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Algebraic Morava K-theory spectra over perfect fields

SIMONE BORGHESI

Abstract. In the paper [2] we constructed (co)homology theories on the category
of smooth schemes which share some of the some of the defining properties of
the (co)homology theories induced by the Morava k-theory spactra in classical
homotopy theory. Some proofs used the topological realization functor (cf. [8]).
The existence of that functor requires the base field k to be embedded in C. In
this manuscript we investigate up to what extent we can obtain the same results
under the sole assumption of perfectness of the base field. The results proved
here guarantee the existence of spectra �i satisfying the same properties as in
[2], provided that the algebra of all the bistable motivic cohomology operations
verifies an assumption involving the Milnor operation Qt .

Mathematics Subject Classification (2000): 14F42 (primary); 55P42, 14A15
(secondary).

1. Introduction

Let k be a field and Sm/k be the category of smooth schemes over k. In the
paper [2], under the assumption that the base field is embeded in C, we constructed
a family of (co)homology theories �i satisfying certain properties. If H∗,∗(X, Z/q)

denotes the motivic cohomology groups of a smooth scheme X , as defined by
V. Voevodsky in [10], then �

∗,∗
i (X) are i + 1-tuple extensions of the groups

H∗−2 j (qt −1),∗− j (qt −1)(X, Z/q) which detect certain Chern numbers of the tangent
bundle of X . The (co)homology theories �i ( ) correspond to objects denoted
�i of a certain category SH(k). This is called the stable homotopy category of
schemes over a base field k, and it is strictly related to the usual stable homotopy
category of topological spaces. There are two, equivalent, constructions of this cat-
egory (cf. [4] and [9]), each having its own advantages. If we assume the base field
k to be perfect, motivic cohomology is a representable functor, represented by an
object HZ ∈ SH(k), called the Eilenberg-MacLane spectrum. This is the only in-
stance where we use perfectness of k. The word spectrum refers to an object of the
category SH(k). This is the type of objects we will deal with in this manuscript.
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The purpose of the paper is to construct the spectra �i of [2] for a more general
kind of base fields: we now only assume the base field k to be perfect instead of
admitting an embedding k ↪→ C. The spectra �i constructed in [2] depend on a
prime number q and on a positive integer t . There are two main properties these
spectra have: the first is that they fit in exact triangles

�2(qt −1),qt −1�i−1
�� �i

τi �� HZ/q (1.1)

thus they are assembled by using motivic Eilenberg MacLane spectra. The second
is that the way these spectra are put together is nontrivial. In particular �i are not
simply a direct sum (wedge) of suspensions of motivic Eilenberg MacLane spectra.
This property follows from the definition of �i given in Theorem 5.1 and that the
cohomology classes yi ∈ H2(i+1)(qt −1)+1,(i+1)(qt −1)(�i , Z/q) that appear in the
exact triangle (5.1) are chosen so that δyi = Qt�

2i(qt −1)+1,i(qt −1)ι. The program
we will follow is exactly the same as the one already employed in [2]. More pre-
cisely we determine homotopy classes an of the algebraic cobordism spectrum MGl
that have an appropriate divisibility property with respect to their images through
the Hurewicz homomorphism (Theorem 3.1). These homotopy classes are then em-
ployed to produce a spectrum k′(t) which will serve as “model” in the costruction
of �i in the Theorem 5.1. To us the most important features of k′(t) are the exis-
tence of a canonical MGl module structure on it and its motivic cohomology with
coefficients in Z/q. To check that the motivic cohomology is as in Theorem 4.6,
we first have to compute motivic cohomology groups of the spectrum MGl as mod-
ule over the motivic Steenrod algebra (Theorem 4.1) and then use this answer in
the argument already described in [2] to prove Theorem 12. In that paper we used
the assumption that the base field k admits an embedding in C three times, namely
in the proofs of Theorem 10, Proposition 6 and few times in Section 4.3 to prove
Theorem 13. In each of them the C realization functor (cf. [8]) has been employed
and its existence relies on such assumption on the base field. This paper provides
alternative proofs for those statements, requiring no assumption on the base field
other than its perfectness, except in Section 5. Following our approach, the exis-
tence of a spectrum with motivic cohomology isomorphic to A∗∗/A∗∗Qt such as
k′(t) enables us to place the obstructions to the existence of �i in the most “exotic”
part of the algebra of the bistable motivic cohomology operations, that is the kernel
B∗∗ of the canonical map A∗∗

m → A∗∗ (see the part following the Theorem 4.6).
In Section 5 we prove that such obstructions are contained in certain homogeneous
degrees of B∗∗/B∗∗Qt (see the condition and (5) and (5)). In Proposition 5.2 we
show that the Margolis homology groups of B∗∗ vanish if all the motivic cohomol-
ogy operations in A∗∗

m satisfy a Cartan formula. The issue whether B∗∗ satisfies
such conditions is quite involved. B∗∗ is expected to be zero for all perfect fields,
in which case the conditions would be fulfilled trivially. The proof that B∗∗ is zero
for characteristic zero fields, recently appeared in the paper [16].

We will repeatedly use the vanishing of the motivic cohomology groups
Hi, j (X, A), with coefficients in an Abelian group A, of a smooth scheme X in
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the following range:

j < 0, i > 2 j, i − j > Krull dimension of X

in the case the base field k is perfect, there is a pair of adjoint functors

DM−
eff(k)

R �� H(k)
L

�� (1.2)

where DM−
eff(k) is the derived category of effective motives and H(k) is the (un-

stable) homotopy category of smooth schemes. By means of this adjunction it is
possible to prove that the motivic cohomology is represented by the class in H(k) of
certain simplicial sheaves [12]. These simplicial sheaves can be assembled together
to give a spectrum in SH(k) which represents motivic cohomology in SH(k), as
well.

ACKNOWLEDGEMENTS. This paper has been written during my staying at the
Institute des Hautes Études Scientifiques of which I have very much appreciated
the welcoming and exciting environment offered to me. I would also like to thank
the Scuola Normale Superiore for its support and Ignazio Longhi for having helped
me to check a technical part of the paper.

2. Notations and basic facts

Much like the topological stable homotopy category, SH(k) can be seen as the
homotopy category associated to two model categories: one of which has sym-
metric spectra as objects and the other S modules in the the sense of [3] (cf. [4]
and [9], respectively). The associated homotopy categories are canonically equiv-
alent. The main difference from the topological case is that here the category
�op(Shv(Sm/k)Nis) of simplicial Nisnevich sheaves of sets over the site of smooth
schemes over a base field k plays the role of the category of topological spaces and
the former is not locally contractible and some appropriate version of the White-
head theorem is not known, at this date. We have distinguished pointed simplicial
sheaves: S1

s is the constant simplicial sheaf �1/∂�1 pointed by ∂�1, where �n is
the sheaf of simplicial sets constantly equal to the simplicial set �n . P1

k is the con-
stant simplicial sheaf U → HomSm(k)(U , P1

k), for all smooth schemes U pointed
by U → HomSm(k)(U , {∞}) with ∞ ∈ P1

k . If X is a pointed sheaf, then we will
denote �∞X its suspension spectrum, that is the spectrum consisting of (P1

k)
∧i ∧X

at nonnegative level i and identities as structure morphisms. Let G be an Abelian
group, then HG is the motivic Eilenberg-MacLane spectrum with coefficients in G
as described in [2, Definition 3]. As usual, if A and B are spectra we define the
following groups:
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Definition 2.1.

(1) Ai, j (B) = [B, �∞(Si−2 j
s ∧ (P1

k)
∧ j ) ∧ A]SH(k),

(2) Ai, j (B) = [�∞(Si−2 j
s ∧ (P1

k)
∧ j ), A ∧ B]SH(k)

(3) πi, j (A) = [�∞(Si−2 j
s ∧ (P1

k)
∧ j ), A]SH(k).

We will use the following notation: �∞(Si−2 j
s ∧ (P1

k)
∧ j ) ∧ A = �i, j A. If the

simplicial sheaf X has a point x : Spec k → X , the group Ãi, j (X) is defined
as [�∞X, �i, j A]SH(k) with X pointed by x . Similarly, we define Ãi, j (X). In
particular, Hi, j (X, G) denotes the group [�∞X+, �i, j HG]. If E is a ring spec-
trum, Ãi, j (E) is the kernel of the map u∗ : Ai, j (E) → Ai, j (S0) induced by the
unit u : S0 → E. We recall that the spectrum MGl is constructed levelwise by
means of Thom spaces exactly in the same way as it is done in the classical sta-
ble homotopy category. It has a strict multiplication satisfying the axioms mak-
ing it a ring spectrum [9] and it is oriented in the sense that there exists a class

c ∈ M̃Gl
2,1

(P∞
k ) pulling back to the canonical class in M̃Gl

2,1
(P1

k) via the canon-
ical inclusion P1

k ↪→ P∞
k . Since its proof is valid in complete generality (cf. [2,

Corollary 1]), we will freely use the Thom isomorphism theorem:

Theorem 2.2. Let E be an oriented ring spectrum, X be a connected smooth
scheme and ν → X be a n dimensional vector bundle over X. Then we have isomor-
phisms Ei−2n, j−n(X)

∼=→ Ẽi, j (Th(ν)) for all i and j . More precisely, P(ν ×A1)
p→

X and P(ν × A1)
q→ Th(ν) induce a commutative diagram

E∗,∗(X)
� � p∗

��

∼=
( )∪cn

������������� E∗,∗(P(ν × A1))

Ẽ∗+2n,∗+n(Th(ν))
��

q∗
��

∼= E∗,∗(X) · cn.

(2.1)

Moreover, we will regularly refer to the properties of the motivic Steenrod algebra
listed in [2] and proved in [13].

3. Choice of homotopy classes of MGl

Our first goal is to construct an MGl module spectrum k′(t) with motivic cohomol-
ogy as stated in Theorem 4.6. This can be achieved by starting with the spectrum
MGl and then “killing” the homotopy classes of MGl which we are going to de-
scribe in this section. The existence of these special homotopy classes is established
by the following result

Theorem 3.1. Let h : π∗,∗(MGl) → H∗,∗(MGl, Z) be the Hurewicz homomor-
phism, defined by associating to φ : �r,s(P1

k) → MGl the composition �r,s(P1
k)

∼=
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S0 ∧ �r,s(P1
k)

u∧φ→ HZ ∧ MGl, where u : S0 → HZ is the unit of the canonical ring
structure of HZ. Then there exist classes an ∈ π2n,n(MGl) for n = 0, 1, 2, · · · such
that

(1) if n = qt − 1 for some prime number q and positive integer t then h(an) is
divisible by q, but not by q2;

(2) in all the other cases no prime number q divides h(an).

Proof. The strategy is to find homotopy classes in a way that the coefficients of
their images through the Hurewicz homomorphism do not depend on the base field
k. More precisely we will show that for certain homotopy classes an , the coeffi-
cients of h(an) are the degree of the 0 cycle represented by homogeneous polyno-
mials in the Chern classes of the tangent bundle of some smooth projective algebraic
varieties. Such polynomials have constant integral coefficients making the coeffi-
cients of h(an) independent on the base field on which these varieties are definable.
In turn, these projective algebraic varieties can be taken to be disjoint unions of
smooth degree q hypersurfaces of dimension qt − 1 for all prime numbers q, and
degree (1, 1) smooth hypersurfaces in P

n
k × P

m
k for appropriate n and m thus they

can be defined on any field k. We are going to employ the [14, Theorem 2.11].

Theorem 3.2 (Voevodsky). Let M be a connected smooth projective variety of
pure dimension d over a field k. Then there exists an integer n and a vector bundle
V of rank n on M such that:

(1) V + TM = On+d
M , where TM is the tangent bundle on M;

(2) Let V as above. Then there exists a morphism

fV : (P1
k)

∧n+d → ThM (V )

in the category H•(k) with the property that, if k is perfect, the composition

H2d,d(M, Z)
t ′→ H̃2(n+d),n+d(ThM (V ), Z)

f ∗
V→

→ H̃2(n+d),n+d((P1
k)

∧n+d , Z) ∼= Z

(3.1)

can be described as sending a zero cycle∑
i

mi [Spec Li ] ∈ C Hd(M) ∼= H2d,d(M, Z)

to the number
∑

i mi [Li : k], known in the literature as the degree of the zero
cycle in question. Here, t ′ is the cohomological Thom isomorphism (see [2])
and the last is the (stable) suspension isomorphism.
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We introduce the following notation:

• let M is a smooth projective variety of pure dimension d and V one of the vector
bundles whose existence is asserted by the previous theorem,

• Grn is the infinite Grassmannian of n dimensional planes,
• v : M → Grn is the map in H(k) classifying V ,
• t is the homology Thom isomorphism,
• i : Grd → Gr := limh Grh is the canonical map,
• and j : �∞MGln → �2n,nMGl the composition in SH(k)

�∞MGln → MGl[n] σ−n→ �2n,nMGl

where MGl[n]i = MGli+n (cf. [4, Lemma 3.19]).

To each such M , we can associate the homotopy class aV
d ∈ π2d,d(MGl), repre-

sented by the composition in SH(k)

�∞(P1
k)

∧n+d fV→ �∞Th(V )
Th(v)→ �∞MGLn

j→ �2n,nMGl. (3.2)

Essentially by definition we have that j∗ ◦ Th(v)∗ ◦ ( fV )∗(�2(n+d),n+d ι) = h(aM
d )

where ι is the generator of H̃2(n+d),n+d((P1
k)

∧n+d , Z). We will now show that the
coefficients of h(aM

d ) are the degrees of the zero cycles represented by certain poly-
nomials of degree d in the Chern classes. Consider the following diagram:

H̃2(n+d),n+d((P1
k)

∧n+d , Z)

( fV )∗
��

H̃2(n+d),n+d(Th(V ),Z)
Th(v)∗ ��

∼= t

��

H̃2(n+d),n+d(MGln,Z)

∼= t

��

j∗ �� H̃2d,d(MGl,Z)

t∼=
��

H2d,d(M, Z)
v∗ �� H2d,d(Grn, Z)

i∗ �� H2d,d(Gr, Z).

(3.3)

The diagram commutes by naturality of Thom isomorphism (vertical maps). In
Section 4, Step 3, we will show that we can choose canonical polynomial generators
βu and bu of the motivic homology of MGl and Gr respectively, with the property
that the homological Thom isomorphism t is described by

H̃∗,∗(MGl, Z) ∼= H∗,∗(Spec k, Z)[β1, β2, · · · ] t→
→ H∗,∗(Spec k, Z)[b1, b2, · · · ] ∼= H∗,∗(Gr, Z)

(3.4)

with t (βα1
1 · · · βαr

r ) = bα1
1 · · · bαr

r . Therefore the coefficients of h(aM
d ) can be com-

puted via the Kronecker products 〈(i ◦ v)∗(t (( fV )∗ι)), sα〉 having denoted sα the
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dual class to bα1
1 · · · bαr

r with α = (α1, · · · , αr ). By adjunction, this is the same
as 〈(t (( fV )∗ι), (i ◦ v)∗(sα)〉 or even 〈ι, f ∗

V t ′(i ◦ v)∗(sα)〉 having set t ′ to be the
cohomological Thom isomorphism. Because of Theorem 3.2, f ∗

V t ′(i ◦ v)∗(sα) is
precisely the degree of the zero cycle (i ◦ v)∗(sα) in M . This is some homogeneous
polynomial of degree d in the Chern classes of V . On the other hand, since any
such vector bundle V satisfies the equation TM ⊕ V = On(V )+d

M , we see inductively
that the Chern classes of all these V are the same and can be expressed in fuction of
Chern classes of TM . To prove Theorem 3.1.1. it suffices to present smooth projec-
tive varieties Mqt −1 of dimension qt − 1 such that q divides all the Chern classes

ck(TMqt −1), but q2 does not divide deg((i ◦ v)∗(sα)) for α = (0, · · · ,
qt −1

1 ), where
the latter notation stands for a string of zeroes with a 1 placed in the (qt − 1) − th

position. Notice that sr
def= s

(0,··· ,r
1)

are primitive classes, therefore they are additive

in the sense that if V and W are vector bundles, sr (V ⊕ W ) = sr (V ) + sr (W ).
In particular sr (TM ) = −sr (V ). We claim that any degree q smooth projective
hypersurface in Pqt

can be taken to be Mqt −1. In general, if i : M ↪→ PN is an
hypersurface, we have that i∗x = x ∪ c1(O(M)) for any cycle x ∈ C H∗(PN ). If
M is of degree h, then c1(O(M)) = h · L , where L is the class of an hyperplane.
On the other hand, we have an exact sequence of vector bundles:

0 → TM → i∗TPN → i∗O(M) → 0 (3.5)

yielding ck(TM ) = ck(i∗TPN ) − ck−1(TM )c1(i∗O(M)) for any k. By naturality
of Chern classes, ck(TM ) = i∗ck(TPN ) − ck−1(TM )i∗c1(O(M)) so that h divides
ck(TM ) and any polynomial in the Chern classes of the tangent bundle of M . In par-
ticular h divides all the (i ◦ v)∗(sα). For any positive integer r , sr (TM ) is computed
by using that this type of class is additive and the answer is sd(TM ) = h(d +2−hd)

for a smooth hypersurface M of dimension d and degree h (see [7, Problem 16D],
for instance). If we take h = q and dimension d = qt − 1 we have that q2 does not
divide sd(M). This proves part (3.1) of Theorem 3.1. To settle part (5.13) we argue
as follows: let Hn,m be a smooth hypersurface of degree (1, 1) in Pn × Pm . Then
([7, Problem 16E])

sn+m−1(THn,m ) = −(n + m)!
n!m! .

If u = qt − 1 for some prime number q and positive integer t , let α be an integer
such that αq < u + 1 ≤ (α + 1)q. We can check that

su(H(u+1−αq),αq) = (u + 1)!
(u + 1 − αq)!αq!

is not divisible by q. Let now Hn(qi ),m(qi ) = H(u+1−αqi ),αqi for each prime number
qi < u + 1. Then, there exist integers λ1, · · · λ�(u) so that

λ1su(Hn(2),m(2)) + λ2su(Hn(3),m(3)) + · · · λ�(u)su(Hn(p),m(p)) = 1
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where �(u) is the number of the prime numbers less that u and p is the greatest
such prime. It follows that the homotopy class

au :=
�(u)∑
i=1

λi a
Hn(qi ),m(qi )
u

has the property that the coefficient of bu in h(au) equals 1, hence q does not divide
h(au), as sought.

4. Motivic cohomology of MGl

Theorem 3.1 gives us the classes necessary to proceed with the construction of the
spectrum that has been denoted with k′(t) in [2]. We fix a prime number q and
recall that k′(t) has been defined in [2] as the homotopy colimit of the diagram

MGl
η0 �� E0

η1 �� E1
η2 �� · · · (4.1)

with Ei defined inductively by the exact triangle

�2i,i Ei−1
·ai→ Ei−1

ηi→ Ei (4.2)

where ·ai is the map induced by the MGl-module multiplication by ai : (P1
k)

∧i ∧
Ei−1

ai ∧id→ MGl ∧ Ei−1
m→ Ei−1. The morphism ·a0 is taken to be the multiplica-

tion by q. Here we use that the category of MGl modules spectra is closed under
homotopy colimits. In classical homotopy theory we can prove that such k′(t) is the
homotopy limit of a tower of fibrations whose fibers are appropriate suspensions of
Eilenberg-MacLane spectra with coefficients in Z/q. Our purpose here is to build
such tower and then we will take its homotopy limit as our model for k(t). This
spectra have been employed to prove the so called higher degree formulas (cf. [1])
and for that it was essential to have motivic Eilenberg-MacLane spectra appearing
in the tower (see also [2, page 411]). The purpose of this section is to compute the
motivic cohomology of the spectra k′(t). It will turn out that it is “as expected”
(Theorem 4.6). This result will be extensively used in the next section’s computa-
tions. We start by expressing the motivic cohomology of MGl as graded left module
over the ring A∗,∗. This is the sub left H∗,∗(Spec k, Z/q) module generated by the
motivic Steenrod operations β, Pi defined in [13]. It happens to be closed under the
multiplication and comultiplication of A∗,∗

m := [HZ/q , �∗,∗HZ/q ]SH(k) so it inher-
its these structures. As usual we will denote H∗,∗(Spec k, Z/q) =: H∗,∗. In [13]
V. Voevodsky has shown that the motivic Steenrod algebra A∗∗ is isomorphic to
H∗,∗ ⊗Z/q A∗,∗

top as left H∗,∗ module. As Z/q vector space, A∗,∗
top is generated by the

operations Qε0
0 Qε1

1 · · · Qεm
m (r1, · · · , rn) for nonnegative integers ri and ε j ∈ {0, 1}

for all j . These operations are entirely analogous to their topological counterparts
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except for the bidegree and that at the prime q = 2, the comultiplication is more
involved than the usual one. We recall that the dual of the motivic Steenrod algebra
A∗,∗ is isomorphic to a quotient of

H∗,∗[ξ1, ξ2, · · · ] ⊗ �H∗,∗[τ0, τ1, · · · ].
The operations Qt and (r1, · · · , rn) are defined as the duals to the classes τt and
ξ

r1
1 · · · ξ rn

n and have bidegree (2qt − 1, qt − 1) and(
n∑

i=1

2ri (q
i − 1),

n∑
i=1

ri (q
i − 1)

)

respectively. For more details we refer to [13].

Theorem 4.1. For a fixed prime number q, denote by T (q) the set of integers {qn −
1 : n ∈ Z+}, where Z+ is the set of positive integers. Let I = (i1, · · · , ik) with
i j ≥ 0 and i j ∈ Z+ − T (q). Then H∗,∗(MGl, Z/q) is isomorphic to

A∗∗

A∗∗(Q0, · · · , Qt , · · · ) · {d ′
I , I = (i1, · · · , ik)} (4.3)

as graded left A∗∗ module. The basis elements d ′
I are assigned the bidegree

(2(
∑

j j i j ),
∑

j j i j ).

Remark 4.2. Using the commuting rules of the [2, Corollary 4], we see that the
H∗,∗ subalgebra of A∗∗ generated by {(r1, · · · , rn)} for all ri ≥ 0 is isomorphic, as
left H∗,∗ module, to A∗∗

A∗∗(Q0,··· ,Qt ,··· ) , although it may happen that A∗∗
A∗∗(Q0,··· ,Qt ,··· )

is not a ring (for instance if q = 2,
√−1 ∈ k and char(k) = 2, simultaneously).

Proof. The statement will follow by duality, from:

Theorem 4.3. For any prime number q, there is a left comodule algebra isomor-
phisms over the dual motivic Steenrod algebra A∗,∗ :

H̃∗,∗(MGl, Z/q) ∼= H∗,∗[ξ1, · · · , ξn, · · · ] ⊗H∗,∗ H∗,∗[di , i = qn − 1, ∀n] (4.4)

with |di | = (2i, i) and H∗,∗[ξ1, · · · , ξn, · · · ] ↪→ A∗∗. The A∗,∗ comodule struc-
ture of the tensor product is ψ(p(ξi ) ⊗ r(d j )) = ψ(p(ξi )) ⊗ r(d j ) for p(ξi ) ∈
H∗,∗[ξ1, · · · , ξn, · · · ] and r(d j ) ∈ H∗,∗[di , i = qn − 1, ∀n] where ψ is the coprod-
uct of A∗,∗. We set ξ0 to be 1.

Let us prove first that Theorem 4.3 implies Theorem 4.1. If θ ∈ A∗∗
m and

σ ∈ H∗,∗(X, Z/q) for some spectrum X, we will occasionally write θ
A· σ to

denote the class in H∗,∗(X, Z/q) obtained by applying the cohomological operation
θ to the cohomology class σ , when the simple notation θσ may appear confusing.
[2, Theorem 3] and the fact that Hu,v(Spec k, Z/q) = 0 for v > u implies that
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Qi
A· c = 0 for any class in c ∈ H2∗,∗(MGl, Z/q) for all i ≥ 0 simply by

degree considerations. Thus, the left A∗∗ action on the classes d ′
I factors through

A∗∗
A∗∗(Q0,··· ,Qt ,··· ) . We now prove that A∗∗

A∗∗(Q0,··· ,Qt ,··· ) · d ′
I

∼= A∗∗
A∗∗(Q0,··· ,Qt ,··· ) . Recall

that ξk have the following A∗,∗ coproduct:

ψ(ξk) =
k∑

i=0

ξ
qi

k−i ⊗ ξi (4.5)

(cf. [13] or [5]). Assume Theorem 4.3 holds true. The duality between A∗∗ action

and A∗,∗ coaction means that 〈θ A· y, x〉 = 〈θ ⊗ y, ψ(x)〉 for all θ ∈ A∗∗, y ∈
H∗,∗(MGl, Z/q) and x ∈ H∗,∗(MGl, Z/q). For any I = (i1, · · · , ik), we let
dI = di1

1 · · · dik
k and d ′

I be the Kronecker dual to dI and 1 ⊗ d ′
I ∈ H∗,∗(MGl, Z/q)

the Kronecker dual to 1 ⊗ dI ∈ H∗,∗(MGl, Z/q). Using the previous rules, we

prove that, for I fixed, the class (r1, · · · , rn)
A· (1 ⊗ d ′

I ) is always nonzero. Indeed,

〈(r1, · · · , rn)
A· (1 ⊗ d ′

I ), ξ
r1
1 · · · ξ rn

n ⊗ x〉

=
〈
(r1, · · · , rn) ⊗ (1 ⊗ d ′

I ),

n∏
k=1

ψ(ξk)
rk ⊗ x

〉

=
〈
(r1, · · · , rn) ⊗ (1 ⊗ d ′

I ),

n∏
k=1

(
k∑

j=0

ξ
q j

k− j ⊗ ξ j

)rk

⊗ x

〉
.

(4.6)

By definition of (r1, · · · , rn) and d ′
I , this integer is nonzero and equals 1 only if

x = dI , since it equals to 〈(r1, · · · , rn), ξ
r1
1 · · · ξ rn

n 〉〈1 ⊗ d ′
I , 1 ⊗ dI 〉. Because of the

Remark 4.2, this proves Theorem 4.1.

Proof of Theorem 4.3. We will proceed by steps.

Step 1. Let γ1 be the universal line bundle on P∞ ∼= Gr1 so that we have t :
H∗,∗(Gr1, Z/q)

∼=→ H̃∗+2,∗+1(Th(γ1), Z/q), the Thom isomorphism. We wish to
describe the left A∗∗ action on H̃∗,∗(Th(γ1), Z/q). In H∗,∗(P(γ1 × A1

k), Z/q) this
homomorphism can be described as − ∪ crank(γ1) = − ∪ c, where c ∈ H2,1(P(γ1 ×
A1

k), Z/q) is the pull back of the polynomial generator x of H∗,∗(P∞, Z/q) ∼=
H∗,∗[x] via the map classifying the universal line bundle over P(γ1 × A1

k). In our
case, by the Projective Bundle theorem (cf. [2]) and definition of Chern classes ci ,
the powers of c are subject to the relation

c2 = c1(γ1 × A
1
k)c − c2(γ1 × A

1
k)

which simplifies to c2 = xc, where

H∗,∗(Gr1, Z/q) = H∗,∗(P∞, Z/q) ∼= H∗,∗[x]
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and x = c1(γ1). In other words,1

H∗,∗(P(γ1 × A
1), Z/q) ∼= H∗,∗[c, x]/(c2 − xc).

The canonical map p :P(γ1 ×A1
k)→Th(γ1), in motivic cohomology, identifies iso-

morphically the group H̃∗+2,∗+1(Th(γ1), Z/q) with the subgroup H∗,∗(Gr1, Z/q) ·
c of H∗,∗(P(γ1 × A1

k), Z/q). Define yi as

H̃2i,i (Th(γ1), Z/q) � yi := (p∗)−1(xi−1c) (4.7)

for i > 0. By the Thom isomorphism, H̃∗,∗(Th(γ1), Z/q) ∼= ⊕i H∗,∗yi as left
H∗,∗ module and H̃∗,∗(Th(γ1), Z/q) ∼= ⊕i H∗,∗y′

i , where y′
i are the classes dual

to yi . We want to understand the A∗,∗ coaction ψ(y′
i ) of y′

i ∈ H̃∗,∗(Th(γ1), Z/q)

by means of the A∗∗ action on yi . By the very definition of yi (equation (4.7)),
and the Cartan formulae ( [13, Proposition 9.6]) this reduces to the A∗∗ action on
x ∈ H2,1(P∞, Z/q) and on c. Because of [13, Lemma 9.7 ] and Cartan formulae,

we see that if q = 2, θ
A· x = 0 if and only if θ = aSq2n−1

Sq2n−2 · · · Sq4Sq2

for some a ∈ H∗,∗(Spec k, Z/q) and n positive integer and in that case θ
A·

x = ax2n
. If q is odd then we conclude similarly that θ must be of the kind

a Pqn−1
Pqn−2 · · · Pq P1 and the result is axqn

. If i = 1 and q = 2, θ
A· y1 = 0

if and only if θ = aSq2n−1 · · · Sq4Sq2 (and θy1 = ay2n ), whereas if q is odd,
θ = a Pqn−1

Pqn−2 · · · Pq P1 (and θy1 = ayqn ). By employing the equality yi =
(p∗)−1(xi−1c) and the relation c2 = xc we see that: θ

A· yn = ∑
i ai yi if and only

if θ
A· xn = ∑

i ai xi .

Step 2. We need a better understanding of the A∗,∗ coaction on H̃∗,∗(Th(γ1), Z/q):

Lemma 4.4. Let ψ : H̃∗,∗(Th(γ1), Z/q) → A∗,∗ ⊗H∗,∗ H̃∗,∗(Th(γ1), Z/q) the
A∗,∗ coaction. Then for any prime number q

Im(ψ) ⊂ H∗,∗[ξ1, ξ2, · · · , ξn, · · · ] ⊗H∗,∗ H̃∗,∗(Th(γ1), Z/q).

Proof. Since ψ is H∗,∗ linear, it suffices to consider ψ(y′
i ) for all i . We recall that

ai − 2bi = 1 if |Qi | = (ai , bi ). This implies that Qi
A· x = 0 and consequently

Qi
A· y1 = 0 for all i ≥ 0. In view of the duality between the action of A∗∗

and the coaction of the dual and motivic cohomology of Th(γ1) and the fact that
Qi (r1, · · · , rn) is dual to τiξ

r1
1 · · · ξ rn

n , to prove the lemma it suffices to show that

Qn
A· yi = 0 for all n and i . As in Step 1. Qn

A· yi can be computed by means of

1 Probably x = c, but we will not need this fact in the computations.
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Qn
A· xi . More precisely, Qn

A· xi = ∑i−1
j=0 x j Qn

A· xxi− j−1 + ∑
ρh p(x), where

p(x) are polynomials whose monomials contain at least a factor of the kind Qs
A· x

(cf. [2, Corollary 5]), therefore the whole expression is zero. By the last remark in

Step 1 this implies Qn
A· yi = 0.

Step 3. Now we will exibit a different H∗,∗ polynomial algebra basis for
H∗,∗(Grn, Z/q) than the one described in [2], which will be more useful in our
argument. Let µ : ∏n

i=1 Gr1 → Grn classifying
∏n

i=1 γ1,i . µ can be employed in
the usual way to obtain a map, which we will call µ∗ : ⊗n

i=1 H∗,∗(Gr1, Z/q) →
H∗,∗(Grn, Z/q). In what follows we set zki ∈ H2ki ,ki (Gr1, Z/q) to be the Kro-
necker dual to cki

1 (γ1,i ), that is the ki -th power of the first Chern class of the uni-
versal line bundle on the i-th copy of Gr1 in µ : ∏n

i=1 Gr1 → Grn. We wish to
show that all the elements bk1 · · · bkm := µ∗(zk1 ⊗ · · · ⊗ zkm ) form an H∗,∗ basis
of H∗,∗(Grn, Z/q) for k1 ≥ · · · ≥ km ≥ 0 and m ≤ n. To do this, notice that we
can order lexicographically from right to left such bI (e.g. b6b5b0 < b2b1b1) so
that it suffices to give, for each monomial in the Chern classes f (ci ) = ce1

1 , · · · cen
n ,

a class b f with the properties that 〈 f (ci ), b f 〉 = 1, 〈 f (ci ), bI 〉 = 0 for bI < b f
and b f = b f ′ if f = f ′. Because we know that the Chern classes are polynomial
generators of the motivic cohomology of Grn, this proves the claim. Given two
vector bundles ν and η over X we have that ch(ν ⊕η) = ∑h

i=0 ci (ν)∪ch−i (η) from
which it follows that ch(ν×η) = ∑h

i=0 ci (ν)×ch−i (η) ∈ H∗,∗(X ×Spec k X, Z/q).
This shows that ch(

∏n
i=1 γ1,i ) = ∑

j1<···< jh x j1 ⊗ · · · ⊗ x jh , that is the elementary
h-th symmetric polynomial in the variables xi := c1(γ1,i ). We have the chain of
equalities

〈ce1
1 · · · cen

n , µ∗(zk1 ⊗ · · · ⊗ zkn )〉 = 〈µ∗(ce1
1 · · · cen

n ), zk1 ⊗ · · · ⊗ zkn 〉

= 〈µ∗(c1)
e1 · · · µ∗(cn)

en , zk1 · · · zkn 〉

but µ∗(ch) = ch(
∏n

i=1 γ1,i ) and the smallest, according to the order given above,
homology class bI which has nonzero (actually equals to 1) Kronecker pairing with

it comes from z1⊗ h· · · ⊗z1 ⊗ z0 · · ·⊗ z0 where we let z0 = 1. Similarly we see that
the smallest class with nonzero (and equals to 1) Kronecker pairing with ce1

1 · · · cen
n

is

be1+···+en be2+···+en · · · ben−1+en ben .

This is the class we denoted b f above.

Step 4. (end of the proof of Theorem 4.3) We donote by ti the homology Thom
isomorphisms on the homology of Gri . By the commutativity of the diagram (which
is consequence of the naturality of the Thom isomorphism)



ALGEBRAIC MORAVA K -THEORY SPECTRA OVER PERFECT FIELDS 381

H∗,∗(Grn,Z/q)⊗H∗,∗(Grm,Z/q)
tn⊗tm ��

��

H̃∗+2m,∗+m(Th(γm),Z/q)⊗H̃∗+2n,∗+n(Th(γn),Z/q)

��

H∗,∗(Grn ×k Grm, Z/q)

µn,m∗
��

H̃∗+2(n+m),∗+n+m(Th(γn) ∧ Th(γm), Z/q)

Th(µn,m )∗
��

H∗,∗(Grn+m, Z/q)
tn+m

�� H̃∗+2(n+m),∗+n+m(Th(γn+m), Z/q)

(4.8)
we see that the equality in H∗,∗(MGl, Z/q)

tn(bk1 · bks ) · · · tm(bh1 · · · bhr ) = tn+m(bk1 · · · bks bh1 · · · bhr )

holds, thus th(bk1 · · · bkv ) = t1(bk1) · · · t1(bkv ). The ring structure in the motivic ho-
mology of both Gr and MGl is the Pontryagin product. We will take the monomials
t1(bk1) · · · t1(bkl ) for all l > 0 as left H∗,∗ basis for H̃∗,∗(MGl, Z/q). By naturality
of the A∗,∗ coaction ψ and because of Lemma 4.4, we conclude that

ψ(H̃∗,∗(MGl, Z/q)) ⊂ H∗,∗[ξ1, · · · ξn, · · · ] ⊗H∗,∗ H̃∗,∗(MGl, Z/q).

Consider the composition

λ : H̃∗,∗(MGl, Z/q)
ψ→ H∗,∗[ξ1, · · · ξn, · · · ] ⊗H∗,∗ H̃∗,∗(MGl, Z/q)

1⊗ f→
→ H∗,∗[ξ1, · · · ξn, · · · ] ⊗H∗,∗ H∗,∗[di , i = qn − 1, ∀n]

(4.9)

the map f being the ring homomorphism defined by f (t1(1))=1=d0, f (t1(bi ))=
di if i = qk − 1 for any k and f (t1(bqk−1)) = 0.

Since both the domain and the target are polynomial algebras with one genera-
tor in bidegree (2i, i) for all i > 0. To prove that λ is an isomorphism, it suffices to
show that the image through this map of each polynomial generator is indecompos-
able. In Step 1 we have shown that the Thom isomorphism in motivic cohomology
sends xi ∈ H2i,i (Gr1, Z/q)= H2i,i (P∞, Z/q) to yi+1 ∈ H̃2(i+1),i+1(Th(γ1), Z/q),
thus letting bi to be the dual to xi , t1(bi ) = y′

i+1. If i = qk − 1, ψ(t1(bi )) =
ψ(y′

qk ) = 1 ⊗ y′
qt + ξk ⊗ y′

1 + · · · and since y′
1 = t1(1), we have that λ(t1(bi )) =

ξk ⊗1+· · · hence it is indecomposable. If i = qk −1, ψ(t1(bi )) = 1⊗ t1(bi )+· · ·
and λ(t1(bi )) = 1⊗di +· · · which is still indecomposable. Thinking of λ as a mor-
phism in the category of A∗,∗ comodule algebras by endowing the tensor products
of the ψ ⊗ id coaction, we conclude the last part of Theorem 4.3.

At this point the construction proceeds as in [2]. Thanks to the previous theo-
rem we can kill the homotopy classes described in Theorem 3.1 and keep track of
the changements that occur in motivic cohomology when we pass from Ei−1 to Ei
for each i of the diagram (4.1). For the explicit calculations, we refer to the cor-
responding results in the proof of [2, Theorem 12]. They can be employed in our
present context without any changements.
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Definition 4.5. Denote k′(t) the spectrum

hocolimi {MGl
η0→ E0

η1→ E1 · · · → En
ηn+1→ · · · }. (4.10)

Let A∗∗ be the left H∗,∗ submodule of [HZ/q , �i, j HZ/q ]SH(k) generated by mono-
mials in Sqi , if q = 2 and by Pi and the Bockstein β, if q is odd (see [2, 13]).

Theorem 4.6. The spectra k′(t), as defined above, have the property that

H∗,∗(k′(t), Z/q) ∼= A∗∗

A∗∗Qt
τ ∼= A∗∗

A∗∗Qt

as left A∗∗ module and τ ∈ H0,0(k′(t), Z/q) is the canonical class corresponding
to the Thom class in H0,0(MGl, Z/q) via the canonical morphism MGl → k′(t).
Moreover, there exists an exact triangle �2(qt −1),qt −1k′(t) vt→ k′(t) → C0, with
H∗,∗(C0, Z/q) ∼= A∗∗ι′, ι′ ∈ H0,0(C0, Z/q) being the class corrsponding to τ .

Proof. See [2, Theorem 12].

Let B∗∗ be the kernel of (ι′)∗ where ι′ : C0 → HZ/q is the class as in the
statement of the theorem. Then, as left A∗∗ module,

[HZ/q , �∗,∗HZ/q ]SH(k) =: A∗∗
m

∼= A∗∗ ⊕ B∗∗.

Corollary 4.7. b ∈ B∗∗ if and only if b
A· ι′ = 0. Furthermore, if b ∈ B∗∗,

b
A· τ = 0 and hence (bQt )

A· ι′ = b
A· (Qt

A· ι′) = 0 as well.

Proof. The first two statements follow from the definition of action of a cohomo-
logical operation on a class. The third is proven via the commutativity of the square

HZ/q
Qt �� �2(qt −1)+1,qt −1HZ/q

C0

ι′
��

�� �2(qt −1)+1,qt −1k′(t)

�2(qt −1)+1,qt −1ι′
��

(4.11)

and the second statement that implies b
A· τ = 0.

5. The spectra �i

After the construction of k′(t), the reason for proceeding further, lies in the fact that
we do not know if these spectra are built out of suspensions of motivic Eilenberg-
MacLane spectra �∗,∗HZ/q . Such property is valid for the spectra �i described
below and is needed to derive the degree formulae of [1], because we know that
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Eilenberg MacLane spectra represent the Chow groups functor under the assump-
tion of perfectness of the base field. We will use what proved so far on the spectra
k′(t) to prove the main result. The Z/q algebra A∗∗

m has a left and right action by
A∗∗ induced by the multiplicative product of A∗∗

m and the canonical (split) inclusion
A∗∗ ↪→ A∗∗

m described at the end of Section 4. Recall that the Margolis homology
H M(M, Qt ·) (resp. H M(M, ·Qt )) of a left (resp. right) module M over A∗∗ is

defined as the first homology group of the complex {M
Qt ·→ M

Qt ·→ M} (resp. of

{M
·Qt→ M

·Qt→ M}). Let us denote by P the following condition: if a be a class in
B∗∗/B∗∗Qt of degree (2 j (qt − 1) + 2( j − 1), j (qt − 1)), then there exists a class
b ∈ B∗∗/B∗∗Qt such that a = Qt b, for 3 ≤ j , where Qt acts by left multiplication
as an element of A∗∗

m . We are going to make one of the following assumptions on
the left A∗∗ module B∗∗:

(1) eitherPand the sameQt -divisibility property hold for all classes a ∈B∗∗/B∗∗Qt
of degree (2( j − 2)(qt − 1) + ( j − 2), ( j − 2)(qt − 1)),

(2) or Pand the same Qt -divisibility property hold for all classes a ∈H M(B∗∗,·Qt )

of degree (2( j − 2)(qt − 1) + ( j − 2), ( j − 2)(qt − 1)).

Theorem 5.1. Let k be any perfect field and q a fixed prime number. Suppose that
A∗∗

m satisfies the assumption listed above. Then, for each 1 ≤ i ≤ r −1, there exists
a spectrum �i in the stable category SH(k) fitting in exact triangles

�i �� �i−1
yi−1

�� �2i(qt −1)+1,i(qt −1)HZ/q . (5.1)

Let ι = 1 ∈ H0,0(HZ/q , Z/q) = A∗∗
m and

δ : H∗,∗(�i , Z/q) → H∗+1,∗(�2i(qt −1),i(qt −1)HZ/q , Z/q)

be the coboundary operator induced by the exact triangle defining �i in func-
tion of yi−1 and �i−1. Then the classes yi are subject to the relation δyi =
Qt�

2i(qt −1),i(qt −1)ι.

We mention that [2, Lemma 14] can be employed to derive another kind of
exact triangle involving the spectra �i :

�2(qt −1),qt −1�i−1
�� �i

τi �� HZ/q . (5.2)

Proof of Theorem 5.1. Let d = qt − 1. We first prove an algebraic result con-
cerning certain left A∗∗ modules. More precisely, we will recursively solve an
algebraic problem following steps which correspond to the index i as in the spec-
trum �i . Such algebraic picture is motivated by the homotopical approach to the
construction of the �i as depicted in the diagram (5.15). At each step, we will
use the assumptions (1) and (2) to prove the existence of a class y′

i satisfying few
properties. Its existence allows us to proceed inductively to the next step.
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Step 0. Consider the short exact sequence of left A∗∗
m modules

0 → ker(p0) → A∗∗
m

p0→ A∗∗

A∗∗Qt
→ 0 (5.3)

where p0(1) = 1. Writing A∗∗
m

∼= A∗∗ ⊕ B∗∗ as left A∗∗ modules and be-
cause of Corollary 4.7, we conclude that ker(p0) ∼= A∗∗ · Qt ⊕ B∗∗ as left A∗∗
modules. Since the ·Qt Margolis homology of A∗∗ vanishes [2, Theorem 9],
ker(p0) ∼= ( A∗∗

A∗∗ Qt
· y′

0) ⊕ B∗∗, where we let y′
0 to be Qt .

Step 1. Consider now the new exact sequence of graded left A∗∗
m modules

0 → ker(p1) → A∗∗
m �2d+1,d ι

p1→ ker(p0) ∼= A∗∗

A∗∗Qt
· y′

0 ⊕ B∗∗y′
0 (5.4)

where p1 is defined by p1(�
2d+1,d ι) = y′

0 = Qt . Because of Corollary 4.7, multi-
plication to the right by Qt is an homomorphism both A∗∗ → A∗∗ and B∗∗ → B∗∗,
thus we have

ker(p1) = A∗∗

A∗∗Qt
(Qt�

2d+1,d ι) ⊕ ker{B∗∗ ·Qt→ B∗∗}�2d+1,d ι

as left A∗∗ modules. Later on, we are going to represent this exact sequence as part
of a motivic cohomology long exact sequence between objects in SH(k). Thus, we
wish to continue it on the left as if it were part of a long exact sequence of graded
left A∗∗

m modules:

· · · g1→ C∗∗ f1→ A∗∗
m �2d+1,d ι

p1→ A∗∗

A∗∗Qt
· y′

0 ⊕ B∗∗ (5.5)

where C∗∗ fits in a short exact sequence of graded left A∗∗
m modules

0 → �−1,0(B∗∗/B∗∗Qt )
g1→ C∗∗ f1→

→ A∗∗

A∗∗Qt
(Qt�

2d+1,d ι) ⊕ �2d+1,d kerB∗∗(·Qt ) = ker(p1) → 0

(5.6)

where we denoted ker{B∗∗ ·Qt→ B∗∗} by kerB∗∗(·Qt ). Let y′
1 be a lift of Qt�

2d+1,d ι

to C∗∗. Composing f1 with the projection ker(p1) → ker(p1)/A∗∗
m (Qt�

2d+1,d ι),
we see that C∗∗ fits in the exact sequence of graded left A∗∗

m modules

0 → �−1,0(B∗∗/B∗∗Qt )+A∗∗
m y′

1 → C∗∗ → �2d+1,d kerB∗∗(·Qt )/M →0. (5.7)

Since ·Qt respects the splitting A∗∗
m = A∗∗ ⊕ B∗∗, we get that M = B∗∗Qt . We

wish to get a better understanding of the module A∗∗
m y′

1. Since A∗∗
m

∼= A∗∗ ⊕ B∗∗
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we conclude that A∗∗
m y′

1
∼= A∗∗y′

1 + B∗∗y′
1. Now, suppose that the property (5)

holds. Then we have that Qt y′
1 = g1(Qt z) for some z ∈ (B∗∗/B∗∗Qt )

4d+3,2d . But
g1(Qt z) = Qt g1(z) and letting ŷ1 := y′

1 − g1(z) we see that Qt ŷ1 = 0. Summing
up, the property (5) implies that we can choose y′

1 in such a way that Qt y′
1 = 0.

Suppose now that ay′
1 = by′

1 for a ∈ A∗∗ and b ∈ B∗∗, by applying p1 we see
that aQt = bQt = 0 because right multiplication by Qt preserve the splitting of
A∗∗

m . Since H M(A∗∗, ·Qt ) = 0 we have that a = a′Qt , whence ay′
1 = 0 by our

assumption. This shows that

A∗∗
m y′

1
∼= A∗∗

A∗∗Qt
y′

1 ⊕ B∗∗y′
1. (5.8)

Using these new information, the sequence (5.7) becomes

0 → �−1,0 B∗∗

B∗∗Qt
+ (

A∗∗

A∗∗Qt
y′

1 ⊕ B∗∗y′
1)

→ C∗∗ → �2d+1,d kerB∗∗(·Qt )/B∗∗Qt = �2d+1,d H M(B∗∗, ·Qt ) → 0.

(5.9)

We will use the description of the module A∗∗
m y′

1 on the next step.

Step 2. The next short exact sequence is

0 → ker(p2) → A∗∗
m �4d+2,2d ι

p2→ C∗∗ (5.10)

with p2(�
4d+2,2d ι) = y′

1. We extend it to a long exact sequence

→ D∗∗ f2→ A∗∗
m �4d+2,2d ι

p2→ C∗∗. (5.11)

The following exact sequences give a better understanding of D∗∗.

(1) D∗∗ fits in the short exact sequence of graded left A∗∗ modules

0 → �−1,0coker(p2) → D∗∗ f2→ ker(p2) → 0 (5.12)

(2) coker(p2) fits in the short exact sequence

0 → �−1,0

B∗∗

B∗∗Qt

M1
→ coker(p2) → H M(B∗∗, ·Qt )�

2d+1,d ι → 0 (5.13)

for some module M1;
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(3) ker(p2) ∼= A∗∗Qt�
4d+2,2d ι ⊕ AnnB∗∗(·y′

1)�
4d+2,2d ι where the annihilator

AnnB∗∗(·y′
1) fits in B∗∗Qt ⊂ AnnB∗∗(·y′

1) ⊂ kerB∗∗(·Qt ), by definition of y′
1.

To prove this last isomorphism we use the computation of A∗∗
m y′

1 done in the
previous step.

We use this identification of ker(p2) to define the class y′
2 as a lifting of Qt�

4d+2,2d ι

to D∗∗. For this we must have known that Qt�
4d+2,2d ι belongs to ker(p2). We

conclude that D∗∗ fits in the short exact sequence

0 → �−1,0coker(p2) + A∗∗
m y′

2 → D∗∗ f2→ AnnB∗∗(·y′
1)

B∗∗Qt
�4d+2,2d ι → 0. (5.14)

Notice that the previous observation, AnnB∗∗(·y′
1)/(B∗∗Qt ) ⊂ H M(B∗∗, ·Qt ). As

before, to set things for the next step and eventually define a y′
3 we need more in-

formation on the module A∗∗
m y′

2. We therefore use our assumption on B∗∗ to show
the existence of a lifting y′

2 such that Qt y′
2 = 0. To do this we must ensure that

�−1,0coker(p2) is divisible by Qt ·. By the exact sequence (3.1) we see that it suf-
fices to assume that (B∗∗/B∗∗Qt )

8d+6,4d and H M(B∗∗, ·Qt )
6d+3,3d are divisible

by ·Qt or (B∗∗/B∗∗Qt )
8d+6,4d and (B∗∗/B∗∗Qt )

6d+3,3d are divisible by ·Qt .

Step n. Having a class y′
n−1 ∈ D∗∗

n−1 such that Qt y′
n−1 = 0 and fn−1(y′

n−1) =
Qt�

2(n−1)d+(n−1),n−1ι, we define D∗∗
n as a module fitting in the long exact se-

quence

→ D∗∗
n → A∗∗

m �2nd+n,nd ι
pn→ D∗∗

n−1 → · · ·
It follows that D∗∗

n lies in the short exact sequence

0 → �−n+1,0coker(pn) → D∗∗
n → ker(pn) → 0

the structure of ker(pn) is relevant to the existence of y′
n , whereas Qt · divisibility of

coker(pn) and of ker(pn−1) are relevant to the existence of a y′
n with the property

that Qt y′
n =0.We have that ker(pn)∼=A∗∗Qt�

2nd+n,nι⊕AnnB∗∗(·yn−1)�
2nd+n,nι,

thus we can define y′
n as a lifting toD∗∗

n of Qt�
2nd+n,nι. Finally coker(pn) is a mul-

tiple extension of suspended quotients of B∗∗/B∗∗Qt and of H M(B∗∗, ·Qt ) hence
of B∗∗/B∗∗Qt (the latter statement follows from the remark that AnnB∗∗(·y′

n−1)/

(B∗∗Qt ) ⊂ H M(B∗∗, ·Qt ) ⊂ B∗∗/B∗∗Qt ). The assumptions on the module B∗∗
set before the Theorem 5.1 imply the divisibility by Qt · of �−n+1,0coker(pn) in
degree (2(n + 2) + n + 2, n + 2), hence the existence of a choice of y′

n such that
Qt y′

n = 0.
We now perform constructions in the category SH(k) that will induce the exact

sequences (5.3), (5.5), (5.11), . . . up to some degree shifting. The classes y′
i will be

used to the define the yi appearing in the statement of Theorem 5.1. Consider the
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following commutative diagram:

�−1,0�2
φ2 ��

π2

��

X2

π ′
2

��

�4d−1,2d HZ/q

δ2

�������������
�� �4d−1,2d HZ/q

δ′
2

�������������

�4d,2d HZ/q
�� �4d,2d HZ/q

�−1,0�1

π1

��

ŷ1
�������������

φ1 �� X1

π ′
1

��

ŷ′
1

������������

�2d−1,d HZ/q

δ1

�������������
�� �2d−1,d HZ/q

δ′
1

�������������

�2d,d HZ/q
�� �2d,d HZ/q

�−1,0HZ/q
φ0 ��

Qt

�������������
X0

ŷ′
0

������������

π ′
0

��

k(t)′ τ �� HZ/q

(5.15)

The triples (ŷi−1, πi ,δi ) and (ŷ′
i−1,π

′
i ,δ

′
i ) form exact triangles as well as (τ,π ′

0, φ0).
The exact triangle (τ, π ′

o, φ0) induces the sequence (5.3), the triangle (ŷ′
0, π

′
1, δ

′
1)

induces the sequence (5.5), the triangle (ŷ′
1, π

′
2, δ

′
2) induces the sequence (5.11).

This suffices to finish the proof of the theorem. To see this define ŷi as φ∗
i (ŷ′

i ),
where φi are the fill-in maps between the relevant exact triangles. Since (δ′

i )
∗ ŷ′

i =
Qt�

2id,id ι, by commutativity of the square, we conclude that δ∗
i ŷi = Qt�

2id,id ι

which is the statement of Theorem 5.1 since we can take yi := σ(ŷi ), where σ is the
canonical suspension isomorphism σ : H∗−1,∗(�−1,0E, Z/q) ∼= H∗,∗(E, Z/q).

5.1. Remarks on the condition (2)

We end this manuscript with some remarks about the conditions we have assumed
to prove Theorem 5.1. From [16, Theorem 1.4] it follows that B∗∗ = 0 if char(k) =
0. In that case the conditions are trivially verified, but for such fields we have
resolution of singularities and the spectra �i have already been constructed in [2].
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It is not necessary for B∗∗ to vanish in order for the condition (2) to be satisfied.
We are going to prove that a reasonable assumption such as the existence for all the
stable motivic cohomology operations in A∗∗

m of some “Cartan formula” respecting
the splitting A∗∗

m
∼= A∗∗ ⊕B∗∗ suffices for the vanishing of the Margolis homology

of A∗∗
m , thus of B∗∗, as well. A Cartan formula is a formula that describes the

way a cohomology operation θ acts on the cup product of two cohomology classes
of a space. It is known that the cohomology operations lying in A∗∗ posses such
formula, that is described explicitely in [13, Proposition 9.7].

Proposition 5.2. Let k be a field for which for any b ∈ B∗∗ we have b(x ∪ y) =∑
i b′

i x ∪ b′′
i y. Then

(1) there exists a left A∗∗ module isomorphism h : A∗∗
m → A∗∗ ⊗H∗∗ C, where C

is the left H∗∗ module H∗∗ ⊗A∗∗ A∗∗
m ;

(2) H M(A∗∗
m ,Qt ·)= H M(A∗∗

m , ·Qt )=0, thus H M(B∗∗, Qt ·)= H M(B∗∗, ·Qt )=
0.

Proof. We prove that statement (1) implies (2). Let b ∈ A∗∗
m be b = a ⊗ c and

assume that Qt b = Qt (a ⊗ c) = (Qt a) ⊗ c = 0. We see that this implies that
Qt a = 0. In [2, Theorem 9], H M(A∗∗, Qt ·) has been shown to vanish, there-
fore a = Qt a′, and b = Qt (a′ ⊗ c), thus H M(A∗∗

m , Qt ·) = 0. To prove that
H M(A∗∗

m , ·Qt ) = 0 we endow A∗∗
m of an Hopf algebroid structure over H∗∗ by

setting �A∗∗
m

(b) = ∑
i b′

i ⊗ b′′
i , where b′

i and b′′
i are the classes appearing in the

hypothesis of the Proposition 5.2 and �A∗∗
m

(a) = �A∗∗(a) for a ∈ A∗∗, where
�A∗∗ is the comultiplication of A∗∗. Using the construction of [6, Section 8], we
can define a (canonical) antiautomorphism χ : A∗∗

m → A∗∗
m , with the property that

χ ◦ χ = idA∗∗
m

. Explicitely,

χ(b) = −b −
∑

|b′
i |,|b′′

i |=(0,0)

b′
iχ(b′′

i ). (5.16)

In particolar, χ |A∗∗ is the canonical antiautomorphism of A∗∗. Suppose that αQt =
0 in A∗∗

m . Then χ(αQt ) = χ(Qt )χ(α) = 0. In the proof of [2, Corollary 7], it has
been shown that χ(Qt ) = −Qt , thus χ(α) = Qtβ because of what we proved
above. Applying χ to this equality we conclude that α = χ(Qtβ) = −χ(β)Qt .

To prove the statement (5.2), we slightly modify the proof of [6, Theorem 4.4].
In the same notation, we let K = H∗,∗, A = A∗∗ and B = A∗∗

m . However, A∗∗
m with

A∗∗ acting on the left by ring multiplication is not a left A∗∗ module coalgebra This
would be the case if �A∗∗

m
were a ring homomorphism, but the issue of endowing

A∗∗
m ⊗H∗∗ A∗∗

m of a ring structure is tricky as H∗∗ does not lie in the center of A∗∗
m .

Anyways, we do have a submodule of A∗∗
m ⊗H∗∗ A∗∗

m that is a ring and its product
structure is the one induced by the one on A∗∗

m ⊗Z/q A∗∗
m (i.e. (x ⊗ y) · (u ⊗ v) =

(−1)deg(y) deg(u)xu ⊗ yv). This ring, denoted by (A∗∗
m ⊗H∗∗ A∗∗

m )r , contains the
image of �A∗∗

m
which therefore can be thought of as a ring homomorphism A∗∗

m →
(A∗∗

m ⊗H∗∗ A∗∗
m )r . For more details on this matter, we refer to the [13, page 42 and
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Lemma 11.8]. We now follow that argument used to prove the [6, Theorem 4.4]
except that we replace the compositions of the kind

B
�B−→ B ⊗K B

α⊗β−→ U ⊗ W (5.17)

with the compositions

A∗∗
m

�A∗∗
m→ (A∗∗

m ⊗H∗∗ A∗∗
m )r

(α⊗β)◦i−→ U ⊗ W (5.18)

where i : (A∗∗
m ⊗H∗∗ A∗∗

m )r ↪→ A∗∗
m ⊗H∗∗ A∗∗

m is the canonical inclusion. For
instance, the map that we wish to invert is composition h

A∗∗
m

�A∗∗
m→ (A∗∗

m ⊗H∗∗ A∗∗
m )r

(g⊗π)◦i−→ A∗∗ ⊗H∗∗ (H∗∗ ⊗A∗∗ A∗∗
m ) (5.19)

where g is the retraction A∗∗
m → A∗∗ and π : A∗∗

m → H∗∗ ⊗A∗∗ A∗∗
m is the

canonical surjection x → 1 ⊗ x . The composition is left A∗∗ linear, provided that
we endow A∗∗⊗H∗∗ (H∗∗⊗A∗∗A∗∗

m ) of the “diagonal” action of A∗∗. This action is
defined by a(α ⊗ c) = ∑

i (−1)deg(a′
i ) deg(α)a′

iα ⊗ a′′
i c, where �A∗∗a = ∑

i a′
i ⊗ a′′

i .
We prove that h is an isomorphism of left A∗∗ modules by finding a left inverse �̂

which is an isomorphism in turn. The morphism �̂ is the composition

A∗∗ ⊗H∗∗ (H∗∗ ⊗A∗∗ A∗∗
m )

idA∗∗⊗ f−→ A∗∗ ⊗H∗∗ A∗∗
m

φ→ A∗∗
m . (5.20)

We prove that it is an isomorphism of left A∗∗ modules essentially in the same
way as in [6, Proposition 1.7]. In this case the map � of that proposition is the
composition

A∗∗
m

�A∗∗
m−→ (A∗∗

m ⊗H∗∗ A∗∗
m )r

(idA∗∗
m

⊗π)◦i−→ A∗∗
m ⊗H∗∗ (H∗∗ ⊗A∗∗ A∗∗

m ) (5.21)

where the left A∗∗ action on the latter module is just on A∗∗
m factor on the left.
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