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On the shape of solutions of an asymptotically linear problem

MASSIMO GROSSI

Abstract. In this paper we study the problem{ −�u = |u|εu in �
u = 0 on ∂�

(0.1)

where � is a smooth bounded domain of R
N , N ≥ 1, ε > 0. We will show

that, under some assumptions, the solutions to (0.1) are close to suitable linear
combinations of eigenfunctions of the problem{ −�u = λu in �

u = 0 on ∂� .

Mathematics Subject Classification (2000): 35J60.

1. Introduction and statement of the main results

Let us consider the following problem{ −�u = |u|p−1u in �

u = 0 on ∂�
(1.1)

where p > 1 and � is a smooth bounded domain of R
N , N ≥ 1. Problem (1.1)

has been extensively studied in the last years; there is a wide literature on existence,
multiplicity and qualitative properties of solutions to (1.1) as p and � vary. Let us
recall a classical result (see [7] for a proof).

Theorem 1.1. Let 1 < p < N+2
N−2 . Then there exist infinitely many pairs of solution

to (1.1).

In this paper we study (1.1) when p is close to 1, i.e. p = 1 + ε with ε positive
small enough and we try to characterize its set of solutions. Setting p = 1 + ε (1.1)
becomes { −�u = |u|εu in �

u = 0 on ∂�.
(1.2)
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To our knowledge in this case there are not many results. One of them is due to
C. S. Lin (see [5]):

Theorem 1.2. Let � be a convex domain and p sufficiently close to 1. Then the
positive solution to (1.2) is unique.

In [5] a crucial tool is the scaling invariance of the problem. Theorem 1.2
was extended by Dancer (see [3]) without assuming the convexity of the domain.
Another result for a similar problem can be found in [4].

In this paper we will use a different approach and we study the set of solutions
to (1.2) as ε → 0. Roughly speaking, we show that, for ε small enough, the problem
(1.2) is “close” to the eigenvalue problem{ −�u = λu in �

u = 0 on ∂� .

Let us denote by σ(−�) the set of the eigenvalues of −� with Dirichlet boundary
condition and, for any λ ∈ σ(−�), by m(λ) the multiplicity of the eigenvalue λ.

Finally, for any λ ∈ σ(−�), let W (λ) = span
{

e(λ)
1 , .., e(λ)

m(λ)

}
be the eigenspace

associated to the eigenvalue λ with
∫
�

e(λ)
i e(λ)

j = δ
j
i .

We have the following result:

Theorem 1.3. Let λ̄ ∈ σ(−�). Then there exists ε0 = ε0(λ̄, N , �) > 0 such that
for any 0 < ε < ε0 and for any λ ≤ λ̄, λ ∈ σ(−�), we have that (1.2) has the
solutions

u j,ε = ±λ
1
ε

(
m(λ)∑
i=1

γ
( j,λ)
i e(λ)

i + φε

)
j = 1, .., m(λ) (1.3)

where φε → 0 in C2(�) and
(
γ

( j,λ)

1 , .., γ
( j,λ)

m(λ)

)
is a critical point of the functional

J : R
m(λ) → R,

J
(

1, .., 
m(λ)

) =
∫

�

∣∣∣∣∣
(

m(λ)∑
i=1


i e
(λ)
i

)∣∣∣∣∣
2 (

2 log

∣∣∣∣∣
m(λ)∑
i=1


i e
(λ)
i

∣∣∣∣∣ − 1

)
(1.4)

for any j = 1, .., m(λ).

Hence we have that any eigenspace W (λ) associated to λ generates at least
m(λ) solutions to (1.2) provided that ε is small enough. The proof of Theorem
1.3 uses a finite dimensional reduction of Liapounov-Schmidt type, a tool widely
used in perturbation problem. Note that we do not require any “non-degeneracy”
assumption on the critical points γ

(1,λ)
1 ,..,γ (m(λ),λ)

1 .
Our aim is now to show that, under an a priori estimate on the solutions, the

result in Theorem 1.2 is sharp. We have the following:
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Theorem 1.4. Let un be a sequence of nontrivial solutions to{ −�u = |u|εn u in �

u = 0 on ∂�
(1.5)

with εn → 0 as n → +∞ and suppose that there exist M ≥ λ1 (λ1 is the first
eigenvalue in σ(−�)) and C > 0 such that∫

�

|un|2 ≤ C M
2
εn . (1.6)

Then there exists λ ∈ σ(−�) such that, up to a subsequence again denoted by un,(∫
�

|un|2
)εn

→ λ ∈ σ(−�), as n → +∞, (1.7)

and

un = λ
1
εn

(
m(λ)∑
i=1

γi e
(λ)
i + φn

)
, (1.8)

with φn → 0 in C2(�) as n → +∞ and
(
γ1, .., γm(λ)

)
is a critical point of the

functional (1.4).

At this stage a question arises: Does each W (λ) generate exactly m(λ) solu-
tions? The answer is affirmative under a non-degeneracy assumption on the critical
points of the functional (1.4).

Theorem 1.5. Let us suppose that for any λ ≤ λ̄ the function J defined in (1.4)
has exactly m(λ) nondegenerate critical points γ (1), .., γ (m(λ)) ∈ R

m(λ). Then,

for ε small enough, (1.2) admits exactly
∑λ̄

i=1 m(λi ) pairs of nontrivial solutions
satisfying ∫

�

|uε |2 ≤ C M
2
ε , (1.9)

for some M ≥ λ1 and C > 0.

Note that if the eigenvalue is simple (i.e. m(λ) = 1) it is possible to prove that
any critical point of the functional J is nondegenerate (see proof of the Corollary
1.6). Then we have the following:

Corollary 1.6. Suppose that the any eigenvalue in σ(−�) is simple. Then for any
λk ∈ σ(−�) there exists ε̄0 = ε̄0(λ̄, N , �) > 0 such that for any 0 < ε < ε0 (1.2)
has exactly k pairs of nontrivial solutions satisfying (1.9).

The last corollary can be applied to many situations; indeed, from a Michelet-
ti’s result (see [6]) we have that all eigenvalues of −� are simple for “generic”
domains close to � (see also [8]).
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After this result was completed we have learned that some ideas of the paper
can be found in [1] where the authors proved some qualitative properties of the
solutions to (1.1).

The paper is organized as follows: in Sections 2-3 we give the proof of Theo-
rem 1.3. In Section 4 we prove Theorem 1.4 and in Section 5 we prove Theorem 1.5
and its corollary.

2. The Lyapunov-Schmidt reduction

Let us denote by σ(−�) the set of the eigenvalues of −� with zero Dirichlet bound-
ary condition and, for any λ ∈ σ(−�), m(λ) be the multiplicity of the eigenvalue λ.

Finally, for any λ ∈ σ(−�), denote by W (λ)
k = span

{
e(λ)

1 , .., e(λ)
m(λ)

}
the eigenspace

associated to the eigenvalue λ.
In this section we fix λ ∈ σ(−�) and set k = m(λ), e(λ)

i = ei , for i =
1, .., m(λ) and W (λ)

k = Wk . For γ = (γ1, .., γk) ∈ R
k we look for solutions to (1.2)

as

uε(x) = λ
1
ε

(
k∑

i=1

γi ei (x) + φ(x)

)
with φ ∈ H2(�) ∩ H1

0 (�) (2.1)

where H2(�) and H1
0 (�) denote the usual Sobolev spaces.

Set by ‖u‖ = ‖u‖H2(�)∩H1
0 (�) and ‖u‖2 = ‖u‖L2(�). Moreover we require that

|γ | ≤ γ0 (2.2)

where γ0 will be chosen later.
Set

W ⊥
k =

{
u ∈ H2(�) ∩ H1

0 (�) :
∫

�

uei = 0 for any i = 1, .., k

}
. (2.3)

Our first step is to derive the equation satisfied by the function φ. Inserting (2.1) in
(1.2) we get

−�

(
k∑

i=1

γi ei + φ

)
= λ

∣∣∣∣∣
(

k∑
i=1

γi ei + φ

)∣∣∣∣∣
ε (

k∑
i=1

γi ei + φ

)
, (2.4)

and using the mean value theorem we get that φ verifies

−�φ − λφ = A(φ) (2.5)

with A : H2(�) → L2(�),

A(φ) = λ

∣∣∣∣∣
k∑

i=1

γi ei + φ

∣∣∣∣∣
ε (

k∑
i=1

γi ei + φ

)
− λ

(
k∑

i=1

γi ei + φ

)
. (2.6)
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Since the operator −� − λI has a nontrivial kernel spanned by {e1, .., ek} we will
solve equation (2.5) in W ⊥

k . To this end let us denote by �k : H2(�) ∩ H1
0 (�) →

Wk and �⊥
k : H2(�)∩ H1

0 (�) → W ⊥
k the projections on Wk and W ⊥

k respectively.
So we try to solve the problem

�⊥
k [−�φ − A(φ)] = 0. (2.7)

Let us introduce L : W ⊥
k → W ⊥

k defined by

L = �⊥
k (−� − λI ) . (2.8)

By classical results we get that

‖L‖ ≥ C . (2.9)

In this setting (2.7) is equivalent to find a function φ ∈ W ⊥
k which verifies

φ = L−1
[
�⊥

k (A(φ))
]
. (2.10)

Proposition 2.1. Let γ 	= 0, γ ≤ γ0. Then there exists ε0 > 0 such that for any
0 < ε < ε0 there exists a unique φε ∈ W ⊥

k , φε = φε(γ, x) which verifies (2.10).
Moreover ‖φε‖ ≤ δε with δ depending only on λ, γ0, N , �.

Proof. By the mean value theorem we can write A in the following way,

A(φ) = ελ

(
k∑

i=1

γi ei + φ

)
log

∣∣∣∣∣
k∑

i=1

γi ei + φ

∣∣∣∣∣
∫ 1

0

∣∣∣∣∣
k∑

i=1

γi ei + φ

∣∣∣∣∣
tε

dt . (2.11)

Since φ is bounded in H2(�) it is not difficult to show that A(φ) ∈ L2(�). Let us
introduce the operator F : W ⊥

k → W ⊥
k

F(φ) = L−1
[
�⊥

k (A(φ))
]

(2.12)

and let us show that F is a contraction from Bε = {
φ ∈ W ⊥

k : ‖φ‖ ≤ δε
}

into itself
(δ will be chosen later).

We divide the proof in two steps.
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Step 1: F maps Bε into itself for a suitable δ and ε small enough.
We have that

∫
�

|A(φ)|2

= λ2ε2
∫

�


log

∣∣∣∣∣
k∑

i=1

γi ei + φ

∣∣∣∣∣
(

k∑
i=1

γi ei + φ

) 1∫
0

∣∣∣∣∣
k∑

i=1

γi ei + φ

∣∣∣∣∣
tε

dt




2

(2.13)

≤ λ2ε2
∫

�


 1∫

0

log

∣∣∣∣∣
k∑

i=1

γi ei + φ

∣∣∣∣∣
∣∣∣∣∣

k∑
i=1

γi ei + φ

∣∣∣∣∣
1+tε

dt




2

≤
(

using that |log |t |‖ x |1+tε ≤C
(
|t | 1

2 + |t | q
2

)
for some 2<q ≤ 2N

N − 2

)

Cε2
∫

�

(∣∣∣∣∣
k∑

i=1

γi ei +φ

∣∣∣∣∣+
∣∣∣∣∣

k∑
i=1

γi ei +φ

∣∣∣∣∣
q)

≤Cε2
(

1+
∫

�

|φ| +
∫

�

|φ|q
)

(2.14)
≤ Cε2 (

1 + ‖φ‖ + ‖φ‖q)
.

Then we have that

‖A(φ)‖2 ≤ Cε
(

1 + ‖φ‖ 1
2 + ‖φ‖ q

2

)
(2.15)

and from the definition of F we get

‖F(φ)‖ ≤ ‖L‖‖�⊥
k ‖‖A(φ)‖2 ≤ C0ε

(
1 + ‖φ‖ 1

2 + ‖φ‖ q
2

)
. (2.16)

Assuming that ‖φ‖ ≤ δε with δ = 2C0 by (2.16) we get

‖F(φ)‖ ≤ 2C0ε (2.17)

which gives the claim of this step.

Step 2: F is a contraction mapping from Bε into itself for ε small enough.
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Let us fix δ = 2C0 as in the previous step. We have

‖F(φ1) − F(φ2)‖ ≤ ‖L‖‖�⊥
k ‖‖A(φ1) − A(φ2)‖2

≤ C

∥∥∥∥∥
∣∣∣∣∣

k∑
i=1

γi ei + φ1

∣∣∣∣∣
ε (

k∑
i=1

γi ei + φ1

)
− (φ1 − φ2)

−
∣∣∣∣∣

k∑
i=1

γi ei + φ2

∣∣∣∣∣
ε (

k∑
i=1

γi ei + φ2

)∥∥∥∥∥
2

(using the mean value theorem)

= C

∥∥∥∥∥
∫ 1

0

[
(1 + ε)

∣∣∣∣∣
k∑

i=1

γi ei + sφ1 + (1 − s)φ2

∣∣∣∣∣
ε

− 1

]
ds (φ1 − φ2)

∥∥∥∥∥
2

.

(2.18)

Let us split � in the following way,

� = D1,ε,s ∪ D2,ε,s ∪ D3,ε,s (2.19)

where

D1,ε,s =
{

x ∈ � :
∣∣∣∣∣

k∑
i=1

γi ei + sφ1 + (1 − s)φ2

∣∣∣∣∣ ≤ ε

}
, (2.20)

D2,ε,s =
{

x ∈ � : ε <

∣∣∣∣∣
k∑

i=1

γi ei + sφ1 + (1 − s)φ2

∣∣∣∣∣ < 2

∥∥∥∥∥
k∑

i=1

γi ei

∥∥∥∥∥∞

}
, (2.21)

D3,ε,s =
{

x ∈ � :
∣∣∣∣∣

k∑
i=1

γi ei + sφ1 + (1 − s)φ2

∣∣∣∣∣ ≥ 2

∥∥∥∥∥
k∑

i=1

γi ei

∥∥∥∥∥∞

}
, (2.22)

and also split the integral in (2.18) as∥∥∥∥∥
∫ 1

0

[∣∣∣∣∣
k∑

i=1

γi ei + sφ1 + (1 − s)φ2

∣∣∣∣∣
ε

− 1

]
ds (φ1 − φ2)

∥∥∥∥∥
2

2

=
∫

D1,ε,s

· +
∫

D2,ε,s

· +
∫

D3,ε,s

· = I1 + I2 + I3.

(2.23)

Estimate of I1

First let us estimate the measure of D1,ε,s . We want to show that

meas
(
D1,ε,s

) → 0 as ε → 0 ∀s ∈ [0, 1]. (2.24)

By contradiction let us suppose that there exists ε0 > 0, s̄ ∈ [0, 1] such that

meas
(
D1,ε,s̄

) ≥ δ > 0 ∀ε ∈ (0, ε0). (2.25)
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Set
D =

⋂
n≥1

D1, 1
n ,s̄ . (2.26)

Of course we have that
meas(D) ≥ δ (2.27)

and

D =
{

x ∈ � :
k∑

i=1

γi ei + s̄φ1 + (1 − s̄)φ2 = 0

}
. (2.28)

Since ‖φ1, φ2‖≤δε we derive from (2.28) that
∫
�

∣∣∣∑k
i=1 γi ei

∣∣∣2 ≤δε for any ε≤ε0.

Then
∑k

i=1 γi ei = 0 almost everywhere in D with measD ≥ δ. Since
∑k

i=1 γi ei is
an eigenfunction of −� and γ 	= 0 we reach a contradiction. So (2.24) holds. Then
we have that

I1 =
∫

D1,ε,s

(∫ 1

0

[
(1+ ε)

∣∣∣∣∣
k∑

i=1

γi ei +sφ1+(1−s)φ2

∣∣∣∣∣
ε

− 1

]
ds

)2

|φ1 − φ2|2

≤

∫

D1,ε,s

∣∣∣∣∣
∫ 1

0

[
(1 + ε)

∣∣∣∣∣
k∑

i=1

γi ei + sφ1 + (1 − s)φ2

∣∣∣∣∣
ε

− 1

]
ds

∣∣∣∣∣
N



2
N

·
(∫

D1,ε,s

|φ1 − φ2| 2N
N−2

) N−2
N

≤ C
(
meas

(
D1,ε,s

)) 2
N ‖φ1 − φ2‖ = o(1) ‖φ1 − φ2‖ .

(2.29)

Estimate of I2

Since x ∈ D2,ε,s we have that∣∣∣∣∣
k∑

i=1

γi ei + sφ1 + (1 − s)φ2

∣∣∣∣∣
ε

− 1 → 0. (2.30)

Hence

I2 =
∫

D2,ε,s

(∫ 1

0

[
(1+ε)

∣∣∣∣∣
k∑

i=1

γi ei +sφ1+(1−s)φ2

∣∣∣∣∣
ε

−1

]
ds

)2

|φ1−φ2|2

≤C


∫

D2,ε,s

∣∣∣∣∣
∫ 1

0

[
(1+ε)

∣∣∣∣∣
k∑

i=1

γi ei +sφ1+(1−s)φ2

∣∣∣∣∣
ε

−1

]
ds

∣∣∣∣∣
N



2
N

‖φ1−φ2‖

= o(1) ‖φ1 − φ2‖ .

(2.31)

by the dominated convergence theorem.
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Estimate of I3

Let us remark that if x ∈ D3,ε,s then |sφ1(x) + (1 − s)φ2(x)| ≥
∥∥∥∑k

i=1 γi ei

∥∥∥∞.

Hence, using that ‖φ1, φ2‖ ≤ δε we get

meas
(
D3,ε,s

) → 0 as ε → 0 ∀s ∈ [0, 1]. (2.32)

Moreover, for x ∈ D3,ε,s we derive that∣∣∣∣∣(1 + ε)

∣∣∣∣∣
k∑

i=1

γi ei + sφ1 + (1 − s)φ2

∣∣∣∣∣
ε

− 1

∣∣∣∣∣ ≤ C
(

1 + |φ1| 2
N + |φ2| 2

N

)
. (2.33)

Let us estimate I3,

I3 =
∫

D3,ε,s

(∫ 1

0

[
(1+ε)

∣∣∣∣∣
k∑

i=1

γi ei +sφ1+(1−s)φ2

∣∣∣∣∣
ε

− 1

]
ds

)2

|φ1−φ2|2

≤C


meas

(
D3,ε,s

) 2
N +


 ∫

D3,ε,s

|φ1|



2
N

+

 ∫

D3,ε,s

|φ2|



2
N




 ∫

D3,ε,s

|φ1−φ2| 2N
N−2




N−2
N

= o(1) ‖φ1 − φ2‖

(2.34)

Finally, from (2.29), (2.31), (2.34) we have that (2.18) becomes

‖F(φ1) − F(φ2)‖ ≤ C(1 + ε)o(1) ‖φ1 − φ2‖ ≤ 1

2
‖φ1 − φ2‖ (2.35)

which proves that F is a contraction from Bε into itself with δ = 2C0 . Hence the
contraction mapping theorem provides the existence of a unique fixed point for the
operator F which gives the claim.

Remark 2.2. From the computation in Step 1 it follows that the constant δ is inde-
pendent of γ (it only depends on γ0).

The proof of the previous Proposition does not hold if γ = 0. Our aim is
extend the definition of φε = φε(a1, .., ak, x) in order to cover this case.

Let us consider a sequence γn → 0, γn 	= 0 and set φε,n = φε(γn, x). By
Remark 2.2 we deduce that there exists a subsequence γn (denoted again by γn) and
a function φ̄ε such that

φε,n → φ̄ε as n → +∞ (2.36)

weakly in H2(�) ∩ H1
0 (�) and strongly in L2(�). If we show that φ̄ε ≡ 0 we can

define
φε(0, x) = 0 . (2.37)

It will be proved in next lemma.
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Lemma 2.3. We have that φ̄ε ≡ 0.

Proof. Let us write down the equation satisfied by φε,n ,


−�φε,n −λφε,n −λ

[∣∣∣∣
(

k∑
i=1

γi ei + φε,n

)∣∣∣∣
ε (

k∑
i=1

γi ei + φε,n

)

−
k∑

i=1
γi ei + φε,n

]
=

k∑
i=1

Ci,n,εei in �

k∑
i=1

γi ei + φε,n = 0 on ∂� .

(2.38)

Let us show that (up to a subsequence)

Ci,n,ε → Ci,ε as n → +∞ for any i = 1, .., k. (2.39)

To prove (2.39) it is enough to multiply (2.38) by e j and integrate. We get

C j,n,ε

∫
�

e2
j ≤ λ

∫
�




∣∣∣∣∣
k∑

i=1

γi ei (x) + φε,n

∣∣∣∣∣
1+ε

+
∣∣∣∣∣

k∑
i=1

γi ei (x) + φε,n

∣∣∣∣∣

 (2.40)

and since γi,n are bounded and ‖φε,n‖ ≤ δε we get (2.39). Passing to the limit in
(2.38) as n → +∞ we get that φ̄ε satisfies

 −�φ̄ε − λ
∣∣φ̄ε

∣∣ε φ̄ε =
k∑

i=1
Ci,εei (x) in �

φ̄ε = 0 on ∂� .

(2.41)

We argue by contradiction and suppose that φ̄ε 	≡ 0. Define

ψε = φ̄ε

‖φ̄ε‖Lq (�)

(2.42)

for some 2 < q < 2N
N−2 . Let us show that

∫
�

|∇ψε |2 ≤ C where C is a positive
constant independent of ε. Multiplying (2.41) by ψε and using that

∫
�

ψεei = 0 for
any i = 1, .., k we have

∫
�

|∇ψε |2 = λ

∫
�

∣∣φ̄ε

∣∣ε ψ2
ε ≤

(∫
�

∣∣φ̄ε

∣∣ qε
q−2

) q−2
q

(∫
�

∣∣ψ̄ε

∣∣q
) 2

q ≤ C . (2.43)

Hence we have that ψε ⇀ ψ0 weakly in H1
0 (�) and ‖ψ0‖Lq (�) = 1. Finally,

multiplying (2.41) by e, where e is an eigenfunction of −� associated to µ 	= λ we
get

µ

∫
�

ψεe = λ

∫
�

∣∣φ̄ε

∣∣ε ψεe = λ

∫
�

(
1 + ε log

∣∣φ̄ε

∣∣ ∫ 1

0

∣∣φ̄ε

∣∣tε
dt

)
ψεe (2.44)



ON THE SHAPE OF SOLUTIONS OF AN ASYMPTOTICALLY LINEAR PROBLEM 439

which implies

(µ−λ)

∫
�

ψεe = ελ

∫
�

log
∣∣φ̄ε

∣∣ ∫ 1

0

∣∣φ̄ε

∣∣tε
dtψεe (2.45)

= ελ

‖φ̄ε‖Lq (�)

∫
�

log
∣∣φ̄ε

∣∣ ∫ 1

0

∣∣φ̄ε

∣∣tε
dt φ̄εe(

using that

∣∣∣∣∣log
∣∣φ̄ε

∣∣ ∫ 1

0

∣∣φ̄ε

∣∣1+tε
dt

∣∣∣∣∣ ≤ C
∣∣φ̄ε

∣∣ 1
2

)
(2.46)

≤ C‖e‖L∞(�)

ελ

‖φ̄ε‖Lq (�)

∫
�

∣∣φ̄ε

∣∣ 1
2 ≤ Cε‖φ̄ε‖Lq (�) ≤ Cε. (2.47)

Passing to the limit in (2.45) we get
∫
�

ψ0e=0. Since we also have that
∫
�

ψ0ei =0
for any i =1, .., k we derive that ψ ≡ 0 and this is not possible since ‖ψ0‖Lq (�) =1.
So we reach a contradiction and then φ̄ε ≡ 0.

Corollary 2.4. For any γ such that |γ | ≤ |γ0| there exists a unique function φε =
φε(γ , x) ∈ Bε which satisfies


−�

[
λ

1
ε

k

(
k∑

i=1
γi ei +φε

)]
−λ

∣∣∣∣
(

k∑
i=1

γi ei +φε

)∣∣∣∣
ε[

λ
1
ε

k

(
k∑

i=1
γi ei +φε

)]

=
k∑

i=1
Ci,εei in �

λ
1
ε

k

(
k∑

i=1
γi ei + φε

)
= 0 on ∂�

(2.48)

for some constants Ci,ε ∈ R.

Proof. Writing down the equation satisfied by φε in (2.10) we get (2.48). The
uniqueness of the function φε follows by the contraction mapping theorem (see the
proof of Proposition 2.1).

We end this section proving some properties of the function φε(γ, x).

Lemma 2.5. The function φε(γ, x) satisfies

φε(−γ, x) = −φε(γ, x) . (2.49)

Proof. The claim is a consequence of the uniqueness of the function φε . Indeed we
have that −φε(−γ, x) satisfies the problem (2.48) and using again the uniqueness
of the solution we get the claim.
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Lemma 2.6. The function φε(γ, x) is C1 in γ for γ 	= 0.

Proof. The claim follows by the implicit function theorem applied to Tε(γ, u) :
(0, γ0) × W ⊥

k ∩ H2(�) ∩ H1
0 (�) → W ⊥

k ,

Tε(γ, u) = �⊥
[
�

(
k∑

i=1

γi ei + u

)
+

∣∣∣∣∣
k∑

i=1

γi ei + u

∣∣∣∣∣
ε (

k∑
i=1

γi ei + u

)]
(2.50)

for ε ∈ (0, ε0). We have that Tε(γ, φε) = 0. If we show that T ′
ε (γ, φε) is invertible,

by the implicit function theorem we get the claim. We will show that

∥∥T ′
ε (γ, φε)

∥∥ ≥ C > 0 for any ε ∈ (0, ε0) . (2.51)

By contradiction let us suppose that there exists a sequence εn → 0, vn ∈ W ⊥
k ∩

H2(�) ∩ H1
0 (�) such that

‖vn‖ = 1 (2.52)

and ∥∥T ′
εn

(γ, φεn )vn
∥∥

L2(�)
→ 0 as n → +∞ . (2.53)

By (2.52) it follows that there exists v0 ∈ W ⊥
k ∩ H2(�) ∩ H1

0 (�) such that

vn → v0 (2.54)

weakly in H2(�) and strongly in L2(�). Arguing as in Step 2 of Proposition 2.1
we can pass to the limit in (2.53) and then

∥∥∥�⊥ (�v0 + λv0)

∥∥∥
L2(�)

= 0 . (2.55)

This implies that v0 = 0. On the other hand, by (2.53) we get

∫
�

∣∣∣∣∣�⊥
(

�vn + λ(1 + εn)

∣∣∣∣∣
k∑

i=1

γi ei + φεn

∣∣∣∣∣ vn

)∣∣∣∣∣
2

= o(1) (2.56)

and since �vn ∈ W ⊥
k and vn → 0 in L2(�) we have

∫
�

|�vn|2 + o(1) = o(1), (2.57)

a contradiction with (2.52). So T ′
ε (γ, φε) is an invertible operator and the claim

follows.
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3. The reduced problem

In this section we prove Theorem 1.3. Let Jε(u) : H1
0 (�) → R defined by

Jε(u) = 1

2

∫
�

|∇u|2 − 1

2 + ε

∫
�

|u|2+ε. (3.1)

It is well known that critical points of (3.1) provides solutions to (1.2). For |γ | ≤
γ0 let us consider the function φε = φε(γ, x) defined in Corollary 2.4. Using
the same notation of the previous section let us introduce the reduced functional
Iε(
) : {


 ∈ R
k : |
| ≤ γ0

} → R defined by

Iε(
) = Jε

[
λ

1
ε

(
k∑

i=1


i ei + φε(
, x)

)]
. (3.2)

We have the following:

Lemma 3.1. A function uε = λ
1
ε

(
k∑

i=1
γi ei + φε(γ, x)

)
is a solution to (1.2) if and

only if γ = (γ1, .., γk) ∈ R
k is a critical point to Iε.

Proof. If uε is a solution to (1.2) we have that J ′
ε(uε) = 0 and then

∂ Iε(γ )

∂am
= J ′

ε(uε)λ
1
ε

(
em + ∂φε(γ, x)

∂am

)
= 0. (3.3)

Conversely, let us suppose that γ is a critical point to Iε. Differentiating again (3.19)
we derive

0 = ∂ Iε(γ )

∂am
= J ′

ε

(
k∑

i=1

γi ei + φε(γ, x)

) (
em + ∂φε(γ, x)

∂am

)
. (3.4)

From (2.48) we get that

J ′
ε

(
k∑

i=1

γi ei + φε(γ, x)

)
∈ Wk (3.5)

and then

J ′
ε

(
k∑

i=1

γi ei + φε(γ, x)

) (
∂φε(γ, x)

∂am

)
= 0. (3.6)

Then (3.4) becomes

0 = J ′
ε

(
k∑

i=1

γi ei + φε(γ, x)

)
(em) . (3.7)
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From (3.7) we get that J ′
ε

(
k∑

i=1
γi ei + φε(γ, x)

)
∈ W ⊥

k and then we have

J ′
ε

(
k∑

i=1

γi ei + φε(γ, x)

)
= 0 (3.8)

which gives the claim.

Next result concerns the expansion of the reduced functional.

Lemma 3.2. We have that

Iε(
) = λ1+ 2
ε

4
ε


∫

�

∣∣∣∣∣
(

k∑
i=1


i ei

)∣∣∣∣∣
2 (

2 log

∣∣∣∣∣
k∑

i=1


i ei

∣∣∣∣∣ − 1

)
+ O (ε)


 (3.9)

uniformly with respect to 
 as ε → 0.

Proof. We have

Iε(
)

λ
2
ε

= 1

2

∫
�

∣∣∣∣∣∇
(

k∑
i=1


i ei + φε

)∣∣∣∣∣
2

− λ

2 + ε

∫
�

∣∣∣∣∣
k∑

i=1


i ei + φε

∣∣∣∣∣
2+ε

= 1

2

∫
�


λ

(
k∑

i=1


i ei

)2

+ 2∇
(

k∑
i=1


i ei

)
· ∇φε + |∇φε |2


 (3.10)

−λ

(
1

2
− ε

4
+ O

(
ε2

)) ∫
�


(

k∑
i=1


i ei

)2

+ 2

(
k∑

i=1


i ei

)
φε + φ2

ε




·
[

1 + ε log

∣∣∣∣∣
k∑

i=1


i ei + φε

∣∣∣∣∣
∫ 1

0

∣∣∣∣∣
k∑

i=1


i ei + φε

∣∣∣∣∣
tε

dt

]
. (3.11)

Recalling that φε ∈ W ⊥
k we have that

∫
�

∇
(

k∑
i=1


i ei

)
· ∇φε = 0. Moreover since

‖φε‖ ≤ δε with δ independent of 
 we get that

Iε(
)

λ
2
ε

=λ

∫
�


ε

2

(
k∑

i=1


i ei

)2
log

∣∣∣∣∣
k∑

i=1


i ei

∣∣∣∣∣
∫ 1

0

∣∣∣∣∣
k∑

i=1


i ei +φε

∣∣∣∣∣
tε

dt− ε

4

(
k∑

i=1


i ei

)2
+ O

(
ε2

)
.

(3.12)
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Since the function x2 |x |tε → x2 uniformly on the compact set as ε → 0 for any
t ∈ [0, 1], arguing as in Step 2 of Proposition 2.1, we get

(
k∑

i=1


i ei

)2 ∫ 1

0

∣∣∣∣∣
k∑

i=1


i ei + φε

∣∣∣∣∣
tε

dt →
(

k∑
i=1


i ei

)2

(3.13)

and the claim follows.

The main result of this section follows by a classical result of critical point theory
due to Clark ( [2]). Here we mention a slightly different statement (see [7]).

Theorem 3.3. Let E a Banach space, I ∈ C1(E, R) with I bounded from below
and satisfying the Palais-Smale condition. Suppose I (0) = 0, there is a set K ⊂ E
such that K is homeomorphic to S j−1 by an odd map and supK I < 0. Then I
possesses at least j distinct pairs of critical points.

Remark 3.4. From the proof of previous theorem it is possible to see that the criti-
cal points x of I satisfy I (x) < 0. Hence it is enough to require the differentiability
of the functional just for x 	= 0 and we only need the validity of the Palais-Smale
condition for negative values of I .

We will apply Theorem 3.3 to find at least j pairs of critical points to the
functional Iε for ε small enough.

Proposition 3.5. For γ0 sufficiently large and for ε small enough the functional Iε
admits at least j distinct pairs of critical points.

Proof. We will apply Theorem 3.3 with I = 4

ελ
2
ε

Iε and E = {
γ ∈ R

k : |
| ≤ γ0
}
.

Note that by Lemma 2.5 we have that Iε is an even functional and by Lemma 2.6 it is
differentiable in E \ {0}. Let us show that I is bounded from below. By Lemma 3.2
it is enough to show that the functional

I0(
) =
∫

�

∣∣∣∣∣
(

k∑
i=1


i ei

)∣∣∣∣∣
2 (

2 log

∣∣∣∣∣
k∑

i=1


i ei

∣∣∣∣∣ − 1

)
(3.14)

is bounded from below. Since the function g(t) = t2 (2 log |t | − 1) satisfies g(t) ≥
−1 we derive that

|I0(
)| ≥ −meas � (3.15)

which gives the claim.
Let us prove that I satisfies the Palais-Smale condition. Since I is defined for
|
| ≤ |γ0| we have to check any Palais-Smale sequence is far away from the sphere
|
| = γ0. By Remark 3.4 this leads to prove that

I (
) > 0 if |
| = γ0. (3.16)
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We will show that (3.16) is verified if |γ0| is large enough. By Lemma 3.2 it is
enough to prove

I0(
) =
∫

�

∣∣∣∣∣
(

k∑
i=1


i ei

)∣∣∣∣∣
2 (

2 log

∣∣∣∣∣
k∑

i=1


i ei

∣∣∣∣∣ − 1

)
> 0 if |
| = |γ0| . (3.17)

Let 
 satisfying |
| = |γ0| and suppose that 
1 = max
i=1,..,k


i . We have that 
1 ≥
|γ0|√

N
and

I0(
) = 2
∫

�

(
k∑

i=1


i ei

)2

log

∣∣∣∣∣
k∑

i=1


i ei

∣∣∣∣∣ − γ 2
0

= 2 log |
1|γ 2
0 + 2

∫
�

(
k∑

i=1


i ei

)2

log

∣∣∣∣∣e1 +
k∑

i=2


i


1
ei

∣∣∣∣∣ − γ 2
0

= |γ |2

2 log |
1| + 2

∫
�

(
k∑

i=1

γi

γ0
ei

)2

log

∣∣∣∣∣e1 +
k∑

i=2

γi


1
ei

∣∣∣∣∣ − 1


 ,

(3.18)

and since t2 log t ≥ − 1
2 e− 1

4 (3.18) becomes

I0 ≥γ 2
0

[
2 log |
1|− e− 1

4 meas �−1
]
≥γ 2

0

[
2 log

|γ0|√
N

−e− 1
4 meas �−1

]
. (3.19)

Choosing

|γ0| > exp

{√
N

e− 1
4 meas� + 1

2

}
(3.20)

we have that I0(
) > 0. So the Palais-Smale condition is satisfied.

We end our proof by showing that there exists a sphere K ⊂ E such that supK I <0.
To do this let us observe that the function g(t) = t2 (2 log |t | − 1) satisfies g(t) < 0

if |t | < e
1
2 .

Hence, choosing |
| = e
1
2

2
k∑

i=1
‖ei ‖∞

we deduce that

∣∣∣∣ k∑
i=1

ei

∣∣∣∣ < 1
2 e

1
2 and then

∫
�

(
k∑

i=1


i ei

)2 (
2 log

∣∣∣∣∣
k∑

i=1


i ei

∣∣∣∣∣ − 1

)
< 0, (3.21)

which gives the claim.

Proof of Theorem 1.3. It follows by Lemma 3.1 and Proposition 3.5.
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4. The asymptotic behavior of the solution

In this section we study problem (1.2) and, under some suitable conditions, we try
to show that the set of its solution is the same prescribed in the previous section.

Proof of Theorem 1.4. Set vn = un‖un‖2
. Then vn solves


−�vn = ‖un‖εn

2 |vn|εvn in �

‖vn‖2 = 1
vn = 0 on ∂� .

(4.1)

By assumption we have that, up some subsequence again denoted by εn → 0,

‖un‖εn
2 → λ . (4.2)

Moreover, by mean value theorem we get

|vn|εn vn = vn + εnvn log |vn|
∫ 1

0
|vn|tεn dt . (4.3)

Since ‖vn‖2 = 1 we get that vn log |vn|
∫ 1

0 |vn|tεn dt is bounded in L1(�). Hence
using the standard regularity theory we get the existence of v0 ∈ C2(�) such that

|vn|εn vn → v0 in L1(�) (4.4)

and 


−�v0 = λv0 in �

‖v0‖2 = 1
v0 = 0 on ∂� .

(4.5)

Since ‖v0‖2 = 1 we derive from (4.5) that λ ∈ σ(−�) and then (1.7) follows by
(4.2). Moreover, again by (4.5) we have that

v0 =
m(λ)∑
i=1

γi e
(λ)
i , (4.6)

which gives (1.8)
Let us show that γi is a critical point of the function (1.4). Setting zn = un

λ
1
εn

we have that zn satisfy { −�zε = λ|zε |εzε in �

zε = 0 on ∂� .
(4.7)

Multiplying (4.7) by e j ∈ Wk we get

λ

∫
�

zne j = λ

∫
�

|zn|rεn zne j = λ

∫
�

(
1 + εn log |zn|

∫ 1

0
|zn|tεn dt

)
zne j (4.8)
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which implies

0 =
∫

�

log |zn|
∫ 1

0
|zn|tεn dtzne j . (4.9)

From (4.9) we derive

0 =
∫

�

(
log

|un|
‖un‖2

+ log
‖un‖2

λεn

) ∫ 1

0

|un|tεn

‖un‖tεn
2

‖un‖tεn
2

λt
dt

un

‖un‖2
e j . (4.10)

Since un‖un‖2
→ ∑k

i=1 γi ei and meas {x ∈ � : ei (x) = 0} = 0 for any i = 1,..., k,

we get that |un |tεn

‖un‖tεn
2

→ 1 as εn → 0 for any t ∈ [0, 1] and almost everywhere in �.

Passing to the limit in (4.10) we have

0 =
∫

�

log

∣∣∣∣∣
k∑

i=1

γi ei

∣∣∣∣∣
k∑

i=1

γi ei e j . (4.11)

Observing that
∫
�

log
∣∣∣∑k

i=1 γi ei

∣∣∣∑k
i=1 γi ei e j = ∂ J (
)

∂γ j

∣∣∣

=γ

we get that (γ1,...,γm(λ))

is a critical point of the functional (1.4).
In order to finish our proof we have to prove (1.8) (note that our argument only

gives that

un = (λ + o(1))
1
εn

(
m(λ)∑
i=1

γi e
(λ)
i + φε

)
, (4.12)

that is a weaker statement that (1.8).
In order to show (1.8) we need the following estimate,

‖un‖εn
2 − λ = o(εn). (4.13)

To prove (4.13) let us multiply (4.1) by e j ∈ Wk and integrate. Here j is chosen so
that a j 	= 0. We have

λ

∫
�

vne j =
(‖un‖εn

2 − λ
) ∫

�

|vn|εn vne j + λ

∫
�

|vn| εnvne j

=(‖un‖εn
2 −λ

)∫
�

|vε | εnvεe j +λ

∫
�

(1+εn log |vn|) vne j +O
(
ε2

n

)
,

(4.14)

which implies

0 = ‖un‖εn
2 − λ

εn

∫
�

|vn| vne j + λ

∫
�

log |vn| vne j + O(εn). (4.15)

Passing to the limit in (4.15) and using (4.11) we get

a j lim
n→+∞

‖un‖εn
2 − λ

εn
= 0 (4.16)

and since a j 	= 0 we derive (4.13).
So from (4.13) we get that (4.12) becomes (1.8).
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5. The uniqueness result

In this section we prove Theorem 1.5 and its corollaries.

Proof of Theorem 1.5. From Theorem 1.3 we have the existence of at least∑λ̄
i=1 m(λi ) pairs of nontrivial solutions to (1.2). By contradiction let us suppose

that there exists another solution vε satisfying (1.9). From Theorem 1.4 we have
that, for some sequence εn → 0, there exists λ ∈ σ(−�) such that

(∫
�

∣∣vεn

∣∣2
)εn

→ λ ∈ σ(−�), as n → +∞ . (5.1)

Corresponding to this eigenvalue λ we have that (again by Theorem 1.3) there ex-
ist at least k = m(λ) pairs of nontrivial solutions ±uε,1, .., ±uε,k verifying (1.3).
In this way we have constructed a solution vεn = vn different from ±uε,1, .., ±uε,k

such that vn = λ
1
εn

(∑k
i=1 γ

( j)
i ei + φn

)
with φn → 0 in C2(�) for some

j = 1, . . . , k. It is not restrictive to assume that j = 1. Set uεn,1 = un . Since
vn 	≡ un we can define

wn = vn − un

‖vn − un‖L2(�)

(5.2)

which satisfies




−�wn = (1 + εn)
∫ 1

0 |tvn + (1 − t)un|εn dt wn in �

wn = 0 on ∂�

‖wn‖L2(�) = 1 .

(5.3)

By (1.8) and since meas {x ∈ � : ei (x) = 0} = 0 for any i = 1, .., k we get that
|vn|εn → λ, |un|εn → λ almost everywhere in �. Then,

∫ 1

0
|tvn + (1 − t)un|εn dt → λ almost everywhere in �. (5.4)

From the standard regularity theory we get that there exists w ∈ H1
0 (�) such that

wn ⇀ w weakly in H1
0 (�) and w satisfies

{ −�w = λw in �

w = 0 on ∂�
(5.5)

Hence w =
k∑

i=1
βi ei . Next step is to prove that βi = 0 for any i = 1, .., k. To show



448 MASSIMO GROSSI

it let us multiply (5.3) by e j , j = 1, .., k and integrate. We have

λ

∫
�

wne j = λ(1 + εn)

∫
�

∫ 1

0

∣∣∣∣∣t vn

λ
1
εn

+ (1 − t)
un

λ
1
εn

∣∣∣∣∣
εn

dt wne j

= λ(1 + εn)

∫
�

(
1 + εn

∫ 1

0

∫ 1

0

∣∣∣∣∣t vn

λ
1
εn

+ (1 − t)
un

λ
1
εn

∣∣∣∣∣
εns

ds

· log

∣∣∣∣∣t vn

λ
1
εn

+ (1 − t)
un

λ
1
εn

∣∣∣∣∣ dt

)
wne j

(5.6)

which implies

0 =
∫

�

(
1 +

∫ 1

0

∫ 1

0

∣∣∣∣∣t vn

λ
1
εn

+ (1 − t)
un

λ
1
εn

∣∣∣∣∣
εns

ds

· log

∣∣∣∣∣t vn

λ
1
εn

+ (1 − t)
un

λ
1
εn

∣∣∣∣∣ dt

)
wne j + O(ε)

(5.7)

and passing to the limit we get

k∑
i=1

βi

∫
�

(
1 + log

∣∣∣∣∣
k∑

l=1

γ
(1)
l el

∣∣∣∣∣
)

ei e j = 0 . (5.8)

A straight-forward computation shows that

∂2 J (γ (1))

∂γi∂γ j
= 2

∫
�

(
1 + log

∣∣∣∣∣
k∑

i=1

γ
(1)
i ei

∣∣∣∣∣
)

ei e j . (5.9)

By the non-degeneracy of the critical point γ (1) we get that the matrix

∫
�

(
1 + log

∣∣∣∣∣
k∑

i=1

γ̄
(1)
i ei

∣∣∣∣∣
)

ei e j

is invertible and then the linear system (5.8) admits only the trivial solution βi = 0
for any i = 1, .., k. Hence w ≡ 0. Last step of our proof is to show that w ≡ 0
leads to a contradiction.. Multiplying (5.3) by wn we get∫

�

|∇wn|2 ≤ C
∫

�

|wn|2 . (5.10)

Then wn ⇀ 0 in H1
0 (�), wn → 0 strongly in L2(�) and this is a contradiction

with ‖wn‖L2(�) = 1. This ends the proof.
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Proof of Corollary 1.6. Let us consider a simple eigenvalue λ and e be denoted the
associated eigenfunction. By Theorem 1.5 we had to show that the function

J (
) = 
2
∫

�

e2 (2 log |
e| − 1) s (5.11)

admits only one pairs of critical points ±γ verifying J ′′(±γ ) 	= 0. A straight-
forward computation shows that

J ′(γ ) = 0 ⇔ γ = ±exp

(
−

∫
�

e2 log |e|
)

. (5.12)

Corresponding to these values of γ we get

J ′′(±γ ) = 2
∫

�

(
e2 log |γ e| + e2

)
= 2 log |γ | + 2

∫
�

e2 log |e| + 2

= 2 	= 0.

(5.13)

which proves the claim.
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