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A priori estimates in L∞
for non-diagonal perturbed quasilinear systems

STEFAN KRÖMER

Abstract. We present a way to derive a priori estimates in L∞ for a class of
quasilinear systems containing examples with a leading part which is neither di-
agonal nor of Uhlenbeck type. Moreover, a perturbation term with natural growth
in first order derivatives is allowed.

Mathematics Subject Classification (2000): 35B45 (primary); 35J45 (secondary).

1. Introduction

We obtain a priori estimates in L∞ for solutions of the Dirichlet problem for a class
of quasilinear systems of second order, a prototype of which is

− div Q j (∇u) + |∇u|p (Ru) j + f j (x) = 0 in � for j = 1, . . . , M,

u = 0 on ∂�.
(1.1)

Here f = ( f 1, . . . , f M ) ∈ Lq(�; R
M ) with q > N/p and R ∈ R

M×M non-
negative definite are fixed, � ⊂ R

N is a bounded domain, and u = (u1, . . . , uM ) :
� → R

M . A simple example for admissible Q is the vector p-Laplacian in the
form Q j (∇u) = |∇u|p−2 ∇u j for some 1 < p < ∞, but the results presented
here are also applicable for a (slightly) more general class containing leading parts
which are not of Uhlenbeck type.

Concerning the existence of (weak) solutions of the Dirichlet problem for this
system, a key feature of the second term (henceforth called “the perturbation”) is its
so–called natural growth with respect to ∇u, which should be seen in comparison
with the growth of the leading part. There is a well established and fairly complete
theory for the existence of weak solutions for scalar equations (M = 1) of this type,
for instance see [1,2,9,12,16] and the monographs [4] and [17]. The main structural
assumption employed in that context is a sign condition on the perturbation, R ≥ 0
in our example. This condition also contributes to obtaining a priori estimates in
W 1,p. While these estimates easily extend to systems, basically just using that the
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leading part is coercive in a suitable sense and that the matrix R is non-negative
definite, so far it remains an open problem whether quasilinear elliptic systems
admit the existence of a weak solution for any such R. Partial results are available,
though. For instance, a simple argument shows existence whenever a sequence
of approximating solutions can be bounded in L∞ by a suitable small constant
(e.g. [6]). In the special case where R is a positive multiple of the identity matrix
(i.e., the angle formed by the perturbation and its argument is zero at least in an
asymptotic sense, “angle condition”), R. Landes proved existence without such a
smallness assumption [11] (see also [3] for a generalization). For that purpose,
additional structural properties of the leading part are needed. More recently, it
turned out that an existence result which in some sense lies in between the two
aforementioned approaches is also possible [13]. It exhibits a relationship of the
maximal admissible constant for the a priori bound in L∞ and the maximal angle
formed by the perturbation and its argument (the angle between u and Ru in the
example above), roughly speaking, one of those two quantities has to be sufficiently
small with respect to the other.

Of course, quantitative bounds in L∞ are somewhat hard to verify, in partic-
ular in view of the fact that for systems of general form, the possible approaches
to obtaining such a bound are rather limited, even if one does not care about the
numerical value of the bound. In the case of a scalar quasilinear elliptic equation,
a powerful theory is provided in [10]. In particular, this approach requires that the
terms of the equation satisfy suitable coercivity conditions, such as (Q:2) and (b:2)
for (2.1) below, and if these are violated, unbounded solutions may exist [7]. More-
over, in case of quasilinear elliptic systems, imposing coercivity is still not enough;
see [8] for instance, where several counterexamples concerning a priori bounds and
regularity are collected. As already observed in [10], a notable exception is formed
by systems with a leading part in diagonal form, i.e., with Q j (∇u) = q(∇u j ) for
a q : R

N → R
N . The same method can also be employed to obtain an a priori

bound in L∞ if the leading part of the system is of Uhlenbeck type, i.e., of the
form Q j (∇u) = q̃(∇u)∇u j with q̃ : R

M×N → R, as shown in [13]. For the spe-
cial case of homogeneous systems ( f = 0 in (1.1)) with inhomogeneous boundary
conditions we also refer to [14].

One now may ask if it is possible to extend the method of [10] to systems with
a leading part of more general form, at least if it satisfies the structure condition
used in [13] to prove existence of weak solutions assuming a suitable quantitative
a priori estimate in L∞ is valid. However, such a generalization is by no means
obvious. Here, the technical problem is due to the typical way of truncating the
vector valued solution (which is employed as a test function in this context), because
it can interfere with the action of the leading part in a bad way. Nevertheless, as
we show in the proof of Proposition 3.3, if the leading part satisfies the structure
condition (Q:3) below, a suitable modification of the method of [10] still yields
the desired estimate. The main novelty is the use of a modified truncation, which at
first glance has the rather bad property of not preserving continuity and thus leaving
the class of admissible functions. Of course, this can be circumvented by using a
sequence of mollified versions instead, at the cost of a perturbation term in the
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estimates arising from the discontinuity created in the limit. Somewhat surprisingly,
this term turns out to be of a form which still can be handled.

Notation

As usual, W k,p(�; V ) is the Sobolev space of functions u : � → V with distribu-
tional derivatives up to order k in L p(�; V ), where � ⊂ R

N is a domain (i.e., open
and connected) and V is some finite dimensional euclidean vector space. The closed
subspace W k,p

0 (�; V ) consists of the closure of C∞
0 (�), the smooth functions with

compact support, in W k,p. Norms of infinite dimensional spaces are denoted by
||·||X , where the corresponding space X is given in the index. In a finite dimen-
sional euclidean vector space, the norm generated by the (standard) scalar product
is denoted by |·|, as is the real modulus. Moreover, if A ⊂ R

N is a measurable set,
LN(A) is its Lebesgue measure. The tensor product µ ⊗ ν ∈ R

k×l of two vectors
µ ∈ R

k , ν ∈ R
l is the matrix with entries (µ ⊗ ν)i j = µiν j , and the positive

part of a real or a real-valued function is denoted by ( f )+ := max{0, f }. For sub-
sets of � defined by a logical expression A(x), we frequently use the abbreviation
{A} = {A(x)} := {x ∈ � | A(x) is true}.

ACKNOWLEDGEMENTS. Part of this work was carried out while visiting the
Carnegie Mellon Center for Nonlinear Analysis (NSF Grants No. DMS-0405343
and DMS-0635983), with the German Research Foundation (DFG) providing fi-
nancial support via Research Fellowship No. KR 3544/1-1.

2. Assumptions and main result

Throughout this paper, � ⊂ R
N is a bounded domain and 1 < p < N . We study

solutions of the system

− div Qi (x, u, ∇u) + bi (x, u, ∇u) = 0 in � for i = 1, . . . , M,

u = 0 on ∂�
(2.1)

in the set

A :=


u ∈ W 1,p

0 (�; R
M )

∣∣∣∣∣∣∣∣
Q(·, u, ∇u) ∈ L

p
p−1 (�; R

M×N ),

b(·, u, ∇u) ∈ L1(�; R
M ) and

b(·, u, ∇u) · u ∈ L1(�)


 .

Here, (2.1) is understood in a suitable weak sense, that is, u ∈ A satisfies

F(u)[ϕ] = 0 for every ϕ ∈ X := W 1,p
0 (�; R

M ) ∩ L∞(�; R
M ), (2.2)
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with F : A → X ′ defined by

F(u)[ϕ] :=
∫

�

[
Q(x, u, ∇u) : ∇ϕ + b(x, u, ∇u) · ϕ

]
dx, (2.3)

where X ′ denotes the dual of X . In the integrand in (2.3), the symbols : and · denote
the standard scalar products in R

M×N and R
M , respectively. Moreover,

Q =(Qi
j ) : � × R

M × R
M×N → R

M×N is a Carathéodory function and (Q:0)

b=(bi ) : � × R
M × R

M×N → R
M is a Carathéodory function, (b:0)

i.e. the functions are measurable in their first variable x and continuous in the other
variables for a.e. x ∈ �. The remaining assumptions on Q and b stated below are
understood to be valid for a.e. x ∈ �, every µ ∈ R

M and every ξ ∈ R
M×N . In the

following,

hs denotes a fixed non-negative function in Ls(�) (for s ∈ [1, ∞]),
and g : [0, ∞) → [0, ∞) is a fixed continuous function with g(0) = 0.

(2.4)

We assume the growth conditions

|Q(x, µ, ξ)| ≤ C
(
g(|µ|) + 1

)(
h p(x) + |ξ | )p−1

, (Q:1)

|b(x, µ, ξ)| ≤ C
(
g(|µ|) + 1

)(
h p(x) + |ξ | )p

,

with a constant C ≥ 0.
(b:1)

Moreover, we assumed coercivity in the sense that

Q(x, µ, ξ) : ξ ≥ ζ2 |ξ |p − hq(x)(1 + |µ|r ), (Q:2)

b(x, µ, ξ) · µ ≥ − ζ3 |ξ |p − hq(x)(1 + |µ|r ),
with constants ζ3 < ζ2, q > N/p and 0 ≤ r < p.

(b:2)

Last but not least, we need the following structure condition on the leading part:

Q(x, µ, ξ) :
[(

µ ⊗ µ

|µ|2
)

ξ

]
≥ − C whenever |µ| ≥ U

for a suitable constant U ≥ 0.

(Q:3)

Observe that as a consequence of these assumptions, F is well defined.
Our main result is the following estimate:

Theorem 2.1. Assume (Q:0)–(Q:3) and (b:0)–(b:2). Moreover, let u ∈ A be a
solution of (2.2). Then u ∈ L∞(�; R

M ), and its norm in L∞ is bounded by a
constant which only depends on N, M, ζ2 − ζ3, p, C, U, r , q, LN(�),

∣∣∣∣hq
∣∣∣∣

Lq (�)

and
∣∣∣∣h p

∣∣∣∣
L p(�)

.

The theorem is a simple consequence of Proposition 3.2 and Proposition 3.3 in
the next section.
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Remark 2.2.

(i) The upper bound on p is actually superfluous since our arguments are valid
also for p ≥ N . Of course, the case p > N can be dealt with in a much
simpler way even under more general assumptions, using the embedding of
W 1,p

0 into L∞.
(ii) The conditions listed here are not sufficient to ensure the existence of weak

solutions. In particular, a monotonicity (ellipticity) condition is missing,
which we do not need for the a priori estimate.

(iii) The proof of Proposition 3.3 actually allows us to explicitly calculate the
bound on ||u||L∞ , just as the bound on ||u||W 1,p in Proposition 3.2 can be
made explicit. Moreover, these bounds only depend on the quantities listed
and not on the explicit form of Q and b which in particular means that it
holds uniformly for sequences of solutions of regularized problems obtained
by truncating b, as used in [13] and [3]. As a consequence, if the additional
conditions on Q and b of [13] or [3] are satisfied, the explicit form of our a
priori estimate can be used to obtain sufficient conditions for the existence of
weak solutions. However, our approach suffers from the same problem as its
more restricted counterpart derived in [13]: the dependence of the bound on
the constants is complicated (in particular, it involves determining the largest
positive zero of two nonlinear functions to get the value of the constants of
Proposition 3.2 and Lemma 3.5) and most likely not optimal.

(iv) Structure conditions similar to (Q:3) are a common assumption for quasi-
linear systems in divergence form with perturbations having natural growth
with respect to the gradient. Together with the angle condition on the pertur-
bation described in the introduction, a predecessor being slightly weaker than
(Q:3) was introduced in [11]. More recently, similar assumptions implying
(Q:3) have been employed successfully in [13, 14] and [15]. So far, the role
of these conditions remains rather unclear, apart from their technical merits
with respect to the use of truncated test functions. In particular, systems with
a leading part of the form

Q(x, µ, ξ) = ξq(x, µ, ξ) with q : � × R
M × R

M×N → (RN×N )≥0, (2.5)

satisfy (Q:3). Here, (RN×N )≥0 denotes the set of non-negative definite matri-
ces in R

N×N . Nonlinear examples more general than (2.5) can be obtained as
follows: One can check that for any matrix B ∈ R

M×M , N = M , p = M +2
and ε > 0 small enough (depending on B),

Q(ξ) := |ξ |M ξ + ε
(

det ξ
)
Bξ (2.6)

satisfies (Q:0)–(Q:3). Moreover, it is also strictly monotone in the sense that(
Q(ξ1) − Q(ξ2)

) : (ξ1 − ξ2) ≥ c(|ξ1|M + |ξ2|M ) |ξ1 − ξ2|2 for some c > 0,
provided ε is small enough.
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3. Proof of the a priori estimate

For technical reasons, it is convenient to be able to use the solution as a test function
in (2.2) even if we do not know that it belongs to L∞. As a matter of fact, this is
possible due to the definition of A.

Proposition 3.1. Assume (Q:0), (Q:1), (b:0) and (b:1). If u ∈ A is a solution of
(2.2), and if a ∈ L∞(�) is a function such that v(x) := a(x)u(x) belongs to
W 1,p

0 (�; R
M ), then F(u)[v] given by (2.3) with ϕ = v is well defined and we have

F(u)[v] = 0.

Proof. Using ϕ = vh := v
|v| min{h, |v|} ∈ X in (2.2), we have F(u)[vh] = 0 for ev-

ery h > 0. Since ∇vh → ∇v strongly in L p and vh → v pointwise a.e., we can pass
to the limit as h → ∞ to get the assertion. Here, note that ||a||L∞ |b(x, u, ∇u) · u|
is integrable and a majorant of b(x, u, ∇u) · vh .

As a consequence, we have the usual a priori estimate in W 1,p
0 .

Proposition 3.2. Assume (Q:0)–(Q:2) and (b:0)–(b:2). Moreover, let u ∈ A be a
solution of (2.2). Then

||∇u||L p(�;RM ) ≤ C0,

where C0 > 0 is a constant which only depends on p, N , M, LN(�), ζ2 − ζ3, r and∣∣∣∣hq
∣∣∣∣

Lq .

Proof. Testing (2.2) with ϕ = u, a standard calculation using Hölder’s inequality,
the Sobolev inequality ||u||L p∗

(�;RM ) ≤ S ||∇u||L p(�;RM ) with the optimal constant
S = S(p, N , M) and (Q:2), (b:2) yields

g(U ) := (ξ2 − ξ3)U
p − 2

∣∣∣∣hq
∣∣∣∣

L
p∗

p∗−r
SrUr − 2

∣∣∣∣hq
∣∣∣∣

L
p∗

p∗−1
SU ≤ 0,

where U := ||∇u||L p . Observe that g(t) → +∞ as t → ∞ since p > r and
ξ2 > ξ3. In particular, ||∇u||L p ≤ C0 with C0 being the largest positive zero
of g.

By the Sobolev embedding, we also have ||u||L p∗
(�;RM ) ≤ SC0. Next, we

improve this bound to an estimate in L∞.

Proposition 3.3. Assume (Q:0)–(Q:3) and (b:0)–(b:2). Moreover, let u ∈ A be a
solution of (2.2) and assume that ||u||L p∗

(�;RM ) ≤ C̃0 for some constant C̃0 ≥ 0.
Then u ∈ L∞, and

||u||L∞(�;RM ) ≤ C̄,

where C̄ > 0 is a constant which only depends on N, M, ζ2 − ζ3, p, C, U, r , q,
LN(�),

∣∣∣∣hq
∣∣∣∣

Lq (�)
and C̃0.
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Remark 3.4. Proposition 3.3 stays valid even if the assumption r < p in (Q:2) and
(b:2) is replaced by r < p∗(1 − 1

q

) = p + p∗( p
N − 1

q

)
. This coincides with the

condition commonly used in the scalar case to bound the norm in L∞ in terms of
the norm in L p∗

, cf. [10, Theorem 7.1 in Chapter 4].

Proof of Proposition 3.3. We use test functions of the form ϕ = gδ,θ (|u|)u. Here,
δ > 0 and θ > 0 are parameters, and gδ,θ : [0, ∞) → [0, ∞) is defined by

gδ,θ (t) :=




0 if 0 ≤ t ≤ θ ,

1 − θ

2t
if θ + δ < t ,

1 − θ

2t

(
1 + 1

δ
(θ + δ − t)

)
if θ < t ≤ θ + δ,

which is a bounded, continuous and piecewise continuously differentiable function
if δ > 0 (whereas g0,θ jumps at t = θ ). For θ < t < θ + δ, its first derivative is
g′
δ,θ (t) = θ

2t2

(
1 + θ+δ

δ

)
. Also note that

0 ≤ gδ,θ (t) ≤ 1 and 0 ≤ g′
δ,θ (t) ≤ 1

2θ

(
1 + θ + δ

δ

)
for all t ≥ 0.

For u ∈ W 1,p
0 , we have gδ,θ (|u|)u ∈ W 1,p

0 by chain and product rule, and

∇(
gδ,θ (|u|)u) =




0 on {|u| ≤ θ},(
1 − θ

2 |u|
)

∇u + θ

2 |u|3 (u ⊗ u)∇u on {θ + δ < |u|},

gδ,θ (|u|)∇u + g′
δ,θ (|u|)
|u| (u ⊗ u)∇u on {θ < |u| ≤ θ + δ}.

Hence, from (2.2) with ϕ = gδ,θ (|u|)u, which is admissible due to Proposition 3.1,
we obtain that

0 ≥
∫

{|u|>θ+δ}

(
1 − θ

2 |u|
)

(ζ2 − ζ3) |∇u|p dx

−
∫

{|u|>θ+δ}

(
C

θ

2 |u| + 2

(
1 − θ

2 |u|
)

(1 + |u|r )hq(x)

)
dx

+
∫

{θ<|u|≤θ+δ}
gδ,θ (|u|)(ζ2 − ζ3) |∇u|p dx

−
∫

{θ<|u|≤θ+δ}

(
Cg′

δ,θ (|u|) |u| + 2gδ,θ (|u|)(1 + |u|r )hq(x)
)

dx

(3.1)
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for every θ ≥ U , where we used (Q:2), (Q:3) and (b:2). Accordingly, all statements
below are understood to be valid for θ ≥ U . Passing to the limit as δ ↘ 0 yields

0 ≥
∫

{|u|>θ}

(
1 − θ

2 |u|
)

(ζ2 − ζ3) |∇u|p dx

−
∫

{|u|>θ}

(
C

θ

2 |u| + 2

(
1 − θ

2 |u|
)

(1 + |u|r )hq(x)

)
dx

− C lim inf
δ↘0

∫
{θ<|u|≤θ+δ}

g′
δ,θ (|u|) |u| dx

(3.2)

due to dominated convergence, using that LN({θ < |u| ≤ θ + δ}) → 0 as δ ↘ 0
for a.e. θ . In the following, we employ the abbreviation

mθ := LN({|u| > θ}) .

Observe that 0 < θ
2|u| < 1

2 on {|u| > θ} and that

lim inf
δ↘0

∫
{θ<|u|≤θ+δ}

g′
δ,θ (|u|) |u| dx = lim inf

δ↘0

θ

2

mθ − mθ+δ

δ
= −θ

2
m′

θ for a.e. θ.

Hence (3.2) implies that∫
{|u|>θ}

1

2
(ζ2 − ζ3) |∇u|p dx

≤ C

2
θ(−m′

θ ) +
∫

{|u|>θ}

(
C

2
+ 2hq(x) + 2 |u|r hq(x)

)
dx

≤ C

2
θ(−m′

θ ) + m
1− 1

q
θ

∣∣∣∣2hq + C/2
∣∣∣∣

Lq (�)

+ 2m
1− 1

q − r
p∗

θ

∣∣∣∣hq
∣∣∣∣

Lq (�)
||u||r

L p∗
({|u|>θ};RM )

,

(3.3)

by Hölder’s inequality. We proceed by estimating the term ||u||r
L p∗

({|u|>θ};RM )
as

follows:

||u||r
L p∗

({|u|>θ};RM )
= ||u||r−r̃

L p∗
({|u|>θ};RM )

||u||r̃
L p∗

({|u|>θ};RM )

≤ C̃

(∣∣∣∣(|u| − θ)+
∣∣∣∣r̃

L p∗
(�)

+ m
r̃

p∗
θ θ r̃

)
,

where

r̃ := min{r, p} and C̃ := 2r̃ (C̃0)
r−r̃ ,
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since ||u||L p∗ ≤ C̃0. (As already mentioned in Remark 3.4, we prefer to employ the
more general assumption r < p∗(1 − 1

q

)
instead of r < p. This requires but little

additional effort, anyway.) Thus,∫
{|u|>θ}

1

2
(ζ2 − ζ3) |∇u|p dx

≤ C

2
θ(−m′

θ ) + C̃m
1− 1

q − r
p∗

θ

∣∣∣∣hq
∣∣∣∣

Lq (�)

∣∣∣∣(|u| − θ)+
∣∣∣∣r̃

L p∗
(�)

+ m
1− 1

q − r−r̃
p∗

θ

[
LN(�)

r−r̃
p∗

(
C

2
+ 2

∣∣∣∣hq
∣∣∣∣

Lq (�)

)
+ C̃θ r̃

∣∣∣∣hq
∣∣∣∣

Lq (�)

]
.

(3.4)

Since |∇(|u| − θ)| = |∇ |u|| ≤ |∇u| on {|u| > θ} and (|u| − θ)+ ∈ W 1,p
0 (�), we

also have the Poicaré–Sobolev inequality(∣∣∣∣(|u| − θ)+
∣∣∣∣

L p∗
(�)

)p ≤ S p
∫

{|u|>θ}
|∇u|p dx,

with a constant S = S(N , p) > 0. Plugging this into (3.4) yields

∣∣∣∣(|u|−θ)+
∣∣∣∣p−r̃

L p∗
(�)

≤ C1θ(−m′
θ )+

(
C2+C3θ

r̃
)

m
1− 1

q − r−r̃
p∗

θ∣∣∣∣(|u| − θ)+
∣∣∣∣r̃

L p∗
(�)

+ C4m
1− 1

q − r
p∗

θ . (3.5)

Here, all terms independent of θ and u have been collected in suitable new constants
C1,2,3,4 ≥ 0. In the following, we abbreviate

f (θ) := ∣∣∣∣(|u| − θ)+
∣∣∣∣

L1(�)
, ε :=1 − 1

q
− r − r̃ + p

p∗ and δ :=1 − 1

q
− r − r̃

p∗ .

Note that ε > 0: If p ≤ r < p∗(1 − 1
q

)
this is due to the upper bound on r whereas

if r ≤ p, ε = p
N − 1

q > 0 since q > N/p. By Hölder’s inequality in the form

f (θ) ≤ m
1− 1

p∗
θ

∣∣∣∣(|u| − θ)+
∣∣∣∣

L p∗
(�)

, (3.5) implies that

f (θ)p ≤ C1θ(−m′
θ )m

p+ε−δ
θ + (C2 + C3θ

r̃ )m p+ε
θ + C4m p+ε−r̃

θ f (θ)r̃ . (3.6)

This can be further simplified using Young’s inequality: For every β > 0, we have

m p+ε−r̃
θ f (θ)r̃ ≤β

− 1
p+ε−r̃ m p+ε

θ + β f (θ)p+ε ≤β
− 1

p+ε−r̃ m p+ε
θ + β f (θ)p f (U )ε,

since f is decreasing. If we choose β := 1
2C4

f (U )−ε, (3.6) thus turns into

1

2
f (θ)p ≤ C1θ(−m′

θ )m
p+ε−δ
θ + (C2 + C4β

− 1
p−1+ε + C3θ

r̃ )m p+ε
θ .
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Last but not least, observe that f (θ) = ∫ ∞
θ

mt dt , whence − f ′(θ) = mθ and
f ′′(θ) = −m′

θ for a.e. θ . Thus we have

f (θ)p ≤ C̃1θ f ′′(θ)[− f ′(θ)]p+ε−δ + (C̃2 + C̃3θ
r̃ )[− f ′(θ)]p+ε for every θ ≥U ,

where C̃1 := 2C1, C̃2 := 2
(
C2 + C4β

− 1
p−1+ε

)
and C̃3 := 2C3. Lemma 3.5 below

with T0 := U now yields the assertion. Here, note that the initial values of f and
f ′ are bounded:

0≤ f (U )≤||u||L1(�;RM ) ≤LN(�)
1− 1

p∗ ||u||L p∗
(�;RM ) and 0≤− f ′(U )≤LN(�) .

Moreover, f (U ) f ′(U ) = 0 if and only if |u| ≤ U almost everywhere.

The final ingredient for the bound in L∞ is a generalization of an observation of [10,
Lemma 5.1 in Chapter 2].

Lemma 3.5. Let T0 ≥ 0 and let f : [T0, ∞) → [0, ∞) be convex and decreasing.
Moreover, assume that f (T0) ∈ (0, C0] and that f ′+(T0) ∈ [−C0, 0), let T̄ :=
inf{t > 0 : f is constant on [t, ∞)} (the first zero of f ′ if one exists, otherwise
T̄ = +∞) and assume that f satisfies

f (t)p

(− f ′(t))p+ε
≤ C1t

f ′′(t)
(− f ′(t))δ

+ C2 + C3tr for a.e. t ∈ (T0, T̄ ). (3.7)

Here, C0, C1, C2, C3 ≥ 0, p ≥ 1, ε > 0, δ < 1 and 0 ≤ r < p + ε are constants.
Then T̄ is finite and bounded by a constant which only depends on C0, C1, C2, C4,
p, ε, δ, r and T0.

Remark 3.6. Note that since f is convex and decreasing, f ′+(T0), the derivative
from the right at T0, always exists in [−∞, 0]. Since it is finite by assumption, f is
globally Lipschitz continuous. Moreover, f is twice differentiable a.e. in [T0, ∞)

by Aleksandrov’s theorem (e.g. [5]).

Proof of Lemma 3.5. Fix an arbitrary T ∈ (T0, T̄ ) (in particular, T < ∞).
Integrating (3.7), we obtain

∫ T

T0

f (t)p

(− f ′(t))p+ε
dt

≤C1T
∫ T

T0

f ′′(t)
(− f ′(t))δ

dt + C2(T − T0) + C3

r + 1
(T r+1 − T r+1

0 )

≤ C1

1 − δ
T

[
(− f ′(T0))

1−δ − (− f ′(T ))1−δ
]
+C2(T − T0) + C3

r + 1
(T r+1− T r+1

0 )

≤ C1

1 − δ
T (− f ′(T0))

1−δ + C2(T − T0) + C3

r + 1
(T r+1 − T r+1

0 ).
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(Observe that the version of the fundamental theorem of calculus used above holds
with equality if and only if f ′ ∈ BV actually belongs to W 1,1. In general, we only
have an estimate because the function f ′′ neglects the part of the derivative of f ′
which is singular with respect to the Lebesgue measure. That part is a non-negative
measure since f ′ is increasing.) The left hand side can also be estimated from
below: ∫ T

T0

f (t)p

(− f ′(t))p+ε
dt

≥ (T − T0)

(
1

T − T0

∫ T

T0

− f ′(t)
f (t)

p
p+ε

dt

)−(p+ε)

= (T − T0)
p+ε+1

(
ε

p + ε

)p+ε [
f (T0)

ε
p+ε − f (T )

ε
p+ε

]−(p+ε)

≥ (T − T0)
p+ε+1

(
ε

p + ε

)p+ε

f (T0)
−ε.

In the calculation above, the first estimate is due to Jensen’s inequality, using that
s → s−(p+ε) is convex on (0, ∞). Combining, we infer that

g(T ) := (T − T0)
p+ε+1 − C4 − C5T − C6T r+1 ≤ 0 for every T0 < T < T̄ ,

where C3, C4, C5 ≥ 0 are suitable new constants which only depend on C0, C1, C2,
C3, T0, r , p, ε and δ. Since p + ε + 1 > r + 1, g(T ) → +∞ as T → ∞, and thus
T̄ is less or equal than the largest positive zero of g.
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