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Abstract. In this paper, we introduce the Carleson measure space CMOp on
product spaces of homogeneous type in the sense of Coifman and Weiss [4], and
prove that it is the dual space of the product Hardy space H p of two homogeneous
spaces defined in [15]. Our results thus extend the duality theory of Chang and
R. Fefferman [2, 3] on H1(R2+ × R2+) with BMO(R2+ × R2+) which was estab-
lished using bi-Hilbert transform. Our method is to use discrete Littlewood-Paley
analysis in product spaces recently developed in [13] and [14].
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(secondary).

1. Introduction

The Hardy and BMO spaces play an important role in modern harmonic analysis
and applications in partial differential equations. In [7], C. Fefferman and Stein
showed that the space of functions of bounded mean oscillation on Rn , BMO(Rn),
is the dual space of the Hardy space H1(Rn). They also obtained a characterization
of the BMO space in terms of the Carleson measure. For the multi-parameter prod-
uct case, S.-Y. Chang and R. Fefferman in [3] proved using bi-Hilbert transform the
following:

Theorem 1.1. The dual space of H1(R2+ × R2+) is BMO(R2+ × R2+).

Recently, using a new version of Journé covering lemma, Ferguson and Lacey
in [10] gave a new characterization of the product BMO(R × R) by bicommutator
of Hilbert transforms (see also Lacey and Terwilleger [21]). Furthermore, Lacey,
Petermichl, Pipher and Wick established in [20] such a characterization of product
BMO(Rn × Rm) using multiparameter commutators of Riesz transforms.
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However, the characterization of the dual space of H p(Rn × Rm) when 0 <

p < 1 appears to be an open question. One of the main purposes of this paper
is to establish such duality theory for p ≤ 1. In fact, we will achieve this by
proving a more general theorem. Namely, we will establish the dual space of Hardy
spaces on the product of two homogeneous spaces which includes the dual space of
H p(Rn × Rm) for all 0 < p < 1 as a special case.

Spaces of homogeneous type were first introduced by R. Coifman and G.
Weiss [4] in the 1970’s in order to extend the theory of Calderón-Zygmund singular
integrals to a more general setting. There are, however, no translations or dilations,
and no analogue of the Fourier transform or convolution operation on such spaces.

In 1985, using Coifman’s idea on decomposition of the identity operator, G.
David, J. L. Journé and S. Semmes [5] developed the Littlewood-Paley analysis on
spaces of homogeneous type and used it to give a proof of the T 1 theorem on this
general setting.

Recently, the first and third authors of this paper, established in [13] theory
of the multi-parameter Hardy space H p

F (Rn × Rm) associated with the flag sin-
gular integrals, where the L p theory has been developed by Muller-Ricci-Stein
[24] and Nage-Ricci-Stein [25], and the Hardy space H p

Z (R3) associated with the
non-classical Zygmund dilation in [14] using the discrete Littlewood-Paley analy-
sis and proved that the singular integral operators introduced by Ricci-Stein [27]
are bounded on such Hardy spaces. In these two papers [13] and [14], the Car-
leson measure spaces CMOp

F (Rn × Rm) and CMOp
Z (R3) are introduced for all

0 < p ≤ 1, and the duality of between H p
F (Rn × Rm) with CMOp

F (Rn × Rm),
H p

Z (R3) and CMOp
Z (R3) are established. Such CMOp spaces when p = 1 play the

same role as BMO space. Moreover, the authors of [13] and [14] established the
multiparameter Hardy space theory using discrete Littlewood-Paley analysis and
proved boundeness of singular integral operators on Hardy spaces H p and from
H p to L p by bypassing the deep Journe’s geometric covering lemma. As a conse-
quence, they provided an alternative approach of proving boundedness of singular
integral operators on product Hardy spaces using rectangle atoms discovered by R.
Fefferman in [6] (see also Pipher [26]).

For the multi-parameter product spaces of homogeneous type, denoted by X ×
X , the Hardy space H p(X × X ) for p0 < p ≤ 1 with some p0 close to 1 was es-
tablished in [15], see more details in the next section. The boundedness of singular
integral operators on H p(X × X ) were proved in [17] without using Journe’s cov-
ering lemma. Subsequently, the boundedness from H p(X ×X ) to L p(X ×X ) was
established in [12] by proving that the density result of Lq(X ×X ) ∩ H p(X ×X )

in H p(X × X ) for 1 < q < ∞ and 0 < p ≤ 1 close to 1 and that || f ||L p(X×X ) ≤
C || f ||H p(X×X ) for f ∈ Lq(X × X ) ∩ H p(X × X ). However, the BMO space
and the duality theory of Hardy space H p(X × X ) remain an open question on
X × X . The main purpose of this paper is to establish such a duality theory. We
will achieve this goal by introducing the Carleson measure space CMOp for p ≤ 1
and sufficiently close to 1, on product spaces X × X of homogeneous type and
prove that it is the dual of the product Hardy space H p(X × X ) mentioned above.
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To be more specific, let p0 < 1 and p0 < p ≤ 1. We will give the precise value of
p0 in Section 5. Then the main result of this paper is as follows.

Theorem 1.2. For p0 < p ≤ 1, (H p(X × X ))′ = CMOp(X × X ). Namely, the
dual space for H p(X × X ) is CMOp(X × X ).

In particular, when p = 1 we obtain the duality of H1 with BMO on product
spaces of homogeneous type.

Since the key tool that Chang and R. Fefferman used in establishing the dual
space BMO(R2+ × R2+) of Hardy space H1(R2+ × R2+) is the bi-Hilbert transform,
it is extremely difficult to apply their method to work on X ×X . Therefore, we will
follow the ideas recently developed by the first and third authors in [13] and [14].
The basic scheme is as follows.

First, the discrete Calderón reproducing formula on the product of two homo-
geneous spaces will play a role in defining the Hardy spaces H p(X × X ). The
continuous version of such a formula for space of homogeneous type was given by
the first author with E. Sawyer in [18], see [16] for the discrete Calderón’s identity.
One of the essential parts of our paper is to verify the dual spaces CMOp(X × X )

is well defined. This is accomplished by using the Min-Max comparison principle
involving the CMOp norms. We will establish the Min-Max comparison principle
by using the discrete Calderón reproducing formula on X × X (See Theorem 3.2
and its proof in Section 3).

Second, we introduce the product sequence spaces s p and cp and prove that
the dual of s p is cp, i.e., (s p)′ = cp. Spaces s p and cp in one parameter case of Rn

were introduced and studied by Frazier and Jawerth in [9]. Since the main tools they
used are the Fourier transform and the estimates on distribution functions, it seems
difficult to carry out their methods to product sequence spaces. We will give a con-
structive proof which applies to the product sequence spaces of two homogeneous
spaces.

Third, we prove that H p(X ×X ) can be lifted to s p and s p can be projected to
H p(X ×X ) and that the combination of the lifting and projection operators equals
the identity operator on H p(X × X ). Similar results hold for CMOp(X × X )

and cp.

Then, as a consequence, Theorem 1.2 follows from the second and third steps.
Since spaces of homogeneous type include compact Lie groups, C∞ man-

ifolds with doubling volume measures for geodesic balls, Carnot-Caratheodory
spaces, nilpotent Lie groups such as the Heisenberg group, the d-sets in Rn , and
many other cases, so our result includes the duality theory of Hardy spaces in these
cases.

A brief description of the contents of this paper is as follows. In Section 2, we
provide some preliminaries on spaces of homogeneous type and recall the prod-
uct Hardy space H p(X × X ). In Section 3, we give the precise definition of
CMOp(X × X ) and establish the Min-Max comparison principle for such spaces.
In section 4, we develop the product sequence spaces s p and cp and obtain the du-
ality of s p with cp by a constructive proof. Finally, Theorem 1.2 will be showed in
Section 5.
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2. Preliminaries

We begin by recalling some necessary definitions and notation on spaces of homo-
geneous type.

A quasi-metric ρ on a set X is a function ρ : X × X −→ [0, ∞) satisfying
that:

1. ρ(x, y) = 0 if and only if x = y;
2. ρ(x, y) = ρ(y, x) for all x, y ∈ X ;
3. there exists a constant A ∈ [1, ∞) such that for all x, y and z ∈ X ,

ρ(x, y) ≤ A[ρ(x, z) + ρ(z, y)].
Any quasi-metric defines a topology, for which the balls B(x, r) = {y ∈ X :
ρ(x, y) < r} form a base. However, the balls themselves need not be open when
A > 1.

The following spaces of homogeneous type are variants of those introduced by
Coifman and Weiss in [4].

Definition 2.1. Let θ ∈ (0, 1]. A space of homogeneous type, (X , ρ, µ)θ , is a set
X together with a quasi-metric ρ and a nonnegative Borel regular measure µ on
X and there exists a constant C0 > 0 such that for all 0 < r < diamX and all
x, x

′
, y ∈ X ,

µ(B(x, r)) ∼ r , (2.1)

| ρ(x, y) − ρ(x
′
, y) |≤ C0ρ(x, x

′
)θ [ρ(x, y) + ρ(x

′
, y)]1−θ . (2.2)

Through out the paper, we assume that µ(X ) = ∞.
We first recall the following construction given independently by Christ in [1]

and by Sawyer-Wheeden in [28], which provides an analogue of the grid of Eu-
clidean dyadic cubes on spaces of homogeneous type. We will follow the statement
given in [1].

Lemma 2.2. Let (X , ρ, µ) be a space of homogeneous type, then, there exists a
collection {Qk

α ⊂ X : k ∈ Z, α ∈ Ik} of open subsets, where Ik is some index set,
and constant δ = 1/2, and C1, C2 > 0, such that

(i) µ(X \ ⋃
α Qk

α) = 0 for each fixed k and Qk
α

⋂
Qk

β = ∅ if α 
= β;

(ii) for any α, β, k, l with l ≥ k, either Ql
β ⊂ Qk

α or Ql
β

⋂
Qk

α = ∅;

(iii) for each (k, α) and each l < k there is a unique β such that Qk
α ⊂ Ql

β ;

(iv) diam(Qk
α) ≤ C1

(
1
2

)k
;

(v) each Qk
α contains some ball B

(
zk
α, C2

(
1
2

)k
)

, where zk
α ∈ X .
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In fact, we can think of Qk
α as being a dyadic cube with diameter roughly ( 1

2 )k

centered at zk
α . As a result, we consider C Qk

α to be the dyadic cube with the same
center as Qk

α and diameter Cdiam(Qk
α). In the following, for k ∈ Z and τ ∈ Ik ,

we will denote by Qk,v
τ , v = 1, 2, · · · , N (k, τ ), the set of all cubes Qk+J

τ ⊂ Qk
τ ,

where J is a fixed large positive integer, and denote by yk,v
τ a point in Qk,v

τ .
Now we introduce the approximation to identity on X .

Definition 2.3 ([15]). Let θ > 0 be given in Definition 2.1. A sequence {Sk}k∈Z

of operators is said to be an approximation to identity of order ε ∈ (0, θ ], if there
exists a constant C > 0 such that for all k ∈ Z and all x, x ′, y, y′ ∈ X , Sk(x, y),
the kernel of Sk, is a function from X × X into C satisfying

|Sk(x, y)| ≤ C
2−kε

(2−k + ρ(x, y))1+ε
; (2.3)

|Sk(x, y) − Sk(x ′, y)| ≤ C

(
ρ(x, x ′)

2−k + ρ(x, y)

)ε 2−kε

(2−k + ρ(x, y))1+ε
(2.4)

for ρ(x, x ′) ≤ 1

2A
(2−k + ρ(x, y));

|Sk(x, y) − Sk(x, y′)| ≤ C

(
ρ(y, y′)

2−k + ρ(x, y)

)ε 2−kε

(2−k + ρ(x, y))1+ε
(2.5)

for ρ(y, y′) ≤ 1

2A
(2−k + ρ(x, y));

|Sk(x, y) − Sk(x, y′) − Sk(x ′, y) + Sk(x ′, y′)| ≤ C

(
ρ(x, x ′)

2−k + ρ(x, y)

)ε

(2.6)

×
(

ρ(y, y′)
2−k + ρ(x, y)

)ε 2−kε

(2−k + ρ(x, y))1+ε

for ρ(x, x ′), ρ(y, y′) ≤ 1

2A
(2−k + ρ(x, y));∫

X
Sk(x, y)dµ(y) =

∫
X

Sk(x, y)dµ(x) = 1. (2.7)

We remark that by a construction of Coifman, in what follows, we will use an
approximation to the identity of order ε with ε = θ.

To recall the definition of H p(X × X ), we need to introduce the space of
test functions on X × X . Before we do this, we shall introduce the space of test
functions on X .

Definition 2.4. Fix β > 0, γ > 0. A function f defined on X is said to be a test
function of type (β, γ ) centered at x0 with width r > 0 if f satisfies the following
conditions:

(i) | f (x)| ≤ C
rγ1

(r + ρ(x, x0))1+γ
;
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(ii) | f (x) − f (x ′)| ≤ C

(
ρ(x, x ′)

r + ρ(x, x0)

)β

· rγ

(r + ρ(x, x0))1+γ
for ρ(x, x ′) ≤

1

2A
(r + ρ(x, x0));

(iii)
∫
X

f (x)dµ(x) = 0.

If f is a test function of type (β, γ ) centered at x0 ∈ X with width r > 0, then we
write f ∈ G(x0, r, β, γ ) and define the norm of f by

|| f ||G(x0,r,β,γ ) = inf{C : (i), (ii) hold}.
We now introduce the space of test functions on X × X .

Definition 2.5 ([17]). For i = 1, 2, fix γi > 0 and βi > 0. A function f defined on
X × X is said to be a test function of type (β1, β2; γ1, γ2) centered at (x0, y0) ∈
X × X with width r1, r2 > 0 if for any fixed y ∈ X , f (x, y), as a function of x , is
a test function of type (β1, γ1) centered at x0 ∈ X with width r1 > 0 and satisfies
the following conditions:

(1) || f (·, y)||G(x0,r1,β1,γ1) ≤ C
rγ2

2

(r2 + ρ(y, y0))
1+γ2

;

(2) || f (·, y)− f (·, y′)||G(x0,r1,β1,γ1) ≤ C

(
ρ(y, y

′
)

r2 + ρ(y, y0)

)β2
rγ2

2

(r2 + ρ(y, y0))
1+γ2

for ρ(y, y
′
) ≤ 1

2A
[r2 + ρ(y, y0)].

Similarly, for any fixed x ∈ X , f (x, y), as a function of y, is a test function of type
(β2, γ2) centered at y0 ∈ X with width r2 > 0 and satisfies the same conditions of
(1) and (2) above by interchanging the role of x and y, namely,

(3) || f (x, ·)||G(y0,r2,β2,γ2) ≤ C
rγ1

1

(r1 + ρ(x, x0))
1+γ1

;

(4) || f (x, ·)− f (x ′, ·)||G(y0,r2,β2,γ2) ≤C

(
ρ(x, x

′
)

r1 + ρ(x, x0)

)β1
rγ1

1

(r1 + ρ(x, x0))
1+γ1

for ρ(x, x
′
) ≤ 1

2A
[r1 + ρ(x, x0)].

If f is a test function of type (β1, β2; γ1, γ2) centered at (x0, y0) ∈ X × X with
width r1, r2 > 0, then we write f ∈ G(x0, y0; r1, r2; β1, β2; γ1, γ2) and define the
norm of f by ‖ f ‖G(x0,y0;r1,r2;β1,β2;γ1,γ2) = inf{C : (1), (2), (3) and (4) hold}.

We denote by G(β1, β2; γ1, γ2) the class of G(x0, y0; r1, r2; β1, β2; γ1, γ2)

with r1 = r2 = 1 for fixed (x0, y0) ∈ X × X . It is easy to see that G(x1, y1; r1, r2;
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β1, β2; γ1, γ2) = G(β1, β2; γ1, γ2) with an equivalent norm for all (x1, y1) ∈ X ×
X . We can easily check that the space G(β1, β2; γ1, γ2) is a Banach space with
respect to the norm in G(β1, β2; γ1, γ2).

For any 0 < β1, β2, γ1, γ2 < θ, the space
◦
G(β1, β2; γ1, γ2) is defined to be the

completion of the space G(θ, θ; θ, θ) in G(β1, β2; γ1, γ2) when 0 < β1, γ1 ≤ ε1
and 0 < β2, γ2 ≤ ε2. We define ‖ f ‖ ◦

G(β1,β2;γ1,γ2)
= ‖ f ‖G(β1,β2;γ1,γ2). Then,

obviously,
◦
G(β1, β2; γ1, γ2) is a Banach space. Hence we can define the dual space

(
◦
G(β1, β2; γ1, γ2))

′
to be the set of all linear functionals L from

◦
G(β1, β2; γ1, γ2) to

C with the property that there exists C ≥ 0 such that for all f ∈ ◦
G(β1, β2; γ1, γ2),

|L( f )| ≤ C‖ f ‖ ◦
G(β1,β2;γ1,γ2)

.

In [15], to define the product Hardy space H p(X × X ), they first introduced the
Littlewood-Paley-Stein square function on X × X by

g( f )(x1, x2) =
{ ∞∑

k1=−∞

∞∑
k2=−∞

|Dk1 Dk2( f )(x1, x2)|2
}1/2

,

where Dki = Ski − Ski −1 with Ski being an approximation to the identity for i =
1, 2, and proved that ‖g( f )‖p ≈ ‖ f ‖p for 1 < p < ∞. Then H p(X × X ) is
defined as follows.

Definition 2.6. Let {Ski }ki ∈Z be an approximation to the identity of order θ, i =
1, 2. Set Dki = Ski −Ski−1 for all ki ∈ Z. For 1

1+θ
< p ≤ 1 and 1

p −1 < βi , γi < θ,

the Hardy space H p(X ×X ) is defined to be the set of all f ∈
( ◦
G(β1, β2, γ1, γ2)

)′

such that ‖g( f )‖L p(X×X ) < ∞, and we define

‖ f ‖H p(X×X ) = ‖g( f )‖L p(X×X ).

In order to verify that the definition of H p(X × X ) is independent of the choice
of approximations to the identity, the following Min-Max comparison principle for
H p(X × X ) was proved in [15].

Lemma 2.7. Let all the notation be the same as in Definition 2.6. Moreover, for
i = 1, 2, let {Pki }ki ∈Z be another approximation to the identity of order θ and Eki =
Pki −Pki −1 for all ki ∈ Z. And let {Qki ,vi

τi : ki ∈ Z, τi ∈ Iki , vi = 1, · · · , N (ki , τi )}
and {Q

k
′
i ,v

′
i

τ
′
i

: k
′
i ∈ Z, τ

′
i ∈ Ik

′
i
, v

′
i = 1, · · · , N (k

′
i , τ

′
i )} be sets of dyadic cubes of

X as mentioned in Lemma 2.2. Then for 1
1+θ

< p < ∞ there is a constant C > 0
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such that for all f ∈
( ◦
G(β1, β2, γ1, γ2)

)′

with 1
r p − 1 < βi , γi < θ,

∥∥∥∥∥∥
 ∞∑

k1=−∞

∞∑
k2=−∞

∑
τ1∈Ik1

∑
τ2∈Ik2

N (k1,τ1)∑
v1=1

N (k2,τ2)∑
v2=1

sup
z1∈Q

k1,v1
τ1 ,z2∈Q

k2,v2
τ2

|Dk1 Dk2( f )(z1, z2)|2

×χ
Q

k1,v1
τ1

(·)χ
Q

k2,v2
τ2

(·)
}1/2

∥∥∥∥∥
L p(X×X )

≤ C

∥∥∥∥∥∥∥∥∥


∞∑

k
′
1=−∞

∞∑
k
′
2=−∞

∑
τ

′
1∈I

k
′
1

∑
τ

′
2∈I

k
′
2

N (k
′
1,τ

′
1)∑

v
′
1=1

N (k
′
2,τ

′
2)∑

v
′
2=1

inf

z1∈Q
k
′
1,v

′
1

τ
′
1

,z2∈Q
k
′
2,v

′
2

τ
′
2

|Ek
′
1
Ek

′
2
( f )(z1, z2)|2

×χ
Q

k
′
1,v

′
1

τ
′
1

(·)χ
Q

k
′
2,v

′
2

τ
′
2

(·)


1/2∥∥∥∥∥∥∥

L p(X×X )

.

To prove Lemma 2.7, in [15] they established the following discrete Calderón re-
producing formula on X × X .

Lemma 2.8. Let all the notation be the same as in Definition 2.6. Then there
are families of linear operators {D̃ki }ki ∈Z and {D̄ki }ki ∈Z such that for all f ∈
◦
G(β1, β2; γ1, γ2) with βi , γi ∈ (0, θ),

f (x1, x2) =
∞∑

k1=−∞

∞∑
k2=−∞

∑
τ1∈Ik1

∑
τ2∈Ik2

N (k1,τ1)∑
v1=1

N (k2,τ2)∑
v2=1

µ(Qk1,v1
τ1

)µ(Qk2,v2
τ2

)

× D̃k1 D̃k2(x1, x2, y1, y2)Dk1 Dk2( f )(y1, y2)

=
∞∑

k1=−∞

∞∑
k2=−∞

∑
τ1∈Ik1

∑
τ2∈Ik2

N (k1,τ1)∑
v1=1

N (k2,τ2)∑
v2=1

µ(Qk1,v1
τ1

)µ(Qk2,v2
τ2

)

× Dk1 Dk2(x1, x2, y1, y2)D̄k1 D̄k2( f )(y1, y2),

(2.8)

where yi is any point in Qki ,vi
τi for i = 1, 2 and the series converges in both the

norm of
◦
G(β1, β2; γ1, γ2) and the norm of L p(X ×X ) with 1 < p < ∞. Moreover,

D̃ki (x, y), the kernel of D̃ki satisfies the conditions (2.3) and (2.4) of Definition 2.3
with θ replaced by any θ ′ < θ and∫

X
D̃ki (x, y)dµ(y) =

∫
X

D̃ki (x, y)dµ(x) = 0; (2.9)
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similarly, D̄ki (x, y), the kernel of D̄ki satisfies the conditions (2.3) and (2.5) of
Definition 2.3 with θ replaced by any θ ′ < θ and (2.9), for all ki ∈ Z with i = 1, 2.

For any f ∈ (
◦
G(β1, β2; γ1, γ2))

′, (2.8) also holds in (
◦
G(β1, β2; γ1, γ2))

′.

In this paper, we use notation a ∼ b and b � c for a, b, c ≥ 0 to mean that
there exists C > 0, so that a/C ≤ b ≤ C · a and b ≤ C · c, respectively. The value
of C varies from one usage to the next, but it depends only on constants quantified
in the relevant preceding hypotheses. We use a ∨ b and a ∧ b to mean max(a, b)

and min(a, b) for any a, b ∈ R, respectively.

3. CMOp(X × X ) and the Min-Max comparison principle

To characterize the dual space of H p(X × X ), we introduce the Carleson measure
space CMOp on X×X , which is motivated by ideas of Chang and R. Fefferman [2].

Definition 3.1. Let i = 1, 2, 0 < βi , γi < θ , {Ski }ki ∈Z be an approximation to the
identity of order θ . Set Dki = Ski − Ski −1 for all ki ∈ Z. The Carleson measure

space CMOp(X × X ) is defined to be the set of all f ∈ (
◦
G(β1, β2, γ1, γ2))

′
such

that

‖ f ‖CMOp
(X×X )

= sup



 1

µ(
)
2
p −1

∫



∞∑
k1=−∞

∞∑
k2=−∞

∑
τ1∈Ik1

∑
τ2∈Ik2

N (k1,τ1)∑
v1=1

N (k2,τ2)∑
v2=1

×χ{Q
k1,v1
τ1 ×Q

k2,v2
τ2 ⊂
}(k1, k2, τ1, τ2, v1, v2)

∣∣Dk1Dk2( f )(x1, x2)
∣∣2

×χ
Q

k1,v1
τ1

(x1)χQ
k2,v2
τ2

(x2)dµ(x1)dµ(x2)

)1/2

< ∞ ,

(3.1)
where the sup is taken over all open sets 
 in X × X with finite measures.

In order to verify that the definition of CMOp(X × X ) is independent of the
choice of the approximations to identity, we establish the Min-Max comparison
principle involving the CMOp norm. To this end and for the sake of simplicity, we
first give some notation as follows.

We write R = Qk1,v1
τ1 × Qk2,v2

τ2 , R
′ = Q

k
′
1,v

′
1

τ
′
1

× Q
k
′
2,v

′
2

τ
′
2

;

∑
R⊆


=
∞∑

k1=−∞

∞∑
k2=−∞

∑
τ1∈Ik1

∑
τ2∈Ik2

N (k1,τ1)∑
v1=1

N (k2,τ2)∑
v2=1

χ{Q
k1,v1
τ1 ×Q

k2,v2
τ2 ⊂
}(k1, k2, τ1, τ2, v1, v2);

∑
R′⊆


=
∞∑

k
′
1=−∞

∞∑
k
′
2=−∞

∑
τ

′
1∈I

k
′
1

∑
τ

′
2∈I

k
′
2

N (k
′
1,τ

′
1)∑

v
′
1=1

N (k
′
2,τ

′
2)∑

v
′
2=1

χ
{Q

k
′
1,v

′
1

τ
′
1

×Q
k
′
2,v

′
2

τ
′
2

⊂
}
(k

′
1, k

′
2, τ

′
1, τ

′
2, v

′
1, v

′
2);
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∑
R′

=
∞∑

k
′
1=−∞

∞∑
k
′
2=−∞

∑
τ

′
1∈I

k
′
1

∑
τ

′
2∈I

k
′
2

N (k
′
1,τ

′
1)∑

v
′
1=1

N (k
′
2,τ

′
2)∑

v
′
2=1

;

µ(R) = µ(Qk1,v1
τ1

)µ(Qk2,v2
τ2

); µ(R
′
) = µ(Q

k
′
1,v

′
1

τ
′
1

)µ(Q
k
′
2,v

′
2

τ
′
2

);

r(R, R
′
) =

µ(Qk1,v1
τ1

)

µ(Q
k
′
1,v

′
1

τ
′
1

)

∧
µ(Q

k
′
1,v

′
1

τ
′
1

)

µ(Qk1,v1
τ1

)


1+ε

′ µ(Qk2,v2
τ2

)

µ(Q
k
′
2,v

′
2

τ
′
2

)

∧
µ(Q

k
′
2,v

′
2

τ
′
2

)

µ(Qk2,v2
τ2

)


1+ε

′

;

v(R, R
′
) =

(
µ(Qk1,v1

τ1
) ∨ µ(Q

k
′
1,v

′
1

τ
′
1

)

) (
µ(Qk2,v2

τ2
) ∨ µ(Q

k
′
2,v

′
2

τ
′
2

)

)
;

P(R, R
′
) =

1 +
dist(Qk1,v1

τ1
, Q

k
′
1,v

′
1

τ
′
1

)

µ(Qk1,v1
τ1

) ∨ µ(Q
k
′
1,v

′
1

τ
′
1

)


−(1+θ ′)

·

1 +
dist(Qk2,v2

τ2
, Q

k
′
2,v

′
2

τ
′
2

)

µ(Qk2,v2
τ2

) ∨ µ(Q
k
′
2,v

′
2

τ
′
2

)


−(1+θ ′)

;

SR = sup
x1∈Q

k1,v1
τ1 ,x2∈Q

k2,v2
τ2

|Dk1 Dk2( f )(x1, x2)|2;

TR′ = inf

y
′
1∈Q

k
′
1,v

′
1

τ
′
1

,y
′
2∈Q

k
′
2,v

′
2

τ
′
2

∣∣Dk
′
1
Dk

′
2
( f )(y

′
1, y

′
2)

∣∣2
.

Now we state the main theorem of this section as follows.

Theorem 3.2. Let all the notations be the same as above. For 2
2+θ

< p ≤ 1 all
f ∈ CMOp(X × X ),

sup



(
1

µ(
)
2
p −1

∑
R⊆


µ(R)SR

)1/2

� sup



(
1

µ(
)
2
p −1

∑
R′⊆


µ(R′)TR′

)1/2

, (3.2)

where 
 ranges over the open sets in X × X with finite measures.

Proof. First, for each p satisfying 2
2+θ

< p ≤ 1, we choose ε ∈ (0, θ) such that
2

2+θ
< 2

2+ε
< p ≤ 1.

Then, for any f ∈ CMOp(X × X ), it is easy to see that the right-hand side of
(3.2) is finite and can be controlled by C‖ f ‖CMOp

(X×X )
.
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To prove (3.2), we need to show that for any open set 
 ∈ X × X with finite
measure, the following inequality holds.

1

µ(
)
2
p −1

∑
R⊆


µ(R)SR � sup



1

µ(
)
2
p −1

∑
R′⊂


µ(R
′
)TR′ , (3.3)

where 
 ranges over all open sets in X × X with finite measures.
To begin with, for each fix 
, we first consider the estimate of the term SR in

the left-hand side of (3.3) for every R = Qk1,v1
τ1 × Qk2,v2

τ2 ⊂ 
. To estimate this,
we recall the almost orthogonal property of Dki D̃k

′
i

for i = 1, 2, namely, for any

0 < ε′ < θ ′

|Dki D̃k
′
i
(x, y)| ≤ C2−|ki −k

′
i |ε′ 2−(ki ∧k

′
i )θ

′

(2−(ki ∧k
′
i ) + ρ(x, y))1+θ ′

(see [18] for more details).
Now for any (x1, x2) ∈ R, using the discrete Calderón reproducing formula

(2.8), the above almost orthogonal property and the Hölder inequality, we can obtain
that

|Dk1 Dk2( f )(x1,x2)|2 �
∣∣∣∣ ∞∑
k
′
1=−∞

∞∑
k
′
2=−∞

∑
τ

′
1∈I

k
′
1

∑
τ

′
2∈I

k
′
2

N (k
′
1,τ

′
1)∑

v
′
1=1

N (k
′
2,τ

′
2)∑

v
′
2=1

µ(Q
k
′
1,v

′
1

τ
′
1

)µ(Q
k
′
2,v

′
2

τ
′
2

)

× Dk1 Dk2 D̃k1 D̃k2(x1, x2, y
′
1, y

′
2)Dk

′
1
Dk

′
2
( f )(y

′
1, y

′
2)

∣∣∣∣2

�
∞∑

k
′
1=−∞

∞∑
k
′
2=−∞

∑
τ

′
1∈I

k
′
1

∑
τ

′
2∈I

k
′
2

N (k
′
1,τ

′
1)∑

v
′
1=1

·
N (k

′
2,τ

′
2)∑

v
′
2=1

2−|k1−k
′
1|ε

′
2−|k2−k

′
2|ε

′
µ(Q

k
′
1,v

′
1

τ
′
1

)µ(Q
k
′
2,v

′
2

τ
′
2

)

× 2−(k1∧k
′
1)θ

′

(2−(k1∧k
′
1) + ρ(y1, y

′
1))

1+θ ′

· 2−(k2∧k
′
2)θ

′

(2−(k2∧k
′
2) + ρ(y2, y

′
2))

1+θ ′ |Dk
′
1
Dk

′
2
( f )(y

′
1, y

′
2)|2,

(3.4)
where ε′ is chosen to satisfy ε < ε′ < θ ′ < θ , and for i = 1, 2, yi is the center of

Qki ,vi
τi and y

′
i is any point in Q

k
′
i ,v

′
i

τ
′
i

, respectively.
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From (2.1) and Lemma 2.2, we know that each dyadic cube Qk
α satisfies that

µ(Qk
α) ∼ 2−k, which yields 2−|ki −k

′
i | ∼ µ(Qki ,vi

τi )

µ(Q
k
′
i ,v

′
i

τ
′
i

)

∧
µ(Q

k
′
i ,v

′
i

τ
′
i

)

µ(Qki ,vi
τi )

and 2−(ki ∧k
′
i ) ∼ (µ(Qki ,vi

τi
) ∨ µ(Q

k
′
i ,v

′
i

τ
′
i

)) for i = 1, 2.

Also note that ρ(yi , y
′
i ) ≥ dist(Qki ,vi

τi , Q
k
′
i ,v

′
i

τ
′
i

). Since the last inequality of (3.4) is

independent of (x1, x2), then combining the above estimates, it follows that

SR �
∞∑

k
′
1=−∞

∞∑
k
′
2=−∞

∑
τ

′
1∈I

k
′
1

∑
τ

′
2∈I

k
′
2

N (k
′
1,τ

′
1)∑

v
′
1=1

N (k
′
2,τ

′
2)∑

v
′
2=1

µ(Q
k
′
1,v

′
1

τ
′
1

)µ(Q
k
′
2,v

′
2

τ
′
2

)

×

µ(Qk1,v1
τ1

)

µ(Q
k
′
1,v

′
1

τ
′
1

)

∧
µ(Q

k
′
1,v

′
1

τ
′
1

)

µ(Qk1,v1
τ1

)


ε
′

·
(µ(Qk1,v1

τ1
) ∨ µ(Q

k
′
1,v

′
1

τ
′
1

))θ
′

(µ(Qk1,v1
τ1

) ∨ µ(Q
k
′
1,v

′
1

τ
′
1

) + dist(Qk1,v1
τ1

, Q
k
′
1,v

′
1

τ
′
1

))1+θ ′

×

µ(Qk2,v2
τ2

)

µ(Q
k
′
2,v

′
2

τ
′
2

)

∧
µ(Q

k
′
2,v

′
2

τ
′
2

)

µ(Qk2,v2
τ2

)


ε
′

·
(µ(Qk2,v2

τ2
) ∨ µ(Q

k
′
2,v

′
2

τ
′
2

))θ
′

(µ(Qk2,v2
τ2

) ∨ µ(Q
k
′
2,v

′
2

τ
′
2

) + dist(Qk2,v2
τ2

, Q
k
′
2,v

′
2

τ
′
2

))1+θ ′
· TR′ .

(3.5)

Now combining (3.5) and the following equality

2∏
i=1

µ(Qki ,vi
τi

)µ(Q
k
′
i ,v

′
i

τ
′
i

)=
2∏

i=1

(
µ(Qki ,vi

τi
) ∨ µ(Q

k
′
i ,v

′
i

τ
′
i

)

)2

µ(Qki ,vi
τi

)

µ(Q
k
′
i ,v

′
i

τ
′
i

)

∧
µ(Q

k
′
i ,v

′
i

τ
′
i

)

µ(Qki ,vi
τi

)

,
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we obtain that the left-hand side of (3.3), namely, 1

µ(
)
2
p −1

∑
R⊂


µ(R)SR , is

bounded by

1

µ(
)
2
p −1

∑
R⊂


∑
R′

v(R, R
′
)r(R, R

′
)P(R, R

′
)TR′ . (3.6)

Thus, to finish the proof of the theorem, we need to prove that (3.6) can be con-
trolled by

sup

̄

1

µ(
̄)
2
p −1

∑
R′⊂
̄

µ(R
′
)TR′ , (3.7)

where 
̄ ranges over the open sets in X × X with finite measures.
We first point out that the terms v(R, R

′
) and P(R, R

′
) characterize the geo-

metrical properties between R and R
′
. Namely, when the difference of the sizes of

R and R
′

grows bigger, v(R, R
′
) becomes smaller; when the distance between R

and R
′
grows bigger, P(R, R

′
) becomes smaller. Hence, what we should do next is

to that, for each R, decompose the set of all dyadic rectangles {R′} into annuli ac-
cording to the distance between R and R

′
. Next, for each annuli, we give a precise

estimate by considering the difference of the sizes of R and R
′
. Finally, we add up

all the estimates on each annuli and then finish our proof.

Now let’s go into the details. For the sake of simplicity, we denote Qki ,vi
τi ,Q

k
′
i ,v

′
i

τ
′
i

by Qi , Q
′
i , respectively, for i = 1, 2. Define


0 =:
⋃

R=Q1×Q2⊂


3A2(Q1 × Q2).

And for each R, let

A0,0(R) = {R′ : 3A2 R
′ ∩ 3A2 R 
= ∅};

A j,0(R) = {R′ : 3A2 R ∩ 3A2(2 j Q
′
1 × Q

′
2) 
= ∅ ;

3A2 R ∩ 3A2(2 j−1 Q
′
1 × Q

′
2) = ∅};

A0,k(R) = {R′ : 3A2 R ∩ 3A2(Q
′
1 × 2k Q

′
2) 
= ∅ ;

3A2 R ∩ 3A2(Q
′
1 × 2k−1 Q

′
2) = ∅};

A j,k(R) = {R′ : 3A2 R ∩ 3A2(2 j Q
′
1 × 2k Q

′
2) 
= ∅ ;

3A2 R ∩ 3A2(2 j−1 Q
′
1 × 2k Q

′
2) = ∅;

3A2 R ∩ 3A2(2 j Q
′
1 × 2k−1 Q

′
2) = ∅;

3A2 R ∩ 3A2(2 j−1 Q
′
1 × 2k−1 Q

′
2) = ∅},

where j, k ≥ 1.
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Since for each R
′ = Q

′
1 × Q

′
2, lim j,k→∞ 3A2(2 j Q

′
1 × 2k Q

′
2) = X × X , we

can see that for any R ⊂ 
, there must be some j and k such that R′ ∈ A j,k(R).
This implies that for each R ⊂ 
, {R′} ⊆ ∪ j,k≥0 A j,k(R).

Then, we have

(3.6) ≤ 1

µ(
)
2
p −1

∑
R⊂


∑
R′∈A0,0(R)

v(R, R
′
)r(R, R

′
)P(R, R

′
)TR′

+
∑
j≥1

1

µ(
)
2
p −1

∑
R⊂


∑
R′∈A j,0(R)

v(R, R
′
)r(R, R

′
)P(R, R

′
)TR′

+
∑
k≥1

1

µ(
)
2
p −1

∑
R⊂


∑
R′∈A0,k(R)

v(R, R
′
)r(R, R

′
)P(R, R

′
)TR′

+
∑
j,k≥1

1

µ(
)
2
p −1

∑
R⊂


∑
R′∈A j,k(R)

v(R, R
′
)r(R, R

′
)P(R, R

′
)TR′

=: I + II + III + IV .

We first estimate term I . Define

B0,0 = {R′ : 3A2 R′ ∩ 
0 
= ∅}.
Then we claim that

I ≤ 1

µ(
)
2
p −1

∑
R′∈B0,0

∑
{R: R⊂
,R′∈A0,0(R)}

v(R, R
′
)r(R, R

′
)P(R, R

′
)TR′ . (3.8)

To show this claim, we only need to point out that for any R′ 
∈ B0,0, we have
3A2 R′ ∩
0 = ∅. Thus, for any R ⊂ 
, we can see that 3A2 R′ ∩3A2 R = ∅, which
implies that R′ 
∈ A0,0(R). Hence, we can obtain that ∪R⊂
 A0,0(R) ⊂ B0,0. This
yields that the claim (3.8) holds.

Now we continue to decompose B0,0. Let F0,0
h = {R

′ : µ(3A2 R
′ ∩ 
0) >

1
2h µ(3A2 R

′
)}, D0,0

h = F0,0
h \ F0,0

h−1, h ≥ 1, F0,0
0 = ∅, and 


0,0
h = ∪R′∈D0,0

h
R

′
,

h ≥ 1. From these definitions, we can see that

B0,0 =
⋃
h≥1

D0,0
h .

Then (3.8) can be rewritten as

I ≤ 1

µ(
)
2
p −1

∑
h≥1

∑
R′∈D0,0

h

∑
{R: R⊂
,R′∈A0,0(R)}

v(R, R
′
)r(R, R

′
)P(R, R

′
)TR′ . (3.9)

To estimate the right-hand side of (3.9), we only need to consider∑
{R: R⊂
,R′∈A0,0(R)}

v(R, R
′
)r(R, R

′
) (3.10)
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since P(R, R
′
) ≤ 1 for any R

′ ∈ D0,0
h and R satisfying R′ ∈ A0,0(R). In what

follows, we use a simple geometrical argument, which is a generalization of Chang
and R. Fefferman’s idea, see more details in [2].

Since 3A2 R ∩ 3A2 R
′ 
= ∅, we can split (3.10) into four cases:

Case 1: µ(Q
′
1) ≥ µ(Q1), µ(Q

′
2) ≤ µ(Q2).

First, it is easy to see that µ(Q1 × 3AQ
′
2) � µ(3A2 R ∩ 3A2 R

′
). So we have

µ(Q1)

µ(3AQ
′
1)

µ(3A2 R
′
)�µ(3A2 R∩ 3A2 R

′
)≤µ(3A2 R

′ ∩
0)≤ 1

2h−1
µ(3A2 R

′
),

which yields that 2h−1µ(Q1) � µ(3AQ
′
1) � µ(Q

′
1). Since all the Qi and Q

′
i

(i = 1, 2) are dyadic cubes with measures equivalent to 2−a for some a ∈ Z, then
we have µ(Q

′
1) ∼ 2h−1+nµ(Q1), for some n ≥ 0. For each fixed n, the numbers

of such Q1’s must be � C1
C2

· 5A · 2n .

As for Q2, µ(Q2) ∼ 2mµ(Q
′
2) for some m ≥ 0. For each fixed m, the number

of such Q2’s is � C1
C2

· 5A since 3AQ2 ∩ 3AQ
′
2 
= ∅. Thus

∑
Case1

r(R, R
′
)v(R, R

′
) =

∑
case1

(
µ(Q1)

µ(Q
′
1)

)1+ε
′ (

µ(Q
′
2)

µ(Q2)

)1+ε
′

µ(Q
′
1)µ(Q2)

�
∑

n,m≥0

2−(h−1+n)(1+ε
′
)2nµ(Q

′
1)2

−m(1+ε
′
)2mµ(Q

′
2)

� 2−h(1+ε
′
)µ(R

′
).

Case 2: µ(Q
′
1) ≤ µ(Q1), µ(Q

′
2) ≥ µ(Q2).

This can be handled in a similar way to that of case 1.

Case 3: µ(Q
′
1) ≥ µ(Q1), µ(Q

′
2) ≥ µ(Q2).

Since

µ(R) � µ(3A2 R
′ ∩ 3A2 R) ≤ µ(3A2 R

′ ∩ 
0) ≤ 1

2h−1
µ(3A2 R

′
),

we have 2h−1µ(R) � µ(R
′
). Using the same idea as in Case 1, we can obtain that

µ(R
′
) ∼ 2h−1+nµ(R) for some n ≥ 0, and that for each fixed n, the number of

such R’s is � C2
1

C2
2

52 A2 · 2n . Combining these results, we can get

∑
Case3

r(R, R
′
)v(R, R

′
) =

∑
case3

(
µ(R)

µ(R
′
)

)1+ε
′

µ(Q
′
1)µ(Q

′
2)

�
∑
n≥0

2−(h−1+n)(1+ε
′
)2nµ(R

′
)

� 2−h(1+ε
′
)µ(R

′
).
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Case 4: µ(Q
′
1) ≤ µ(Q1), µ(Q

′
2) ≤ µ(Q2).

From

µ(R
′
) � µ(3A2 R

′ ∩ 3A2 R) ≤ µ(3A2 R
′ ∩ 
0) ≤ 1

2h−1
µ(3A2 R

′
),

we have that µ(R
′
) ≤ C 1

2h−1 µ(R
′
), where C is a constant depending only on A, C1

and C2. This yields that h ≤ h0 = [
log2(2C)

] + 1. Thus we can see that in this
case, there are at most h0 terms in (3.9) is nonzero.

Since µ(R) ≥ µ(R′), we obtain that µ(R) ∼ 2nµ(R
′
) for some n ≥ 0. For

each fixed n, the number of such R’s is � 52 A2 C2
1

C2
2

. Therefore

∑
Case4

r(R, R
′
)v(R, R

′
) =

∑
case4

(
µ(R

′
)

µ(R)

)1+ε
′

µ(R)

�
∑
n≥0

2−n(1+ε
′
)2nµ(R

′
)

� µ(R
′
).

Now we have finished the estimate of (3.10). Then from (3.9), we have

I ≤ 1

µ(
)
2
p −1

∑
h≥1

∑
R′∈D0,0

h

( ∑
R∈ Case1

+
∑

R∈ Case2

+

+
∑

R∈ Case3

+
∑

R∈ Case4

)
v(R, R

′
)r(R, R

′
)TR′

=: I1 + I2 + I3 + I4.

We first consider the terms I1, I2 and I3. Noting that we have chosen ε and ε′
satisfying that 2

2+θ
< 2

2+θ ′ < 2
2+ε′ < 2

2+ε
< p ≤ 1 and combining with the fact

that µ(

0,0
h ) � h2hµ(
) for h ≥ 1, we have

I1, I2, I3 � 1

µ(
)
2
p −1

∑
h≥1

2−h(1+ε
′
)µ(


0,0
h )

2
p −1 1

µ(

0,0
h )

2
p −1

∑
R′⊂


0,0
h

µ(R
′
)TR′

� 1

µ(
)
2
p −1

∑
h≥1

2−h(1+ε
′
)(h2h)

( 2
p −1)

µ(
)
2
p −1

× sup

̄

1

µ(
̄)
2
p −1

∑
R′⊂
̄

µ(R
′
)TR′

� sup

̄

1

µ(
̄)
2
p −1

∑
R′⊂
̄

µ(R
′
)TR′ .
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As to I4, from the estimate in Case 4 we can see that

I4 ≤ 1

µ(
)
2
p −1

h0∑
h=1

∑
R′∈D0,0

h

∑
R∈ case4

r(R, R
′
)v(R, R

′
)TR′ .

Thus, we have

I4 � 1

µ(
)
2
p −1

h0∑
h=1

µ(

0,0
h )

2
p −1 1

µ(

0,0
h )

2
p −1

∑
R′⊂


0,0
h

µ(R
′
)TR′

� 1

µ(
)
2
p −1

h0∑
h=1

(h2h)
( 2

p −1)
µ(
)

2
p −1 × sup


̄

1

µ(
̄)
2
p −1

∑
R′⊂
̄

µ(R
′
)TR′

� sup

̄

1

µ(
̄)
2
p −1

∑
R′⊂
̄

µ(R
′
)TR′ .

Combining the estimates from I1 to I4, we can get

I � sup

̄

1

µ(
̄)
2
p −1

∑
R′⊂
̄

µ(R
′
)TR′ .

We now only need to estimate IV because the estimates of II and III can be derived
from the same skills as in I and IV . First consider each term in IV as follows:

a j,k =: 1

µ(
)
2
p −1

∑
R⊂


∑
R′∈A j,k(R)

v(R, R
′
)r(R, R

′
)P(R, R

′
)TR′ (3.11)

for some j, k ≥ 1.
Define

B j,k = {R′ : 3A2(2 j Q
′
1 × 2k Q

′
2) ∩ 
0 
= ∅}

for the above j, k.
Then we claim that

a j,k ≤ 1

µ(
)
2
p −1

∑
R′∈B j,k

∑
{R: R⊂
,R′∈A j,k(R)}

v(R, R
′
)r(R, R

′
)P(R, R

′
)TR′ . (3.12)

In fact, this claim is similar to the former one (3.8). To see this, we point out that
for any R′ 
∈ B j,k , 3A2(2 j Q

′
1 × 2k Q

′
2) ∩ 
0 = ∅. Thus, for any R ⊂ 
, we have

that 3A2(2 j Q
′
1 × 2k Q

′
2) ∩ 3A2 R = ∅, which implies that R′ 
∈ A j,k(R). Hence,

we can obtain that ∪R⊂
 A j,k(R) ⊂ B j,k . This yields that the claim (3.12) holds.
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Now we continue to decompose B j,k . Let F j,k
h = {R′ : µ(3A2(2 j Q

′
1 ×

2k Q
′
2) ∩ 
0) ≥ 1

2h µ(3A2(2 j Q
′
1 × 2k Q

′
2))}, D j,k

h = F j,k
h \F j,k

h−1, h ≥ 1, F j,k
0 = ∅

and 

j,k
h = ∪

R′∈D j,k
h

R′, h ≥ 1. From these definitions, we can see that

B j,k =
⋃
h≥1

D j,k
h .

Then (3.12) can be rewritten as

a j,k ≤ 1

µ(
)
2
p −1

∑
h≥1

∑
R′∈D j,k

h

∑
{R: R⊂
,R′∈A j,k(R)}

v(R, R
′
)r(R, R

′
)P(R, R

′
)TR′ . (3.13)

Now we consider ∑
{R: R⊂
,R′∈A j,k(R)}

v(R, R
′
)r(R, R

′
)P(R, R

′
). (3.14)

Note that when R′ ∈ A j,k(R), we have 3A2 R ∩ 3A2(2 j Q
′
1 × 2k Q

′
2) 
= ∅. Namely,

3AQ1 ∩ 3A2 j Q
′
1 
= ∅ and 3AQ2 ∩ 3A2k Q

′
2 
= ∅.

Also we remind that when R′ ∈ A j,k(R), we have 3A2 R ∩ 3A2(2 j−1 Q
′
1 ×

2k Q
′
2) = ∅, 3A2 R ∩ 3A2(2 j Q

′
1 × 2k−1 Q

′
2) = ∅ and 3A2 R ∩ 3A2(2 j−1 Q

′
1 ×

2k−1 Q
′
2) = ∅. These imply that dist(Q

′
1, Q1) > µ(2 j−1 Q

′
1) ∨ µ(Q1) and that

dist(Q
′
2, Q2) > µ(2k−1 Q

′
2) ∨ µ(Q2).

Thus we can split (3.14) into four cases:

Case 1: µ(2 j Q
′
1) ≥ µ(Q1), µ(2k Q

′
2)≤ µ(Q2).

First, it is easy to see that µ(Q1 ×3A2k Q
′
2)� µ(3A2(2 j Q

′
1 ×2k Q

′
2)∩3A2 R).

So we have

µ(Q1)

µ(3A2 j Q
′
1)

µ(3A2(2 j Q
′
1 × 2k Q

′
2)) � µ(3A2(2 j Q

′
1 × 2k Q

′
2) ∩ 3A2 R)

≤ µ(3A2(2 j Q
′
1 × 2k Q

′
2) ∩ 
0)

≤ 1

2h−1
µ(3A2(2 j Q

′
1 × 2k Q

′
2)),

which yields that 2h−1µ(Q1) � µ(3A2 j Q
′
1) � 2 jµ(Q

′
1).

Now let us consider the measures of Q1 and Q
′
1. We can see that there are two

subcases.

Subcase 1.1: µ(Q
′
1) ≥ µ(Q1).

In this subcase, since 2h−1− jµ(Q1) � µ(Q
′
1), we have that µ(Q

′
1) ∼

2h−1− j+nµ(Q1) for some n ≥ 0. And for each fixed n, the number of such Q1’s
must be � C1

C2
· 5A · 2n .
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Subcase 1.2: µ(Q
′
1) < µ(Q1).

In this subcase, we have µ(Q
′
1) < µ(Q1) ≤ µ(2 j Q

′
1). So µ(2�Q

′
1) ∼ µ(Q1)

for some positive integer � satisfies 1 ≤ � ≤ j . And for each �, the number of
such Q1’s must be � C1

C2
· 5A. Then, from the inequality 2h−1µ(Q1) � 2 jµ(Q

′
1),

we can see that 2h−12�µ(Q
′
1) � 2 jµ(Q

′
1), which yields that 2h−1 � 2 j−�. Thus,

h � j − �. This implies that for each � ≤ j , there are at most C( j − �) terms in the
right-hand side of (3.13).

Now let us consider Q2 and Q
′
2. Since µ(2k Q

′
2) ≤ µ(Q2), we can get that

2k2mµ(Q
′
2) ∼ µ(Q2) for some m ≥ 0. And for each fixed m, the number of such

Q2’s must be � C1
C2

· 5A since 3A(2k Q
′
2) ∩ 3AQ2 
= ∅.

Combining the above estimates, we have that∑
Subcase 1.1

v(R, R
′
)r(R, R

′
)P(R, R

′
)

=
∑

Subcase 1.1

(
µ(Q1)

µ(Q
′
1)

)1+ε
′(

µ(Q
′
2)

µ(Q2)

)1+ε
′

µ(Q
′
1)µ(Q2)

(
1+ dist(Q1, Q

′
1)

µ(Q
′
1)

)−(1+θ ′)

×
(

1 + dist(Q2, Q
′
2)

µ(Q2)

)−(1+θ ′)

�
∑

n,m≥0

2−(h−1− j+n)(1+ε
′
)2−(m+k)(1+ε

′
)2nµ(Q

′
1)2

m+kµ(Q
′
2)2

− j (1+θ ′)

� 2−h(1+ε
′
)2− j (θ ′−ε′)2−kε′

µ(R
′
)

and that∑
Subcase 1.2

v(R, R
′
)r(R, R

′
)P(R, R

′
)

=
∑

Subcase 1.2

(
µ(Q

′
1)

µ(Q1)

)1+ε
′(

µ(Q
′
2)

µ(Q2)

)1+ε
′

µ(Q1)µ(Q2)

(
1 + dist(Q1, Q

′
1)

µ(Q1)

)−(1+θ ′)

×
(

1 + dist(Q2, Q
′
2)

µ(Q2)

)−(1+θ ′)

�
j∑

�=1

∑
m≥0

2−�(1+ε
′
)2−(m+k)(1+ε

′
)2�µ(Q

′
1)2

m+kµ(Q
′
2)2

−( j−�)(1+θ ′)

�
j∑

�=1

2−�ε
′
2−( j−�)(1+θ ′)2−kε′

µ(R′).



664 YONGSHENG HAN, JI LI AND GUOZHEN LU

Case 2: µ(2 j Q
′
1) ≤ µ(Q1), µ(2k Q

′
2) ≥ µ(Q2).

This can be handled similarly as Case 1. And we have that∑
Subcase 2.1

v(R, R
′
)r(R, R

′
)P(R, R

′
) � 2−h(1+ε

′
)2−k(θ ′−ε′)2− jε′

µ(R
′
)

and that

∑
Subcase 2.2

v(R, R
′
)r(R, R

′
)P(R, R

′
) �

k∑
�=1

2−�ε
′
2−(k−�)(1+θ ′)2− jε′

µ(R′).

Also notice that in the subcase 2.2, for each � ≤ k, there are at most C(k − �) terms
in the right-hand side of (3.13).

Case 3: µ(2 j Q
′
1) ≥ µ(Q1), µ(2k Q

′
2) ≥ µ(Q2).

First, it is easy to see that µ(R) � µ(3A2 R ∩ 3A2(2 j Q
′
1 × 2k Q

′
2)). So,

µ(R) � µ(3A2(2 j Q
′
1 × 2k Q

′
2) ∩ 
0) ≤ 1

2h−1
µ(3A2(2 j Q

′
1 × 2k Q

′
2)),

which yields that 2h−1µ(R) � 2 j 2kµ(R
′
).

Next we consider the measures of Q1, Q
′
1 and Q2, Q

′
2. We can see that there

are four subcases.
Subcase 3.1: µ(Q

′
1) ≥ µ(Q1), µ(Q

′
2) ≥ µ(Q2).

In this subcase, we can see that 2h−1− j−k+nµ(R) ∼ µ(R
′
) for some n ≥ 0.

And for each n, the number of such R’s must be � C2
1

C2
2

52 A2 · 2n . Hence

∑
Subcase 3.1

v(R, R
′
)r(R, R

′
)P(R, R

′
)

=
∑

Subcase 3.1

(
µ(R)

µ(R
′
)

)1+ε
′

µ(R
′
)

(
1+ dist(Q1, Q

′
1)

µ(Q
′
1)

)−(1+θ ′)(
1+ dist(Q2, Q

′
2)

µ(Q
′
2)

)−(1+θ ′)

�
∑
n≥0

2−(h−1− j−k+n)(1+ε
′
)2nµ(R

′
)2− j (1+θ ′)2−k(1+θ ′)

� 2−h(1+ε′)2− j (θ ′−ε′)2−k(θ ′−ε′)µ(R
′
).

Subcase 3.2: µ(Q
′
1) < µ(Q1), µ(Q

′
2) ≥ µ(Q2).

In this subcase, we first have that µ(Q
′
1) < µ(Q1) ≤ µ(2 j Q

′
1). Similar to

the estimate in Subcase 1.2, we have that µ(2�1 Q
′
1) ∼ µ(Q1) for some positive

integer �1 satisfies 1 ≤ �1 ≤ j . And for each �1, the number of such Q1’s must be
� C1

C2
· 5A.
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As to Q2 and Q
′
2, we can obtain that µ(Q

′
2) ∼ 2mµ(Q2) for some m ≥ 0.

And for each fixed m, the number of such Q2’s must be � C1
C2

· 5A.

Then, from the inequality 2h−1µ(R) � 2 j 2kµ(R
′
), we can see that 2h �

2( j−�1)+k+m , which yields that h � ( j − �1) + k + m. This implies that in this
subcase, for each �1, there are at most ( j − �1)+ k + m terms in the right-hand side
of (3.13).

So, we have∑
Subcase 3.2

v(R, R
′
)r(R, R

′
)P(R, R

′
)

=
∑

Subcase 3.2

(
µ(Q

′
1)

µ(Q1)

)1+ε
′(

µ(Q2)

µ(Q
′
2)

)1+ε
′

µ(Q1)µ(Q
′
2)

(
1 + dist(Q1, Q

′
1)

µ(Q
′
1)

)−(1+θ ′)

×
(

1 + dist(Q2, Q
′
2)

µ(Q
′
2)

)−(1+θ ′)

�
j∑

�1=1

∑
m≥0

2−�1(1+ε
′
)2−m(1+ε

′
)2�1µ(Q

′
1)µ(Q

′
2)2

−( j−�1)(1+θ ′)2−k(1+θ ′).

Subcase 3.3: µ(Q
′
1) ≥ µ(Q1), µ(Q

′
2) < µ(Q2).

This subcase can be handled similarly as Subcase 3.2. And we have that∑
Subcase 3.3

v(R, R
′
)r(R, R

′
)P(R, R

′
)

�
k∑

�2=1

∑
n≥0

2−�2(1+ε
′
)2−n(1+ε

′
)2�2µ(Q

′
1)µ(Q

′
2)2

−(k−�2)(1+θ ′)2− j (1+θ ′).

Also, we shall point out that in this subcase, for each �2, there are at most (k −�2)+
j + n terms in the right-hand side of (3.13).

Subcase 3.4: µ(Q
′
1) < µ(Q1), µ(Q

′
2) < µ(Q2).

This subcase can be handled similarly by using the skills as in Subcase 3.1 and
Subcase 3.2. And we have that∑
Subcase 3.4

v(R, R
′
)r(R, R

′
)P(R, R

′
)

�
j∑

�1=1

k∑
�2=1

2−�1(1+ε
′
)2−�2(1+ε

′
)2�12�2µ(Q

′
1)µ(Q

′
2)2

−( j−�1)(1+θ ′)2−(k−�2)(1+θ ′).

Also, we shall point out that in this subcase, for each �1 and �2, there are at most
( j − �1) + (k − �2) terms in the right-hand side of (3.13).
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Case 4: µ(2 j Q
′
1) ≤ µ(Q1), µ(2k Q

′
2) ≤ µ(Q2).

Similar to Case 3, it is easy to see that µ((2 j Q
′
1 × 2k Q

′
2)) � µ(3A2 R∩

3A2(2 j Q
′
1 × 2k Q

′
2)). So, we have

µ((2 j Q
′
1 × 2k Q

′
2)) � µ(3A2(2 j Q

′
1 × 2k Q

′
2) ∩ 
0)

≤ 1

2h−1
µ(3A2(2 j Q

′
1 × 2k Q

′
2)),

which implies that µ(R
′
) ≤ C 1

2h−1 µ(R
′
), where C is a constant depending only

on A, C1 and C2. This yields that h ≤ h0 = [
log2(2C)

] + 1. Thus we can see that
in this case, there are at most h0 terms in the right-hand side of (3.13).

In this case, we can obtain that µ(R) ∼ 2n2 j 2kµ(R′) for some n ≥ 0. And

for each fixed n, the number of such R’s is � 52 A2 C2
1

C2
2

, since 3A2 R ∩ 3A2(2 j Q
′
1 ×

2k Q
′
2) 
= ∅.
Hence∑

Case 4

v(R, R
′
)r(R, R

′
)P(R, R

′
)

=
∑

Case4.1

(
µ(R

′
)

µ(R)

)1+ε
′

µ(R)

(
1+ dist(Q1, Q

′
1)

µ(Q1)

)−(1+θ ′)(
1+ dist(Q2, Q

′
2)

µ(Q2)

)−(1+θ ′)

�
∑
n≥0

2−(n+ j+k)(1+ε
′
)2n2 j 2kµ(R

′
)

� 2− jε′
2−kε′

µ(R
′
).

Now let us come back to (3.13). From the estimates of (3.14) we have

a j,k ≤ 1

µ(
)
2
p −1

∑
h≥1

∑
R′∈D j,k

h

( ∑
R∈Case 1

+
∑

R∈Case 2

+
∑

R∈Case 3

+
∑

R∈Case 4

)
v(R, R

′
)

× r(R, R
′
)P(R, R

′
)TR′

=: a j,k,1 + a j,k,2 + a j,k,3 + a j,k,4.

We first consider the term a j,k,1. From the subcases in Case 1, we know that a j,k,1
can be further divided in to two terms, namely,

a j,k,1 = 1

µ(
)
2
p −1

∑
h≥1

∑
R′∈D j,k

h

( ∑
R∈Subcase 1.1

+
∑

R∈Subcase 1.2

)

· v(R, R
′
)r(R, R

′
)P(R, R

′
)TR′

=: a j,k,1.1 + a j,k,1.2.
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Let us estimate a j,k,1.1. Noting that µ(

j,k
h ) � h2hµ(
) for h ≥ 1 and that

1 + ε′ > 2
p − 1, we have

a j,k,1.1 � 1

µ(
)
2
p −1

∑
h≥1

2−h(1+ε
′
)2− j (θ ′−ε′)2−kε′

µ(

j,k
h )

2
p −1

· 1

µ(

j,k
h )

2
p −1

∑
R′⊂


j,k
h

µ(R
′
)TR′

� 1

µ(
)
2
p −1

∑
h≥1

2−h(1+ε
′
)2− j (θ ′−ε′)2−kε′

(h2h)
( 2

p −1)
µ(
)

2
p −1

× sup

̄

1

µ(
̄)
2
p −1

∑
R′⊂
̄

µ(R
′
)TR′

� 2− j (θ ′−ε′)2−kε′
sup

̄

1

µ(
̄)
2
p −1

∑
R′⊂
̄

µ(R
′
)TR′ .

As a consequence,

∑
j,k≥1

a j,k,1.1 � sup

̄

1

µ(
̄)
2
p −1

∑
R′⊂
̄

µ(R
′
)TR′ .

As to a j,k,1.2, we have that

a j,k,1.2 � 1

µ(
)
2
p −1

j∑
�=1

C( j−�)∑
h≥1

2−�ε
′
2−( j−�)(1+θ ′)2−kε′

µ(

j,k
h )

2
p −1

· 1

µ(

j,k
h )

2
p −1

∑
R′⊂


j,k
h

µ(R
′
)TR′

� 1

µ(
)
2
p −1

j∑
�=1

C( j−�)∑
h≥1

2−�ε
′
2−( j−�)(1+θ ′)2−kε′

(h2h)
( 2

p −1)
µ(
)

2
p −1

× sup

̄

1

µ(
̄)
2
p −1

∑
R′⊂
̄

µ(R
′
)TR′

� 2−kε′ j∑
�=1

2−�ε
′
( j −�)22−( j−�)(1+θ ′−( 2

p−1)) sup

̄

1

µ(
̄)
2
p −1

∑
R′⊂
̄

µ(R
′
)TR′ .
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Hence, noting that 1 + θ ′ > 2
p − 1, we have

∑
j,k≥1

a j,k,1.2 �
∑
j,k≥1

2−kε′ j∑
�=1

2−�ε
′
( j − �)22−( j−�)(1+θ ′−( 2

p −1))

· sup

̄

1

µ(
̄)
2
p −1

∑
R′⊂
̄

µ(R
′
)TR′

� sup

̄

1

µ(
̄)
2
p −1

∑
R′⊂
̄

µ(R
′
)TR′ .

Similarly, we can obtain the same result for a j,k,2, namely,

∑
j,k≥1

a j,k,2 � sup

̄

1

µ(
̄)
2
p −1

∑
R′⊂
̄

µ(R
′
)TR′ .

As to a j,k,3, following the step of a j,k,1, we can divide it into 4 terms, a j,k,3.1,
a j,k,3.2, a j,k,3.3 and a j,k,3.4. For the first term, using the same skills as in the esti-

mate of a j,k,1.1, we can get that
∑

j,k≥1 a j,k,3.1 can be controlled by sup
̄
1

µ(
̄)
2
p −1

·∑
R′⊂
̄

µ(R
′
)TR′ . Now for the second term a j,k,3.2, we have:

a j,k,3.2 � 1

µ(
)
2
p −1

j∑
�1=1

∑
m≥0

·
C( j−�1+k+m)∑

h≥1

2−�1(1+ε
′
)2−m(1+ε

′
)2�12−( j−�1)(1+θ ′)2−k(1+θ ′)µ(


j,k
h )

2
p −1

× 1

µ(

j,k
h )

2
p −1

∑
R′⊂


j,k
h

µ(R
′
)TR′

�
j∑

�=1

C( j−�)∑
h≥1

2−�ε
′
2−( j−�)(1+θ ′)2−kε′

(h2h)
( 2

p −1)
µ(
)

2
p −1

× sup

̄

1

µ(
̄)
2
p −1

∑
R′⊂
̄

µ(R
′
)TR′

� 2−kε′ j∑
�=1

2−�ε
′
( j −�)22−( j−�)(1+θ ′−( 2

p −1)) sup

̄

1

µ(
̄)
2
p −1

∑
R′⊂
̄

µ(R
′
)TR′ .
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Since 1 + θ ′ > 2
p − 1, it follows that

∑
j,k≥1

a j,k,3.2 �
∑
j,k≥1

2−kε′ j∑
�=1

2−�ε
′
( j − �)22−( j−�)(1+θ ′−( 2

p −1))

· sup

̄

1

µ(
̄)
2
p −1

∑
R′⊂
̄

µ(R
′
)TR′

� sup

̄

1

µ(
̄)
2
p −1

∑
R′⊂
̄

µ(R
′
)TR′ .

Then, a j,k,3.3 and a j,k,3.4 can be estimated in the same way and the two terms are
both bounded by sup
̄

1

µ(
̄)
2
p −1

∑
R′⊂
̄

µ(R
′
)TR′ .

Finally, as to a j,k,4, since 0 ≤ h ≤ h0 in this case, we have

a j,k,4 � 1

µ(
)
2
p −1

h0∑
h=1

2− jε′
2−kε′

µ(

j,k
h )

2
p −1 1

µ(

j,k
h )

2
p −1

∑
R′⊂


j,k
h

µ(R
′
)TR′

� 1

µ(
)
2
p −1

h0∑
h=0

2− jε′
2−kε′

(h2h)
( 2

p −1)
µ(
)

2
p −1

× sup

̄

1

µ(
̄)
2
p −1

∑
R′⊂
̄

µ(R
′
)TR′

� 2− jε′
2−kε′

sup

̄

1

µ(
̄)
2
p −1

∑
R′⊂
̄

µ(R
′
)TR′ .

Then, ∑
j,k≥1

a j,k,4 � sup

̄

1

µ(
̄)
2
p −1

∑
R′⊂
̄

µ(R
′
)TR′ .

Combining all the estimates above, we can obtain that

IV � sup

̄

1

µ(
̄)
2
p −1

∑
R′⊂
̄

µ(R
′
)TR′ .

Using the same ideas in the estimates of I and IV , we can obtain that

II, III � sup

̄

1

µ(
̄)
2
p −1

∑
R′⊂
̄

µ(R
′
)TR′ .
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The proof of the Min-Max comparison principle for CMOp (X × X ) is
complete.

Remark 3.3. The operators Dk
′
1
Dk

′
2

in the right hand-side of (3.2) can be replaced

by any other operators Ek
′
1
Ek

′
2

which satisfy Eki = Pki − Pki −1 for i = 1, 2, where

{Pki } are approximation to identity of order ε ∈ (0, θ ].
Then we can see that the Min-Max comparison principle established above

yields that the definition of CMOp(X × X ) is independent of the choice of ap-
proximations to identity. More precisely, let {Ski } and {Pki } be approximations to
identity of order ε ∈ (0, θ ] and Dki = Ski − Ski −1, Eki = Pki − Pki −1 for i = 1, 2.
Suppose ‖ f ‖CMOp

(X×X )
is defined as (3.1) and ‖ f ‖CMOp

(X×X ),∗ is defined as
(3.1) with Dki replaced by Eki for i = 1, 2. Then by using the Min-Max comparison
principle, we can see that

‖ f ‖CMOp
(X×X )

≤ sup



 1

µ(
)
2
p −1

∫



∞∑
k1,k2=−∞

∑
τ1∈Ik1

∑
τ2∈Ik2

·
N (k1,τ1)∑

v1=1

N (k2,τ2)∑
v2=1

χ{Q
k1,v1
τ1 ×Q

k2,v2
τ2 ⊂
}(k1, k2, τ1, τ2, v1, v2)

× sup
u∈Q

k1,v1
τ1 ,v∈Q

k2,v2
τ2

∣∣DK1 DK2( f )(u, v)
∣∣2
χ

Q
k1,v1
τ1

(x1)χQ
k2,v2
τ2

(x2)dµ(x1)dµ(x2)

1/2

� sup



 1

µ(
)
2
p −1

∫



∞∑
k1,k2=−∞

∑
τ1∈Ik1

∑
τ2∈Ik2

N (k1,τ1)∑
v1=1

·
N (k2,τ2)∑

v2=1

χ{Q
k1,v1
τ1 ×Q

k2,v2
τ2 ⊂
}(k1, k2, τ1, τ2, v1, v2)

× inf
u∈Q

k1,v1
τ1 ,v∈Q

k2,v2
τ2

∣∣EK1 EK2( f )(u, v)
∣∣2
χ

Q
k1,v1
τ1

(x1)χQ
k2,v2
τ2

(x2)dµ(x1)dµ(x2)

1/2

≤ ‖ f ‖CMOp
(X×X ),∗.

And similarly, we have ‖ f ‖CMOp
(X×X ),∗ � ‖ f ‖CMOp

(X×X )
.

This implies that the Carleson measure space CMOp(X ×X ) is well-defined.
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4. Product sequence spaces and duality

We introduce the product sequence spaces s p and cp as follows.

Definition 4.1. Let χ̃Q(x) = µ(Q)−1/2χQ(x). The product sequence space s p,
0 < p ≤ 1, is defined as the collection of all complex-value sequences

λ = {
λ

Q
k1,v1
τ1 ×Q

k2,v2
τ2

}
k1,k2∈Z; τ1∈Ik1 ,τ2∈Ik2 ; v1=1,..N (k1,τ1),v2=1,..N (k2,τ2)

such that ‖λ‖s p

=
∥∥∥∥∥∥
 ∞∑

k1=−∞

∞∑
k2=−∞

∑
τ1∈Ik1

∑
τ2∈Ik2

N (k1,τ1)∑
v1=1

·
N (k2,τ2)∑

v2=1

(
|λ

Q
k1,v1
τ1 ×Q

k2,v2
τ2

| · χ̃
Q

k1,v1
τ1

(·)χ̃
Q

k2,v2
τ2

(·)
)2

}1/2
∥∥∥∥∥∥

L p

< ∞.

Similarly, cp, 0 < p ≤ 1, is defined as the collection of all complex-value se-
quences

t = {
t
Q

k1,v1
τ1 ×Q

k2,v2
τ2

}
k1,k2∈Z; τ1∈Ik1 ,τ2∈Ik2 ; v1=1,..N (k1,τ1), v2=1,..N (k2,τ2)

such that ‖t‖cp

= sup



 1

µ(
)
2
p −1

∫



∞∑
k1=−∞

∞∑
k2=−∞

∑
τ1∈Ik1

∑
τ2∈Ik2

·
N (k1,τ1)∑

v1=1

N (k2,τ2)∑
v2=1

χ{Q
k1,v1
τ1 ×Q

k2,v2
τ2 ⊂
}(k1, k2, τ1, τ2, v1, v2)

×
(

|t
Q

k1,v1
τ1 ×Q

k2,v2
τ2

| · χ̃
Q

k1,v1
τ1

(x1)χ̃Q
k2,v2
τ2

(x2)

)2

dµ(x1)dµ(x2)

)1/2

< ∞.

For simplicity, ∀s ∈ s p, we rewrite s = {sR}R , and

‖s‖s p = ∥∥{ ∑
R

|sRχ̃R(x1, x2)|2
}1/2∥∥

L p , (4.1)

similarly, ∀t ∈ cp, rewrite t = {tR}R , and

‖t‖cp = sup



(
1

µ(
)
2
p −1

∑
R⊆


|tR|2
)1/2

, (4.2)

where R runs over all the dyadic rectangles in X × X . The main result in this
section is the following duality theorem.
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Theorem 4.2. (s p)
′ = cp for 0 < p ≤ 1.

Proof. First, we prove that for all t ∈ cp, let

L(s) =
∑

R

sR · t R, ∀s ∈ s p, (4.3)

then |L(s)| � ‖s‖s p‖t‖cp .
To see this, let


k = {
(x1, x2) ∈ X × X :

{∑
R

(|sR|χ̃R(x1, x2))
2 }1/2

> 2k

}
.

And define

Bk =
{

R : µ(
k ∩ R) >
1

2
µ(R), µ(
k+1 ∩ R) ≤ 1

2
µ(R)

}
,


̃k =
{
(x1, x2) ∈ X × X : Ms(χ
k ) >

1

2

}
,

where Ms is the strong maximal function on X × X . By (4.3) and the Hölder
inequality,

|L(s)| ≤
∑

k

( ∑
R∈Bk

|sR|2
) p

2
( ∑

R∈Bk

|tR|2
) p

2


1
p

≤
∑

k

µ(
̃k)
1− p

2

( ∑
R∈Bk

|sR|2
) p

2
 1

µ(
̃k)
2
p −1

∑
R⊂
̃k

|tR|2


p
2


1
p

≤
∑

k

µ(
̃k)
1− p

2

( ∑
R∈Bk

|sR|2
) p

2


1
p

‖t‖cp .

(4.4)

Combining the fact that
∫


̃k\
k+1

∑
R∈Bk

(|sR|χ̃R(x))2 dµ(x) ≤ 22(k+1)µ(
̃k\
k+1) ≤

C22kµ(
k) and that∫

̃k\
k+1

∑
R∈Bk

(|sR|χ̃R(x))2 dµ(x) ≥
∑
R∈Bk

|sR|2µ(R)−1µ
(

̃k\
k+1 ∩ R

)
since R ∈ Bk then Ris contained in 
̃k

≥
∑
R∈Bk

|sR|2µ(R)−1 1

2
µ(R)

≥ 1

2

∑
R∈Bk

|sR|2,
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we obtain (
∑

R∈Bk
|sR|2) p

2 � 2kpµ(
k)
p
2 . Substituting this back into the last term

of (4.4) yields that |L(s)| � ‖s‖s p‖t‖cp .
We point out that an idea similar to the one used in the above proof was used

earlier to get an atomic decomposition from a wavelet expansion by Meyer in [22].
Conversely, we need to verify that for any L ∈ (s p)

′
, there exists t ∈ cp with

‖t‖cp ≤ ‖L‖ such that for all s ∈ s p, L(s) = ∑
R sRt R . Here we adapt a similar

idea in one-parameter case of Frazier and Jawerth in [9] to our multi-parameter
situation.

Now define si
R = 1 when R = Ri and si

R = 0 for all other R. Then it is easy to
see that ‖Si

R‖s p = 1. Now for all s ∈ s p, s = {sR} = ∑
i sRi s

i
Ri

, the limit holds in
the norm of s p, here we index all dyadic rectangles in X × X by {Ri }i∈Z. For any
L ∈ (s p)

′
, let t Ri = L(si ), then L(s) = L(

∑
i sRi s

i ) = ∑
i sRi t Ri = ∑

R sRt R .
Let t = {tR}. Then we only need to check that ‖t‖cp ≤ ‖L‖.

For any open set 
 ⊂ X × X with finite measure, let µ̄ be a new measure
such that µ̄(R) = µ(R)

µ(
)
when R ⊂ 
, µ̄(R) = 0 when R � 
. And let l2(µ̄) be

a sequence space such that when s ∈ �l2(µ̄), (
∑

R⊂
 |sR|2 µ(R)

µ(
)
p
2 −1

)1/2 < ∞. It is

easy to see that (l2(µ̄))′ = l2(µ̄). Then,{
1

µ(
)
p
2 −1

∑
R⊂


|tR|2
}1/2

=
∥∥∥µ(R)−1/2|tR|

∥∥∥
l2(µ̄)

= sup
s: ‖s‖l2(µ̄)

≤1

∣∣∣∣∣∑
R⊆


(|tR|µ(R)−1/2) · sR · µ(R)

µ(
)
1
p −1

∣∣∣∣∣
≤ sup

s: ‖s‖l2(µ̄)
≤1

∣∣∣∣∣L
(

χR⊆
(R)
µ(R)1/2|sR|
µ(
)

p
2 −1

)∣∣∣∣∣
≤ sup

s: ‖s‖l2(µ̄)
≤1

∥∥L
∥∥ ·

∥∥∥∥∥χR⊆
(R)
µ(R)1/2|sR|
µ(
)

p
2 −1

∥∥∥∥∥
s p

.

By (4.1) and the Hölder inequality, we have∥∥∥∥χR⊆
(R)
µ(R)1/2|sR|
µ(
)

p
2 −1

∥∥∥∥
s p

≤
(∑

R⊆


|sR|2 µ(R)

µ(
)
p
2 −1

)1/2

.

Hence,

‖t‖cp ≤ sup
s: ‖s‖l2(µ̄)

≤1
‖L‖ · ‖s‖l2(µ̄) ≤ ‖L‖.
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5. Duality of H p(X × X ) with CMOp(X × X )

In this section, we prove Theorem 1.2. First, we define the lifting and projection
operators as follows.

Definition 5.1. Let {Ski }ki ∈Z be an approximation to the identity of order θ , Dki =
Ski − Ski −1 for i = 1, 2. For any f ∈ (

◦
G(β1, β2; γ1, γ2))

′
with 0 < βi , γi < θ ,

define the lifting operator SD by

SD( f ) =
{
µ(Qk1,v1

τ1
)1/2µ(Qk2,v2

τ2
)1/2 Dk1 Dk2( f )(y1, y2)

}
Q

k1,v1
τ1 Q

k2,v2
τ2

, (5.1)

where yi is the center of Qki ,vi
τi , ki ∈ Z, τi ∈ Iki , v = 1, · · · , N (τi , ki ) for i = 1, 2.

Definition 5.2. Let all the notation be the same as above. For any sequence s,
define the projection operator TD̃ by

TD̃(s)(x1, x2) =
∞∑

k1=−∞

∞∑
k2=−∞

∑
τ1∈Ik1

∑
τ2∈Ik2

N (k1,τ1)∑
v1=1

N (k2,τ2)∑
v2=1

s
Q

k1,v1
τ1 ×Q

k2,v2
τ2

(5.2)

×µ(Qk1,v1
τ1

)1/2µ(Qk2,v2
τ2

)1/2 D̃k1 D̃k2(x1, x2, y1, y2),

where yi is the center of Qki ,vi
τi and D̃ki is the same operator as in the Calderón

reproducing formula (2.8) associated with Dki for i = 1, 2.

To work at the level of product sequences spaces, we still need the following
two propositions.

Proposition 5.3. Let all the notation be the same as above. Then for any f ∈
H p(X × X ), 1

1+θ
< p ≤ 1,

‖SD( f )‖s p � ‖ f ‖H p(X×X ). (5.3)

Conversely, for any s ∈ s p,

‖TD̃(s)‖H p(X×X ) � ‖s‖s p . (5.4)

Moreover, TD̃ ◦ SD equals the identity on H p(X × X ).

Proposition 5.4. Let all the notation be the same as above. Then for any f ∈
CMOp(X × X ), 2

2+θ
< p ≤ 1,

‖SD( f )‖cp � ‖ f ‖CMOp
(X×X )

. (5.5)

Conversely, for any t ∈ cp,

‖TD̃(t)‖CMOp
(X×X )

� ‖t‖cp . (5.6)

Moreover, TD̃ ◦ SD is the identity on CMOp(X × X ).
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Assume the above two propositions first, then we give the proof of Theorem
1.2 with p0 = 2

2+θ
.

Proof of Theorem 1.2. First, let {Ski }ki ∈Z be an approximation to the identity of

order θ , Dki = Ski − Ski −1 for i = 1, 2. For any g ∈ ◦
G(β1, β2; γ1, γ2) with

1
p −1 < βi , γi < θ for i = 1, 2 and f ∈ CMOp(X ×X ), from the two propositions
above, we have

< f, g >=< TD̃ ◦ SD( f ), g >=< SD( f ), SD̃(g) >,

where SD̃(g) = {
µ(Qk1,v1

τ1 )1/2µ(Qk2,v2
τ2 )1/2 D̃k1,k2(g)(y1, y2)

}
Q

k1,v1
τ1 Q

k2,v2
τ2

.

By the Definition 4.1 and the Min-Max comparison principle in Lemma 2.7,
we obtain ‖SD̃(g)‖s p � ‖g‖H p(X×X ). Hence | < f, g > | ≤ | < SD( f ), SD̃(g) >

| � ‖ f ‖CMOp
(X×X )

‖g‖H p(X×X ), where the last inequality follows from Propo-
sition 5.3 and 5.4. Since G(β1, β2; γ1, γ2) is dense in H p(X × X ), it follows from
a standard density argument that CMOp(X × X ) ⊆ (H p(X × X ))

′
.

Conversely, suppose l ∈ (H p(X × X ))
′
. Then l1 ≡ l ◦ TD̃ ∈ (s p)′ by Propo-

sition 5.3. So by Theorem 4.2, there exists t ∈ cp such that l1(s) =< t, s > for
all s ∈ s p, and ‖t‖cp ≈ ‖l1‖ � ‖l‖, since TD is bounded. We have l1 ◦ SD =
l ◦ TD ◦ SD = l, hence

l(g) = l ◦ TD(SD(g)) =< t, SD(g) >=< TD(t), g >,

where

TD(t)=
∞∑

k1=−∞

∞∑
k2=−∞

∑
τ1∈Ik1

∑
τ2∈Ik2

N (τ1,k1)∑
v1=1

N (τ2,k2)∑
v2=1

t
Q

k1,v1
τ1 ×Q

k2,v2
τ2

µ(Qk1,v1
τ1

)
1
2 µ(Qk2,v2

τ2
)

1
2

× Dk1,k1(x1, x2, y1, y2).

By Definition 4.1 and the Min-Max comparison principle in Theorem 3.2, we obtain
that ‖TD(t)‖CMOp

(X×X )
≤ ‖t‖cp ≤ ‖l‖. Hence (H p(X × X ))

′ ⊆ CMOp(X ×
X ).

Now we give brief proofs to the above two propositions.

Proof of Proposition 5.3. To show this Proposition, we first point out that the proof
is closely related to the Min-Max comparison principle for H p(X × X ), namely,
Lemma 2.7. (5.3) is a direct consequence of Lemma 2.7 and the proof of (5.4)
follows the same routine as the proof of Lemma 2.7.
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Now let us go into the details. We first prove (5.3). By Definition 4.1 and 5.1,
we can see that for any f ∈ H p(X × X ),

‖SD( f )‖s p

≤
∥∥∥∥∥∥
 ∞∑

k1=−∞

∞∑
k2=−∞

∑
τ1∈Ik1

∑
τ2∈Ik2

N (τ1,k1)∑
v1=1

N (τ2,k2)∑
v2=1

sup
u∈Q

k1,v1
τ1 ,v∈Q

k2,v2
τ2

∣∣Dk1 Dk2( f )(u, v)
∣∣2

×χ
Q

k1,v1
τ1

(·)χ
Q

k2,v2
τ2

(·)
} 1

2

∥∥∥∥∥
L p

�

∥∥∥∥∥∥
 ∞∑

k1=−∞

∞∑
k2=−∞

∑
τ1∈Ik1

∑
τ2∈Ik2

N (τ1,k1)∑
v1=1

N (τ2,k2)∑
v2=1

inf
u∈Q

k1,v1
τ1 ,v∈Q

k2,v2
τ2

∣∣Dk1 Dk2( f )(u, v)
∣∣2

×χ
Q

k1,v1
τ1

(·)χ
Q

k2,v2
τ2

(·)
} 1

2

∥∥∥∥∥
L p

≤
∥∥∥∥∥∥
{ ∞∑

k1=−∞

∞∑
k2=−∞

∣∣Dk1 Dk2( f )(·, ·)∣∣2

} 1
2

∥∥∥∥∥∥
L p

� ‖ f ‖H p .

Now let us turn to (5.4). For simplicity, we only need to work with the dyadic cubes
of the form

{
Qki

τi : ki ∈ Z, τi ∈ Iki +J
}

for i = 1, 2.

To simplify our notation, let m
Q

k1
τ1 ×Q

k2
τ2

(x1, x2)=µ(Qk1
τ1 )

1/2µ(Qk2
τ2 )

1/2 D̃k1(x1,

yk1
τ1 ) D̃k2(x2, yk2

τ2 ). Now we first estimate D j1 D j2(m Q
k1
τ1 ×Q

k2
τ2

)(x1, x2).

According to the relations between ji and ki for i = 1, 2, we split D j1 D j2
(m

Q
k1
τ1 ×Q

k2
τ2

)(x1, x2) into four cases as follows.

Case 1: j1 ≥ k1, j2 ≥ k2.
Using the cancellation condition on D j1 and D j2 , we have

|D j1 D j2(m Q
k1
τ1 ×Q

k2
τ2

)(x1, x2)|

=
∣∣∣∣(∫

V1

+
∫

V2

+
∫

V3

+
∫

V4

)
D j1(x1, y1)D j2(x2, y2)

[
m

Q
k1
τ1 ×Q

k2
τ2

(x1, x2)

−m
Q

k1
τ1 ×Q

k2
τ2

(y1, x2) − m
Q

k1
τ1 ×Q

k2
τ2

(x1, y2) +m
Q

k1
τ1 ×Q

k2
τ2

(y1, y2)

]
dµ(y1)dµ(y2)

∣∣∣∣
= I + I I + I I I + I V,
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where

V1 =
{
(y1, y2) : ρ(x1, y1) ≤ 1

2A
(2−k1 + ρ(x1, yk1

τ1
)), ρ(x2, y2)

≤ 1

2A
(2−k2 + ρ(x2, yk2

τ2
))

}
;

V2 =
{
(y1, y2) : ρ(x1, y1) ≤ 1

2A
(2−k1 + ρ(x1, yk1

τ1
)), ρ(x2, y2)

>
1

2A
(2−k2 + ρ(x2, yk2

τ2
))

}
;

V3 =
{
(y1, y2) : ρ(x1, y1) >

1

2A
(2−k1 + ρ(x1, yk1

τ1
)), ρ(x2, y2)

≤ 1

2A
(2−k2 + ρ(x2, yk2

τ2
))

}
;

V4 =
{
(y1, y2) : ρ(x1, y1) >

1

2A
(2−k1 + ρ(x1, yk1

τ1
)), ρ(x2, y2)

>
1

2A
(2−k2 + ρ(x2, yk2

τ2
))

}
.

For term I , we use smoothness condition (2.4) on both D̃k1 and D̃k2 with the first
variable; for term I I , we use smoothness condition (2.4) on D̃k1 with the first vari-
able, and size condition (2.3) on D̃k2 ; similarly, for term I I I , we use size condition
(2.3) on D̃k1 and smoothness condition (2.4) on D̃k2 with the first variable; for
term I V , we use size condition on both D̃k1 and D̃k2 . Together with the fact that
µ(Qki

τi ) ∼ 2−ki for i = 1, 2, we can get that four terms above can be controlled by

µ(Qk1
τ1

)−
1
2 µ(Qk2

τ2
)−

1
2

2−( j1−k1)ε
′

(1 + 2k1ρ(x1, yk1
τ1

))1+ε′
2−( j2−k2)ε

′

(1 + 2k2ρ(x2, yk2
τ2

))1+ε′ . (5.7)

Case 2: j1 ≥ k1, j2 < k2.
By the cancellation condition on D j1 and D̃k2 , we have

|D j1 D j2(m Q
k1
τ1 ×Q

k2
τ2

)(x1, x2)|

=
∣∣∣∣ (∫

V1

+
∫

V2

+
∫

V3

+
∫

V4

) [
D j1(x1, y1)D j2(x2, y2) − D j1(x1, y1)D j2(x2, yk2

τ2
)
]

×[
m

Q
k1
τ1 ×Q

k2
τ2

(y1, y2) − m
Q

k1
τ1 ×Q

k2
τ2

(x1, y2)
]
dµ(y1)dµ(y2)

∣∣∣∣
= I + I I + I I I + I V,
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where

V1 =
{
(y1, y2) : ρ(x1, y1) ≤ 1

2A
(2−k1 + ρ(x1, yk1

τ1
)), ρ(y2, yk2

τ2
)

≤ 1

2A
(2−k2 + ρ(x2, y2))

}
;

V2 =
{
(y1, y2) : ρ(x1, y1) ≤ 1

2A
(2−k1 + ρ(x1, yk1

τ1
)), ρ(y2, yk2

τ2
)

>
1

2A
(2−k2 + ρ(x2, y2))

}
;

V3 =
{
(y1, y2) : ρ(x1, y1) >

1

2A
(2−k1 + ρ(x1, yk1

τ1
)), ρ(y2, yk2

τ2
)

≤ 1

2A
(2−k2 + ρ(x2, y2))

}
;

V4 =
{
(y1, y2) : ρ(x1, y1) >

1

2A
(2−k1 + ρ(x1, yk1

τ1
)), ρ(y2, yk2

τ2
)

>
1

2A
(2−k2 + ρ(x2, y2))

}
.

For term I , we use the size condition on D j1 and D̃k2 , the smoothness condition
on D j2 and D̃k1 ; for term I I , we use the smoothness condition on D̃k1 and the size
condition on others; for I I I , we use the smoothness condition on D j2 and the size
condition on others; finally, for term I V , we only use the size conditions. Similarly,
the four terms above can be controlled by

µ(Qk1
τ1

)−
1
2 µ(Qk2

τ2
)−

1
2

2−( j1−k1)ε
′

(1 + 2k1ρ(x1, yk1
τ1

))1+ε′
2( j2−k2)(1+ε

′
)

(1 + 2 j2ρ(x2, yk2
τ2

))1+ε′ . (5.8)

Case 3: j1 < k1, j2 ≥ k2.
Similarly as Case 2, D j1 D j2(m Q

k1
τ1 ×Q

k2
τ2

)(x1, x2) can be controlled by

µ(Qk1
τ1

)−
1
2 µ(Qk2

τ2
)−

1
2

2( j1−k1)(1+ε
′
)

(1 + 2 j1ρ(x1, yk1
τ1

))1+ε′
2−( j2−k2)ε

′

(1 + 2k2ρ(x2, yk2
τ2

))1+ε′ . (5.9)

Case 4: j1 < k1, j2 < k2.
Similarly as Case 1 with only a change of the positions of D j1 D j2 and

m
Q

k1
τ1 ×Q

k2
τ2

, we can see that D j1 D j2(m Q
k1
τ1 ×Q

k2
τ2

)(x1, x2) can be controlled by

µ(Qk1
τ1

)−
1
2 µ(Qk2

τ2
)−

1
2

2( j1−k1)(1+ε
′
)

(1 + 2 j1ρ(x1, yk1
τ1

))1+ε′
2( j2−k2)(1+ε

′
)

(1 + 2 j2ρ(x2, yk2
τ2

))1+ε′ . (5.10)
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From Definition 2.6 and 5.2, we have

∥∥TD̃(s)(x1, x2)
∥∥p

H p(X×X )
= ‖g(TD̃(s))‖p

L p(X×X )

�
∥∥∥∥∥
{∑

j1, j2

([ ∑
k1> j1,k2> j2

+
∑

k1> j1,k2≤ j2

+
∑

k1≤ j1,k2> j2

+
∑

k1≤ j1,k2≤ j2

]

×
∑

τ1∈Ik1+J1

∑
τ2∈Ik2+J2

|s
Q

k1
τ1 ×Q

k2
τ2

||D j1 D j2(m Q
k1
τ1 ×Q

k2
τ2

)(x1, x2)|
2


1/2∥∥∥∥∥∥∥

p

L p(X×X )

� I + I I + I I I + I V .

We now first estimate I . From (5.10), we can see that∑
k1> j1,k2> j2

∑
τ1∈Ik1+J1

∑
τ2∈Ik2+J2

|s
Q

k1
τ1 ×Q

k2
τ2

||D j1 D j2(m Q
k1
τ1 ×Q

k2
τ2

)(x1, x2)|

�
∑

k1> j1,k2> j2

∑
τ1∈Ik1+J

·
∑

τ2∈Ik2+J

2( j1−k1)(1+ε
′
)2( j2−k2)(1+ε

′
)|s

Q
k1
τ1 ×Q

k2
τ2

|µ(Qk1
τ1

)−1/2µ(Qk2
τ2

)−1/2

× 1

(1 + 2 j1ρ(x1, yk1
τ1

))1+ε′
1

(1 + 2 j2ρ(x2, yk2
τ2

))1+ε′

�
∑

k1> j1,k2> j2

2( j1−k1)(1+ε
′− 1

r )2( j2−k2)(1+ε
′− 1

r )

M1

 ∑
τ1∈Ik1+J

×M2

 ∑
τ2∈Ik2+J

|s
Q

k1
τ1×Q

k2
τ2

µ(Qk1
τ1

)−1/2µ(Qk2
τ2

)−1/2|rχ
Q

k2
τ2

(·)
(x2)χQ

k1
τ1

(·)
(x1)


1
r

,

where 2
2+θ

< r < p and Mi , i = 1, 2, is the Hardy-Littlewood Maximal function
with respect to the first and the second variable, respectively. The last inequality
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follows from an iteration of the the result which can be found in [9, pages 147–
148], for Rn and [18, page 93], for spaces of homogeneous type.

Let k = (k1, k2), j = ( j1, j2), x = (x1, x2) and

a(x) = {ak(x)}k

=
M1

 ∑
τ1∈Ik1+J

M2

 ∑
τ2∈Ik2+J

|s
Q

k1
τ1 ×Q

k2
τ2

µ(Qk1
τ1

)−1/2µ(Qk2
τ2

)−1/2|rχ
Q

k2
τ2

(·)


· (x2)χQ
k1
τ1

(·)
]

(x1)

) 1
r ;

b = {bk}k =
{

2k1(1+ε
′− 1

r )2k2(1+ε
′− 1

r )χ{k1<0}(k1)χ{k2<0}(k2)
}

k
;

(a ∗ b) j =
∑

k

akb j−k .

By the Young inequality and an iterative application of the Fefferman and Stein
vector-valued maximal function inequality in [8] on L

p
r (X ), we have

I V �

∥∥∥∥∥∥
{∑

j

| (a ∗ b) j |2
}1/2

∥∥∥∥∥∥
p

L p(X×X )

�
∥∥‖a ∗ b‖l2

∥∥p
L p(X×X )

�
∥∥‖a‖l2‖b‖l1

∥∥p
L p(X×X )

�
∥∥‖a‖l2

∥∥p
L p(X×X )

� ‖s‖p
s p .

Using the same skills, we can get that I I, I I I, I V � ‖s‖p
s p . Thus

‖TD̃(s)(x1, x2)‖H p(X×X ) � ‖s‖s p .

Finally, it is easy to check that from the Calderón reproducing formula, TD̃ ◦ SD
equals identity on H p(X × X ). The proof of proposition is complete.

Proof of Proposition 5.4. This proposition is similar as the above one since its
proof is closely related to the Min-Max comparison principle for CMOp(X × X ),
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namely, Theorem 3.2. (5.5) is a direct consequence of Theorem 3.2 and the proof
of (5.6) follows the same routine as the proof of Theorem 3.2.

Now we give the details of the proof. We first prove (5.5). According to
Definition 4.1 and 5.1, for any f ∈ CMOp(X × X ), we have

‖SD( f )‖cp

� sup



 1

µ(
)
2
p −1

∫



∞∑
k1,k2=−∞

∑
τ1∈Ik1

∑
τ2∈Ik2

N (k1,τ1)∑
v1=1

·
N (k2,τ2)∑

v2=1

χ{Q
k1,v1
τ1 ×Q

k2,v2
τ2 ⊂
}(k1, k2, τ1, τ2, v1, v2)

× sup
u∈Q

k1,v1
τ1 ,v∈Q

k2,v2
τ2

∣∣Dk1 Dk2( f )(u, v)
∣∣2

χ
Q

k1,v1
τ1

(x1)χQ
k2,v2
τ2

(x2)dµ(x1)dµ(x2)

1/2

� sup



 1

µ(
)
2
p −1

∫



∞∑
k1,k2=−∞

∑
τ1∈Ik1

∑
τ2∈Ik2

N (k1,τ1)∑
v1=1

·
N (k2,τ2)∑

v2=1

χ{Q
k1,v1
τ1 ×Q

k2,v2
τ2 ⊂
}(k1, k2, τ1, τ2, v1, v2)

× inf
u∈Q

k1,v1
τ1 ,v∈Q

k2,v2
τ2

∣∣Dk1 Dk2( f )(u, v)
∣∣2

χ
Q

k1,v1
τ1

(x1)χQ
k2,v2
τ2

(x2)dµ(x1)dµ(x2)

1/2

� sup



 1

µ(
)
2
p −1

∫



∞∑
k1,k2=−∞

∑
τ1∈Ik1

∑
τ2∈Ik2

·
N (k1,τ1)∑

v1=1

N (k2,τ2)∑
v2=1

χ{Q
k1,v1
τ1 ×Q

k2,v2
τ2 ⊂
}(k1, k2, τ1, τ2, v1, v2)

× ∣∣Dk1 Dk2( f )(x1, x2)
∣∣2

χ
Q

k1,v1
τ1

(x1)χQ
k2,v2
τ2

(x2)dµ(x1)dµ(x2)

)1/2

≤ ‖ f ‖CMOp .
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Now let us prove (5.6). For any t ∈ cp, by the definition of norm of CMOp, we
have

‖TD̃(t)‖CMOp
(X×X )

� sup



 1

µ(
)
2
p −1

∫



∞∑
k1=−∞

∞∑
k2=−∞

∑
τ1∈Ik1

∑
τ2∈Ik2

N (k1,τ1)∑
v1=1

·
N (k2,τ2)∑

v2=1

χ
Q

k1,v1
τ1

(x1)χQ
k2,v2
τ2

(x2)

×χ{Q
k1,v1
τ1 ×Q

k2,v2
τ2 ⊂
}(k1, k2, τ1, τ2, v1, v2)

· ∣∣Dk1 Dk2

(
TD̃(t)

)
(x1, x2)

∣∣2 dµ(x1)dµ(x2)
) 1

2
.

From the definition of TD̃(t) and the same skill as in the estimate of (3.5), we can
obtain that

sup
x1∈Q

k1,v1
τ1 ,x2∈Q

k2,v2
τ2

|Dk1 Dk2

(
TD̃(t)

)
(x1, x2)|2

�
∞∑

k
′
1=−∞

∞∑
k
′
2=−∞

∑
τ

′
1∈I

k
′
1

∑
τ

′
2∈I

k
′
2

N (k
′
1,τ

′
1)∑

v
′
1=1

·
N (k

′
2,τ

′
2)∑

v
′
2=1

2−|k1−k
′
1|ε

′
2−|k2−k

′
2|ε

′
µ(Q

k
′
1,v

′
1

τ
′
1

)µ(Q
k
′
2,v

′
2

τ
′
2

)

× 2−(k1∧k
′
1)ε

′

(2−(k1∧k
′
1) + ρ(y1, y

′
1))

1+ε′
2−(k2∧k

′
2)ε

′

(2−(k2∧k
′
2) + ρ(y2, y

′
2))

1+ε′

×
∣∣∣t

Q
k
′
1,v

′
1

τ
′
1

×Q
k
′
2,v

′
2

τ
′
2

µ(Q
k
′
1,v

′
1

τ
′
1

)−1/2µ(Q
k
′
2,v

′
2

τ
′
2

)−1/2
∣∣∣2

,

(5.11)

where yi is the center of Qki ,vi
τi and y

′
i is the center of Q

k
′
i ,v

′
i

τ
′
i

for i = 1, 2.

Comparing (5.11) with (3.5), we can see that the only thing different is that the
last term in the right-hand side of(3.5) is TR′ , while the last term in the right-hand



DUALITY OF MULTIPARAMETER HARDY SPACES 683

side of (5.11) is
∣∣t

Q
k
′
1,v

′
1

τ
′
1

×Q
k
′
2,v

′
2

τ
′
2

µ(Q
k
′
1,v

′
1

τ
′
1

)−1/2µ(Q
k
′
2,v

′
2

τ
′
2

)−1/2
∣∣2. However, when

proving the Theorem 3.2, we can see that the term TR′ is fixed throughout the whole
proof. This implies that we can prove this proposition just following the proof of
Theorem 3.2 without any changes.

Thus, we can obtain that

‖TD̃(t)‖CMOp
(X×X )

� sup



 1

µ(
)
2
p −1

∞∑
k1=−∞

∞∑
k2=−∞

∑
τ1∈Ik1

∑
τ2∈Ik2

N (k1,τ1)∑
v1=1

·
N (k2,τ2)∑

v2=1

χ{Q
k1,v1
τ1 ×Q

k2,v2
τ2 ⊂
}(k1, k2, τ1, τ2, v1, v2)

×µ(Qk1,v1
τ1

)µ(Qk2,v2
τ2

)

∣∣∣∣tQ
k1,v1
τ1 ×Q

k2,v2
τ2

µ(Qk1,v1
τ1

)−1/2µ(Qk2,v2
τ2

)−1/2
∣∣∣∣2

)1/2

� ‖t‖cp .

Finally, we can easily get that from the Calderón reproducing formula TD̃ ◦ SD is
the identity operator on CMOp(X ×X ). We finish the proof of the proposition.
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