l have even diagonal

}
.

For even l, Igusa’s subgroup is a normal subgroup of �n . Other important subgroups
are

�n,0[l] = {M ∈ �n; C ≡ 0 mod l}.

2.1. Theta characteristics in genus two

By definition, a theta characteristic is an element m = (a
b

)
from (Z/2Z)2n .

Here a, b ∈ (Z/2Z)n . The characteristic is called even if t ab = 0. The group
Sp(n, Z/2Z) acts on the set of characteristics by

M{m} := t M−1m +
(

(At B)0
(Ct D)0

)
.

Here S0 denotes the column built of the diagonal of a square matrix S. It is well-
known that Sp(n, Z/2Z) acts transitively on the subsets of even and odd character-
istics. Recall that for any characteristic the theta function

ϑ[m] =
∑

g∈Z
n

eπ i(Z [g+a/2]+t b(g+a/2))

can be defined. Here we use the identification of Z/2Z with the subset {0, 1} ⊂ Z.
It vanishes if and only if m is odd. Recall also that the formula

ϑ[M{m}](M Z) = v(M, m)
√

det(C Z + D)ϑ[m](Z)

holds for M ∈ �n , where v(M, m) is a rather delicate 8th root of unity which
depends on the choice of the square root.

We are interested in the case n = 2. In this case there are ten even characteris-
tics. We will write the coordinates of H2 as

Z =
(

z0 z1
z1 z2

)
.

A set {m1, m2, m3, m4} of four pairwise different even characteristics is called
syzygetic if the sum of any three of them is even. There are 15 syzygetic (unordered)
quadruples and the group Sp(2, Z) acts transitively on them. We call




0 0 0 0
0 0 0 0
0 1 0 1
0 0 1 1




the standard syzygetic quadruple. We are also interested in the 15 complementary
sextuples of even characteristics {n1, . . . , n6}. From a detailed study of the multi-
pliers v(M, m) one can deduce:
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Lemma 2.1. Let n = {n1, . . . , n6} be a sextuple of even characteristics (in the case
n = 2) complementary to a syzygetic quadruple. Then the product

T = Tn :=
6∏

ν=1

ϑ[nν](Z)

is a cusp form of weight 3 for a group conjugate to �2,0[2] and with respect to a
quadratic character χn on this group. The kernel of this character contains �2[4].
In the case of the standard tuple the group is �2,0[2] and the kernel

�2,0[2]n := {
M ∈ �2,0[2], χn(M) = 1

}

is a subgroup of index two.

We describe the character of T for the standard syzygetic quadruple. For this
we introduce

� := ϑ

[
00

01

]
ϑ

[
00

00

]
ϑ

[
00

10

]
ϑ

[
00

11

]
.

Since T · � = χ5 is a modular form with respect to the full modular group, this
form also is a modular form for �2,0[2]. The characters of T and � differ by the
character of χ5. Using the well-known isomorphism �2/�2[2] ∼= S6, the character
of χ5 corresponds to the sign character of S6. Hence it is sufficient to describe the
character of �.

Lemma 2.2. The character of � for M ∈ �2,0[2] is given by

(−1)(α+β+γ )/2,

where

C t D =
(

α β

β γ

)
.

The character of T is the product of this character and the only nontrivial character
of the full modular group.

The proof can be taken from [17, Lemma 4].
We have to recall the location of the zeros of the theta functions. In the case

t m = (1, 1, 1, 1) the theta function ϑ[m] has a zero of first order along the diagonal
z1 = 0 and every zero component is equivalent to the diagonal mod �2[1, 2]. We
consider the differential form

ω = ωn = Tn dz0 ∧ dz1 ∧ dz2.

It is invariant under the group �2,0[2]n.
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Proposition 2.3. Let F ⊂ H2 be an irreducible component of the zero locus of
ωn. Then there exists an element M ∈ �2 whose fixed point set is F. It has the
property M2 = E. This element is uniquely determined up to the sign and is
actually contained already in

�2[2, 4]n = �2[2, 4] ∩ �2,0[2]n.
Proof. Taking a conjugate group we may assume that F is the diagonal z1 = 0.
Then in the sextuple the characteristic t m = (1, 1, 1, 1) must occur. The only
non trivial modular substitution which fixes the diagonal is z1 	→ −z1. The theta
series for t m = (1, 1, 1, 1) changes its sign under this substitution. The others are
invariant. This shows

Tn

(
z0 −z1

−z1 z2

)
= −Tn

(
z0 z1
z1 z2

)
.

Since this is the transformation law for a modular form of odd weight, the substitu-
tion z1 	→ −z1 is in the kernel of χn. It is also in �2[2, 4]. 
�

We have to consider the group

� = �n := {M ∈ �2[2]; χn(M) = 1} .

This is a subgroup of index two of �2[2]. Using Lemma 2.2 and some computation
one can see:

Lemma 2.4. For the standard syzygetic quadruple, the group � is defined inside
�2[2] by the condition that the symmetric matrix C t D = (

α β
β γ

)
has the property

α + β + γ ≡ 0 mod 4. Moreover � = �n ⊂ �2[2] is generated by

1. The group �2[4].
2. The elements of �2,0[2]n that are conjugate inside �2 to the diagonal matrix

with diagonal (1, −1, 1, −1).
3. All elements of �2,0[2]n that are conjugate inside �2 to a translation matrix(E S

0 E

)
of �2[2].

3. Igusa’s desingularization

We consider the principal congruence subgroup �2[l] of level l ≥ 3 and denote by

X = X (l) := H2/�2[l]
the Satake compactification and by X̃ = X̃(l) the monoidal transform along the
Satake boundary. Igusa proved that X̃ is smooth. The theory of Igusa is very
difficult but fortunately we can formulate in a very simple way what we need from it.
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Igusa used so-called normal coordinates

q0 = e2π i(z0+z1)/ l , q2 = e2π i(z2+z1)/ l , q1 = e−2π iz1/ l .

We consider them as a holomorphic map

H2 −→ C
3,

(
z0 z1
z1 z2

)
	−→ (q0, q1, q2).

The image is an open subset D ⊂ C3. If we denote by T = T (l) the group of
translations Z 	→ Z + l S, S integral, we get a biholomorphic map

H2/T ∼−→ D.

We can consider its inverse map and compose it with the projection onto H2/�2[l]
and the inclusion into X to get a holomorphic map

D −→ X.

A domain U ⊂ Cn is called a Reinhardt domain if

(z1, . . . , zn) ∈ U =⇒ (ζ1z1, . . . , ζnzn) ∈ U for |ζν | = 1.

It is called a complete Reinhardt domain, if this is true for all ζ with |ζν | ≤ 1.
Each Reinhardt domain can be completed to a complete Reinhardt domain in an
obvious way. Any holomorphic function on a Reinhardt domain can be expanded
in a Laurent series in the whole domain. This Laurent series is a power series if and
only if the function extends as a holomorphic function to the completed Reinhardt
domain.

Lemma 3.1. The domain D is a Reinhardt domain C3. Its completion is

D̃ := D ∪ {q ∈ C
3; q0q1q2 = 0}.

The domain D is dense in D̃.

All we need from Igusa’s theory is:

Theorem 3.2 (Igusa). The natural map D → X extends to a locally biholomor-
phic map

D̃ −→ X̃ .

The group �2/�2[l] acts on X and hence on X̃ . The translates of the images of D̃
cover X̃ .
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Each holomorphic function on D can be written as Laurent series in the vari-
ables qν . Assume that it is the Fourier expansion of a modular form

∑
T

a(T )e2π iσ(t0z0+2t1z1+t2z2)/ l , T =
(

t0 t1
t1 t2

)
.

Here T runs over all matrices such that t0, t2, 2t1 are integral. If we rewrite this in
the normal coordinates, we get

∑
T

a(T )qt0
0 qt0+t2−2t1

1 qt2
2 .

By Koecher’s principle we can have a(T ) �= 0 only for semi-positive T . This means
t0, t2 ≥ 0 and t0t2 ≥ t2

1 . This implies t0 + t2 − 2t1 ≥ 0. Hence the Laurent series
actually is a power series. Hence this function extends to a holomorphic function
on the whole D̃.

We can talk about the multiplicity of the zero along each of the qν = 0. The
theta functions ϑ[m] are periodic under Z 	→ 8S, S integral. Hence we can use
l = 8 for the normal coordinates. The multiplicities are easy to compute:

Lemma 3.3. The multiplicity of ϑ[m] along qν = 0 in the coordinates

q0 = e2π i(z0+z1)/8, q2 = e2π i(z2+z1)/8, q1 = e−2π iz1/8,

is

a1, a2, a1 + a2 − 2a1a2, m =
(

a

b

)
.

Let m1, . . . , m4 be a syzygetic quadruple of even characteristics and let n =
{n1, . . . , n6} be the complementary even characteristics. We introduced the modu-
lar form

T = Tn = ϑ[n1] · · ·ϑ[n6].
By Lemma 2.1 this is a cusp form of weight three for a conjugate of the group
�0[2]. Its character is trivial on �2[4]. Hence it is better now to use l = 4, i.e. to
change the notation and to use the normal coordinates

q0 = e2π i(z0+z1)/4, q2 = e2π i(z2+z1)/4, q1 = e−2π iz1/4.

We can consider the differential form

ω = T dz0 ∧ dz1 ∧ dz2

on X̃(4). For general reasons this gives a regular differential form on the whole
X̃(4). We are interested in the zero divisor of this form. We pull it back to D̃ to
obtain

C
T

q0q1q2
dq0dq1dq2.
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At the moment we only are interested in the behavior of the differential forms along
the three divisors qν = 0. From Lemma 3.3 we can read off the vanishing order
of T along qν = 0. Of course the result depends on the choice of the syzygetic
quadruple. For example the vanishing order of the power series along q0 = 0 is
given by

a11 + · · · + a61

2
, nν =

(
aν

bν

)
.

(The denominator 2 occurs since we used different qν in Lemma 3.3.) By inspec-
tion of the 15 cases one sees that this expression is always 1 or 2. Since for the
order of differential form one has to subtract 1, one gets for the vanishing order
of the differential form along q0 either 0 or 1. The same argument works for the
variables q1 and q2. Now one has to use a list of all the 15 syzygetic quadruples.
By inspection one finds:

Proposition 3.4. There are 15 syzygetic quadruples. We denote the vanishing order
of the differential form ω (pulled back to D̃) at qν = 0 by kν . Then one has for
(k0, k1, k2) the possibilities

(0, 0, 0) (eight cases),

(1, 1, 1) (one case),

(0, 0, 1) (two cases),

(0, 1, 0) (two cases),

(1, 0, 0) (two cases).

Let us assume that the order along q0 = 0 is one. Then we are in the case a11+· · ·+
a61 = 4. A glance at the power series shows that then only even t0 occur. Hence
the series is invariant under the transformation q0 	→ −q0. This transformation is
induced by the translation z0 	→ z0 +2. Hence this translation belongs to our group
�n. This translation acts on X̃(4) as a reflection, meaning that it is of order 2 and
fixes an irreducible subvariety of codimension 1. So we obtain the following result
which extends Proposition 2.3 to the boundary:

Proposition 3.5. The modular form T induces on X̃(4) a differential form with the
following property: if F ⊂ X̃ is an irreducible component of its zero divisor then
there exists a reflection in �/ ± �2[4], with fixed point set F. The multiplicities of
the zeros are one.

We need the following general result:

Theorem 3.6. Let M be a quasi-projective smooth variety of dimension three and
G a finite group of automorphisms of it. Assume that every point of M/G admits an
open neighborhood such that on its regular locus exists a three-form without zeros.
Then M/G admits a quasi-projective crepant 1 desingularization.

1 “Crepant” means that the inverse images of these three-forms have no poles or zeros at the
exceptional divisors [13].
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Proof. This theorem is a consequence of [2, Theorem 1.2]. Unfortunately the as-
sumptions are slightly different from ours. This theorem only directly applies if an
arbitrary stabilizer Ga acts on the tangent space as a subgroup of SL().

For this reason we want to give some details. A cluster is a zero dimensional
closed subscheme of M . The set of all clusters of a fixed degree is parametrized by
a quasi-projective Hilbert scheme. The set of all G-invariant clusters of degree #G
is a closed subscheme. We denote by G-Hilb(M) the irreducible component which
contains the generic clusters (given by #G distinct points.) Then

G-Hilb(M) −→ M

is a crepant resolution. This can be proved analytically locally. Therefore we can
assume that M = C3 and G ⊂ GL(n, C) is a linear group. Consider the subgroup
G ′ ∈ G generated by all pseudo-reflections. By a result of Chevalley C3/G ′ can be
identified with C3 in such a way that H = G/G ′ acts linearly. Now our assumption
gives that H acts by a subgroup of SL(). Hence we can apply the above mentioned
theorem 1.2 in [2] and obtain that

H -Hilb(C3/G ′) −→ C
3/G

is a crepant resolution. Taking inverse images one obtains a natural closed embed-
ding

H -Hilb(C3/G ′) −→ G-Hilb(C3/G).

Since it is birational and since G-Hilb(C3/G) is irreducible, it must be an isomor-
phism. 
�

In our main example, concerning the subgroup of index two of �2[2], we can
avoid using this rather deep theory, since the occurring singularities are rather mild
and easy to desingularize. We will describe this below.

Our main result is:

Theorem 3.7. Let be �′ be any group between �n and �0[2]n. Then the Satake
compactification of H2/�′ admits a desingularization which is a Calabi-Yau man-
ifold.

It remains to notice that the first Betti number vanishes. It is known that h1,0

is zero for all non-singular models of Siegel modular varieties of genus > 1. From
Serre duality, it follows that also h2,0 = 0. This fits to the computation in [12] . For
�2[4] one has h2,0 = 6. It is easy to derive from the description given in [12] that
any form invariant under �′, is zero. 
�

We will give now an explicit and very simple construction of the desingulariza-
tion in the case of the smallest group � = �2[2]n. We have to study the singularities
of X̃(4)/�. For this we introduce the finite groups

A = �2[2]/ ± �2[4] and B = �/ ± �2[4].
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So B is a subgroup of index two of A. The basic point now is that A is an abelian
group and that each element of A has order ≤ 2. Igusa [10] proved that X̃(4)/A is
smooth. Let a ∈ X̃(4) be some point. Using suitable coordinates the stabilizer Aa
can be be linearized. Hence Aa can be considered as some subgroup of GL(3, C).
Since Aa is abelian we can diagonalize it. Hence Aa can be considered as subgroup
of (Z/2Z)3, where this group acts on C3 in the obvious way by changing signs.
Since the quotient by Aa is smooth, Aa must be generated by reflections (here
simply sign changes of one variable). Since B is a subgroup of index two of A, we
know that Ba is a subgroup of index ≤ 2 of Aa . Hence we obtain:

Lemma 3.8. Let � = �2[2]n. The quotient X̃(4)/� looks locally like C3/H,
where H ⊂ (Z/2Z)3 is a subgroup which is contained in some reflection subgroup
as subgroup of index ≤ 2.

The reflection subgroups of (Z/2Z)3 are trivial to describe. Up to permutation
of the variables one has four cases: the trivial subgroup, sign change of the first
variable, arbitrary sign changes of the first two variables and sign changes of all
variables.

The group H is a subgroup of index ≤ 2 of such a group. We are only interested
in cases where H is not generated by reflections. There are only three types of such
groups:

1. The group of order two which is generated by

(z1, z2, z3) 	−→ (−z1, −z2, z3).

2. The group of order 4 which is generated by

(z1, z2, z3) 	−→ (−z1, −z2, z3) and (z1, z2, z3) 	−→ (z1, z2, −z3).

3. The group of order 4 given by sign changes of an even number of coordinates.

In the second case the group H contains a reflection, changing the sign of the third
variable. We can take the quotient by this reflection and thus reduce the second
case to the first one. So there only two types of singularities occur, case 1. and 3.
In both cases the differential form can be written as h(z)dz1 ∧ dz2 ∧ dz3 with h
some H -invariant holomorphic function in a neighborhood of the origin. Since this
differential form should produce a differential form without zeros on the regular
locus of the quotient, we obtain that h(0) �= 0. This means that we can assume that
ω simply is given by dz1 ∧ dz2 ∧ dz3.

Now we describe the desingularization. In case 1. we blow up C3 along the line
z1 = z2 = 0. A typical affine chart of the blow-up is given by (w1 = z1/z2, z2, z3).
Because of

z2dz1 ∧ dz2 ∧ dz3 = dw1 ∧ dz2 ∧ vz3

the pull-back of the differential form dz1 ∧ dz2 ∧ dz3 has a zero along z2 = 0. The
group H acts now as the group generated by (w1, z2, z3) 	→ (w1, −z2, z3). This is
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a reflection group. Hence the quotient is smooth and the zero of ω along the ramifi-
cation z2 = 0 disappears on the quotient, which gives the desired desingularization
of C3/H .

The remaining case 3. is slightly more involved. The group H now has order 4
and consists of arbitrary sign changes of an even number of variables. The singular
locus is the image of the union of the three coordinate axes in C3. This time there is
no canonical way to desingularize! We have to make a choice. We choose one of the
three coordinate axes, for example z1 = z2 = 0. We start by blowing up this line.
A typical affine chart of the blow up again is (w1 = z1/z2, z2, z3). The differential
form gets a zero along z2 = 0. Now we have to consider the strict transform of the
singular locus. It is given by w1 = z3 = 0 We have to blow up this locus up again.
A typical chart is (u1 = w1/z3, z2, z3). The differential form dz1 ∧ dz2 ∧ dz3 now
gets besides z2 = 0 the additional zero z3 = 0. The group acts on the coordinates
(u1 = z1/(z2z3), z2, z3) by arbitrary sign changes of the variables z2, z3. This is
a reflection group. The quotient is smooth and the zeros of the differential form
disappear on the quotient.

Since in the third case we have no canonical resolution (different choices of the
coordinate axes lead to resolutions which are related by flops), we have to explain
how to glue the resolutions to get a resolution of the global X̃(4)/�. The point is
that the singular locus of X̃(4)/� contains itself only finitely many singular points.
These points lead to the case 3). For each of these finitely many points one has to
make a choice. But the smooth points of the singular locus lead to case 1) where
we have a canonical resolution. Therefore everything fits together to a complex
manifold. (This argument does not give projectivity.)

4. Equations

In this section we treat the case where n is complementary to the standard syzygetic
quadruple and � means �n for this choice.

We give the equations for the variety X in the Igusa coordinates. To simplify
the notation we will write the theta constants in the form

ϑ[m] = ϑ

[
a1 a2

b1 b2

]
for m =




a1
a2
b1
b2


 .

The results which we describe now can by taken from Igusa’s paper (see [9, page
397]).

Theorem 4.1 (Igusa). The five modular forms

y0 = ϑ

[
00

11

]4

, y1 = ϑ

[
00

01

]4

, y2 = ϑ

[
00

00

]4

,
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y3 = −ϑ

[
10

00

]4

− ϑ

[
00

11

]4

, y4 = −ϑ

[
10

01

]4

− ϑ

[
00

11

]4

generate the ring of modular forms of even weight (with trivial multipliers) for
�2[2]. The defining relation is the the quartic equation

(y0 y1 + y0 y2 + y1 y2 − y3 y4)
2 = 4y0 y1 y2(y0 + y1 + y2 + y3 + y4).

Moreover according to Igusa we have the relation

2ϑ

[
00

01

]2

ϑ

[
00

00

]2

ϑ

[
00

10

]2

ϑ

[
00

11

]2

= y0 y1 + y0 y2 + y1 y2 − y3 y4.

We set

y5 := �

(
= ϑ

[
00

01

]
ϑ

[
00

00

]
ϑ

[
00

10

]
ϑ

[
00

11

])
.

We recall that the Calabi-Yau form T is the product of the complementary six thetas.
The product y5T is Igusa’s modular form χ5 which is the unique modular form of
weight 5 for the full modular group. The character of this form is non-trivial but
trivial on �2[2]. Hence y5 is a modular form of weight two with trivial character on
our group �.

Proposition 4.2. The ring of modular forms of even weight for � is generated by
the six forms of weight two, y0, . . . , y5. The defining relations are the quartic

y4
5 = y0 y1 y2(y0 + y1 + y2 + y3 + y4)

and the quadric
2y2

5 = y0 y1 + y0 y2 + y1 y2 − y3 y4.

Proof. The field of modular functions for � is a quadratic extension of the field
of modular functions for �2[2]. Hence the homogenous field of fractions of
C[y0, . . . , y5] is the full field of modular functions of �. Since y0, . . . , y5 have
no common zero on the Satake compactification, the ring of all modular forms of
even weight is the normalization of C[y1, . . . , y6]. Hence it suffices to show that
the ideal given by the above two relations is a prime ideal and that the quotient is a
normal ring. Since we have two relations, the factor ring is a complete intersection
and hence a Cohen-Macaulay ring. Since the singular locus (as has been described
in the introduction) is of codimension ≥ 2, on can apply the well-known Serre cri-
terion for normality. 
�

5. The Calabi-Yau form

Now we use Runge’s approach and consider the theta series of second kind

fa(Z) := ϑ
[a

0

]
(2Z).
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They are linked to the ϑ[m] by the classical relation

ϑ
[a

b

]
(Z)2 =

∑
x∈{0,1}2

(−1)b′x fa+x (Z) fx (Z).

Hence the rings C[ fa fb] and C[ϑ[m]2] agree. We denote the fa by f1, f2, f3, f4
in the ordering (

0
0

) (
1
0

) (
0
1

) (
1
1

)
.

The following modified version of Igusa’s result Theorem 3.2 is due to Runge [15]:

Proposition 5.1. The algebra of modular forms of even weight (with trivial multi-
pliers) with respect to the group �2[2] is generated by the five forms, all of weight
two,

F1 = f 4
1 + f 4

2 + f 4
3 + f 4

4 ,

F2 = f 2
1 f 2

2 + f 2
3 f 2

4 ,

F3 = f 2
1 f 2

3 + f 2
2 f 2

4 ,

F4 = f 2
1 f 2

4 + f 2
2 f 2

3 ,

F5 = f1 f2 f3 f4.

The defining relation is

16F4
5 = −F2

1 F2
5 +F1 F2 F3 F4−F2

2 F2
3 −F2

2 F2
4 +4F2

2 F2
5 −F2

3 F2
4 +4F2

3 F2
5 +4F2

4 F2
5 .

It is very easy to describe the action of �2,0[2] on the generators:

Lemma 5.2. The three translations

Z 	−→ Z + S; S =
(

1 0
0 0

)
,

(
0 1

0

)
,

(
0 0
0 1

)

act by (F1, . . . , F5) 	→
(F1, −F2, F3, −F4, F5), (F1, F2, F3, F4, −F5), (F1, F2, −F3, −F4, F5).

The unimodular substitutions

Z 	−→ Z [U ]; U =
(

0 1
1 0

)
, U =

(
1 1
0 1

)

act by

(F1, . . . , F5) 	−→ (F1, F3, F2, F4, F5), (F1, F2, F4, F3, F5).

The analogue of Proposition 4.2 is:
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Proposition 5.3. The ring of modular forms of even weight (with trivial multipli-
ers) of � is generated by six modular forms all of weight two, namely F1, . . . , F5
(see Proposition 5.1) and the additional form F6 = �. There are two defining rela-
tions, namely the relation described in Proposition 5.1 and the additional quadratic
relation

F2
6 = F2

1 − 4F2
2 − 4F2

3 − 4F2
4 + 32F2

5 .

We know the action of �2,0[2] also on F6 (Lemma 2.2). We give just one example:

Lemma 5.4. The matrix

M =
(

E 0
C E

)
C =

(
2 2
2 2

)

acts by
(F1, . . . , F6) 	−→ (F1, F2, F3, F4, F5, −F6).

In the new coordinates we compute an algebraic expression for the Calabi-Yau dif-
ferential form

ω := T dz0 ∧ dz1 ∧ dz2, Z =
(

z0 z1
z1 z2

)
.

As we mentioned T y5 = χ5 is the well-known cusp form of weight 5 for the full
modular group. We will use the homogenous Jacobian

W ( f1, f2, f3, f4) = det




f1 f2 f3 f4
∂0 f1 ∂0 f2 ∂0 f3 ∂0 f4
∂1 f1 ∂1 f2 ∂1 f3 ∂1 f4
∂2 f1 ∂2 f2 ∂2 f3 ∂2 f4


 .

Here ∂i denotes differentiation by zi . The connection with the usual Jacobian

J ( f1/ f4, f2/ f4, f3/ f4) = det


∂0( f1/ f4) ∂0( f2/ f4) ∂0( f3/ f4)

∂1( f1/ f4) ∂1( f2/ f4) ∂1( f3/ f4)

∂2( f1/ f4) ∂2( f2/ f4) ∂2( f3/ f4)




is
W ( f1, f2, f3, f4) = f 4

4 J ( f1/ f4, f2/ f4, f3/ f4).

The Jacobian of a modular substitution M is det(C Z + D)−3. Hence J is a modular
form of weight 3 and W is a modular form of weight 5. If one applies a modular
transformation to the fi one obtains a linear transformation of them. This shows
that W is invariant under M up to the determinant of this linear transformation.
This shows that W up to a constant factor equals Igusa’s modular form χ5 which is
the only modular form of weight 5 for the full modular group. It can be defined as
the product of the ten theta series. As a consequence we obtain

d( f1/ f4) ∧ d( f2/ f4) ∧ d( f3/ f4) = c
χ5

f 4
4

dz0 ∧ dz1 ∧ dz2
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with a certain constant c. Using T � = χ5 we get

cω = f 4
4

�
d( f1/ f4) ∧ d( f2/ f4) ∧ d( f3/ f4).

We set

g1 = f1

f4
, g2 = f2

f4
, g3 = f3

f4

and, with the notation of Proposition 5.1

G1 = F2

F5
, G2 = F3

F5
, G3 = F4

F5
.

We get

G1 = g1g2

g3
+ g3

g1g2
, G2 = g1g3

g2
+ g2

g1g3
, G3 = g2g3

g1
+ g1

g2g3
.

The Jacobian of this rational transformation is

4
(g2

3 − g2
1g2

2)(g2
2 − g2

1g2
3)(g2

1 − g2
2g2

3)

g4
1g4

2g4
3

or

4
( f 2

1 f 2
2 − f 2

3 f 2
4 )( f 2

1 f 2
3 − f 2

2 f 2
4 )( f 2

1 f 2
4 − f 2

2 f 2
3 )

f 4
1 f 4

2 f 4
3

.

This gives

4cω = f 4
1 f 4

2 f 4
3 f 4

4 d(F2/F5) ∧ d(F3/F5) ∧ d(F4/F5)

�( f 2
1 f 2

2 − f 2
3 f 2

4 )( f 2
1 f 2

3 − f 2
2 f 2

4 )( f 2
1 f 2

4 − f 2
2 f 2

3 )

= F4
5

(F2 F3 F4 − 2F1 F2
5 )F6 d(F2/F5) ∧ d(F3/F5) ∧ d(F4/F5)

.

The group �n is normal in �2,0[2]. The quotient acts on the ring of modular forms
for �n. The subgroup of index two

G = �2,0[2]n/�2[2]n
leaves the differential form invariant. Using Lemma 5.4 and Lemma 5.2 we can
express the action of G on the generators. We obtain:

Theorem 5.5. Let X be the subvariety of P5(C) given a as intersection of the quar-
tic

16x4
4 + x2

0 x2
4 + x2

1 x2
2 + x2

1 x2
3 + x2

2 x2
3 = x0x1x2x3 + 4x2

4(x2
1 + x2

2 + x2
3)
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and the quadric
x2

5 = x2
0 − 4x2

1 − 4x2
2 − 4x2

3 + 32x2
4 .

This is a normal projective variety of dimension three. There exists a desingulariza-
tion X̃ → X which is a Calabi-Yau manifold. The differential form without zeros is
given by

ω := x4
4

(x1x2x3 − 2x0x2
4)x5

d(x1/x4) ∧ d(x2/x4) ∧ d(x3/x4).

The group G ∼= S3 · (Z/2Z)3 (semidirect product) generated by

1. arbitrary permutations of x1, x2, x3 followed by the sign change of x5 if the
permutation is odd,

2. arbitrary sign changes of two of the x1, x2, x3,
3. the sign change of x4,

is a group of automorphisms of X which fixes ω. For each subgroup H ⊂ G the
quotient X/H admits a Calabi-Yau desingularization with Calabi-Yau form ω.

For sake of completeness we give the coordinate transformation between the
coordinates xi and the coordinates yi which we used in the introduction. We have
y5 = x5 and 



y0
y1
y2
y3
y4


 =




1 −2 −2 2 0
−2 2 −2 0

2 2 2 0
−1 2 −2 −2 −8
−1 2 −2 −2 8







x0
x1
x2
x3
x4


 .

The expressions we obtained for ω and for the action of G in the coordinates yi
looked not very nice, hence we skip them.
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