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Maximal singular integrals

NICOLAS TH. VAROPOULOS

Abstract. We prove the L p boundedness of the maximal operators attached to
the singular kernels introduced in [1]. These kernels are obtained by multiplying
(pointwise) a classical convolution Calderon-Zygmund kernel with the perturbing
factor [a]x,y (cf. below). The importance of these perturbations lies in potential
theoretic applications (cf. [3, 7]).

Mathematics Subject Classification (2000): 42B20 (primary); 42B25 (sec-
ondary).

0. Introduction

0.1. Notation and statement of the theorem

In this note I shall examine maximal operators that are related to the singular inte-
grals that were introduced in [1] (cf. also [7]). I shall preserve the notation of [1, 7]

and denote [a]x,y =
1∫

0
a(x + t (y − x))dt ; x, y ∈ R

n, a ∈ C∞
0 (Rn). I shall

also use the abbreviation F([a]x,y) = F([a1]x,y, · · · , [ak]x,y) for a1, · · · , ak ∈
C∞

0 and where F(z1, · · · , zk) ∈ C N (N ≥ 1) will denote throughout some suf-
ficiently smooth function of k complex variables. We shall denote throughout by
� ∈ Lr (�) (r > 1) where � = [x ∈ R

n; |x | = 1] is the unit sphere and where
Lr or Lr denotes throughout the Lebesgue space on the appropriate measure space.
The condition

∫
� = 0 will be assumed throughout.

We shall be concerned in this paper with the following kernel and the corre-
sponding principal value operator and the associated maximal function:

K (x, y) = �

(
x − y

|x − y|
)

|x − y|−n F
([a]x,y

) ; x, y ∈ R
n , (0.1)

f �−→ Kε,M f (x) =
∫

ε<|x−y|<M

K (x, y) f (y)dy , (0.2)

K ∗ f (x) = sup
ε,M

∣∣∣Kε,M f (x)

∣∣∣ ; f, a j ∈ C∞
0 , 1 ≤ j ≤ k . (0.3)
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In [1] the authors consider kernels that are more general, but also smoother:

T (x, y) = L(x − y)F([a]x,y) , (0.1)′

where L is a classical convolution Calderon-Zygmund kernel (i.e. L̂ ∈ L∞, |L(x)|≤
C |x |−n , and |L(x + h) − L(x)| ≤ C |h|ε|x |−n−ε for 2|h| ≤ |x |). It is then proved
in [1] that the corresponding principal value operator Tε,M is L p → L p bounded,
uniformly in ε, M for 1 < p < ∞, with bounds that only depend on ‖ a ‖∞
and ‖ F ‖C N (for some N ≥ 1). The formulation in [1] is slightly different, but
equivalent: In [1] F(z) = z p (p = 1, 2, · · · ) but the operator norms are then
O(pN ) for some N > 0.

The kernel T is not a standard kernel (cf. [1]) and therefore the general the-
ory [6, Chapter I, 7.3] cannot be used to deduce the L p boundedness of the corre-
sponding maximal operator (defined as in (0.3)).

In the notation I shall preserve the letters c, C , possibly with indices, to indicate
positive constants that may differ from place to place but are independent from the
main parameters of the formulaes.

Theorem 0.1. Let �, F, n, N , r be as above and let a1, · · · , ak ∈ C∞
0 be such that

‖ a j ‖∞≤ 1. For every 1 < p < ∞ there exists C depending on n, N , r, k, p, but
not on the a j ’s, such that

‖ K ∗ f ‖p≤ C ‖ � ‖r‖ F ‖C N ‖ f ‖p ; f ∈ C∞
0 (Rn). (0.4)

‖ ‖p indicates throughout the corresponding L p norm.
The estimate (0.4) with K ∗ replaced by Kε,M (but uniform in ε, M) is in [7,

Corollary, Section 1.3] (cf. [1] for the case � ∈ Cm). As I already pointed out in [7]
the integrability of � can be improved to �εL(log+ L)a for some a ≥ 1. It is easy
to see that the same a ≥ 1 that works in [7] also works in the above Theorem. When
� is odd (0.4) follows by the method of rotation.

The critical first part of the proof of the theorem for p = 2 only uses the
uniform bound of ‖ Kε,M ‖2→2 and the additional key estimate [7, (1.32)]. For
the more general 1 < p < ∞ some additional notions from [1, 7] will be needed,
but none of the technical aspects of these papers. Some of these facts from [7]
will be elaborated in the Appendix at the end of the paper. As a result familiarity
with [1, 7] although desirable, is not essential for the understanding of the first part
of the proof.

The weak L1 boundedness of all the above operators, even in the smooth case
in the setting of [1], remains an open (and interesting) problem.

0.2. Further notation and plan of the proof

We say that a function A(x, h) on R
n+1+ = (x ∈ R

n, h > 0) lies in Dp, (0 <

p < ∞) if the non tangential maximal function A∗ and S-function: S(h∇ A)(x) =( ∫∫
�(x)

|h∇ A|2 dxdh
hn+1

) 1
2

both lie in L p(Rn) (Here �(x) ⊂ R
n+1+ denotes the conical
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wedge with vertex at x ∈ R
n). These spaces were introduced for the first time

in [3]. Cf. [2, 7] for further elaborations and for the case p = ∞.
Let now Q(x, y; h) ∈ L1

loc(x, y ∈ R
n, h > 0) and let us define the bilinear

form: (cf. [7, Section 2.5])

B(A, f ) =
∫

Q(x, y; h) f (x)A(y, h)
dx dy dh

h
; A, f ∈ C∞

0 . (0.5)

A mapping L : C∞
0 (Rn+1+ ) −→ D′(Rn) (= the space of distribution on R

n) can
then be defined by

(L A, ϕ) = B(A, ϕ) ; ϕ ∈ C∞
0 (Rn) . (0.6)

The kernels Q that we shall consider in this paper (cf. [7, (1.19)] are of the form:

Q(x, y; h) = Qh(x − y)F(x, y; h) = �

(
x − y

|x − y|
)

θh(|x − y|)F(x, y; h) , (0.7)

where F is a perturbing factor and where in the convolution kernel � ∈ Lr with∫
� = 0 is as in the theorem, and θ ∈ C∞

0 with supp θ ⊂ [1, 2].
The standard notation Qh(x) = h−n Q

( x
h

)
(h > 0) as well as the notation

Qh f (x) = ∫
Qh(x − y) f (y)dy ( f ∈ C∞

0 ) will also be used. I shall also use a

notation that proved very convenient in [7]; this consists in reserving the letter P̌
for the elements of C∞

0 (Rn) and the letter Q̌ for the elements of C∞
00 , i.e. when

in addition
∫

Q̌ = 0. These P̌, Q̌ differ from place to place. Furthermore in
(0.7) we shall set F = F([a]x,y) unless otherwise stated. We shall also denote

F0 = c0 +
k∑

i=1
ci zi the affine functions. Together with L in (0.6), (0.7) I shall define

the maximal operator

L∗ A(x) = sup
ε,M

∣∣∣ ∫
ε<h<M

Q(x, y; h)A(y, h)
dydh

h

∣∣∣ ; A ∈ C∞
0 , (0.8)

and the essential step in the proof of the theorem is the following.

Proposition 0.2. With Q, p, a j and F as in the theorem we have

‖ L∗ A ‖p≤ C ‖ � ‖r‖ F ‖C N ‖ A ‖Dp , (0.9)

with C = C(n, p, k, N , r).

‖ ‖Dp indicates the natural norm in the Dp-spaces. The proof of this proposi-
tion is given in Sections 1-3 below and it is the crucial part of the paper.
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Modulo classical maximal functions on the other hand (cf. [7, (1.20) (1.21)]
the theorem is equivalent to the L p −→ L p boundedness of the operator

f �→ sup
ε,M

∣∣∣ ∫
ε<h<M

Q(x, y; h) f (y)
dydh

h

∣∣∣ ; f ∈ C∞
0 . (0.10)

But for f ∈ L p we have P̌h f (y) ∈ Dp, (1 < p < ∞, cf. [2,6]) and Proposition 0.2
applies. For (0.10) it suffices therefore to examine the correcting maximal operator
where in the integral we replace f (y) by f (y)− P̌h f (y). This is done in the second
part of the paper in Section 4-5 and uses a Cotlar analysis and some other ideas
from [1]. The estimate of this correcting term follows very closely [7, Section 8-9].
Adapting the arguments of [7], is straightforward indeed for p = 2. For the general
case p �= 2 I shall go back and elaborate on the arguments of the last subsection
of [7, Section 9] because not many details were given there. This second part of the
proof will be difficult to read without a reasonable familiarity of [7, Section 8-9]. I
should point out however that, although technical, this second part of the proof uses
either classical tools, or ideas that have been borrowed from [1].

0.3. The smooth case

If we assume that � ∈ Cα (some α > 0) in (0.1) – this a special case of [1, (0.1)′]
– a different, much shorter, proof of the Proposition 0.2 can be given. This proof
avoids altogether the difficult estimate [7, (1.32)], but uses instead the vector valued
(i.e. valued in 	2) version of the generalized T1 theorem that I developed in [8].

Using that version of the T1 theorem we can prove the critical case of Propo-
sition 0.2 when F is an affine function. More precisely this proof gives Proposi-
tion 1.1 for p = ∞ (with L p(	2) interpreted as the 	2-valued BMO). The other
values of p then follow by general considerations ( [7, Section 2.5]).

This approach is simpler (because it avoids [7, (1.32)]) but it has the drawback
that it needs the smoothness of �. I shall not give the details but the motivated
reader, I am sure, will be able to adapt [8] to give this alternative proof of (1.6),
below, in this special case. The starting point of this proof can be found in the
remark at the end of Section 2.1 below.

1. The general strategy for Proposition 0.2

1.1. Notation and the vector valued operator

We shall fix once and for all R ∈ C∞
0 (Rn) in such a way that the Fourier transform

satisfies |R̂(ξ)−1| = O(|ξ |a) for some large a ≥ 1. Let us also define the operators
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Lk, L̃ N with L = Lk + L̃2k by truncating the definition (0.6):

(Lk A, f ) =
∫

h>2k

Q(x, y; h) f (x)A(y, h)
dxdydh

h
,

(L̃ N A, f ) =
∫

h<N

Q(x, y; h) f (x)A(y, h)
dxdydh

h
; f, A ∈ C∞

0 .

(1.1)

We shall then compose L , Lk, L̃ N with the convolution operator R where the nota-
tion used is for instance

R2k L(A)(x) =
∫

2−nk R

(
x − y

2k

)
L A(y)dy . (1.2)

With this notation and denoting by I the identity operator (i.e. convolution with δ)
we can write

Lk = −R2k L̃2k + (I − R2k )Lk + R2k L = M (1)
k + M (2)

k + M (3)
k , (1.3)

L∗∗ = sup
k

∣∣Lk
∣∣ ≤

3∑
i=1

sup
k

∣∣M (i)
k

∣∣ =
∑

M (i) , (1.4)

and the three components of the above decomposition will be examined separately.
We have M (3) ≤ M L for the Hardy-Littlewood maximal function M . It follows that
the Dp �→ L p norm of M (3) (p > 1) is dominated by the corresponding norm of
L in [7, 8]. M (1) will be analyzed in Section 1.2 below.

To deal with M (2) we shall introduce LA(x) ∈ 	2, (A ∈ C∞
0 (Rn+1+ ), x ∈ R

n)

a vector valued operator defined by

(LA, f ) =
+∞∑

k=−∞

(
(I − R2k )Lk A, fk

) ; f = (· · · f−1, f0, · · · ),

f j ∈ C∞
0 , f j = 0 for | j | large enough.

(1.5)

We shall then prove the

Proposition 1.1. Let the notation be as above and let Q, a j be as in Proposition 0.2
and let us assume that in (0.7) F = F0 = c0 +∑

c j z j is affine. For all 1 < p < ∞
we then have:

‖ LA ‖L p(	2)≤ C ‖ � ‖r‖ F0 ‖‖ A ‖Dp ; A ∈ C∞
0 , (1.6)

with C = C(n, r, k, N , p) and

‖ F0 ‖=
∑

|c j | ; ‖ f ‖p
L p(	2)

=
∫ (+∞∑

−∞
| fk(x)|2

)p/2

dx . (1.7)

In the next few lines I shall assume Proposition 1.1 and complete the proof of Propo-
sition 0.2.
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1.2. The pointwise estimate for M (1)

We shall use the notation and the facts from [7, Section 2.1, 2.2]. We denote by
Ã = A∗ + S(h∇ A) for A ∈ C∞

0 (Rn+1+ ) and we shall decompose A = A1 + A2 so
that

suppA1 ⊂ [|x | + h ≤ C1], supp A2 ⊂ [|x | + h ≥ C2] ;
‖ A1 ‖D1≤ C ‖ Ã ‖L1(|x |≤C3)

≤ C M Ã(0) ,
(1.8)

where Ci are appropriate constants and M will denote throughout the Hardy-
Littlewood function. We shall use (1.8) to deduce∣∣RL̃1 A(0)

∣∣ ≤ C M Ã(0) + C M M� A∗(0) , (1.9)

where (cf. [6, II, Section 4])

M� f (x) = sup
r

r−n
∫

|x−y|≤r

| f (x − y)�̄ (y/|y|) |dy ; �(σ) = |�(σ)| + 1, σ ∈ �.

(1.10)
Once (1.9) has been proved, by scaling and translation we obtain the pointwise
control of RN L̃ N , (N ≥ 0) and of M (1) by M Ã(x) + M M� A∗(x) as required.

Proof of (1.9). With C > 0 and C2 large enough we have L̃1 A2(x) = 0 for |x | ≤
C , and therefore

L̃1 A(x) = L̃1 A1(x) = L A1(x) − L0 A1(x) ; |x | ≤ C . (1.11)

But by (1.8) and the compactness of the support of Q(x) in (0.7) we have
|L0 A1(x)| ≤ C M� A∗(x), |x | ≤ C . From the main Theorem of [7] and (1.8)
we have on the other hand

‖ L A1 ‖1≤ C ‖ A1 ‖D1≤ C ‖ Ã1 ‖1≤ C M Ã(0) . (1.12)

These two estimates are inserted in (1.11) and then we convolve with R. (1.9)
follows.

1.3. Proof of Proposition 0.2

Reduction to the discrete parameter

Let Q be as in (0.7) we then have∫
2k≤h≤2k+1

|Q(x, y; h)A(y, h)|dydh

h
≤ C M� A∗(x) ;

k ∈ Z, x ∈ R
n, A ∈ C∞

0 (Rn+1) ,

(1.13)

with the notation (1.10). This implies that for the Proposition 0.2 it suffices to prove
(0.9) with L∗ replaced by the L∗∗ of (1.4). From the above, and Proposition 1.1, it
follows therefore that Proposition 0.2 holds for affine functions F = F0.
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Reduction to the affine function

Once the Proposition 0.2 has been proved for an affine function F0 and p ≥ p0
large enough then this proposition holds for all F ∈ C N and all 1 < p < ∞.

The proof of this reduction is not trivial but it follows the same strategy as the
reduction in [7, Section 7]. For the convenience of the reader I shall present this
reduction in an essentially self contained manner in Section 3 below. A1-weights,
Carleson measures, and non trivial facts from [5, 7] will be used in that reduction.

2. Proof of Proposition 1.1

2.1. The L2-estimates

Here R will be as in Section 1 but Q will be, a priori, an arbitrary L1(Rn) function.
We shall use furthermore the following notation

Qk
h = (

I − R2k

)
QhI(h > 2k) ,

B( f, A) =
+∞∑

k=−∞

∫
fk(x)Qk

h(x − y)A(y, h)
dy dx dh

h
; A, f as in (1.5) ,

(2.1)

where I denotes the indicator function. We shall recall the notation ‖ A ‖2
T 2

2
=∫ |A(y, h)|2 dydh

h from [2] and we have:

Lemma 2.1.
|B( f, A)| ≤ C ‖ f ‖L2(	2)‖ A ‖D2 . (2.2)

If the Fourier transform satisfies Q̂(ξ) = O(|ξ |−δ) for some δ > 0 we have:

|B( f, A)| ≤ C ‖ f ‖L2(	2)‖ A ‖T 2
2

. (2.3)

We shall denote by Â(ξ, h) the partial Fourier transform of A(·, h) and denote by
S(ξ) = |1 − R̂(ξ)|2 , T (ξ) = |ξ |−1|Q̂(ξ)|2 and

|||Q|||2 = sup
ξ

∑
k

∫ |Q̂k
h(ξ)|2
h|ξ |

dh

h
= sup

ξ

∑
k

∫
h>2k

S(2kξ)T (hξ)
dh

h
. (2.4)

By Plancherel and Hölder we have then

|B( f, A)|2 ≤‖ f ‖2
L2(	2)

∑
k

∫ (∫ ∣∣Q̂k
h(ξ) Â(ξ, h)

∣∣dh

h

)2

dξ

≤‖ f ‖2
2

∫ ∑
k

∞∫
0

|Q̂k
h(ξ)|2
h|ξ |

dh

h

 (∫
h|ξ | | Â(ξ, h)|2 dh

h

)
dξ ,

(2.5)
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(with the notation (1.7)). By partial integration (as in [7, Section 2.9]) on the last
factor of the right hand side of (2.5) we see that (2.2) is a consequence of the fact
that |||Q||| < +∞. This fact is easy to verify: We shall replace S(ξ) by |ξ |a ∧ 1
for some (arbitrary cf. Section 1) a > 1 and replace T (ξ) by |ξ |−1. After this
substitution we shall replace the discrete summation in the definition (2.4) by the
continuous integral so that

|||Q|||2 ≤ C sup
ξ

∫∫
h>	

(|	ξ |a ∧ 1
) |hξ |−1 d	

	

dh

h
. (2.6)

This is useful because it makes the scaling |ξ |h = h′, |ξ |	 = 	′ obvious and so, in
proving that |||Q||| < +∞, we can just take |ξ | = 1. We are thus just left with:∑

k< j

(2ak ∧ 1)2− j ≈
∑
j≤0

2(a−1) j +
∑
j≥0

j2− j ≤ C . (2.7)

We have in fact proved the more precise version of the lemma

|B( f, A)| ≤ C |||Q||| ‖ f ‖2‖ A ‖D2 . (2.2)′

For the estimate (2.3) we shall use Plancherel again and what has to be seen is that
for each fixed ξ (but uniformly in ξ ) the matrix (ak(h) = Q̂k

h(ξ); k ∈ Z, h > 0) de-
fines an 	2 → L2

( dh
h

)
bounded operator. We have |ak(h)| = S(2kξ)|Q̂(hξ)|I[2k <

h] and by Schur’s Lemma this operator norm can be estimated by

sup
k

∞∫
0

|ak(h)|dh

h
+ sup

h

∑
k

|ak(h)| . (2.8)

Here we shall proceed as before and replace S(ξ) by |ξ |a ∧1 and |Q̂(ξ)| by 1∧|ξ |−δ

and then use the analogue of the continuous time integration for (2.8) as in (2.6).
This allows us to scale again and assume that |ξ | = 1. In (2.8) we are thus left with

sup
k

(
2ak ∧ 1

) ∑
j>k

(
2−δ j ∧ 1

)
≤ sup

k

(
2ak ∧ 1

) (
2−δk ∧ (|k| + 1)

)
,

sup
j

(
2−δ j ∧ 1

) ∑
k< j

(
2ak ∧ 1

)
≤ sup

j

(
2−δ j ∧ 1

) (
2aj ∧ (| j | + 1)

)
,

(2.9)

and both the above are < +∞.

Remark 2.2.

(i) If we use the space variable x , the convolution kernel of the above 	2 �→ L2
( dh

h

)
operator is given by the matrix bk(h) = (

Qh(x) − R2k Qh(x)
)

I(h > 2k). For
fixed x this is a 2 → 2 bounded operator provided that Q is smooth. This is
seen by Hardy’s inequality and it gives the size estimate for the generalized T1
theorem of Section 0.3. We shall not pursue the matter further but an alternative
proof of (2.3) can be given in these lines.
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(ii) The condition O(|ξ |−δ) on the Fourier transform is verified for the kernel

Q(x)= �
(

x
|x |

)
θ(|x |) of (0.7) cf. [4], [6, VIII 5.22].

2.2. The scaled kernel

We shall here scale Q and consider Qs = s−n Q
( x

s

)
(0 < s < 1) and we shall also

assume here that Q̂(ξ) = O(|ξ |δ) for some 0 < δ ≤ 10−10. In terms of the integral
(2.6) we can then estimate

|||Qs |||2 ≤ C
∫∫

	<h

(	a ∧ 1)((sh)2δ ∧ 1)

h

dh

h

d	

	

≤ C
∫ (

ha ∧ (| log h| + 1)
) (

(sh)2δ ∧ 1
) dh

h2

≤ Cs2δ

∫ (
ha ∧ (| log h| + 1)

)
h2δ−2dh = O(s2δ) .

(2.10)

Remark 2.3. In the applications that we have in mind in Section 2.4 (cf. (2.29)) it
is not exactly the scaled Qs in (2.1) that will be used but the variant Q ∗ Q̌s that is
involved in:

B0
3 ( f, a) =

∞∑
k=−∞

∫
Q̌sh fk(x)Qk

h(x − y)A(y, h)
dx dy dh

h
. (2.11)

Proceeding as in (2.10) we see that |||Q ∗ Q̌s ||| = O(sδ).

The modified form

We shall improve the estimate (2.3) for the modified form

B( f, A; s) =
+∞∑

k=−∞

∫
s2h>2k

fk(x)Qk
sh(x − y)A(y, h)

dydxdh

h
;

f, A ∈ C∞
0 , 0 < s < 1 .

(2.12)

We shall need the estimate

|B( f, A; s)| ≤ Csε ‖ f ‖L2‖ A ‖T 2
2

; 0 < s < 1 , (2.13)

for some ε > 0. To see this we first reduce the corresponding Schur estimate to
continuous time integration (as in (2.6)). We then use the scaling that allows us
to normalize to |ξ | = 1. We then make the additional change of variables h �→
sh, 	 �→ s	 in that integration. Had we left the integration range in [sh > 2k] the
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above transformations would not have changed the estimate (2.3). But the factor s2

gives rise instead to a matrix

Mσ =
(
(2ak ∧ 1) ∧ (2−δ j ∧ 1)I(k < j − σ)

)
k, j

; σ = − log s . (2.14)

As before the ‖ Mσ ‖2→2 can be estimated by the analogue of (2.9):

sup
k

(
2ak ∧ 1

) (
2−δ(k+σ) ∧ (|k| + σ + 1)

)
,

sup
j

(
2−δ j ∧ 1

) (
2a( j−σ) ∧ (| j | + σ + 1)

)
.

(2.15)

(2.13) follows.

2.3. Proof of Proposition 1.1 for p = 2

For an affine function F0 and Q, as in Proposition 1.1, and P̌ ∈ C∞
0 s.t.

∫
P̌ = 1,

we define

B( f, A) =
+∞∑

k=−∞

∫
fk(x)Qk

h(x − y)F0
([a]x,y

)
A(y, h)

dx dy dh

h
,

B0( f, A) =
+∞∑

k=−∞

∫
fk(x)Qk

h(x − y)P̌ha(y)A(y, h)
dxdydh

h
.

(2.16)

The estimate of the above B with F0 ≡ 1 is given in (2.2) and this gives the proof
of the Proposition 1.1 for p = 2 and F0 ≡ 1. But the same estimate gives∣∣B0( f, A)

∣∣ ≤ C ‖ f ‖L2(	2)‖ A ‖D2‖ a ‖∞ . (2.17)

This is because P̌ha(y) ∈ D∞ and therefore this factor can be absorbed with
A(y, h) (Cf. [7, Section 2.2, 7] also [2]).

For the Proposition 1.1 we have to prove the estimate (2.17) for the form B in
(2.16). From the above it follows that it suffices to prove the same estimate for the
correcting form:

B1( f, A) =
+∞∑

k=−∞

∫
fk(x)Qk

h(x − y)([a]x,y − P̌ha(y))A(y, h)
dy dx dh

h
;

a ∈ C∞
0 , ‖ a ‖∞≤ 1 .

(2.18)

Towards that we shall modify B1 further and define first B2( f, A) where in the
integrand of (2.18) we smooth out and replace fk(x) by P̌h fk(x) (with

∫
P̌ = 1 and

I − P̌h = ∫ 1
0 Q̌sh

ds
s ). Another modification of B1 is B3( f, A; s), 0 < s < 1, where
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we replace fk by Q̌sh fk(x) and where in addition the summation in k is restricted
to the range [2k ≤ s2h]. Finally we consider B4( f, A; s) with the same Q̌sh fk(x)

in the integrand but where the summation of the k’s extend to the complementary
range s2h < 2k ≤ h.

We obtain thus the decomposition

B1( f, A) = B2( f, A) +
1∫

0

B3( f, A; s)
ds

s
+

1∫
0

B4( f, A; s)
ds

s

= X + Y + Z ,

(2.19)

and we shall estimate the three components separately.

Estimate of X

We assume that f ∈ L2(	2), A ∈ D2 and we have:

X =
∫

U (x, h)V (x, h)
dx dh

h
;

U (x, h) =
∑
2k≤h

P̌h(I − R2k ) fk ∈ T 2
2 (cf . (2.3)) ,

V (x, h) =
∫

Qh(x − y)([a]x,y − P̌ha(y))A(y, h)dy ,

(2.20)

|V |≤
(∫

|Qh(x−y)||[a]x,y − P̌ha(y)|2dy

)1/2(∫
|Qh(x−y)A2(y, h)|dy

)1/2

= V1V2 .

(2.21)

With the notation of [2] we have V2 ∈ T 2∞ cf. [7, Section 4.1] (i.e. the non tangential
maximal function lies in L2), V1 ∈ T ∞

2 cf. [7, Section 3.4] (i.e. Carleson measures
as in [2]). Observe here that because of the compactness of the support of Q the
localization in [7, (3.12), (3.13)] is symmetric in x and y. Therefore it does not
matter that in [7, (3.4)] we define β2(x, h) with P̌ha(y) instead of P̌ha(x) and we
still have the Carleson condition for

(
β2(x, h) dx dh

h

)
. Now it follows from [2] that

V ∈ T 2∞T ∞
2 ⊂ T 2

2 and this together with the expression of X in (2.20) gives the
required estimate for X . More explicitly we can use the trivial fact that T 2

2 T 2∞ ⊂ T 1
2

and the (non trivial) duality between T 1
2 and T ∞

2 (as in [7, (4.13)]) to obtain the
required

|X | ≤ C ‖ f ‖2‖ A ‖D2 . (2.22)
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Estimates of Y

For B2 we have exactly the same scalar product as in (2.20) but now U is replaced

by
1∫

0
Us

ds
s where

Us(x, h) =
∑

2k≤s2h

Q̌sh(I − R2k ) fk ; ‖ Us ‖T 2
2
≤ Csε ‖ f ‖L2(	2) , (2.23)

because of (2.13). The same argument as for (2.22) and integration in s gives there-
fore:∣∣B3( f, A; s)| ≤ Csε ‖ f ‖L2(	2)‖ A ‖D2 ; |Y | ≤ C ‖ f ‖L2(	2)‖ A ‖D2 . (2.24)

Estimates of Z

This is deeper. The summation of the k’s that gives B4 consists of c| log s|+c terms
and the required estimate follows from the fact that each of these terms is

O
(
sε ‖ f ‖L2(	2)‖ A ‖D2

) ; some ε > 0 , (2.25)

summing and integrating in s as in (2.19) gives the required estimate and completes
the proof of Proposition 1.1.

The estimate (2.25) is not obvious. It is in fact the key estimate of [7, (1.32)]
and the reader will have to read a good part of [7] to understand how this is proved.
(The additional factor (I − R2k ) gives no problem here because it can be absorbed
with fk , and the additional term P̌ha(y) ∈ D∞ is absorbed with A(y, h) as before.)
This estimate (1.32) is on the other hand stated in the introduction of [7]. A quick
glance at that introduction could perhaps satisfy the less demanding readers.

2.4. Proof for 1 < p < ∞
Having proved that L : Dp → L p(	2) is bounded for p = 2, it follows that the
same thing holds for 0 < p ≤ 1. Here as in [7, Section 2.4, 2.5] it suffices to test
on the atoms of Dp. Observe however that here we cannot reduce the test to unit
atoms only, because a priori we cannot scale. But this makes no difference. On the
other hand the operator L is local in the sense that supp(LA) ⊂ Ĩ for all A with
supp A ⊂ T (I ) (I ⊂ R

n is a cube, Ĩ is the concentric cube c-times as large and
T (I ) is the tent above I [2, 6, 7]. Cf. also (3.3) below). It follows that for an atom
A ∈ Dp we do not have to worry about LA far out. Therefore no size estimate for
Q is needed here.

Having proved the boundedness for L for p ≤ 1 and p = 2 we can interpolate
and obtain all the values 0 < p ≤ 2 (cf. [7, Section 2.7, A.3.2])

As in [7], in the scalar case, the values 2 < p < ∞ are much harder to handle
and in particular we shall need to use concrete size and smoothness estimates for the
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kernel of L as [7, Section 2.5, 2.6]. We shall analyze these estimates again in more
detail in the Appendix 2 below. Here I shall assume the results of the Appendix and
complete the proof of the boundedness of L for 2 ≤ p < ∞. I shall use the forms
Bi , 0 ≤ i ≤ 4 of Section 2.3 and (as in [7, (6.16)]) I shall first prove estimates for
the Hardy space:

|Bi ( f, A)| ≤ Ci ‖ f ‖H1(	2)‖ A ‖D∞ . (2.26)

For i = 2 the form B2 is smooth in the sense of [7, Section 2.6]. (Cf. Lemma (i) of
the Appendix 2.) For C2 we can therefore take a constant C . The C3, C4 = C(s)
will on the other hand depend on s but as in [7, Section 2.7] (cf. Lemma (ii) of the
Appendix 2) we can assert that for any λ > 0 we have C3, C4 ≤ Cλs−λ, 0 < s < 1.
The estimate (2.26) for i = 3, 4 can thus be interpolated with (2.24), (2.25). (This
is the Lemma (iii) of the Appendix 2) and we deduce that

|Bi ( f, A; s)| ≤ Csεp ‖ f ‖Lq (	2)‖ A ‖Dp ; i = 3, 4, 2 < p < ∞, 1/p +1/q = 1,

(2.27)
where C and εp > 0 depend on p. The above inserted in (2.19) gives

|Bi ( f, A)| ≤ C ‖ f ‖Lq (	2)‖ A ‖Dp ; i = 1 , 1/p + 1/q = 1, 2 ≤ p < ∞ .

(2.28)
Now I shall examine B0 in (2.16) and decompose it

B0( f, A) = B0
2 ( f, A) +

1∫
0

B0
3 ( f, A; s)

ds

s
, (2.29)

where B0
2 ( f, A) is obtained from B0( f, A) by replacing in the integrand fk by P̌h fk ,

and B0
3 is obtained by replacing in the integrand fk by Q̌sh fk . This is analogous to

what we did in Section 2.3 for the decomposition (2.19) of B1 (except that now we
do not need to modify the summation range of k and we do not need to define the
analogue of B4). By the smoothness properties of these forms (cf. Appendix 2) we
obtain as before

|B0
i ( f, A)| ≤ Ci ‖ f ‖H1(	2)‖ A ‖D∞ ; i = 2, 3 , (2.30)

with C2 = C is a constant and C3 ≤ Cλs−λ for any λ > 0. The estimate (2.30) can
then be interpolated with (2.2)′, (2.10), (2.11) and we obtain (cf. Appendix 3)

B0
i ( f, A) ≤ Ci ‖ f ‖Lq (	2)‖ A ‖Dp ; 2 ≤ p < ∞, 1/p + 1/q = 1 , (2.31)

with C2 = C and C3 ≤ Cεsε (for some ε > 0). If we insert (2.31) in (2.29) we
obtain a proof of (2.28) for i = 0. Since B = B0 + B1 we have the proof of the
Proposition 1.1 for 2 ≤ p < +∞.
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3. Reduction of Proposition 0.2 to affine functions

One says (cf. [6]) that 0 ≤ σ ∈ A∞ if there exists r > 1, C > 0 such that 1

|I |
∫
I

σ r dx

1/r

≤ C
1

|I |
∫
I

σdx ; I cube of R
n , (3.1)

were |I | denotes the Lebesgue measure of I . For the Properties 3.1 and 3.2 below
the only thing that counts is this: For each 0 < ε < 1 and each g ∈ L1

loc such
that the Hardy-Littlewood maximal function Mg is not identically +∞ we have
(Mg)ε ∈ A∞. (We even have (Mg)ε ∈ A1 ⊂ A∞ but this here can be ignored).

We shall consider here sublinear local mappings L from functions A on R
n+1+

to L(A) a function on R
n . To wit:

|L(λA)| = |λ||L A| ; λ ∈ R , |L(A1 + A2)| ≤ |L A1| + |L A2| . (3.2)

There exists C0 > 0 such that for all cube I ⊂ R
n we have:

supp A ⊂ T (I ) = [(x, h) ; h < c dist(x, I c)] ⇒
⇒ supp L A ⊂ C0 I = the concentric cube C0 − times as large.

(3.3)

Property 3.1. Let us assume that L satisfies (3.2) and that for all σ ∈ A1 the
mapping

L : D1(σ ) −→ L1(σ ) , (3.4)

is bounded. Then
L : Dp −→ L p , (3.5)

bounded for all 1 ≤ p < +∞.

Here A ∈ D1(σ ) means that Ã = A∗ + S(h∇ A) ∈ L1(σ ) (cf. [7, A.1] for
more details on these weighted Dp-spaces). The above property is an immediate
consequence of the property of A1 weights that I stated above. Cf. [7, Section 2.8]
for a two line proof of Property 3.1. Here we shall need to use this property for the
vector valued spaces L p(	2). The prototype of the Property 3.1 can be found in [5].

Property 3.2. Let us assume that L satisfies (3.2) (3.3) let us assume that (3.5)
bounded for all 1 ≤ p < +∞ then (3.4) is bounded for all σ ∈ A∞.

Once more the L p-spaces are here vector valued. The local property (3.3)
is now essential because we use here the atomic decomposition of D1(σ ) (cf. [7,
Section 2.8 and A.3.5.])

We shall consider now σ ∈ A∞ and Qh(x − y) = �
(

x−y
|x−y|

)
θh(|x − y|) as

in (0.7) with � ∈ Lr (�)(r > 1) and θ ∈ C∞
0 . We shall assume that

∫
P̌ = 1 and

define as in [7, (3.15)]

β2
σ (x, h) =

∫
|Qh(x − y)|

∣∣∣[a]x,y − P̌ha(x)

∣∣∣2
σ(y)dy . (3.6)
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Property 3.3.∣∣∣ ∫ β2
σ (x, h)A(x, h)

dxdh

h

∣∣∣ ≤ C ‖ a ‖2∞
∫

A∗(x)σ (x)dx ; A ≥ 0 . (3.7)

where here A∗(x) denotes the non tangential maximal function sup[|A(z)|; z ∈
�δ(x)].
It is easy to see that the right hand side of (3.7) is essentially independent of the
apature of the wedge δ > 0 (cf. [7, A.1]). The proof of (3.7) is given in the Ap-
pendix 1.

Proof of the reduction of Section 1.3

We follow closely the strategy of [7, Section 7]. Let

L X A(x) = sup
ε,M

∣∣∣ ∫
ε<h<M

Qh(x − y)X (x, y; h)A(y, h)
dydh

h

∣∣∣ . (3.8)

When X (x, y; h) = F0([a]x,y) = F0 for an affine F0 = c0 + �i ci zi I shall de-
note (3.8) by L0. By Proposition 1.1 and the above Property 3.2 we deduce the
boundedness of

L0 : D1(σ ) −→ L1(σ )(: 	2 valued L2) , (3.9)

for σ ∈ A∞. (3.9) also holds if in (3.8) we set X = �(P̌ha(y)) = � for some
� ∈ C N , because then X is independent of x and X ∈ D∞ and can therefore by
absorbed with A (cf. [7, Section 2.2]). The Property 3.2 applies thus again. The
same thing clearly also holds for a product X = F0� as above. Let us consider the
Taylor expansion of F ∈ C N

F([a]x,y) = F0� + X (x, y; h) ; X = O(|[a]x,y − P̌ha(y)|2) ; a ∈ C∞
0 , (3.10)

where F0, � are as above. We shall then apply Property 3.3 to L X (3.8) with the X
as (3.10). This will give the boundedness of:

L X : D1(σ ) −→ L1(σ ) ; σ ∈ A∞ . (3.11)

To see this we use duality with L∞ (with respect to the weight σ ) and use (3.7).
But since L X is bounded in (3.11) for any σ ∈ A∞ if X = F0�, the boundedness
of (3.11) with X = F([a]x,y) follows. The Property 3.1 completes the proof of the
reduction.

4. The Cotlar analysis – denouement

In this paragraph and in the next I shall estimate the correcting term in the control
of (0.10).
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4.1. Decomposition of the operators and notation

4.1.1. First set of notation

All the P̌ will satisfy
∫

P̌ = 1 and we can write I − P̌h =
1∫

0
Q̌sh

ds
s where I denotes

throughout the identity operator. Furthermore when confusion does not arise I shall
identify functions with convolution operators. R is as in Section 1, F ∈ C N as in

Section 0 and Q(x) = �
(

x
|x |

)
θ(|x |) is as in (0.7). If K = K (x, y) (x, y ∈ R

n) I

shall denote by {K } the operator whose kernel is K (x, y). In the notation below a
product of operators as above, denotes the composition of these operators.

The operators that give the correcting term in (0.10) are

Tk(h) =
1∫

0

(I − R2k ){Qh(x − y)F([a]x,y)}Q̌s1h
ds1

s1
[h > 2k] ; k ∈ Z , (4.1)

with the abbreviation [h > 2k] for the indicator function I(h > 2k) and where
the a’s are as in the Theorem. The constants in the estimates below depend on
n, r, k, N , ‖ F ‖C N but not on the a’s where we assume as before that ‖ a ‖∞ ≤ 1.
It is these operators that have to be analyzed.

4.1.2. Decomposition of (4.1)

We shall abbreviate and denote:

{Qh(x − y)F([a]x,y)} = {· · · |h} ;
{Qh(x − y)F([P̌ha]x,y)} = {1|h} ;
{Qh(x − y)F([P̌sha]x,y)[Q̌sha]x,y} = {2|s, h} .

(4.2)

We have a first decomposition

{· · · |h} = {1|h} +
1∫

0

{2|s, h}ds

s
, (4.3)

where {· · · } in the integrand is defined with the functions of ∇F .
A further decomposition is obtained by inserting the decomposition of the

identity I = P̌h + (I − P̌h):

(I −R2k ){· · · |h}Q̌s1h =(I −R2k )P̌h{· · · |h}Q̌s1h+
1∫

0

(I −R2k )Q̌s2h{· · · |h}Q̌s1h
ds2

s2
.

(4.4)
If we combine (4.3) and (4.4) and multiply by [h > 2k] we obtain a decomposition
of Tk(h) into four different operators.
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4.1.3. An illustration and a further decomposition

One of the above four components of Tk(h) is

1∫
0

1∫
0

1∫
0

(I − R2k )Q̌s1h{2|s, h}Q̌s2h
dsds1ds2

s s1s2
[h > 2k] . (4.5)

If we restrict the above integration to the range

2−i <s1 <2−i+1, 2− j <s2 <2− j+1, 2−	 <s < 2−	+1 ; 1≤ i, j, 	∈Z , (4.5)′

we obtain operators Tk (h | i, j, 	) and a further decomposition of (4.5) into∑
i, j,	

Tk(h|i, j, 	).

Analogous, but simpler decompositions (that involve only one or two summa-
tion indices) can be given for the other three components of Tk(h) in (4.3)-(4.4).

4.1.4. The vector valued operator

Let
T(h) : L2 −→ L2(	2) ; T(h)g = (· · · T−1(h)g, T0(h)g, · · · ) . (4.6)

Observe that

T∗(h)T(h′) =
+∞∑
−∞

T ∗
k (h)Tk(h

′) ; T(h)T∗(h′) = (
Tk(h)T ∗

r (h′)
)

k,r , (4.7)

where (·)k,r indicates an operator entries (infinite) matrix that defines an operator
in 	2(L2) ∼= L2(	2).

4.1.5. The h-integration

For all the above operators we shall consider their integrated versions in dh/h:

Tk =
∞∫

0

Tk(h)
dh

h
, T =

∞∫
0

T(h)
dh

h
, Ti, j,	 =

∞∫
0

T(h|i, j, 	)
dh

h
, · · ·

where T(h|i, j, 	) is defined as in (4.6) from the operators Tk(h|i, j, 	).

4.2. The Cotlar estimates

The notation is as in Section 4.1. We shall prove that there exists ε > 0 and δ > 0
s.t. ‖ T∗

i, j,	(h)Ti, j,	(h
′) ‖op, ‖ Ti, j,	(h)T∗

i, j,	(h
′) ‖op

≤ C exp(−δ(i + j + 	))
((

h/h′)ε ∧ (
h′/h

)ε) ; i, j, 	 ≥ 1 .
(4.8)

Here ‖ ‖op denotes the corresponding L2 −→ L2 operator norm. Analogous
estimates will be proved for the other components (that have one or two indices) of
the decomposition Sections 4.1.2, 4.1.3.
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The exponents ε

Throughout the ε > 0 that appears as an exponent will denote some positive con-
stant that may differ from place to place.

From (4.8) Cotlar’s Lemma applies (cf. [1, 6]) and we deduce:

‖ T ‖op≤ C ; ‖ Ti, j,	 ‖op≤ C exp(−δ(i + j + 	)) , (4.9)

for some δ > 0.
The proof of (4.8) will be given below and is a straightforward adaptation of

ideas of [7, Sections 8, 9] and of [1]. The only real difficulty in these proofs is to
keep track of the notation which are unfortunately very involved.

4.3. Estimate of T ∗T

The integrand of T∗
i, j,	(h)Ti, j,	(h′) that comes from (4.5) is:

Q̌s1h{2|s2, h}Q̌s3h(I − R2k )
2 Q̌s4h′ {2|s5, h′}Q̌s6h′ [2k < h ∧ h′] , (4.10)

where we integrate in the range:

2− j<s1, s6 <2− j+1, 2−i<s3, s4 <2−i+1, 2−	<s2, s5 <2−	+1; i, j, 	≥1, (4.11)

and sum in k ∈ Z. The other components of the decomposition (4.3)-(4.4) give
analogous (but simpler) expressions. If we integrate (4.10) in (4.11) we obtain
T∗

i, j,	(h)Ti, j,	(h′). Finally in (4.10) and throughout, I abuse slightly the notation
and use the same symbols R, {· · · } etc to indicate these operators and their adjoints.
The functions that are used for these adjoints are of course different, but noting
changes either in the notation or in the arguments that follow.

By taking adjoints if necessary we may assume that h/h′ = e−a, a ≥ 0.
We shall denote si = e−σi (σi ≥ 0) and use throughout the convention that in the
exponentials that appear below e.g. exp(−σ1), exp(−σ3+σ4−a) etc. what is meant
is exp(−cσ1), exp(−cσ3 + cσ4 − ca) etc. In other words the positive constants c
are omitted. Finally each of the factors in (4.10) has a bounded operator norm and
the estimates given below are obtained by combining adjacent factors.

For the summation in k in (4.10) two different ranges will be considered:

Range 1: 2k ≤ s3h ∧ s4h′.

Range 2: (Z\ Range 1), and we shall use the fact that:

Cardinality of Range 2 ≤ c + c| log s3| + c| log s4| . (4.12)
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Estimate 1

We shall estimate the L1 norm of∑
k

Q̌s3h(I − R2k )
2 Q̌s4h′ [2k < h ∧ h′] , (4.13)

which is one of the segments of (4.10).
At this point it is instructive to consider first the other component coming from

the first term of the right hand side of (4.4). The corresponding segment simplifies
and is∑

2k<h∧h′
P̌h(I − R2k )

2 P̌h′ =
∑

2k<h∧h′
Q̌k

h Q̌k
h′ ; ‖ Q̌k

h ‖1 = O(2kh−1), (4.14)

because Q̌k
h = (I − R2k )P̌h = ((I − R2k h−1)P̌)h . The norm of each term, of (4.14)

can also be estimated by
(
h/h′) ∧ (

h′/h
)

because of the cancellation. This gives

‖ Q̌k
h Q̌k

h′ ‖2
1≤ C

[
(h/h′) ∧ (h′/h)

]
2kh−1 . (4.15)

Summing up we see that we can estimate (4.14) by (h/h′)ε ∧ (h′/h)ε = e−a .
For the original (4.13) exactly the same argument applies for the summation of

kε Range 1, and this gives therefore an estimate
(

s3h
s4h′

)ε ∧
(

s4h′
s3h

)ε

for the sum of

the L1-norms. The same estimate holds for each individual term in the summation
(4.13). In the range 2 we can thus use (4.12) to conclude

(4.13) ≤ C(1 + σ3)(1 + σ4) exp(−σ3 + σ4 − a) . (4.16)

Estimate 2
Here we use [7, Section 8] (esp. (8.6) (8.7)) on each sub-product

{2|s2, h}Q̌s3h(I − R2k ) or (I − R2k )Q̌s4h′ {2|s5, h′} , (4.17)

in (4.10). Furthermore as before we can combine together the terms that come from
kε Range 1. We obtain therefore for the L2 operator norm of (4.10) the estimate

(1+| log s3|+| log s4|)
(

sε
3

sε
2

∧ sε
4

sε
5

)
∼ (1+σ3+σ4)(exp(−σ3+σ2)∧exp(−σ4+σ5)) ,

(4.18)
where the logarithmic factor comes from (4.12). We shall omit the details. The
key observation however, as in (4.14), is that with k ∈ Range 1 (I − R2k )Q̌s3h =
2ks−1

3 h−1 Q̌(k)
s3h with the Q̌(k)’s staying in a “bounded set” of functions of C∞

0 . The
additional scalar factor comes about because the integral of I − Rr is 0 and the
diameter of its support is r . Here r = 2ks−1

3 h−1.
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It will be instructive at this point to switch to the two components of the de-
composition Section 4.1.2 that come from {1|h} in (4.3). I shall show how the above
two estimates suffice to give the final control of these two components. Indeed the
integrands in T∗(h)T(h′) that give these two components are respectively

Q̌s1h{1|h}Q̌s3h(I − R2k )
2 Q̌s4h′ {1|h′}Q̌s6h′ [2k < h ∧ h′] , (4.19)

Q̌s1h{1|h}P̌h(I − R2k )
2 P̌h′ {1|h′}Q̌s6h′ [2k < h ∧ h′] . (4.20)

For (4.19) if we use (4.16) on the middle three factors we obtain the estimate

exp(−σ3 + σ4 − a) . (4.21)

On the other hand in (4.19) from the four possible combinations of the type (4.17)
(where now s2 = s5 = 1) we obtain for the summation in Range 1the estimates

sε
1 ∧ sε

3 ∧ sε
4 ∧ sε

6 . (4.22)

For this we observe that the summation of the middle three factors is also bounded
by C and thus the first (respectively last) two factors give sε

1 (respectively sε
6).

If we combine these with the logarithmic factor coming from the summation
in k in Range 2 (4.12) we finally obtain for (4.19) the estimate

(1 + σ3)(1 + σ4)
[
e−σ1 ∧ e−σ3 ∧ e−σ4 ∧ e−σ6 ∧ exp(−σ3 + σ4 − a)

]
.

That this suffices to give (4.9) is easy to see [cf. (4.24) below].
An analogous, but simpler estimate can be obtained for (4.20). To treat the

term (4.10) we shall need the following additional:

Estimate 3 [7, Section 8], [1, Section 5.3]

‖ {2|s2, h} ‖op≤ Csε
2 ; ‖ {2|s5, h′} ‖op≤ Csε

5 .

With this new estimate and with the previous treatment of (4.19) adapted now to the
case 0 < s2, s5 < 1 we finally obtain for (4.10) the estimate

(1 + σ3)(1 + σ4)

[
sε

2 ∧ sε
5 ∧

(
sε

1

sε
2

∧ sε
3

sε
2

)
∧

(
sε

4

sε
5

∧ sε
6

sε
5

)
∧

(
s3h

s4h′

)ε]
≈ (1 + σ3)(1 + σ4)[e−σ2 ∧ e−σ5 ∧ exp(−σ1 + σ2) ∧ exp(−σ3 + σ2)

∧ exp(−σ4 + σ5) ∧ exp(−σ6 + σ5) ∧ exp(−σ3 + σ4 − a)] .

(4.23)

To obtain the estimate (4.9) for the component (4.10), as in [7, Section 9] we apply
on (4.23) the barrycenter inequality

Min[x1, · · · , xm] ≤ xα1
1 · · · xαm

m ; x j ≥ 0, α j ≥ 0, (1 ≤ j ≤ m),
∑

α j = 1 ,

(4.24)
for an appropriate choice of the α j ’s, and where the x j are the exponentials of
(4.23). We then integrate each σr , 1 ≤ r ≤ 6 in the corresponding interval [i, i +
1], [ j, j + 1], [	, 	 + 1] that is given by (4.11). (4.9) follows at once.
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4.4. Estimate of T T ∗

The integrand of Ti, j,	(h)T∗
i, j,	(h

′) that comes from (4.5) is

(I−R2k )Q̌s1h{2|s2, h}Q̌s3h Q̌s4h′ {2|s5, h′}Q̌s6h′(I−R2r )[2k < h][2r < h′] , (4.25)

where no summation in k or r is involved here and (4.25) represents the entry of the
matrix (·)k,r in (4.7). The other components of the decomposition (4.3)-(4.4) give
analogous but simpler expressions.

If we integrate (4.25) in the range (4.11) we obtain

Ak,r = Tk(h|i, j, 	)T ∗
r (h′|i, j, 	) , (4.26)

and we have
‖ Ti, j,	(h)T∗

i, j,	(h
′) ‖op≤

∑
k,r

‖ Ak,r ‖op . (4.27)

We shall use the same method and the same notation as in Section 4.3 to estimate
(4.27). As in Section 4.3 we distinguish in the summation (4.27) the four ranges
obtained from the decompositions

[2k ≤ s1h] ∪ [s1h ≤ 2k < h] ; [2r ≤ s6h′] ∪ [s6h′ ≤ 2r ≤ h′] . (4.28)

We shall in particular use the estimate 1-2-3 of Section 4.3 to estimate various
segments of the product of operators appearing in (4.25). We shall then use the
ranges (4.28) to sum in k, r . We shall omit the details. The estimate obtained is as
before (4.23). We finally integrate in the same range for the σr (1 ≤ r ≤ 6).

4.5. Denouement

The estimate that will be used is summarized in the following:

Lemma 4.1. With our previous notation

M∫
ε

T(h)
dh

h
: L p −→ L p(	2) ; 1 < p < ∞ , (4.29)

is bounded uniformly in ε, M > 0.

In (4.9) I gave a proof of (4.29) for p = 2. The general 1 < p < ∞ will be
proved in Section 5 below. Here I shall assume the results of [7] and (4.29) and
complete the proof of (0.10). This, as explained in Section 0.2, will finish the proof
of the theorem. What is needed is the control of

f �→ sup
N

|�N f |; �N f (x) =
∫∫

h<N

Qh(x − y)F([a]x,y)(I − P̌h) f (y)
dydh

h
;

0< N ≤∞.

(4.30)



604 NICOLAS TH. VAROPOULOS

A consequence of the lemma is that

f �→ sup
k

∣∣(I − R2k )(�∞ − �2k ) f (x)
∣∣ , (4.31)

is L p −→ L p bounded (because 	2 ⊂ 	∞).
We shall prove that

f �→ sup
N

|RN �N f (x)| , (4.32)

is L p → L p bounded. From (4.31) and (4.32) f �→ sup
k

|�2k f | is seen to be

L p bounded, therefore by the argument of Section 1.3 the L p boundedness (4.30)
follows. Observe also that the full thrust of [7] is used together with the fact that
P̌h f (x) ∈ Dp for f ∈ L p to guarantee the p → p boundedness of �N . This
finishes the proof.

To prove (4.32) it suffices to show that

|RN �N f (x)| ≤ C(M | f |p)1/p(x) ; 1 < p < ∞ , (4.33)

where M is the Hardy-Littlewood maximal function. But by translation and dilation
we can assume in (4.33) that x = 0, N = 1. But then (4.33) is a consequence of
the fact that �1 is L p − L p bounded. Indeed if we localize fc = f χ[|x |<c] we
have R1�1 f (0) = R1�1 fc(0) because of the compactness of the support of Q. It
follows that

|R1�1 f (0)| = |R1�1 fc(0)| ≤ C ‖ �1 fc ‖p≤ C ‖ fc ‖p≤ C(M | f |p)1/p(0) ,

as needed.
From (4.33) it follows that (4.32) is L p −→ L p,∞ bounded 1 < p < ∞ i.e.

the weak p-boundedness. Interpolation gives the corresponding L p-boundedness.

5. The Calderon-Zygmund estimates

5.1. Terminology and basic facts [1, 6]

Let K (x, y) ∈ H = 	2, (x, y ∈ R
n) be a vector valued kernel. We say that K

satisfies the standard estimates if:

Size estimate: |K (x, y)| ≤ C1|x − y|−n .

Gradient estimate: |∇K (x, y)| = |∇x K | + |∇y K | ≤ C2|x − y|−n−1 .

Let T, T ∗ be operators L2 −→ L2(H) and L2(H) −→ L2 with ‖ T ‖2→2= C3
and let us assume that the kernel of T satisfies the standard estimates. In terms of
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the constants C1, C2, C3 and with the notation L1,∞ for the weak L1 space (Lorentz
notation), the “norm” of:

T : L1 −→ L1,∞(H), T ∗ : L1(H) −→ L1,∞ , (5.1)

can then be bounded by

Cθ (C3 + C1−θ
1 Cθ

2 ) ; 0 < θ < 1 , (5.2)

where Cθ only depends on n and θ . (Cf. [1, 6] for this basic fact). Let us also
consider the condition (cf. [6, I, Section 5])∫
|x−y|>2|x−x ′|

(|K (x, y)−K (x ′, y)|+|K (y, x)−K (y, x ′)|)dy≤C4; x, x ′ ∈ R
n. (5.3)

We obviously have C4 ≤ Cθ C1−θ
1 Cθ

2 , but we can also improve the above and we
can estimate the norms of (5.1) by

C(C3 + C4) . (5.2)′

5.2. The scalar valued illustration [7, Section 9]

With the notation of Section 4.1 I considered in [7] the L2 −→ L2 operators

Ti, j,	 =
∞∫

0

dh

h

∫∫∫
Q̌s1h{2|s, h}Q̌s2h

dsds1ds2

s s1s2
, (5.4)

where the s-integration is taken in

2−i ≤ s1 ≤ 2−i+1, 2− j ≤ s2 ≤ 2− j+1, 2−	 ≤ s ≤ 2−	+1 .

We also considered the sum T =
∞∑

i, j,	=1
Ti, j,	. What was proved in [7, Section 9]

was that
‖ Ti, j,	 ‖2→2= O

(
e−c(i+ j+	)

)
. (5.5)

The proof of (5.5) in [7] served as prototype for the proofs of Section 4.2. But the
situation in [7] was simpler.

Then in [7, Section 9] I used Section 5.1 to conclude

‖ Ti, j,	 ‖p→p= O
(

e−cp(i+ j+	)
)

, (5.6)

and therefore also that T is L p → L p bounded.
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To see this let us denote by Q(x, y; h) = Q(x, y; h|s1, s2, s) the integrand in
(5.4). Here we identify the operator with its kernel i.e. with a function in x, y ∈ R

n .
It is easy to see that if �∗ = M� is the Hardy-Littlewood maximal function of �

on the unit sphere, then for h = 1 we have

Q(x, y; 1) ≤ C �∗
(

x − y

|x − y|
)

I(|x − y| ≤ C) ; |∇x Q| + |∇y Q|(x, y; 1)

≤ Cs−c
1 s−c

2 I(|x − y| ≤ C) .

We can scale the above and obtain the corresponding estimates for all h > 0. These
estimates can be integrated in dh/h and we obtain∣∣Ki, j,	(x, y)

∣∣ ≤ C �∗
(

x − y

|x − y|
)

|x − y|−n ;∣∣∣∇Ki, j,	(x, y)

∣∣∣ ≤ Cec(i+ j)|x − y|−n−1 ,

(5.7)

for the kernels of the operators Ti, j,	. When � ∈ L∞ we can combine (5.2) with
the above to conclude that the L1 → L1,∞ norm of Ti, j,	, T ∗

i, j,	 are O
(
eδ(i+ j)

)
for

an arbitrary δ > 0. This interpolated with (5.5) (and dualized) gives (5.6).
For the general case � ∈ Lr (r > 1) the previous argument still works because,

with the above notation, in (5.3), (5.2)′ we have

C4 ≤ Ceδ(i+ j),

(for any δ > 0 and where C only depends on n, δ and the constants of (5.7)) .

To see this we can estimate the integrals (5.3) in the range 2m |x − x ′| ≤ |x − y| ≤
2m+1|x−x ′| in the two different ways by using either the first or the second estimate
in (5.7). We then take a geometric average.

5.3. Proof of Lemma 4.1

We shall apply the same strategy as in the previous section to the operators Ti, j,	 of
Section 4. Towards this let us denote

Q(x, y; h|s1, s2, s) = {(I − R2k )Q̌s2h{2|s, h}Q̌s1h[h > 2k]}k∈Z ∈ 	2 , (5.8)

where each coordinate of 	2 in (5.8) denotes a scalar kernel as above. This after
integration in the range (4.5)′ gives the kernel of T(h|i, j, 	). We aim to prove the
following estimates

|Q(x, y; 1|s1, s2, s)| ≤ C(1 + σ1 + σ2 + σ)c�∗
(

x − y

|x − y|
)

I(|x − y| ≤ C) ;
(|∇x Q| + |∇yQ|)(x, y; 1|s1, s2, s) ≤ Cec(σ1+σ2+σ)I(|x − y| ≤ C);

x, y ∈ R
n, s j = e−σ j as in Section 4.3 σ, σ j > 0 ,

(5.9)
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and where �∗ = M� is as in (5.7). Once (5.9) has been proved we proceed as
in Section 5.2. More explicitly we first scale to obtain the analogous estimates for
(5.8) with h > 0. We then integrate to obtain the analogue of the estimate (5.7) for
Ki, j,	 the kernel of Ti, j,	 :

|Ki, j,	(x, y)| ≤ C(i + j + 	)c�∗
(

x − y

|x − y|
)

|x − y|−n ;
|∇Ki, j,	(x, y)| ≤ Cec(i+ j+	)|x − y|−n−1 .

(5.10)

We proceed as in Section 5.2 to obtain

‖ Ti, j,	 ‖p→p= O
(

e−cp(i+ j+	)
)

. (5.11)

Here the presence of the factor (i + j +	) in the size estimate (5.10) is easily seen to
make no difference. From (5.11) we obtain the boundedness of T : L p −→ L p(	2)

for the component of T in the decomposition Section 4.1 coming from (4.5). The
other components of T in the decomposition Section 4.1 are treated identically and
they are simpler. This gives the proof of the lemma.

5.4. Proof of the estimates (5.9)

For both the size and the gradient estimate in (5.9) what has to be estimated is the
square root of: ∑

2k≤1

|(I − R2k )Q̌s2{2|s, 1}Q̌s1 |2 , (5.12)

and for simplicity, and to illustrate the issue, assume first that � ∈ L∞. Then, by
the compactness of the support of Q, in (5.9) we just have to prove the uniform
estimate in x, y.

Clearly (since{· · · } ≤ Q(x − y)) each individual term in (5.12) is uniformly
bounded. Observe however that for the gradient estimate an additional factor s−1

1
or s−1

2 will appear. Now to take the summation in k we decompose as we did in
Section 4.3 in the two ranges [2k ≤ s2], [s2 ≤ 2k ≤ 1] and for the first range, as
in Section 4.3, we can improve the above uniform estimate by the factor 2k

s2
. The

estimate (5.12) as in (5.9) follow and the factor | log s2| ∼ |(k : 2k ≥ s2)| comes
from the second range.

For the general case �∗ ∈ L1 the proof is essentially the same:
To estimate the uniform norm of Q̌si ∗ Q we have to use ‖ � ‖1 multiplied

with the L∞-norms of Q̌s1, Q̌s2 (or at least of one of them!). This accounts for the
s−c

1 s−c
2 in the constant of the gradient estimate of (5.9).
To obtain the size estimate in (5.9) we do not use ‖ Q̌s1 ‖∞ but dominate

each term of (4.12) by �∗
(

x−y
|x−y|

)
with the same convergence factor 2k

s2
in the range

2k ≤ s2. This completes the proof of (5.9).
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Appendix

A.1. (Carleson measures)

We recall the notation of [7, (3.15)] so that in (3.6) we have

Gh(x, y) =
∣∣∣[a]x,y − P̌ha(x)

∣∣∣ ;

β2
σ (x, h) =

∫
|Qh(x − y)|G2

h(x, y)σ (y)dy ;

a ∈ C∞
0 , σ ≥ 0 .

I pointed out in the remark of [7, Section 3.6] that with G2(y) = ∫
G2

h(x, y) dxdh
h

we have

‖ G ‖2r≤ C ‖ a ‖2r ; r > 1 . (A.1)

This was seen as follows. For g ∈ C∞
0 we have

∫
G2(y)g(y)dy ≤

∫∫∫
β2

σ (x, h)
dxdh

h
≤ C

∫
|a(x)|2σ ∗∗(x)dx , (A.2)

where σ = (Mg1+ε)
1

1+ε for some ε > 0 with q
1+ε

> 1 and 1
q + 1

r = 1 as in [7,
lemma, Section 3.5]. As for σ ∗∗ it was constructed in that lemma so that ‖ σ ∗∗ ‖q≤
C ‖ g ‖q and such that (A.2) holds. (A.1) is a consequence of (A.2).

From this we obtain the following Carleson measure property:

∫∫
T (I )

β2
σ (x, h)

dxdh

h
≤ Cσ(I ) ‖ a ‖2∞ ; f or a cube I ⊂ R

n , (A.3)

where T (I ) is the tent above I (cf. [6,7]) and σ ∈ A∞ is arbitrary. To see this, by the
compactness of the support of Q in the left hand side of (A.3), we can localize a and
replace it by a1 = χI1a for some larger concentric I1 ⊃ I . It follows that the left
hand side of (A.3) can be dominated by

∫
G2

1(y)σ (y)dy where G1 is constructed
exactly as G but where we use the localized a1. We then use (A.1) on G1, a1 and
the reverse Hölder inequality (3.1) on σ , and we obtain (A.3). The Property 3.3 of
Section 3 is a consequence of (A.3) and the general theory cf. [6].

[This is a good place to point out that there is an error in the statement, but not
in the proof, of [7, lemma, Section 3.5]: σ ∗∗ = (σα)1/α and not (�∗σα)1/α . This
error is purely notational and makes no difference either in [7] or here.]
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A.2. (Kernels)

The scalar kernel

For the convenience of the reader I will start with rerunning the argument of [7,
Section 2.6] for the kernel (0.7):

Q(x, y; h) = �

(
x − y

|x − y|
)

θh(|x − y|)F([a]x,y) . (A.4)

We consider

Q̃(x, y; h) = P̌h Q(x, y; h) =
∫

P̌h(x − z)Q(z, y; h)dz ,

and define analogously Qs(x, y; h) = Q̌sh Q for 0 < s < 1. What was needed and
proved in [7] is the following:

Lemma. Let the notation be as above. Then:

(i) If we assume that Q̃ : D2 → L2 bounded then Q̃ : D∞ → B M O is bounded.

(ii) If we assume that Qs : D2 −→ L2 bounded uniformly in s the D∞ −→
B M O operator norm of Qs is O(s−λ) for any λ > 0.

(iii) If we assume that the D2 −→ L2 norm of Qs is O(sε) for some ε > 0 then
the Dp −→ L p norm of Qs is O(sεp ) for some εp > 0 (1 < p < ∞).

Part (iii) for 2 ≤ p < ∞ is an immediate consequence of (ii) and interpolation,
(cf. Appendix 3 below). For the case 1 ≤ p ≤ 2 we interpolate between p = 1 and
2 and we do not need (ii). In the above lemma and throughout I abusively use the
same notation for the kernel and the induced mapping (0.6).

The proof of (i) and of (ii) in the special case � ∈ L∞ are easy: Indeed we
have

|Q̃(x, y; h)|, |Qs(x, y; h)| ≤ Ch−nI(|x − y| ≤ ch),

|∇x Q̃(x, y; h)| ≤ Ch−n−1I(|x − y| ≤ ch),

|∇x Qsh(x, y; h)| ≤ Cs−1h−n−1I(|x − y| ≤ ch) .

(A.5)

In particular for all 0 < λ < 1 it follows that:

|Qsh(x, y; h)− Qsh(x ′, y; h)|≤Cs−λh−λ−n I(|y| ≤Ch); |x |, |x ′|≤1, |y|+h ≥C,

and as a consequence:∫
|y|+h≥C

|Qsh(x, y; h) − Qsh(x ′, y; h)|dydh

h
≤Cs−λ; λ > 0, |x |, |x ′|≤1 .
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The analogous estimate for Q̃ holds for λ = 0. If we now use the hypothesis of the
lemma and the previous estimate, together with the cut off properties of [7, Section
2.1], we deduce the required BMO property for Q̃ A, Qs A(A ∈ D∞) tested on the
unit cube. The situation is clearly dilation and translation invariant and our result
follows.

When � ∈ Lr with r < +∞ nothing changes in the estimates for Q̃ and for
Qs we have

|Qs(x, y; h)| ≤ Ch−n�∗
(

x − y

|x − y|
)

I (|x − y| ≤ ch) ,

|∇x Qs(x, y; h)| ≤ Ch−n−1s−aI(|x − y| ≤ ch) ; a = a(n, r) > 0 ,

(A.6)

where �∗ = M�� is the Hardy-Littlewood maximal function of � on �. We shall
then proceed as before and denote by f (x) = ∫

|y|+h>C
Qs(x, y, h)A(y, h)

dydh
h for

some A ∈ L∞ with norm 1. For the BMO condition tested on the unit cube I it
suffices therefore to estimate∫∫

|xi |≤1

| f (x1) − f (x2)|dx1dx2 ≤
∫∫∫
(y,h)∈T
|xi |≤1

|Qs(x1, y; h) − Qs(x2, y; h)|dx1dx2dydh

h
,

(A.7)

T = ∪
j≥100

Tj ; Tj = [2 j < h < 2 j+1 ; |y| ≤ C2 j ] ; j ≥ 1 .

The integration range T holds because of the compactness of the support of Q.
Using the two estimates (A.6) separately on each Tj and taking a geometric mean
and summing we see that we can estimate (A7) by Cs−λ ‖ A ‖∞ 0 < s < 1 for
any λ > 0. This completes the proof of the lemma.

The vector valued kernel

We shall examine now the vector valued kernel:

Q̃(x, y; h) = {(I − R2k )Q̃(x, y; h)I(2k < h)}k ∈ H = 	2 , (A.8)

and the analogue Qs where in {· · · } we replace Q̃ by Qs . The analogue of the esti-
mates (A.5) for Q̃ also hold and this is essentially trivial to verify by the smoothness
of P̌h and the geometric decay of the diameters of the supports of I − R2k . The ana-
logue of (A.6) for Qs is

|Qs(x, y; h)|H ≤ Ch−n(1 + | log s|)�∗
(

x − y

|x − y|
)

I(|x − y| ≤ ch) ;
|∇x Qs(x, y; h)|H ≤ Ch−n−1s−aI(|x − y| ≤ ch) .

The difference with Q̃ lies simply in the fact that in the 	2-coordinates k of (A.8) we
have to distinguish two ranges: range-1 =[2k < sh] and range 2= [sh < 2k < h].
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For the first range the same argument as for Q̃ works and nothing changes. For
range 2 we simply use the fact that the cardinality of range 2 is ∼ 1 + | log s| and
estimate separately each individual coordinate. We shall omit the details which are
similar to what was done in Section 4.3 and Section 5.4.

It is clear now that in the proof of the lemma we have room to absorb the
logarithms. The conclusion is therefore that the lemma holds verbatim for the vector
valued kernels Q̃ and Qs .

A.3. (Interpolation)

The interpolation that we used in the proof of Appendix 2 Lemma (iii) says this:
Let T be a linear operator and assume that:

T : D∞ −→ B M O(	2) with norm ‖ T ‖(∞) ;
T : D2 −→ L2(	2) with norm ‖ T ‖(2) ,

(A.9)

then

T : Dp −→ L p(	2) ; 1

p
= θ

2
, 0 < θ < 1 ,

with norm ‖ T ‖(p)≤ Cθ ‖ T ‖θ
(2)‖ T ‖1−θ

(∞) .

(A.10)

One way to see this is to use K -real interpolation and use the facts

Dp ⊂ [D∞, D2]θ,p ; [B M O(	2), L2(	2)]θ,p ⊂ L p(	2) . (A.11)

The proof of the first fact in (A.11) has been spelled out in [7, Appendix]. This
proof follows standard lines anyway.

For the second fact in (A.11) one can use duality and reduce it to vector valued
Hardy spaces (cf. O. Blasco & Q. Xu: J. of Func. Analysis 102 (1991) pages 191-
194) and prove the fact:

L p(	2) ⊂ [L2(	2), H1(	2)]p,θ . (A.12)

For the proof of (A.12) we can use the same proof as for the scalar case:
P. Jones: The “Zygmund Conference” Wadworth 1981.
J. Peetre: Studia Math. T. LXI, 1979 pages 191–194.

The duality and the use of the H1-spaces has been avoided by J.-L. Journé (L.N.M.
No. 994, Springer, page 40). Journé uses directly the sharp function in a very
analogous context. With the same method we can deduce directly from (A.9) that
Dp −→ L p,∞(	2) is bounded. From this a slightly weaker version of (A.10) fol-
lows. This is sufficient for Lemma (iii) in Appendix 2.
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