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On the stability of the universal quotient bundle restricted
to congruences of low degree of G(1, 3)

ENRIQUE ARRONDO AND SOFÍA COBO

Abstract. We study the semistability of Q|S , the universal quotient bundle on
G(1,3) restricted to any smooth surface S (called congruence). Specifically, we
deduce geometric conditions for a congruence S, depending on the slope of a
saturated linear subsheaf of Q|S . Moreover, we check that the Dolgachev-Reider
Conjecture (i.e. the semistability of Q|S for nondegenerate congruences S) is true
for all the congruences of degree less than or equal to 10. Also, when the degree
of a congruence S is less than or equal to 9, we compute the highest slope reached
by the linear subsheaves of Q|S .

Mathematics Subject Classification (2010): 14J60 (primary); 14M07, 14M15
(secondary).

Introduction

The main numerical invariant of a congruence, i.e. a smooth irreducible surface of
the Grassmann variety G(1, 3) of lines in P3, is its bidegree (a, b). Regarding a
congruence as a two-dimensional family of lines in P3, the order a is defined to be
the number of lines of the family passing through a general point of P3; analogously,
the class b is the number of lines of the family contained in a general plane of P3.
An interesting problem that arises in a natural way is the following: given two
integers a and b, does there exist a congruence of bidegree (a, b)?

About this question, the best known result is the bound a ≤ O
(

b
4
3

)
for every

congruence of bidegree (a, b), given by Gross in [8] (although there are not known
examples for which |a − b| > O

(
b3/4

)
). A new approach was introduced by

Dolgachev and Reider by means of vector bundles. More precisely, they stated
in [7] the following conjecture:
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Conjecture DR. Let S be a non-degenerate congruence, i.e. not lying on a hyper-
plane section of G(1, 3). Then the restriction to S of the rank-two universal quotient
bundle of G(1, 3) is semistable.

The main interest of this conjecture lies in the fact that, if true, Bogomolov’s
theorem would imply a ≤ 3b for all congruences of bidegree (a, b), except for the
congruence of lines passing through one fixed point of P3. Dually, b ≤ 3a for all
congruences of bidegree (a, b), except for the congruence of lines contained in a
fixed plane.

Few results are known about the stability of the restriction of Q to congruences.
For example, the congruences S of G(1, 3) for which Q|S splits were classified
in [3], while those for which Q|S is not simple were classified in [4], showing that
they are precisely those for which Q|S splits.

Regarding the concrete problem of the study of the stability of the restriction
of Q to a congruence of G(1, 3), Gross proves in [8] (see [3] for another proof)
that, given a congruence S of bidegree (a, b) and b ≥ a, then Q|S is semistable.

In this paper, we start by using some implicit information in the proof of Gross
result to obtain geometric properties of a congruence S, depending on the slope of
some linear subsheaf of Q|S (see Theorem 2.1). Although this result does not en-
able us to answer Conjecture DR, we are able to deduce from it a certain estimation
of the highest slope reached by the linear subsheaves of Q|S . Since this estimation
has significance only when |a −b| is small, we check the validity of Conjecture DR
for all the congruences of degree less than or equal to 10.

The main observation is that the stability of the restriction of Q to a congru-
ence, or the highest slope reached by its linear subsheaves, can vary within the
same family of congruences. An example of this situation is the case of degenerate
congruences of even degree: for a general congruence of the family of such con-
gruences the restriction of Q is stable, but it is semistable (and not stable) for a few
special cases. In order to speak of the general or the special congruence within the
same family it is necessary that the Hilbert scheme parameterizing this family is
irreducible. Since this irreducibility is only known for congruences of degree less
than or equal to 9 (see [3]), the study of the highest slope for congruences of higher
degree is beyond the scope of this paper. However, we determine the stability of
Q|S for every type of congruence S with degree less than or equal to 10 and, when
S is general and of degree less than or equal to 9, we compute the highest slope
reached by the linear subsheaves of Q|S . When possible, we also compute this
highest slope for some special cases.

Our results lead us to formulate the following:

Conjecture 0.1. For every irreducible component of the Hilbert scheme of non-
degenerate congruences, the restriction of Q to the general congruence is semista-
ble.

Observe that, although the above conjecture is weaker than Conjecture DR,
however both imply the same relation a ≤ 3b for all the congruences of bidegree
(a, b) (except for the congruence of lines through a point), because the bidegree is
constant in each component of the Hilbert scheme.
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The structure of this paper is as follows. We start in Section 1 by recalling sev-
eral well-known facts about congruences of lines in P3. Moreover, we recall the list
of all types of congruences of G(1, 3) of degree less than or equal to 9. In Section 2
we present first the main general result (Theorem 2.1) about the stability of the re-
striction of Q that we prove in this paper. Moreover, we prove that Conjecture DR
is true for all the congruences up to degree 9, and determine, for the general con-
gruence S of each type, the highest slope reached by the linear subsheaves of Q|S
(see Theorem 2.3). In this section we only prove Theorem 2.1, devoting Section 3
to the (long) proof of Theorem 2.3. In order to make this section more readable,
we divide it into smaller subsections, each of them collecting congruences sharing
certain geometric properties. In a final appendix we present in a table all the partial
results we have got about the congruences of degree 10, in order to illustrate the
difficulties appearing in higher degree.

1. Preliminaries

Fix a four-dimensional vector space V over the complex field C and denote by P3

the projective space P(V ) of one-dimensional quotients of V . We denote by G(1, 3)

the Grassmann variety of lines of P3. We will frequently regard G(1, 3) as a smooth
quadric in P5 via the Plücker embedding.

We denote by Q and S , respectively, the universal quotient bundle and the
universal subbundle, defined in the universal exact sequence:

0 −→ S∗ −→ H0(OP3(1)) ⊗ OG(1,3) −→ Q −→ 0 . (1.1)

Taking cohomology in the above sequence, we obtain

H0(Q) = H0(OP3(1)) = V,

and, more precisely, the zero locus of any nonzero section of Q is the set of lines
contained in the plane of P3 defined by the corresponding element of V (such a set
of lines is called a β-plane). Dually, any nonzero section of S vanishes on the set
of lines passing through a given point of P3 (such a set is called an α-plane).

Definition 1.1. A complex is a hypersurface of G(1, 3), which is necessarily the
complete intersection of G(1, 3) with a hypersurface of P5. The degree of the latter
is called the degree of the complex. Up to projective equivalence, there are only two
types of linear complexes, depending on whether the corresponding hyperplane of
P5 is tangent or not to G(1, 3). In the first case, we obtain a special linear complex,
which is the set of all lines of P3 meeting a fixed line.

Definition 1.2. By congruence, we mean a smooth irreducible surface in the Grass-
mannian G(1, 3). Since there is a natural isomorphism between G(1, P3) and
G(1, P3∗

), it makes sense to speak about the dual congruence of a given congru-
ence.
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The number a of lines of a congruence passing through a general point of P3

is called order of the congruence. Dually, the number b of lines of a congruence
contained in a general plane of P3 is called class of the congruence (obviously,
b = c2(Q|S)). The pair (a, b) is called the bidegree of the congruence. Clearly, the
dual congruence of a congruence of bidegree (a, b) has bidegree (b, a). Finally, it
is easy to check that the degree of a congruence of bidegree (a, b) as a surface of
G(1, 3) ⊂ P5 is a +b. We will also write π for the sectional genus of a congruence
as a surface in P5.

We say that a congruence has a fundamental curve if there is a curve in P3

meeting all the lines of the congruence. Observe that a congruence is degenerate
(i.e. contained in a hyperplane of P5) if and only if it is contained in a linear com-
plex. Moreover, the congruence has a fundamental line if and only if it is contained
in a special linear complex.

Definition 1.3. Given a congruence S, by stability (respectively semistability) of
Q|S we will mean µ-stability (respectively µ-semistability) with respect to the hy-
perplane section H of S as a surface in P5. In other words, Q|S is stable if, for
any subsheaf OS(D) of Q|S , we have µ(D) < µ(Q|S), i.e. DH < a+b

2 (for
semistability just replace < with ≤).

Remark 1.4. Notice that it suffices to check the stability condition for saturated
subsheaves OS(D) of Q|S , i.e. such that the corresponding section of Q|S(−D)

vanishes only at a finite number of points Z . In this case there exists an exact
sequence

0 −→ OS(D) −→ Q|S −→ JZ (H − D) −→ 0 (1.2)

and deg Z = c2(Q|S(−D)) = c2(Q|S) − c1(Q|S)D + D2 = b − DH + D2. It is
easy to prove that, if µ(D) is the highest slope of all possible subsheaves of Q|S ,
then OS(D) is saturated. From now on, we will say that such µ(D) is the highest
slope for S.

Now we present in Table 1.1 all the congruences of degree less than or equal
to 9, collected by Arrondo and Sols in [3].

We omit in each case the dual congruence since, apart from the bidegree,
the rest of the invariants and the hyperplane section are identical. In case that a
congruence is degenerate, we specify it in the table. With respect to the notation,
X̃(x1, . . . , xr ) denotes the blow-up of a surface X along the points x1, . . . , xr with
exceptional divisors E1, . . . , Er . For ruled surfaces we keep the notation of [10, V,
Section 2] (this works also for conic bundles, which are blow-ups of ruled sur-
faces). Finally, by c.i. (d1, d2) we mean the complete intersection in G(1, 3) of two
complexes of degree d1 and d2.

We recall that, as proved in [3], the Hilbert scheme of each of the above types
of congruences is irreducible.
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(a, b) π Description Embedding in P
5

1) (0,1) 0 P
2 L (degenerate)

2) (1,1) 0 P
1 × P

1 O
P1×P1(1, 2) (degenerate)

3) (1,2) 0 P̃2(x) 2L − E (degenerate)

4) (1,3) 0 P
2 2L

5) (2,2) 0 Xe =P(O
P1 ⊕O

P1(−e)), con e=0, 2 C0 + (2 + e
2 ) f

6) (2,2) 1 P̃2(x1, ..., x5) 3L − E1 − ... − E5 (degenerate)

7) (2,3) 1 P̃2(x1, ..., x4) 3L − E1 − ... − E4

8) (2,3) 2 P̃2(x1, ..., x8) 4L−2E1−E2−...−E8 (degenerate)

9) (3,3) 1 Ruled surface over an elliptic curve C0 + 3 f (e = 0)

10) (3,3) 1 P̃2(x1, x2, x3) 3L − E1 − E2 − E3

11) (3,3) 2 P̃2(x1, ..., x7) 4L − 2E1 − E2 − ... − E7

12) (3,3) 4 K3 surface, c.i. (1, 3) (degenerate)

13) (3,4) 3 P̃2(x1, ..., x9) 4L − E1 − ... − E9

14) (3,4) 6 Minimal elliptic fibration (degenerate)

15) (2,6) 3 Ruled surface over an elliptic curve 2C0 + f (e = −1)

16) (3,5) 4 P̃2(x1, ..., x10) 6L−2E1−...−2E6−E7−...−E10

17) (4,4) 3 P̃2(x1, ..., x7) 6L − 2E1 − ... − 2E7

18) (4,4) 4 P̃2(x1, ..., x11) 5L − 2E1 − 2E2 − E3 − ... − E11

19) (4,4) 5 K3 surface, i.c. (2, 2)

20) (4,4) 9 Surface of general type, c.i. (1, 4) K (degenerate)

21) (3,6) 5 P̃2(x1, ..., x10) 7L − 2E1 − ... − 2E10

22) (4,5) 5 P̃2(x1, ..., x12) 6L−2E1−...−2E5−E6−...−E12

23) (4,5) 6
X̃(x) where X is a K3 surface
of degree 10 in P

6 HX − E

24) (4,5) 12 Surface of general type with K 2 =17 (degenerate)

25) (3,6) 4 Conic bundle over an elliptic curve 2C0 + (3 + e) f − E1 − E2 − E3

Table 1.1. Congruences of degree ≤ 9.
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Let us collect some useful lemmas and well-known results that we will need
later on:

Lemma 1.5. For any congruence S, the morphism H0(Q)
ϕ−→ H0(Q|S) is an

isomorphism, except when S is of one of the following types:

i) a β-plane, dual of the congruence of type 1),
ii) the congruence (2, 1), dual of the congruence of type 3),

iii) the congruence (2, 2) of type 5),
iv) the Veronese surface (3, 1), dual of the congruence of type 4),
v) the congruence (3, 2), dual of the congruence of type 7),

vi) the congruence (3, 3) of type 10).

Proof. The morphism ϕ is not injective if and only if there is a section s of Q that
is zero when restricted to S. Since the zero locus of a section of Q is a β-plane, it
follows that ϕ is not injective if and only if S is a β-plane. Hence we can assume
that ϕ is injective.

Suppose now that ϕ is not an epimorphism. Then necessarily h0(Q|S) ≥ 5
and, by [3, Theorem 5.1], S is of one of the types ii),. . . ,vi).

Lemma 1.6. Let S be a congruence having a fundamental curve. Then, one of the
following holds:

(i) C is a line, so that S is degenerate.
(ii) C is a plane conic, and S is either dual of a congruence of type 3) or a

congruence of type 5).
(iii) C is a plane cubic, and S is a particular case of congruence of type 25).
(iv) C is a twisted cubic, and S is a congruence of type 4).

Proof. See [2].

Remark 1.7. We recall from [3] that, if S is a degenerate congruence, one of the
following holds:

(i) a = b, and S is the complete intersection of a linear complex and a complex
of degree a. In particular, when a > 1, S has a fundamental line if and only
if the linear complex is special. If a = 1, i.e. S is of type 2), the congruence
is the complete intersection of two linear complexes; therefore S is always
contained in a special linear complex, which implies that it has a fundamental
line.

(ii) a = b − 1 and S has a fundamental line.
(iii) b = a − 1 and S is dual of a congruence as in ii). In particular, it has a

fundamental line.
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An easy property that we will often use is the following:

Remark 1.8. Consider a plane curve C in G(1, 3) of degree greater than or equal
to 3, and let � be the plane of P5 containing C . Then every line in � is contained
in G(1, 3), hence � is contained in G(1, 3). Since the only planes of P5 contained
in G(1, 3) are the α-planes and the β-planes, we get that C is contained either in an
α-plane or in a β-plane.

2. General results

We state in this section the two main results of this paper, the second one (which
we will prove in the next section) showing in particular that Conjecture DR is true
for all congruences with degree less than or equal to 9. In the first result, using
ideas that were implicit in [8], we determine a bound for the slope µ(D) of the
subsheaves OS(D) ⊂ Q|S . Moreover, we show that, when µ(D) is very close to
this bound, S must be of a very special type. This allows us to deduce results on the
stability of Q|S:

Theorem 2.1. Let S be a congruence in G(1, 3) of bidegree (a, b). Let us suppose
that we have an exact sequence like in (1.2). Then:

i) µ(D) ≤ a.

ii) If µ(D) = a, then S has a fundamental curve.

iii) If µ(D)= a−1, then S is rational. Moreover, if h0(Q|S)=4, then h0(D)= 1.

iv) If µ(D) = a − 2, then either S is rational or h0(D) = 1.

v) If µ(D) = a − 3, then either S is birational to P2 or to an elliptic ruled
surface, or h0(D) = 1.

In particular,

i′) if a ≤ b (respectively a < b), then Q|S is semistable (respectively stable).

ii′) if S has no fundamental curve and a ≤ b + 2 (respectively a < b + 2), then
Q|S is semistable (respectively stable).

iii′) If S is not rational and has no fundamental curve, and if a ≤ b + 4 (respec-
tively a < b + 4), then Q|S is semistable (respectively stable).

Proof. Let H0(OP3(1)) ⊗ OS → Q|S → JZ (H − D) be the composition of the
epimorphism of the universal sequence (1.1) restricted to S and the epimorphism
of (1.2). Let π : S̃ → S be the blow-up of S along Z and set E = π−1(Z)

(hence E2 = − deg Z ). The pull-back by π of such composition is an epimorphism
H0(OP3(1)) ⊗ OS̃ → OS̃(H − D − E), which defines a map ψ : S̃ −→ P3.

Since OS̃(H − D − E) is generated by its global sections, (H − D − E)2 ≥ 0
which, using deg Z = b − DH + D2 (Remark 1.4), becomes DH ≤ a, proving i).
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If DH = a, then (H − D − E)2 = 0, so that ψ(S̃) must be either a curve or
a point. In the first case, ψ(S̃) is a fundamental curve for S. In the second case S is
obviously an α-plane; therefore every line of S is fundamental. This proves ii).

If DH = a − 1 then (H − D − E)2 = 1, then deg ψ = deg ψ(S̃) = 1.
Therefore S̃ is birational to the plane ψ(S̃), so that S is rational. If, moreover,
h0(Q|S) = 4, we have (see Lemma 1.5) an isomorphism H0(OP3(1)) ∼= H0(Q|S).
Since the image of the map H0(OP3(1)) → H0(JZ (H − D)) has dimension three
(because the image of ψ is a plane), it follows that its kernel, which is H0(D), has
dimension one, completing the proof of iii).

If now DH = a − 2, then either deg ψ = 1, deg ψ(S̃) = 2 or deg ψ =
2, deg ψ(S̃) = 1. In the first case, S̃ is birational to a quadric (hence rational), and
so is S. In the second case, ψ(S̃) is a plane; moreover, if h0(Q|S) = 4, one can
prove exactly as in iii) that h0(D) = 1. Since, if h0(Q|S) 
= 4, the congruence S is
rational by Lemma 1.5, we have proved iv).

Finally, if DH = a − 3, we distinguish two possibilities. If deg ψ = 1 and
deg ψ(S̃) = 3, then S̃ is birational to a surface of degree three in P3, which is
necessarily rational or a cone over an elliptic curve. Therefore, S is either rational
or birational to an elliptic ruled surface. If instead deg ψ = 3 and deg ψ(S̃) = 1,
then ψ(S̃) must be a plane. Thus, in the same way as in iii) or iv), h0(Q|S) = 4
implies h0(D) = 1, while if h0(Q|S) 
= 4, then S is rational.
This proves v).

Parts i′), ii′), iii′), follow readily from i), ii), iii), since, as we observed in
Remark 1.4, a subsheaf OS(D) of Q|S with the highest possible slope is saturated,
so that we have an exact sequence as in (1.2).

Remark 2.2. Observe that, whenever there exists a curve D ⊂ S contained in a β-
plane, there exists a subsheaf OS(D) of Q|S such that h0(D) > 0. And, by Lemma
1.5, both statements are equivalent if h0(Q|S) = 4.

The following theorem (which we will prove in the next section) contains all
the results we have got on the stability of Q restricted a congruence S of degree
less than or equal to 9. We will present such results in a table, in which, for each
type of congruence, we keep the same numeration we have introduced in Section 1.
The only difference is that now, when a 
= b,we have to distinguish between one
type of congruence and its dual, since the stability behavior of the restriction of Q
is different. We will thus use an asterisk to denote the dual type of a congruence. In
the column µmax we will write the highest slope reached by the linear subsheaves
of Q|S , for the general congruence S of each type. In the cases in which we know
that there exist special congruences with slope greater than the general µmax, we
specify this special µmax in the last column. This information does not intend to
be exhaustive at all: for example, in case 12), there might be special congruences
without fundamental line and µmax = 2 or 1.

Theorem 2.3. Let S be a congruence in G(1, 3) with degree less than or equal to
9. Then the stability properties of Q|S are described in Table 2.1.
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(a, b) π µ(Q|S) µmax Stability Q|S general µmax special

1) (0,1) 0 1/2 0 Stable There is no one
1)∗ (1,0) 0 1/2 1 Unstable There is no one
2) (1,1) 0 1 1 Semistable non stable There is no one
3) (1,2) 0 3/2 1 Stable There is no one
3)∗ (2,1) 0 3/2 2 Unstable There is no one
4) (1,3) 0 2 0 Stable There is no one
4)∗ (3,1) 0 2 2 Semistable There is no one
5) (2,2) 0 2 2 Semistable non stable There is no one
6) (2,2) 1 2 1 Stable 2 iff fundamental line
7) (2,3) 1 5/2 1 Stable There is no one
7)∗ (3,2) 1 5/2 2 Stable There is no one
8) (2,3) 2 5/2 2 Stable There is no one
8)∗ (3,2) 2 5/2 3 Unstable There is no one
9) (3,3) 1 3 3 Semistable non stable There is no one
10) (3,3) 1 3 2 Stable There is no one
11) (3,3) 2 3 1 Stable 2 if conic in β-plane
12) (3,3) 4 3 0 Stable 3 iff fundamental line
13) (3,4) 3 7/2 1 Stable ?
13)∗ (4,3) 3 7/2 3 Stable There is no one
14) (3,4) 6 7/2 3 Stable There is no one
14)∗ (4,3) 6 7/2 4 Unstable There is no one
15) (2,6) 3 4 0 Stable There is no one
15)∗ (6,2) 3 4 3 Stable There is no one
16) (3,5) 4 4 1 Stable ?
16)∗ (5,3) 4 4 3 Stable ?
17) (4,4) 3 4 0 Stable ?
18) (4,4) 4 4 2 Stable ?
19) (4,4) 5 4 0 Stable ?
20) (4,4) 9 4 0 Stable 4 iff fundamental line
21) (3,6) 5 9/2 0 Stable ?
21)∗ (6,3) 5 9/2 3 Stable There is no one
22) (4,5) 5 9/2 1 Stable ?
22)∗ (5,4) 5 9/2 2 Stable ?
23) (4,5) 6 9/2 1 Stable ?
23)∗ (5,4) 6 9/2 1 Stable ?
24) (4,5) 12 9/2 4 Stable There is no one
24)∗ (5,4) 12 9/2 5 Unstable There is no one
25) (3,6) 4 9/2 1 Stable 3 if fundamental curve
25)∗ (6,3) 4 9/2 3 Stable There is no one

Table 2.1. Stability properties for congruences of degree ≤ 9.



512 ENRIQUE ARRONDO AND SOFÍA COBO

3. Proof of Theorem 2.3

We prove briefly every case, giving only more detailed proofs for those congruences
presenting difficulties or interesting peculiarities (the complete details can be found
in [5]). Moreover, we subdivide the proof in six subsections by putting together
congruences with similar properties.

3.1. Immediate cases

Case 1). In this case, it is known that Q|S = �P2(2), which is stable. Therefore the
highest slope is 0.

Case 1)∗. Since Q|S = OP2 ⊕ OP2(1), we have that OP2(1) is a destabilizing
subsheaf of Q|S . Hence Q|S is unstable and the highest slope for S is 1.

Case 4). Since b > a, it follows from Theorem 2.1 that Q|S is stable and also
µ(D) ≤ 1 for all OS(D) ⊂ Q|S . Since S = P2 with hyperplane section H = 2L ,
µmax is even, so it is zero.

Case 4)∗. We know in this case that Q|S = OP2(1) ⊕ OP2(1), hence Q|S is not
stable. This implies that OP2(1) is a subsheaf of Q|S , which gives µmax = 2.

3.2. Congruences with plane fundamental curve

According to Lemma 1.6 and Remark 1.7, the families of congruences for which
the general one has a plane fundamental curve are cases 2), 3), 3)∗, 5), 8), 8)∗, 9),
14), 14)∗, 24), 24)∗.

First of all, we prove a result for congruences with plane fundamental curve,
which will allow us to calculate the highest slope and to decide whether Q|S is
stable or not:

Proposition 3.1. Let S be a congruence of bidegree (a, b). If S has a plane funda-
mental curve (in particular, if S has a fundamental line) then there exists a linear
subsheaf of Q|S with slope equal to a. Therefore µmax = a.

Proof. By Remark 2.2, it will be enough to find a curve D ⊂ S of degree a con-
tained in a β-plane (the last statement of the proposition follows from Theorem 2.1
i)). Let C be a fundamental curve of S contained in a plane � ⊂ P3, and let p be a
general point of �. Since C is a fundamental curve for S, all the lines of S passing
through p meet C , and are thus contained in the plane �. Now, since the order of
S is a, there are exactly a lines of S passing through p. Hence the one-dimensional
part of the set of lines of S contained in � is a curve of degree a, which completes
the proof.

We now apply Proposition 3.1 to each case mentioned above:

Case 2). Any congruence of this type has a fundamental line, so µmax = 1, and
Q|S is semistable but not stable.
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Cases 3), 8), 14), 24). They all are degenerate congruences of bidegree (a, a + 1)

with fundamental line, so µmax = a and Q|S is stable.

Cases 3)∗, 8)∗, 14)∗, 24)∗. They are degenerate congruences of bidegree (a, a − 1)

with fundamental line, so that µmax = a and Q|S is unstable.

Case 5). Any congruence of this type has a plane fundamental conic, so that µmax =
2, and Q|S is semistable but not stable. We could also include here the congruence
of type 3)∗, since it also has a plane fundamental conic, but it was considered in the
previous case, because it has a fundamental line too.

Case 9). Congruences of this type have a plane fundamental cubic, and hence
µmax = 3, and Q|S is semistable but not stable.

3.3. General complete intersections

In order to study the stability of Q restricted to congruences which are general
complete intersections, we need to prove the following:

Proposition 3.2. Let S be a general complete intersection in G(1, 3) of two com-
plex of degrees d1 and d2, with (d1, d2) 
= (1, 1), (1, 2), (2, 1). Then every invert-
ible subsheaf of Q|S has the form OS(d H), with d ≤ 0. In particular, Q|S is stable
and µmax = 0.

Proof. First, we use a classical theorem of Noether and Lefschetz (see [6] for a
modern proof), which claims that, if S is a general complete intersection surface
in Pn , then Pic(S) is generated by the hyperplane section except if S is one of the
following cases:

a) a quadric surface in P3,
b) a cubic surface in P3,
c) a complete intersection in P4 of two quadric hypersurfaces.

Note that (d1, d2) = (1, 1) corresponds to case a), that case b) cannot happen (since
deg S is even) and that (d1, d2) = (1, 2), (2, 1) corresponds to case c). Therefore,
we can assert in our situation that Pic(S) is generated by the hyperplane section.
Hence every linear subsheaf on S takes the form OS(d H). Let us suppose, by
contradiction, that d ≥ 1. Then OS(H) ⊂ OS(d H) ⊂ Q|S , which implies
that h0(Q|∗S) = h0(Q|S(−H)) 
= 0. Since Q|S is generated by its global sec-
tions, it splits with OS as a direct summand. We thus have a surjective morphism
Q|S � OS , which implies that S is an α-plane. But an α-plane is not a complete
intersection in G(1, 3), so that we get the wanted contradiction.

Cases 12), 19), 20), 23), 23)∗. The general congruence of each one of these types
is a general complete intersection in G(1, 3). Applying Proposition 3.2 we know
that, for the general congruence of each of the above types, the restricted universal
bundle is stable and µmax = 0.
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Remark 3.3. Among the cases above, we have types 12) and 20), which are de-
generate congruences of bidegree (a, a). By Remark 1.7, we know that there are
special congruences of these types having a fundamental line. By Theorem 2.1 iii),
in these special cases µmax = a instead of µmax = 0 and hence Q|S is semistable
but not stable.

3.4. Congruences of type 17)

Because of its difficulty, we study this case separately from the rest of the rational
congruences (we will take this case as a model for the study of the other rational
congruences). Recall that the congruence S of this type is the blow-up of P2 in
seven points, with hyperplane section H = 6L − 2E1 − · · · − 2E7.

Observe first that, for a general choice of seven points in P2, the linear system
|6L − 2E1 − · · · − 2E7| defines an embedding of the blow-up of P2 into a smooth
surface S′ ⊂ P6. Hence, it will produce a congruence if and only if S′ is contained
in a quadratic cone Q′ with only one singular point p′ not contained in the secant
variety of S′ (i.e. the linear projection from p′ produces a smooth surface in P5

contained in a smooth quadric). We prove something stronger:

Claim 1. For a general choice of seven points in P2, there is a five-dimensional
irreducible set � of the linear system of quadrics containing S′ such that S′ is the
intersection of all the quadrics of � and the general quadric in � has exactly one
singular point, not lying in the secant variety of S′.

Proof. Indeed, since there is a basis of H0(6L − 2E1 − · · · − 2E7) of the form
s2

0 , s0s1, s0s2, s2
1 , s1s2, s2

2 , s, where s0, s1, s2 is a basis of H0(3L − E1 − · · · − E7),
then S′ is contained in the cone C pV with vertex p over a Veronese surface V . In
particular, S′ is contained in the five-dimensional family of quadrics containing S′
(all of them singular at p). Moreover, it must be h0(JS′,P6(2)) = 7 and S′ must be
the complete intersection of C pV with a quadric hypersurface in P6. Reciprocally,
a general such intersection is isomorphic to the blow-up of P2 in seven points, with
hyperplane section H = 6L − 2E1 − · · · − 2E7. Hence, it is enough to prove the
claim for a general intersection of C pV with a quadric.

It follows from the description in [3] that a congruence of type 17) is contained
only in one quadric of P5 (the Grassmannian), and it is the projection from P6 of a
surface which is the complete intersection of a cone over the Veronese surface and
a quadric hypersurface. This produces an example of S′ ⊂ P6 satisfying that the
union of the singular points of the quadrics containing S′ is not contained neither in
the union of the singular lines of the quadrics containing S′ nor in the secant variety
of S′ (observe that this secant variety must coincide with the secant variety of C pV ).
Since this is an open condition, the general S′ will also satisfy this property, hence
it is contained in a quadratic cone whose singular locus is a point not contained in
the secant variety of S′.

We fix now a general S′ as above and a general quadric cone Q′ containing
S′ whose only singular point p′ is not contained in the secant variety of S′ (in
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particular, Q′ would be the only quadric having p′ in its singular locus) . Then,
in the six-dimensional linear system of the quadrics of P6 containing S′, the set of
singular quadrics forms a hypersurface of degree seven. It is not irreducible (since
it contains at least one component corresponding to the quadrics containing C pV ).
We take an irreducible component � of this set containing the element Q′. The
claim will follow if we prove that � is not a linear space.

Assume for contradiction that � is linear. Then � is contained in the tangent
space at Q′ of the set of singular quadrics in P6, i.e. the space of quadrics passing
through p′. But this is a contradiction, because Q′ is the only singular quadric
containing S′ passing through p′.

Since S has no fundamental curve, we deduce from Theorem 2.1 that DH ≤ 3
for all subsheaf OS(D) of Q|S , hence Q|S is stable. Now in order to compute the
highest slope for S, observe first that there is no linear subsheaf of Q|S with odd
slope, since DH is always even. We will show that, if S is general, then there is no
linear subsheaf of Q|S with slope equal to 2 (hence the highest slope will be 0).

Claim 2. If OS(D) is a subsheaf of Q|S with slope equal to 2, then D is one of the
following:

i) D = Ei , with i = 1, . . . , 7,
ii) D = L − Ei1 − Ei2 , with 1 ≤ i1 < i2 ≤ 7,

iii) D = 2L − Ei1 − · · · − Ei5 , with 1 ≤ i1 < · · · < i5 ≤ 7
iv) D = 3L − 2Ei1 − Ei2 − · · · − Ei7 , with 1 ≤ i1 ≤ 7, 1 ≤ i2 < · · · < i7 ≤ 7,

and i1 
= i j for each j = 2, . . . , 7.

Proof. Suppose that OS(D), with D = d L − n1 E1 − · · · − n7 E7, is a subsheaf of
Q|S with slope equal to 2. We have thus a sequence like in (1.2), and the conditions
DH = 2 and deg Z ≥ 0 are equivalent to

n1 + · · · + n7 = 3d − 1

n2
1 + · · · + n2

7 ≤ 2 + d2.

From this, using the Cauchy-Schwarz inequality, we obtain

2d2 − 6d − 13 ≤ 0.

Hence the only possible values for d are −1, 0, 1, 2, 3 or 4. For shortness, we give
the details only for the cases d = −1, 0.

• If d = −1, we get the conditions

n1 + · · · + n7 = −4

n2
1 + · · · + n2

7 ≤ 3,

which have no solution.
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• Suppose d = 0. The solutions to

n1 + · · · + n7 = −1

n2
1 + · · · + n2

7 ≤ 2

are all the divisors D = Ei , with i = 1, . . . , 7.
The divisors of ii) are obtained when d = 1, whereas we get the divisors of iii)

and iv) with the values d = 2 and d = 3, respectively. The value d = 4 leads to no
solution.

For a general choice of S′ (hence a general choice of point x1, . . . , x7) there
is exactly one effective divisor in one of the above classes, yielding a total of 56
conics. Neither of these conics will provide a subsheaf of Q|S if the plane they lie
in is not a β-plane. We conclude the study of this case by proving the following:

Claim 3. Let D′
1, . . . , D′

56 ⊂ S′ be the conics in the classes given in Claim 2.
Then the linear projection of S′ from the vertex of a general Q′ ∈ � produces a
congruence such that the images of D′

1, . . . , D′
56 are not contained in β-planes.

Proof. For each i = 1, . . . , 56, let �′
i be the plane containing D′

i and let pi
′ a point

of �′
i outside S′. Since S′ is cut out by the quadrics of �, the general quadric in

� does not contain any pi
′, so that projecting from its vertex we get a surface in

a smooth quadric in P5 (the Grassmannian) such that the image of any plane �′
i is

not contained in that quadric.

As a consequence, the highest slope of Q|S is 0 if S is a general congruence of
this type.

3.5. Rational congruences

We start with a technical lemma, which shows that, under some conditions, a gen-
eral rational congruence is the blow-up of P2 at points in general position:

Lemma 3.4. Let H be an irreducible component of the Hilbert scheme of congru-
ences such that the general congruence S in H is the blow-up of P2 in r points, with
hyperplane section HS = d L −n1 E1 −· · ·−nr Er and h1(OS(1)) = h1(OS(2)) =
0. Moreover, suppose that:

(i)
(d+2

2

) − (n1+1
2

) − · · · − (nr +1
2

) = 6,
(ii) 1 + 2d2 − 2n2

1 − · · · − 2n2
r + 3d − n1 − · · · − nr ≤ 20.

Then the general element of H is the blow-up of P2 at r points in general position.
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Proof. Consider the blow-up S′ of P2 at r general points. From the existence of a
congruence satisfying the open conditions of the statement, it follows h1(OS′(1)) =
0, so that (since h2(OS′(1)) = 0 by Serre’s duality) Riemann-Roch theorem and
condition i) imply that |d L − n1 E1 − · · · − nr Er | has dimension five. Moreover,
such a linear system gives an embedding in P5, because it does for the congruences
in H. In the same way, conditions h1(OS′(2)) = 0 and (ii) imply that the image of
S′ in P5 lies on a quadric (which is smooth in general, because of the existence of
congruences in H). Finally, identifying such a smooth quadric with G(1, 3), we get
that the general S′ determines a congruence, as wanted.

We compute now the highest slope for the different types of rational congru-
ences. In most of the cases we will just sketch the proof (the complete details can
be found in [5]).

Case 6) In this case, S = P̃2(x1, . . . , x5) with hyperplane section H = 3L − E1 −
· · · − E5 and the congruences of this type are degenerate, i.e. contained in a linear
complex.

If this linear complex is general, then Q|S is stable by Theorem 2.1 and the
highest slope 1 is reached by every OS(Ei ). On the contrary, if the linear complex
is special, then there exists a linear subsheaf of Q|S with slope equal to 2 (see
Theorem 2.1). Hence Q|S is semistable, but not stable, and the highest slope is 2.

Case 7) Theorem 2.1 yields µmax ≤ 1, and this value is attained for any D = Ei ,
with i = 1, . . . , 4.

Case 7)∗ Now Theorem 2.1 yields µmax ≤ 2. Considering the dual congruence, [1],
Example 1.14 shows that the pencils of conics |L − Ei | or |2L − E1 − · · · − E5|,
always contain some conic lying in a β-plane. Hence, any such conic reaches the
highest slope 2.

Case 10) By Theorem 2.1, µmax ≤ 2, and this is achieved by any D = L − Ei .

Case 11). Theorem 2.1 yields µmax ≤ 2 and that, for any subsheaf ofOS(D) ⊂ Q|S
of slope two, it follows that D is effective, i.e. a conic in a β-plane. Proceeding as
in Claim 2 of case 17), the only possibilities for D are

D = L − E1

D = E1 or D = 3L − 2E1 − E2 − · · · − E7

D = L − Ei − E j or D = 2L − E1 − E2 − · · · − E7 + Ei + E j ,

with i, j = 2, . . . , 7.

Observe that OS(L − E1) cannot be a subsheaf of Q|S , since otherwise any conic
in |L − E1| would lie on a β-plane, implying that the dual congruence would have
a fundamental curve. Hence we have only 32 possible conics C1, . . . , C32 to lie
on a β-plane. However, since the congruence, as a surface S ⊂ P5 is cut-out by
quadrics, the general quadric containing S will not contain any of planes < C1 >

, . . . , < C32 > (for each i = 1, . . . , 32, choose a point pi in < Ci > \S and pick
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a quadric avoiding p1, . . . , p32). Such a general quadric will be smooth (because S
is contained in a smooth quadric), so that we can identify it with G(1, 3). Therefore
the general congruence of this type contains no conic lying in a β-plane.

Hence µmax = 1 for a general congruence of this type (for example D = E2
achieves this value). However, special types of this congruence can have one, two
or three conics lying in a β-plane ( [1, Example 1.15]) and in these cases µmax = 2.

Case 13)∗ By Theorem 2.1, µmax ≤ 3. This bound is achieved D = 3L−E1−· · ·−
E9. Indeed, D is a plane cubic, hence it is contained in an α-plane or β-plane (see
Remark 1.8). It is not contained in an α-plane, since it would produce a subsheaf
of slope three for the dual congruence, in contradiction with Theorem 2.1.

Case 13) By Theorem 2.1, µmax ≤ 2, and µ(D) = 2 only if D is effective. We
exclude that possibility by a computation as in case 17), Claim 2, with some extra
difficulties that we specify only in this case:

– The possibility D = Ei + E j is excluded because Ei , E j cannot lie on the same
β-plane, since they do not meet.

– The conic D = L − Ei − E j is not contained in a β-plane because it meets the
cubic C = 3L − E1 − · · · − E9 (which is in an α-plane, as we have seen when
studying the dual congruence) in one point and C ∪ D span a hyperplane in P5.

– We need to use Lemma 3.4 to exclude cases like D = 2L − E1 − · · · − E6,
which are not effective for a general S.

Finally, since any D = Ei has slope one, µmax = 1 if the congruence is general.

Cases 16) Now µmax ≤ 2, by Theorem 2.1, and slope two can be reached only
by effective divisors. This is excluded for a general congruence with the help of
Lemma 3.4, while slope one is achieved for any D = Ei .

Case 16)∗ Theorem 2.1 shows µmax ≤ 4, which is excluded by the usual techniques,
while the slope 3 is reached by OS(3L − E1 − · · · − E9).

Case 18) In this case, Theorem 2.1 provides µmax ≤ 3, and this is achieved only
for effective divisors D, which is excluded by Lemma 3.4. Since D = 3L − E1 −
· · ·−E11, is in a β-plane (because h0(Q|S(−D)) > 0 by Riemann-Roch), it follows
µmax = 2 if S is general.

Case 21) Theorem 2.1 shows now µmax ≤ 2, and for a general congruence we
exclude the possibilities µmax = 1, 2 as usual, using Lemma 3.4. Hence µmax = 0
if S is general.

Case 21)∗ In this case, µmax ≤ 5 by Theorem 2.1, and we exclude the possibilities
µmax = 4, 5 by the usual Cauchy-Schwarz trick. The slope three is reached by
OS(3L − E1 − · · · − E9), so that µmax = 3 for any congruence of this type.

Case 22) Now we get here µmax ≤ 3 from Theorem 2.1, and we exclude the cases
µmax = 2, 3 with the help of Lemma 3.4. Then µmax = 1 if S is general, and this is
achieved by any D = Ei .



THE STABILITY OF THE UNIVERSAL BUNDLE OF CONGRUENCES 519

Case 22)∗ Finally, Theorem 2.1 yields µmax ≤ 4. We exclude, as usual the cases
µmax = 3, 4 (we need now to use Lemma 3.4 to exclude possibilities like D =
3L − E1 − · · · − E10, because then h0(D) = 0 and h0(H − D) = 3, which is
incompatible with the existence of an exact sequence like (1.2)). Hence µmax = 2
if S is general, and this value is achieved by D = 3L − E1 − · · · − E11.

3.6. Conic bundles

Case 15). By Theorem 2.1, µ(D) ≤ 2 and µ(D) 
= 1 for all subsheaf OS(D) of
Q|S . We will prove µmax = 0 by excluding the case µ(D) = 2 as in the case of
rational congruences, but now writing numerical equivalence D ≡ pC0 + q f , with
p, q ∈ Z. Then DH = 2 yields 3p + 2q = 2, hence D ≡ −2tC0 + (1 + 3t) f , for
some t ∈ Z, while c2(Q|S(−D)) ≥ 0 yieds (−4)(t − 1

2 )(t +1) ≥ 0, so that t = −1
or t = 0. Let us exclude both possibilities:

• If t = 0, then D is a fiber of the elliptic surface, embedded as a conic, which is
necessarily contained in a β-plane. This is impossible, because the congruence
is the set of bisecant lines of an elliptic quartic curve in P3, so that every plane
of P3 contains at most six lines of the congruence.

• If t = −1, then D ≡ 2C0 −2 f and c2(Q|S(−D)) = 0, so that we have an exact
sequence

0 −→ OS(2C0 − 2 f ) −→ Q|S −→ OS(H − D) −→ 0

with H − D ≡ 3 f . Hence h0(H − D) = 3 and therefore D is effective, i.e. a
conic contained in a β-plane, which is impossible as in case t = 0.

Case 15)∗. In this case, µmax ≤ 4 by Theorem 2.1. Arguing as in the above case,
we exclude the existence of a subsheaf OS(D) with µ(D) = 4, since it should be
D ≡ −2tC0 +(2+3t) f , for some t ∈ Z, while c2(Q|S(−D)) = −8t2 −8t −2 ≥ 0
gives no solution. It is µmax = 3, since this is achieved by D = C0. Indeed, C0
is a plane cubic, hence contained in an α-plane or a β-plane (see Remark 1.8). It
cannot be contained in an α-plane, since this would yield µmax ≥ 3 for the dual
congruence, while we proved it is zero.

Case 25). Recall from [2], Remark 3.6 that a congruence of this type can have a
fundamental curve (namely a smooth plane cubic), so that µmax = 3 by Proposition
3.1, while the general one has no fundamental curve, so that Theorem 2.1 implies
µmax ≤ 1. We have equality, because the conic bundle has three singular conics,
hence S contains six lines.

Case 25)∗. The main difficulty of this case is that we do not know the precise value
of e (at least for the general congruence). However, using that C0 is elliptic, hence
of degree at least three, we get e ≤ 0. On the other hand, since e ≥ −1 (see [11])
we get e = −1, 0. Now we can proceed as in the case of rational congruences:
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Applying now Theorem 2.1, we get that DH ≤ 4 for all OS(D) ⊂ Q|S , with
equality only if D is effective, hence D would be a quartic curve contained in a β-
plane. To prove that this is impossible, write D ≡ pC0 + q f − n1 E1 − · · · − nr Er .
The conditions DH = 4 and c2(Q|S(−D)) ≥ 0 yield

n1 + n2 + n3 = (3 − e)p + 2q − 4

n1
2 + n2

2 + n3
2 ≤ −1 − p2e + 2pq

and applying to them the Cauchy-Schwarz inequality we obtain

(e2 − 3e + 9)p2 + [2q(3 − 2e) − 8(3 − e)]p + 4q2 − 16q + 19 ≤ 0.

From this we get the solutions

D ≡ C0 + f − Ei or D ≡ C0 + 2 f − E1 − E2 − E3 if e = 0

(excluded because they have arithmetical genus equal to one, so that they cannot be
plane quartics) and

D ≡ C0 or D ≡ C0 + f − Ei − E j if e = −1

(excluded since they have arithmetical genus zero).
We finally show µmax = 3 by showing a cubic lying in a β-plane for each

values of e. Since the dual congruence has µmax = 2, this plane cubic will be
necessarily in a β-plane. If e = 0, we take D = C0. If instead e = −1, there exist
infinitely many choices for C0, so that we can choose one passing through the point
p1 we are blowing up. We take then the effective divisor D = C0 − E1, which has
degree three and arithmetical genus one, hence it is a plane cubic.

Appendix. Congruences of degree 10

We include here, in Table 3.1 and without proof, a partial result of the stability
of Q|S for nondegenerate congruences of degree 10 (for the degenerate case, see
Remark 3.3). These congruences were classified by Gross in [9], although the irre-
ducibility of the corresponding Hilbert schemes is not proved. Hence the possible
values of µmax that we obtained have not full meaning (anyway, Q|S is always sta-
ble by Theorem 2.1). In the last column of the table we write down the divisor D
such that µ(D) is the highest possible slope we have found. For example, the op-
tions we give for the congruence (4, 6) blow-up of a K 3 surface and its dual mean
that µmax = 2 if and only if OS(E) is a subsheaf of Q|S; otherwise µmax = 0, and
it is reached by the subsheaf OS .
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Table 3.1. Stability properties for congruences of degree 10.
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