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Slopes of trigonal fibred surfaces
and of higher dimensional fibrations

MIGUEL ÁNGEL BARJA AND LIDIA STOPPINO

Abstract. We give lower bounds for the slope of higher dimensional fibrations
f : X −→ B over curves under conditions of GIT-semistability of the fibres,
using a generalization of a method of Cornalba and Harris. With the same method
we establish a sharp lower bound for the slope of trigonal fibrations of even genus
and general Maroni invariant; this result in particular proves a conjecture due to
Harris and Stankova-Frenkel.

Mathematics Subject Classification (2000): 14J10 (primary); 14J29, 14D06
(secondary).

1. Introduction and preliminaries

Given a fibration over a curve f : X −→ B (X, B complex, projective varieties, B
a smooth curve, f surjective with connected fibres) and a line bundle L = OX (L)

on X , we can define the slope of the pair ( f,L) to be the quotient

s( f,L) = Ln

deg f∗L

provided deg f∗L �= 0, where n is the dimension of X . When L = ω f , the relative
dualizing sheaf of f , we simply call it the slope of f and will denote it as s( f ).
Lower bounds for the slope have been extensively studied in the literature (e.g.,
[1, 4, 5, 15, 16, 26, 32]) for the case of fibred surfaces (n = 2) and some results are
known in dimension n = 3 [3, 22].

In this paper, we study this problem using a generalized version of a theorem
of Cornalba-Harris [7, 26]. This method provides a general result to produce lower
bounds of s( f,L) provided the pair (F, |L|F |) (where F is a general fibre of f ) is
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semistable in the sense of Geometric Invariant Theory. In Section 2 we recall this
result and derive the following consequences (see Corollaries 2.2 and 2.3 for more
detailed statements).

Theorem 1.1. Let X be a variety of dimension n and φ : X −→ B a flat morphism
over a curve. Let F be a general fibre of f . Suppose that (F, |L|F |) is Hilbert
semistable. Assume moreover that Ri f∗Lh = 0 for i > 0 and h � 0. Then

i) If |L|F | induces an embedding, we have

Ln ≥ n
(L |F )n−1

h0(F,L|F )
deg f∗L.

ii) If |L|F | induces an generically finite rational map onto a variety of degree d and
f∗Lh is nef, we have

Ln ≥ n
d

h0(F,L|F )
deg f∗L.

The method applied directly to families of canonical varieties would give very in-
teresting higher dimensional slope inequalities. However, already in the case of
surfaces it is very hard to check the stability assumption. For instance it is not
known if a “general” surface of general type satisfies it or not. The Hilbert stability
of hypersurfaces with log-canonical singularities can be derived by a result of Kim
and Lee [14] (see also [17]), which relates the stability of a hypersurface X ⊂ Pn to
the log-canonical threshold of the couple (Pn, X). The case of log-terminal singu-
larities was established by Tian [30] using methods of differential geometry. Then
we can deduce a bound on the slope, when the fibres are hypersurfaces which are
canonical, i.e., such that their canonical map is birational (see 2.5).

Theorem 1.2. Let f : X −→ B be a surjective flat morphism from a Q-factorial
projective n-fold X to a smooth complete curve B. Suppose that the fibration is
relatively minimal and that the general fibres F are minimal canonical varieties
with pg = n + 1, K n−1

F = n + 2, such that its canonical image has at most log-
canonical singularities. Then

K n
f ≥ n(n + 2)

(n + 1)
deg f∗ω f .

Examples of such fibres F are smooth hypersurfaces of Pn of degree n + 2.
It is worth mentioning that this theorem is the first result proving lower bounds

for the slope of fibrations of dimension higher than 3.
Eventually we give a new evidence of the necessity of the stability assumption

in the C-H theorem (Remark 2.6).
Section 3 is devoted to the study of a particular type of fibred surfaces, the

so called trigonal fibrations (i.e., when the general fibre is a trigonal curve). An
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intensively studied problem in the last decades is to find of lower bounds for the
slope of fibred surfaces. In general, the so called slope inequality holds [7, 26, 32]

s( f ) ≥ 4 − 4

g
.

It is sharp and equality is satisfied only for certain kind of hyperelliptic fibrations
[1, 26].

There are several reasons to conjecture that the gonality of the general fibre of
f has an increasing influence on the lower bound of the slope (see [4, 15, 25] and
Remark 3.6). So the next natural problem in this framework is the one of studying
trigonal fibrations.

The main known results are the following:

(Konno, [16]) If f : X −→ B is a trigonal fibration of genus g ≥ 6, then

s( f ) ≥ 14(g − 1)

3g + 1
. (1.1)

(Stankova-Frenkel, [25, Proposition 9.2 and Proposition 12.3]) If f : X −→ B is a
trigonal semistable fibration, then

s( f ) ≥ 24(g − 1)

5g + 1
. (1.2)

This bound is sharp, and if equality holds the general fibres have Maroni invariant
≥ 2.
Moreover, if g is even and the following conditions hold:

• the general fibres have Maroni invariant 0;
• the singular fibres are irreducible and have only certain kind of singularities;

then the slope satisfies the bound

s( f ) ≥ 5g − 6

g
. (1.3)

Harris and Stankova-Frenkel conjecture [25, Conjecture 12.1] the bound (1.3) to
hold without the extra condition on singular fibres.

It has to be remarked that the bounds (1.2) and (1.3), although better than (1.1),
are proved to hold only for semistable fibrations i.e. for fibred surfaces such that all
the fibres are semistable curves in the sense of Deligne-Mumford; this is, from the
point of view of fibred surfaces, a strong restriction. Indeed, starting from any fibred
surface, one can construct a semistable one by the process of semistable reduction,
but the slope cannot be controlled through this process, as shown in [27].

The main result of Section 3 is the following (Theorem 3.3):
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Theorem 1.3. Let f : S −→ B be a relatively minimal fibred surface such that the
general fibre C is a trigonal curve of even genus g ≥ 6 with Maroni invariant 0.
Then the slope satisfies inequality (1.3).

Observe that we are not assuming f to be semistable. In particular, we give a
positive answer to the Harris-Stankova-Frenkel conjecture.

Moreover, in Theorem 3.3, we prove at the same time that (1.3) holds for any fi-
bration of genus 6 whose general fibres have a g2

5, thus improving the bound proved
by Konno in [16], which is 96/25.

This result can be seen as a first step when searching for an increasing depen-
dence of the slope from the gonality of the general fibres. The assumption on the
Maroni invariant assures that the fibres are general in the locus of trigonal curves,
consistently with the conjectures (see Remark 3.6).

We prove this theorem applying the C-H method to a fibred 3-fold naturally
associated to the fibred surface; indeed the slope of f is related to the one of the
relative quadric-hull W −→ B of the trigonal fibration f : S −→ B (cf. [6,16]), for
a suitable line bundle on it. In the case of Maroni invariant 0, the general fibre of the
hull is P1 × P1, embedded as a surface of minimal degree in Pg−1, this embedding
being GIT semistable by a result of Kempf [13].

ACKNOWLEDGEMENTS. We wish to thank Maurizio Cornalba, Andreas Leopold
Knutsen and Andrea Bruno for many helpful conversations on this topic.

2. The Cornalba-Harris Method and the slope of fibrations

We work over the complex field C. Let X be a variety (an integral separated scheme
of finite type over C), with a linear system V ⊆ H0(X,L), for some line bundle L
on X . Fix h ≥ 1 and call Gh the image of the natural homomorphism

H0(Ps,OPs (h)) = Symh V
ϕh−−→ H0(X,Lh). (2.1)

Set Nh = dim Gh and take exterior powers ∧Nh Symh V
∧Nh ϕh−−→ ∧Nh Gh = det Gh .

We can see ∧Nh ϕh as a well-defined element of P(∧Nh Symh V ∨).
With the above notations, we call ∧Nh ϕh ∈ P(∧Nh Symh V ∨), the generalized

h-th Hilbert point associated to the couple (X, V ). If V induces an embedding, then
for h � 0 the homomorphism ϕh is surjective and it is the classical h-th Hilbert
point.

Fix a a basis and consider the obvious representation SL(s+1, C) −→ SL(V );
we get an induced natural action of SL(s + 1, C) on P(∧N Symh V ∨), and we can
introduce the associated notion of GIT (semi)stability: we say that the h-th gener-
alised Hilbert point of the couple (X, V ) is semistable (respectively stable) if it is
GIT semistable (respectively stable) with respect to the natural SL(s+1, C)-action.
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We say that (X, V ) is generalised Hilbert stable (respectively semistable) if its
generalised h-th Hilbert point is stable (respectively semistable) for infinitely many
integers h > 0.

We state a generalised version of the Cornalba-Harris theorem.

Theorem 2.1. [26, Theorem 1.5] Let X be a variety of dimension n and φ : X −→
B a flat morphism over a curve, and call F a general fibre. Let L be a line bundle
on X. Let h be a positive integer, and assume that (F, |L|F |) has semistable gen-
eralised h-th Hilbert point. Consider a vector subbundle Gh of φ∗Lh such that Gh
contains the image of the morphism of sheaves

Symhφ∗L −→ φ∗Lh,

and coincides with it at general t ∈ B.
Then the line bundle

Fh :=
(

det φ∗L
)−hNh ⊗ (detGh)r ,

where r := h0(F,L|F ), and Nh := rankGh, is effective.

Corollary 2.2. Let X be a variety of pure dimension n and φ : X −→ B a flat
proper morphism over a curve, and call F a general fibre. Let L be a line bundle
on X such that (F, |L|F |) is generalized Hilbert semistable. Suppose moreover that

(1) the linear system |L|F | induces an embedding of the general fibre F ;
(2) the sheaves Riφ∗Lh vanish for i > 0 for h large enough.1

Then, the following inequality holds

Ln ≥ n
(L |F )n−1

h0(F,L|F )
deg φ∗L. (2.2)

Proof. By the first assumption, we can apply Theorem 2.1 with Gh = φ∗Lh . Hence,
for infinitely many h > 0 the line bundle Fh is effective. Now, under our as-
sumptions degFh is a degree n polynomial in h with coefficients in the rational
Chow ring C H1(X)Q. Its leading coefficient has to be pseudo-effective, hence
to have non-negative degree. The statement now follows from an intersection-
theoretical computation. Indeed, the Riemann-Roch formula for singular varieties
(cf. [8, Corollary 18.3.1]) implies the following expansions:

Nh = (L |F )n−1

(n − 1)! hn−1 + O(hn−2),

and

deg φ∗Lh = deg φ!Lh = Ln

n! hn + O(hn−1),

because the higher direct images vanish by the second assumption.

1 This happens for instance if L is φ-ample.
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Corollary 2.3. Let X be a variety of pure dimension n and φ : X −→ B a flat
proper morphism over a curve, and call F a general fibre. Let L be a line bundle
on X such that (F, |L|F |) is generalized Hilbert semistable. Suppose moreover that
for large enough h

(1) the linear system |L|F | induces a generically finite rational map on the image
of F ;

(2) the vector bundle φ∗Lh is nef (i.e. every quotient has non-negative degree);
(3) the sheaves Riφ∗Lh vanish for i > 0.

Then the following inequality holds

Ln ≥ n
d

h0(F,L|F )
deg φ∗L, (2.3)

where d is the degree of the image φ(F) ⊆ Pr .

Proof. Let h be large enough. By the nef-ness assumption on φ∗Lh , the degree

of Fh is smaller or equal to the degree of
(
det φ∗L

)−hNh ⊗ (
det φ∗Lh

)r
. Then

the statement follows applying Riemann-Roch for singular varieties as in the pre-
vious corollary, observing that (by the first assumption) Nh = dhn−1/(n − 1)! +
O(hn−2).

In particular, using the relative canonical divisor, we can obtain the following
result on the slopes of families of certain canonical varieties.

Remark 2.4. Let φ : X −→ B be a fibration of a normal Q-factorial variety with
at most canonical singularities over a curve. Under these assumptions K X (and
Kφ = K X − φ∗K B) is a Weil, Q-Cartier divisor. We can consider its associated
divisorial sheaves ωX and ωφ . Suppose that the canonical sheaf ωX is φ-nef, and
that on a general fibre F the canonical divisor ωF = ωφ |F induces a generalized
Hilbert semistable map which is finite on the image of F . Then the following
inequality holds

K n
φ ≥ n

d

pg(F)
deg φ∗ωφ,

where pg(F) = h0(F, K F ) and d is the degree of the canonical image of the general
fibre F in Ppg(F)−1. In particular, if ωF induces a birational morphism, d = K n−1

F .
Indeed, we can apply Corollary 2.3 to the relative canonical sheaf: L = ωφ .

The second assumption is satisfied by [31], while the third one derives from the
relative nefness of ωX , using the relative version of Kawamata-Viehweg vanishing
Theorem (see for instance [12, Theorem 1.2.3]).

Although it is difficult to check the stability assumption for varieties of dimen-
sion bigger than 1, by a result of Kim and Lee [14] we have:

(Kim and Lee) Any normal hypersurface F ⊆ Pn of degree d ≥ n + 2 with only
log-canonical singularities is Hilbert stable.
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This result follows easily from the main result in [14], recalling that Chow
stability implies generalized Hilbert stability.

One should compare this result with [30], where Hilbert stability is proved un-
der the assumption of log-terminal singularities, using differential geometry tech-
niques.

We will say that a variety is canonical if its canonical map is birational onto its
image. Hence we can state:

Theorem 2.5. Let φ : X −→ B be a surjective flat morphism from a Q-factorial
projective n-fold X to a smooth complete curve B. Suppose that Kφ is φ-nef and
that the general fibres F are minimal canonical varieties (of dimension n − 1) with
pg = n + 1, K n−1

F = n + 2 whose canonical image has at most log-canonical
singularities. Then

K n
φ ≥ n(n + 2)

n + 1
deg φ∗ωφ.

Proof. Note that the generalized Hilbert stability of the canonical morphism ϕ|K F |
of the general fibre F is equivalent to the Hilbert stability of the embedding of the
image F = ϕ|K F |(F) ↪→ Pn (cf. [26]). Now F ⊂ Pn is Hilbert stable by Kim
and Lee’s result above. The proof is then straightforward using the argument of
Remark 2.4.

For instance a one-parameter family of surfaces with pg = 4 q = 0 and
K 2 = 5 such that the general fibre is of type (I ) in Horikawa classification [11,
Theorem 1, Section 1] satisfies the conditions of the above theorem; indeed these
surfaces have base-point-free birational canonical map, and their canonical images
are quintic surfaces in P3 with at most rational double points.

Remark 2.6. We can now give a new example that show the fact that the stability
condition in the C-H method is necessary, in addition to the one given by Morrison
in [7, Section 3].

In [22], Example on page 664, a fibred 3-fold φ : T −→ B is constructed
fitting in the following diagram

T
π ��

φ

��

W
β

��

α
����

��
��

��
PB(φ∗ωφ)

�����������������

B

such that

• the general fibre of φ is a surface of general type with pg = 4, q = 0 and
K 2

F = 4 whose canonical map is a degree 2 base point free map onto a quadric
cone in P3;

• the map π is a smooth double cover of a P2-bundle W over B such that φ∗ωφ =
α∗(ωα ⊗L) ⊕ α∗ωα = α∗(ωα ⊗L) (because α∗ωα = 0, being the generic fibre
of α a rational surface);
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• the composition β ◦ π is the relative canonical map of φ;
• the slope of φ is 20/7 (see [22, page 665] with e = 2).

On the other hand, as ωα ⊗ L induces on the general fibres of α the natural map as
a quadric cone in P3, by the same argument used by Konno in [16, Lemma 1.1], we
can conclude that Riα∗(ωα ⊗ L)h = 0 for i, h > 0.

It is well known that the quadric cone is Hilbert unstable. Assume nevertheless
that we could apply Theorem 2.1 to ωφ . Consider the morphism of sheaves

Symhφ∗ωφ −→ φ∗ωh
φ.

We can choose as Gh (in the notations of Theorem 2.1) the sheaf α∗(ωα ⊗ L)h .
Computing now the degree 3 coefficient of degFh , we obtain

K 3
φ

2
= π∗(Kα + L)3 ≥ 3

2
deg φ∗ωφ

and hence the slope would be at least 3, a contradiction.

3. The slope of trigonal fibrations

Let f : S −→ B be a relatively minimal fibred surface such that the general fibre
C is a trigonal curve of genus g.

Remark 3.1. If C is a trigonal curve of genus g, it is a well known fact (see for
instance [18, 23, 24]) that its canonical image lives on a Hirzebruch surface Fc =
P(OP1 ⊕OP1(c)) embedded in Pg−1 as a surface of minimal degree. The surface Fc
is the intersection of quadrics containing the canonical image of C in Pg−1; from
a more geometric point of view, it is the rational normal scroll generated by the
lines spanned by the divisors in the g1

3 on the canonical image of C . The number
c is called the Maroni invariant of C ; it has the same parity of g, and satisfies the
inequality c ≤ (g + 2)/3 (cf. [23]).

It has been shown in [19] that the Maroni invariant is an upper semicontinuos
function on the trigonal locus D3, and hence a general genus g trigonal curve has
Maroni invariant 0 (respectively 1) if g is even (respectively odd). The locus of
points in D3 corresponding to curves with Maroni invariant > 1 has codimension 1
the even case, while it has strictly bigger codimension in the odd one.

We can extend the construction mentioned above on the fibres of f to a rel-
ative setting, using the so-called relative hyperquadric hull (see e.g. [16] and [6]).
Consider the relative canonical image of S:

S
ψ

�����

��

Y ⊆ PB( f∗ω f ) = P

ϕ

��������������

B
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If A ∈ PicB is ample enough it can be easily checked that we have an epimorphism

H0(JY,P(2) ⊗ ϕ∗(A)) �� �� H0(JF,Pg−1(2)).

Let W0 be the horizontal irreducible component of the base locus of the linear sys-
tem on P given by the sections of H0(JY,P(2)⊗ϕ∗(A))). Since the general fibre C
is trigonal, W0 is a threefold fibred over B by rational surfaces of minimal degree.
Notice moreover that for g ≥ 5 the singular locus of W0 is contained in a finite
number of fibres. Let W be a desingularization of W0 and let L be the pull-back of
the tautological divisor of P to W . We will call W the relative quadric hull asso-
ciated to f and denote by φ : W −→ B the induced fibration. The fibre of φ over
general t ∈ B coincides with the one of W0 (hence it is the rational normal scroll
associated to the fibre of S over t).

The main facts we will need about the divisor L have been proved by Konno
in [16] (cf. Lemma 1.1 and Lemma 1.2).

Proposition 3.2 (Konno).

i) φ∗OW (L) = f∗ω f ;

ii) R pφ∗OW (hL) = 0 for p, h > 0;

iii) K 2
f ≥ 2 deg f∗ω f + L3.

We can now state the main result of this section.

Theorem 3.3. Let f : S −→ B be a relatively minimal fibred surface such that the
general fibre C is either:

• a trigonal curve of even genus g ≥ 6 and zero Maroni invariant;
• a curve of genus 6 with a g2

5 .
Then

s f ≥ 5g − 6

g
,

and this bound is sharp.

Proof. Using the relative quadric hull associated to f , the general fibre F of
φ : W −→ B is just P1 × P1 in the trigonal case and P2 in the case of a plane
quintic. The restriction of L to F induces a complete embedding of F in Pg−1 as
a surface of minimal degree. This is Hilbert semistable according, for instance, to
a result of Kempf (cf. [13, Corollary 5.3]). Moreover, OW (L) has no higher rela-
tive cohomology by Proposition 3.2, (ii). We can therefore apply Corollary 2.2 and
conclude that

L3 ≥ 3
g − 2

g
degφ∗OW (L).

The statement now follows using inequality (i) and (iii) of Proposition 3.2.
As for the sharpness of this bound, we refer to Example 3.4 below.
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Example 3.4. Using a construction of Tan [29], we can prove that any trigonal
curve with Maroni invariant strictly smaller than (g + 2)/9 can be realized as the
fibre of a semistable fibration over P1 with slope (5g − 6)/g. Let C be a trigonal
curve with Maroni invariant c. Recall that Pic Fc = Z[	] ⊕ Z[ f ], where 	 is the
negative section (	2 = −c) and f is a fibre of the ruling Fc −→ P1. The class of
C ⊂ Fc is 3	 + k f , where k = (g + 2 + 3c)/2.

As proved for instance in [10, V. Corollary 2.18], the linear system | 3	 + k f |
is very ample if and only if k > 6c, that is 9c < g +2. In this case, we can choose a
general pencil in | C |. It has C2 = (3	+k f )2 = 6k −9c = 3g +6 base points. Let
S be the blow up of Fc in these base points, and f : S −→ P1 the induced fibration.
Computing the relative invariants, we obtain K 2

f = 5g − 6 and χ f = g.
In [15, Example 4.6], other examples reaching the bound are provided, satis-

fying the condition that the bundle f∗ω f is semistable.

Remark 3.5. The higher Maroni invariant cases cannot be treated with the C-H
method. Recall that the general fibre of W is an Hirzebruch surface Fc embedded
in Pg−1 by the divisor D = 	 + g+c−2

2 f ; D is a “good” divisor in the notation
of [20], and by Theorem 6.5 of the same paper, the associated embedding is Chow
unstable (hence Hilbert unstable) if and only if c > 0.

On the other hand, Xiao’s method has been applied to this setting (regardless
to the Maroni invariant) by Konno in [16], and leads to the bound (1.1).

This seems to suggest that the two methods of Cornalba-Harris and of Xiao,
while being surprisingly similar in the case of fibred surfaces (cf. [4]), become
substantially different when applied to fibrations whose total space has dimension
≥ 3.

Remark 3.6. As it is well known, gonality provides a stratification of the moduli
space of smooth curves Mg . Indeed, the loci

Dk := {[C] ∈ Mg such that C has a g1
k

} ⊆ Mg

are closed subsets of Mg of decreasing codimension as k goes from 2 to [(g+3)/2].
The curves with maximal gonality [(g + 3)/2] form an open set.

It has been proved ([1,9] in the semistable case) that if f : S −→ B is a fibred
surface of odd genus and such that the general fibres have maximal gonality, then
s( f ) ≥ 6(g − 1)/(g + 1). Moreover, the slope inequality s( f ) ≥ 4(g − 1)/g, that
holds for any fibred surface, is an equality only for some hyperelliptic fibrations.
It seems therefore natural to conjecture an increasing bound for the slope of fibred
surfaces depending on the gonality of the general fibres. A natural guess would be
that the slope of non-hyperelliptic fibred surfaces should satisfy at least the bounds
for trigonal fibrations (1.1). This is however false, as observed for instance in [2,25]:
the easiest counterexamples are provided by bielliptic surfaces of arbitrarily large
genus, with slope 4.

The right question to ask when looking for a bound increasing with gonality
seems to be that the general fibres are “general” in the k-gonal locus: see [25,
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Conjecture 13.3]. From this point of view, the bound (1.3) could be the first step of
the desired sequence.

It is worth mentioning that Konno proves the same bound (1.3) in [15, Corol-
lary 4.4] under the assumptions that the fibration is non-hyperelliptic, and that f∗ω f
is a semistable vector bundle. The assumption of semistability for f∗ω f is difficult
to interpret; it would be very interesting to understand whether it is connected with
some kind of “genericity” of the general fibre.
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Università dell’Insubria - Como
Via Valleggio, 11
22100 Como, Italia
lidia.stoppino@uninsubria.it


