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A nonhomogenizable linear transport equation in R2

ROBERTO PEIRONE

Abstract. In this paper I investigate the homogenizability of linear transport equa-
tions with periodic data. Some results on homogenizability and on the form of the
limit are known in literature. In particular, in [9], I proved the homogenizability
in the two-dimensional case for nonvanishing functions, and, on the other hand I
gave an example of a nonhomogenizable equation in the three-dimensional case.
In this paper, I describe an example of a nonhomogenizable equation in two di-
mensions. As in [9], I study the problem using an equivalent formulation in terms
of dynamical system properties of the associated ODEs.

Mathematics Subject Classification (2000): 35B27 (primary); 37E45 (secondary).

1. Introduction

The subject of this paper is that of linear transport equations, and more specially,
that of their homogenization. Let us consider the differential problem

∂u

∂t
(t, x) + f

( x

ε

)
· ∂u

∂x
(t, x) = 0, u(0, x) = ψ(x) (Pε

f,ψ )

where ε > 0, f is a C1 function from RN to RN , which is ZN -periodic, i.e.,
f (x + m) = f (x) for all m ∈ ZN , and ψ is of class C1. Also, ∂u

∂x denotes the
vector

(
∂u
∂x1

, ..., ∂u
∂xN

)
, and · denotes the scalar product in RN . The equation in Pε

f,ψ ,
denoted by Pε

f , is called linear transport equation and by homogenization of Pε
f we

mean in some sense, to find a sort of limit, for ε → 0+, of its solutions.
If N = 1 it is known and simple to prove that the solutions are strongly conver-

gent and if in addition, f does not vanish, we easily get a limit equation. However,
the strong convergence appears to be a very strong requirement in the general case.
In fact, if N > 1 the solutions may not strongly converge even in simple and natural
cases (cf. [3, Remark 2.2], and references therein). On the contrary, a sort of weak
convergence appears to be a natural requirement. So, we are lead to say that Pε

f is
homogenizable if the solutions uε, f,ψ of Pε

f,ψ are convergent in the weak∗ topology

of L∞
loc for every ψ of class C1.
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Y. Brenier [1] proved the homogenizability of Pε
f , under the hypothesis that

the divergence of f is 0. Under the same hypothesis, in other papers, the form of
the limit of the solutions has been also investigated. For example, T. Hou and X.
Xin in [5] treated the case where N = 2 and nonvanishing f , W.E [4] studied the
problem in a much more general context, T. Tassa [10] studied the more general
case div(p f ) = 0 for some p : R2 → R, positive, of class C1, and periodic. In
this paper, I merely consider the problem of the existence of the limit. E. De Giorgi
conjectured that Pε

f is homogenizable independently of f [3, Conjecture 1.1]. I
previously investigated in [9] the homogenizability problem. The main results in [9]
state that in the case N = 2, f (x) �= 0 for every x ∈ R2 (with no conditions on
the divergence of some function related to f ), Pε

f is homogenizable, and on the
other hand, there exists an example with N = 3, f of class C∞, f (x) �= 0 for
every x ∈ R3, in which Pε

f is not homogenizable. The case N = 2, f vanishing
somewhere is not covered by the previous results. In [9, Remark 4.11], in fact, an
example of f such that Pε

f
is not homogenizable in the two-dimensional case, is

stated to exist but it is not described. Of course, such a function f has to attain the
value 0 somewhere.

In this paper I will describe such an example. I will use a similar notation as
in [9], in particular, for k ∈ N ∪ {∞}, Ck(T) denotes the set of functions f of class
Ck from RN to RN which are ZN -periodic. If f ∈ C1(T), x ∈ RN , then T t

f (x), or
simply T t (x), denotes the value attained at t by the solution of{

y′(t) = f (y(t))
y(0) = x .

We will always mean N = 2 except in Section 2, where N can also amount to 1.
Let us denote by E f the ODE in the previous formula. In view of [9, Lemma 2.2],
which in turn is a simple variant of results in [8], the problem of homogenizability
can be seen as a dynamical system problem. More precisely, in order to construct
the claimed example, it suffices to find a function f ∈ C1(T) such that the limit

lim
t→+∞

∫
[0,1]2

T t
f ,2

(x) − x2

t
dx (1.1)

does not exist, where T t
f ,2

denotes the second component of T t
f
. Note that the func-

tion Va(t, x) = T t
f
(x)−x

t represents the average velocity in a time-interval of length
t of a solution of E f starting from x . In particular, Va(t, x) cannot pointwise con-
verge for t → +∞, and in fact cannot converge a.e., and thus our problem is related
to the notion of rotation set introduced in [7]. The existence of a function with such
a property is not completely trivial, although I guess it is known. However, in view
of (1.1), we have to find a function with the stronger property that the average of
Va(t, x) in x ∈ [0, 1]2 does not converge for t → +∞. This is a similar idea to
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that of the example in the three-dimensional case discussed in [9]. However, the
construction of the example in the two-dimensional case is much harder, due to the
fact that in two dimensions a solution of E f is forced to remain in a “strip” bounded
by two solutions (see [9, Proof of Theorem 3.1]), so that it is not trivial to avoid that
it approaches a periodic solution. Note that, in spite of what I announced in [9], we
can choose the function f to be of class C∞ (see Remark 6.3 here).

The function f is defined in terms of two functions g and �, the former de-
noting the section map for the flow on the torus on the manifold y = 0, and the
latter being comparable to the time of the return (cf. for example [6, Section 0.3]).
The map g is a diffeomorphism of the circle, and is constructed as the limit of a
Cauchy sequence of functions in the C1 metric, and the approximating functions
are defined recursively and their rotation numbers are rational numbers that ap-
proximate very quickly the irrational rotation number of g. Such a method is called
Fast-approximation method in [6, Section 12.6], where is used, for example, in the
construction of diffeomorphisms of the circle with irrational rotation numbers and
pathological conjugacies (cf. also [2, Chapter 3, Section 5]). Sections 2 and 3 de-
scribe the plan of the construction. Section 4 introduces a class of functions basic in
this construction. In Section 5, the key lemma (Lemma 5.5) is stated, which allows
us to construct the (n + 1)th function in terms of the nth function in the sequence
approximating g. In Section 6, assuming Lemma 5.5, I construct our example.
Sections 7 to 9 are devoted to prove Lemma 5.5.

2. Motivation of the construction

I start this section by recalling the main definitions concerning the homeomor-
phisms of the circle. The reader can refer, for example, to [2] and to [6] for in-
formation on this topic. Put

D0(T) :={
g : R →R : g− I d is 1-periodic, g strictly increasing and continuous}.

If g ∈ D0(T), then there exists ρ ∈ R so that

gn(x) − x

n
−→

n→+∞ ρ (2.1)

uniformly with respect to x ∈ R. Such a number ρ is called the rotation number
of g. Clearly, such a type of map g can be interpreted as a homeomorphism of the
circle, where the circle can be defined as R quotiented by the equivalence relation
that identifies two real numbers a and b iff a−b is integer. The simplest map having
ρ as its rotation number is x �→ x + ρ. I recall the following results.

Lemma 2.1. If p ∈ Z, q ∈ N \ {0}, we have

i) ρ(g) = p
q if and only if there exists x ∈ R such that gq(x) = x + p.
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ii) If ρ(g) = p
q , then for every x ∈ R there exists x ′ ∈ R such that gnq(x) −

np −→
n→+∞ x ′, and gq(x ′) = x ′ + p.

iii) If for some x ∈ R we have gq(x) ≥ x + p (respectively gq(x) ≤ x + p), then
ρ(g) ≥ p

q (respectively ρ(g) ≤ p
q ).

iv) If r ∈ R and gq(x) > x + r (respectively gq(x) < x + r) for every x ∈ R,
then ρ(g) > r

q (respectively ρ(g) < r
q ).

Thus, a map g ∈ D0(T) has periodic points (interpreted as a map on the circle) if
and only if its rotation number is rational, and, in such a case, in some sense, every
point is “asymptotically periodic”. In the next lemma and in the rest of this paper,
Fr(a) will denote the fractional part of a ∈ R, i.e., a − [a].
Lemma 2.2. Given p ∈ Z, q ∈ N \ {0} with p and q relatively prime, suppose
ρ(g) = p

q , and put 0h = Fr
(
gh(0)

)
. Then, the points 0h, h = 0, ..., q − 1 are

mutually distinct and their order is independent of the particular map having the
above properties (once p and q are given).

Hence, taking the map x �→ x + p
q , we have 0h < 0h′ if and only if Fr

( hp
q

)
<

Fr
( h′ p

q

)
.

Note that, as simple examples show, the behaviour of a map in D0(T) is not
characterized by its rotation number. For example the map x �→ x + p

q has the

property that its qth iterate has the form x �→ x + p, while for other maps having
rotation number equal to p

q too, their iterates only have isolated periodic points on
the circle. However, under some relatively mild hypothesis, this does not happen
when the rotation number is irrational. This is the statement of the following well
known theorem (Denjoy’s Theorem).

Theorem 2.3. Suppose that a map g ∈ D0(T) has the irrational rotation number
ρ. Suppose further that it is of class C2 and has positive derivative. Then g is
topologically conjugate to the map gρ defined as gρ(x) = x + ρ. In other words
there exists φ ∈ D0(T) such that g = φ−1 ◦ gρ ◦ φ.

Note that in general even if g is of class C∞ or even analytic, the conjugacy
φ is not necessarily regular (neither of class C1). The regularity of φ depends on
arithmetic properties of ρ, in particular the map φ has been proved to be regular
when g is sufficiently regular and ρ is a Diophantine number, that roughly speaking
means that it cannot be approximated too fast by rationals. I refer to [2] or to [6]
for more details.

When we have a differential equation (E f ) as in Introduction, but with f :
R → R 1-periodic, we can define the rotation number of (E f ) as limt→+∞ y(t)

t

where y is any solution of (E f ), or in other words, limt→+∞
T t

f (x)

t where x ∈ R. It
amounts to the rotation number of the Poincaré map of (E f ), which is the map T 1

f .
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If, instead of the 1-dimensional case, we consider maps from R2 to R2 of the
form I d plus a Z2 periodic function the situation is more complicated. In general,
the limit in (2.1) does not necessarily exist, and even when exists, it can depend on
x . An example of this type is the differential equation (E f ) where f (x) has the form

(g(x2), 0). In such a case, a simple argument shows that
T t

f (x)

t −→
t→+∞(g(x2), 0).

In view of what stated in Introduction, we have in fact to find f such that it is
false that the limit of the integrand in (1.1) exists a.e. In order to better understand
the construction of next sections, I here describe the difficulties in obtaining it, in
particular I will explain why simpler constructions fail. Recall that we have to
define a function f Z2-periodic and of class C1 such that Pε

f is not homogenizable.

For simplicity, I will only consider f such that at any point x ∈ R2 we have

either f 2(x) > 0 or f (x) = 0 (2.2)

so that every solution of E f , except for those passing through (or approaching)

zeroes of f , tend to +∞ in the second component. Suppose for the moment that
f 2(x) > 0 for every x . Since f never vanishes, we know from the results of [9]

that
T t

f
(x)

t tends to a (finite) limit as t → +∞, for every x . The reason for which
this happens can be roughly explained in the following way: the solution passing
through (x, 0) will reach a point (g(x), 1) after a time �(x). The map g has a
rotation number ρ. Now, putting �n(x) = ∑n−1

i=0 �(gi (x)) for n = 1, 2, ..., we
have that for every x ∈ R, there exists cx ∈ R such that

1

n
�n(x) −→

n→+∞ cx . (2.3)

To deduce (2.3) note that, if ρ ∈ Q, then this follows from Lemma 2.1ii. If, on the
contrary, ρ is irrational, and for simplicity we suppose we are in the hypothesis of
Denjoy’s Theorem, we have for some φ ∈ D0(T),

1

n
�n(x) = 1

n

n−1∑
i=0

� ◦ φ−1 (φ(x) + iρ) (2.4)

that tends to
∫

[0,1]
� ◦ φ−1. In general, for any ρ, rational or irrational, it is not

difficult to deduce from (2.3) that

T t
f
(x)

t
−→

t→+∞
1

cx
(ρ, 1).

Return now to the more general case where (2.2) holds. In this case we can mimic
the previous considerations. Clearly, for x such that the trajectory through (x, 0)

meets a zero of f , whose y-coordinate belongs to [0, 1[, g is not defined and �
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could only be defined to be +∞. I will call those x 1-singular and the other 1-
regular. So, we have to slightly modify our program. Suppose for simplicity f
only attains the value 0 on [0, 1[×[0, 1[ at (0, 0) and g, defined as above on the
regular points, can be extended to a sufficiently regular diffeomorphism on R. In
this case (2.3) is still valid when ρ is rational, by essentially the same argument as in
the previous case. When ρ is irrational, it is not so simple to extend the argument of
the previous case. However, we can use the Birkhoff ergodic Theorem, to conclude
that, if � ◦ φ−1 is in L1, then the limit in (2.4), putting y in place of φ(x), exists
for almost all y with respect to Lebesgue measure µ. This implies that the limit in
(2.4) exists µ-a.e. provided the map φ is regular, and this happens, as told above, if
ρ is Diophantine. It is possible and not very difficult to prove that the case where
� ◦ φ−1 is not in L1 can be reconducted to the previous considerations.

In conclusion, in order to construct our counterexample, the rotation number ρ

of g need be an irrational Liouville (that is, not Diophantine) number. First of all, I
will construct f , by using a sort of inverse process, in other words, I will construct
two functions g and � from R to R, and then, basing on them, I will recover f .
In other words, I use the standard idea of defining a continuous dynamical system
in terms of a discrete dynamical system. In order to avoid the value +∞, in place
of � it would be better to define its reciprocal. However, for technical reasons, I
prefer to define a function � representing the second component of the velocity f 2
of the solution of E f at a point related to (x, 0). Then, I will construct f in such a

way that � is comparable with 1
�

, say

1

2�
≤ � ≤ 1

�
.

3. Plan of the construction

In this section, I describe the general idea behind the construction of the pair (g, �).
First of all, I introduce the set of functions suitable to this aim.

Definition 3.1. Let D1(T) be the space
{
g ∈ D0(T), g of class C1, g′ > 0

}
.

We equip D1(T) with a metric d1 defined by d1(g1, g2)= sup{|g1(x)−g2(x)|,
|g′

1(x) − g′
2(x)| : x ∈ R}. The following result will be used in the sequel.

Lemma 3.2. The map g �→gn from D1(T) to D1(T) is continuous for every n ∈Z.

For some consideration it is also useful to equip D1(T) with the metric d0(g1, g2) =
sup{|g1(x) − g2(x)| : x ∈ R }. Note that the subspace D1

c (T) = {g ∈ D1(T) : g′ ≥
c} is complete with respect to d1 for every c > 0. If g ∈ D1(T), let xh,g =
Fr(gh(x)) for h ∈ Z, x ∈ [0, 1[. Moreover, when x ∈ [0, 1[, we call g-orbit of x
the set {xh,g : h ∈ N} and (n, g)-orbit of x the set {xh,g : 0 ≤ h ≤ n} for every
n ∈ N.
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By the discussion in Introduction, in order to construct the counterexample, it
suffices to find f satisfying the following

There exist two sequences tn, t ′n tending to +∞ such that

lim
n→+∞

T tn
f ,2

(x) − x2

tn
= 0, lim inf

n→+∞
T

t ′n
f ,2

(x) − x2

t ′n
≥ A (3.1)

for almost all x ∈ [0, 1]2, where A is a suitable positive constant.

It is possible to express (3.1) in terms of the pair (g, �), related to f as in the
previous section. Namely, as I will prove in details in Section 6, (3.1) is related to
the following condition:

There exist two sequences mn, wn of naturals tending to +∞ such that

lim
n→+∞

1

mn

mn−1∑
h=0

1

�(gh(x))
= +∞, lim sup

n→+∞
1

wn

wn−1∑
h=0

1

�(gh(x))
≤ B (3.2)

for almost all x ∈ [0, 1], where B is a suitable positive constant.

The relation between (3.1) and (3.2) is related to the fact that the quantity∑m−1
i=0

1
�(gi (x))

is comparable to the time necessary for a point (x, 0), under the

equation E f , to reach a point of the form (u, m). In view of the considerations
in the previous section, the function g should have an irrational Liouville rotation
number ρ, and � should amount to 0 at 0 and should be positive on ]0, 1[. In Sec-
tion 6, I will prove in fact a variant of (3.2) that is Theorem 6.1, which is more
complicated than (3.2), but has the advantage that it implies (3.1) in a more direct
way. I will define (g, �) as the limit of a sequence (gn, φn) with ρ(gn) ∈ Q, de-
fined recursively. This is convenient since in view of Lemma 2.1, the maps having a
rational rotation number can be better investigated. More precisely, as ρ is the limit
of a sequence pn

qn
of rationals, I will define gn having pn

qn
as rotation number and

having 0 as a periodic point, namely gqn (0) = pn (cf. Lemma 2.1). The function
φn will be defined on intervals of the form [αn, 1], with αn −→

n→+∞ 0, and extending

φn−1, and � will be the 1- periodic function extending every φn . In order to define
the pair (g, �), we need some preparatory definitions.

Definition 3.3. We say that a continuous function φ : [α, 1] → R with 0 < α < 1,
is an α-caliber if φ(1) = 0 and 0 < φ(x) ≤ 1 if x ∈ [α, 1[.

If φ is an α-caliber and g ∈ D1(T), h ∈ N, we say that x ∈ O(g, h, α) if
x ∈ [0, 1[, xi,g ∈]α, 1[ for i = 0, ..., h − 1. In such a case, we put

Tφ(g, h, x) =
h−1∑
i=0

1

φ(xi,g)
.

The definition of Tφ(g, h, x) and the following definition are suggested by formula
(3.2).
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Definition 3.4. Suppose g ∈ D1(T), and φ is an α-caliber. Let λ, � ∈ R, let w

and m be positive integers and let J be the union of finitely many disjoint closed
intervals. Put � = (λ, �, J, w, m) and let A be the set of � so obtained. We say
that the pair (g, φ) is � oscillating if J ⊆ O(g, m, α) ∩ O(g, w, α) and

Tφ(g, w, x) ≤ λw, Tφ(g, m, x) ≥ �m, d∀ x ∈ J .

Remark 3.5. Note that in Definition 3.4 J could well be empty. In such a case,
clearly, (g, φ) is � oscillating independently of � ∈ A.

Proposition 3.6. If (g, φ) is (λ, �, J, w, m) oscillating, then there exists ε =
ε(g, φ) > 0 such that if g1 ∈ D1(T), d1(g, g1) ≤ ε, then (g1, φ) is (λ + 1, � −
1, J, w, m) oscillating.

In such a case, if d1(g, g1) ≤ ε and φ1 is an α1-caliber extending φ, we say
that (g1, φ1) is close to (g, φ). Now, the idea of the construction consists in taking a
sequence (gn, φn) (λn, �n, Jn, wn, mn) oscillating, φn αn-caliber, each close to the
previous ones and such that αn tends to 0 as n tends to infinity. If gn is a Cauchy
sequence in D1

c (T) for some c > 0, and the function on ]0, 1] extending each φn

can be 1-periodically extended on R to a C∞ function �, setting g = lim gn , we
then have

mn−1∑
h=0

1

�(gh(x))
≥ (�n − 1)mn,

wn−1∑
h=0

1

�(gh(x))
≤ (λn + 1)wn,

for x ∈ Jn . Suppose now we can choose �n → +∞, λn bounded, µ(Jn) > 1− B
2n ,

mn → +∞, wn → +∞. Putting J̃ = ⋃
k∈N

⋂
n≥k

Jn , we have µ( J̃ ) = 1. Therefore,

if we construct f related to g and � as above, we can expect that for all points in
a trajectory passing through J̃ × 0, possibly translated by a point in Z2, hence for
almost all x ∈ [0, 1]2, (3.1) holds.

In conclusion, in order to prove (3.1) (or (3.2)), one can proceed in the follow-
ing way: first we construct a particular pair (g, φ). Then, we have to find a sequence
of (gn, φn), inductively. In order to avoid problems in extending periodically on R,
we require that the derivatives of φ of every order tend to 0 at 1, and the derivatives
get smaller and smaller in the new intervals [αn+1, αn[.

The natural tool for obtaining such a result would be a result stating that for
every oscillating pair (g, φ) and for every ε > 0 and for every �′, λ′, δ′ we can find
a pair (G, �) (�′, λ′, J ′, w′, m′) oscillating close to (g, φ) such that d(g, G) < ε,
with w′ and m′ sufficiently large, and µ(J ′) > 1 − δ′. In such a case I will say
that (G, �) derives from (g, φ). However, even restricting δ′, w′, m′, it does not
seem simple to prove such a result. So, I will require some technical additional
properties on a pair in order to complete the inductive step. In other words, I will
prove the inductive step in the sense that, if we have a regular pair then we can find
a new regular pair deriving from it, where by regular I mean having some specific
properties. In the next two sections, I will introduce the regularity property and
state the recursive lemma.
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4. Functions of (m, q, l, p) type

In order to have a function g ∈ D1(T) as above, we have to require that its rotation
number is irrational, and is approximated very quickly by rational numbers. So,
I will construct a sequence of functions gn , whose rotation numbers differ by a
quantity which tends to 0 very rapidly. This clarifies the reason of the following
definition. In fact, given gn with rotation number pn

qn
, I will construct gn+1 with

rotation number pn+1
qn+1

such that pn+1
qn+1

− pn
qn

= 1
qnqn+1

and qn+1 sufficiently large. In
other words, I use the standard way, used for example in continued fractions, of
constructing a sequence pn

qn
tending to an irrational (Liouville) number.

Definition 4.1. Given a function f ∈ D1(T), we say that f is of (m, q, l, p) type
if f q(0) = p and

m, q, l, p ∈ N \ {0}, q > m + 1, mp = lq + 1. (4.1)

Note that in such a case, the rotation number of f is p
q . Moreover, it is easy

to see that, once f is fixed, then m, q, l and p are unique. The functions of
(m, q, l, p) type have a special importance for the following considerations, so
we will investigate them in detail in this section. Note also that, if (4.1) holds,
then the function x �→ x + p

q is of (m, q, l, p) type, and for this function f ,

0h+m, f = 0h, f + 1
q (unless 0h+m, f = 0), so that 0h+m, f is the “successor” of

0h, f (if different from 0). In view of Lemma 2.2 this happens for any function of
(m, q, l, p) type. Thus, the following definition of Uh, f is, in some sense, natu-

ral. Define â for a ∈ [0, 1] as â =
{

a if a �= 0
1 if a = 0

. Put Uh, f = [0h, f , 0h+m, fˆ[,
µh, f = µ(Uh, f ) = 0h+m, fˆ− 0h, f .

Lemma 4.2. Let f be of (m, q, l, p) type. Then ø⊂
/− Uh, f ⊂

/−[0, 1[. Moreover,

i) 0 < 0m, f < ... < 0(q−1)m, f < 1 = 0qm, fˆ.
ii) If h ≡ h′ mod q, then 0h, f = 0h′, f and Uh, f = Uh′, f .

iii) If h �≡ h′ mod q, then 0h, f �= 0h′, f and Uh, f ∩ Uh′, f = ø.
iv) For every r ∈ Z the sets Uh, f , h = r, ..., r + q − 1, are mutually disjoint

and their union amounts to [0, 1[. The same holds for the sets Umh, f , h =
0, ..., q − 1.

v) We have 0h, f ≤ 0q−m, f . Also, if 0h, f > 0, in particular if 0 < h < q, then
0h, f ≥ 0m, f .

vi) If h and r are natural numbers, r > 0, and h + rm < q, then 0h, f < 0h+rm, f .
vii) Let h, k ∈ Z. Then f k maps Uh, f to [ f k(0h, f )] + Uh+k, f . More precisely,

xk, f = f k(x)−[ f k(0h, f )] ∈ Uh+k, f for every x ∈ Uh, f , hence xk, f − x ′
k, f =

f k(x) − f k(x ′) if x, x ′ ∈ Uh, f .
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Proof. The proof is a not very complicated consequence of Lemma 2.2. The details
are left to the reader.

Remark 4.3. Suppose f is of (m, q, l, p) type. Then, in general, f k(0h, f ) =
f h+k(0) − [ f h(0)] for every h, k ∈ Z. As particular cases, we easily see that
f q(0h, f ) = p + 0h, f for each h ∈ Z. Moreover, f m(0h, f ) = 0h+m, f + l provided
0 ≤ h < q −m. Indeed, on one hand, x +l < f m(x) < x +l+1 for every x ∈ R, as
if not, either ρ( f ) ≤ l

m <
p
q or ρ( f ) ≥ l+1

m >
p
q , on the other, 0h, f < 0h+m, f <

0h, f + 1. We deduce from these considerations that f jq(0h, f ) = j p + 0h, f for
every j ∈ Z, and f jm(0h, f ) = 0h+ jm, f + jl if j ∈ N and 0 ≤ h < q − jm.

When f is of class C2, we can control rather precisely the measure of f h(I )
when I is an interval. I here recall a standard lemma in this context, used for
example for proving the Denjoy Theorem.

Lemma 4.4. Let f ∈ D1(T), of class C2, and let V = V f = V ar(log ◦ f ′) =
1∫

0

∣∣ f ′′(x)
f ′(x)

∣∣ dx. Let U be an interval in [0, 1[, such that the sets f i (U ), i = 0, ..., h −
1, are mutually disjoint on the circle, that is, x − x ′ /∈ Z if x ∈ f i (U ), x ′ ∈ f i ′(U ),

with i, i ′ = 0, 1, ..., h − 1, i �= i ′. Then, e−V ≤ ( f h)′(x)

( f h)′(x ′) ≤ eV for every x, x ′ ∈ U.

Proof. See for example [6, Lemma 12.1.3.] Note that, although in the statement
in [6], it is required that f i (U ) are mutually disjoint for i = 0, ..., h, in fact the
proof there only requires this for i = 0, ..., h − 1.

Lemma 4.5. If f is of (m, q, l, p) type and of class C2, and h ∈ Z, and x, x ′ ∈
U1, f , x < x ′, and |h| ≤ q, then setting V = V f , we have

i)
µh+1, f

µ1, f
e−V (x ′ − x) ≤ x ′

h, f − xh, f ≤ µh+1, f

µ1, f
eV (x ′ − x) ,

ii)
µh+1, f

µ1, f
e−V (0m+1, fˆ− x) ≤ 0m+h+1, fˆ− xh, f ≤ µh+1, f

µ1, f
eV (0m+1, fˆ− x) .

Proof. i) Suppose for example h positive. Then we are in the hypothesis of Lem-
ma 4.4, with U = U1, f , by Lemma 4.2iv. The conclusion follows noting that both
x ′

h, f −xh, f

x ′−x and
µh+1, f
µ1, f

amounts to ( f h)′ at some point in U . If h is negative, the same

argument works with U = Uh+1, f . ii) This is obtained by i) taking the limit for x ′
tending to 0m+1, f .̂

Corollary 4.6. If f is of class C2 and of (m, q, l, p) type, then e−V f ≤ ( f q)′ ≤
eV f .

Proof. For every h ∈ Z we have
∫

Uh, f
( f q)′ = (p + 0h+m, f )̂ − (p + 0h, f ) =

µ(Uh, f ), hence there exists v ∈ Uh, f such that ( f q)′(v) = 1. Since every x ∈ R
has the form n +v for some n ∈ Z, v ∈ Uh, f , h ∈ Z, we get the desired inequalities
using Lemma 4.4 again.
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5. The recursive lemma

I am now going to define the regularity property of an oscillating pair. To this aim,
I will start by defining some special C∞ functions. Then, I will define more and
more restricted classes of functions. Let ψ̂ be a function of class C∞ from R to R
such that

ψ̂(x)


= 0 if x ≥ 1
= 1 if x ≤ 0
∈]0, 1[ if 0 < x < 1.

Note that
∣∣ψ̂( j)

∣∣ ≤ L j for each j ∈ N and for suitable positive L j (which of course
depend on ψ̂) with L0 = 1. For a ≤ b, u > 0, let ψ̂a,b,u(x) = ψ̂( x−b

u )ψ̂(a−x
u ) and

let ψa,b,u be the 1-periodic extension on R of the restriction of ψ̂a,b,u on [0, 1[. If
u < min{a, 1 − b} then ψa,b,u is C∞.

Lemma 5.1. 0 ≤ ψ̂a,b,u(x) ≤ 1, and

ψ̂a,b,u(x)

{
= 0 if x ∈ [u + b, +∞[ ∪ ] − ∞, a − u]
= 1 if x ∈ [a, b] .

Moreover, there exists L ′
j > 0 such that

∣∣ψ̂( j)
a,b,u

∣∣ ≤ L ′
j

u j if u < 1, j = 0, 1, 2, 3, ...

As told in beginning of previous section, given a function f of (m, q, l, p)

type, we are now interested in finding a function slightly bigger than f , with strictly
bigger rotation number. Related to this is the following.

Lemma 5.2. The map f �→ ρ( f ) is continuous with respect to the uniform con-
vergence and increasing.

Proof. Cf. for example [6, Proposition 11.1.6 and Proposition 11.1.8].

However, rather surprisingly, in general, the map f �→ ρ( f ) is not strictly
increasing, in other words there exist functions f with rational rotation numbers
such that ρ(g) = ρ( f ) for every g ∈ D1(T) with f < g < f + ε for sufficiently
small positive ε. This is a well known property of the rotation number (cf. for
example [6, Proposition 11.1.10]). The reason is that if f q − I d − p attains both
positive and negative values, then, in view of Lemma 2.1, every sufficiently small
perturbation of f has rotation number equal to p

q . This does not happen if f q(x) ≥
x + p for all x . In [2, Definition 1 in Chapter 3, Section 5], a function g is called
(p, q)-stable forward if gq(x) ≥ x + p for all x and the equality holds for at least
one x . Here, we need a variant of such a definition.

Definition 5.3. We say that g of (m, q, l, p) type is
(
(m, q, l, p)

)
sf-stable if

i) gq(x) ≥ x + pd ∀ x ∈ R,
ii) ∃z1 ∈ Int(U1,g) such that gq(z1) = z1 + p.
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Here, sf stands for strongly forward and Int denotes the interior of a set. For func-
tions of (m, q, l, p) type, the equality necessarily holds for 0 (and its orbit). In ii)
I require that the equality holds for some x not in the orbit of 0. I will construct G
derived by g in several steps. At the first step, I will construct a function ĝ, sum-
ming a very small positive function s to g. Thus, i) assures that ρ(ĝ) > ρ(g). I will
now introduce the definition of a “regular” sf-stable function, and in such a class of
functions I will construct (G, �) derived by (g, φ) (Lemma 5.5). I will now explain
the idea of such a definition. However, the actual construction of G could differ in
some details from the ideas hinted below.

As the function G will turn out to be a very small perturbation of ĝ, we
will implicitly assume that G has similar properties to ĝ. We want that (G, �)

is (λ, �′, J ′, w′, q) oscillating for arbitrary �′ and suitable J ′, w′, J ′ filling [0, 1[
apart from a set of small measure. Let I be a compact interval contained in [01,g,z1[,
and let x ∈ I . On one hand, if we require that � is positive but very small near 0,
as the (q − 1, G)-orbit of x contains the point xq−1,G , which is very close to 0, we
have T�(G, q, x) ≥ �′q; on the other, if we could have s(z1) = 0, then, thanks to
ii), the ĝq -orbit of z1 would amount to z1, hence, using also i), Fr

(
ĝhq(I )

)
would

tend to z1 as h tends to infinity.
Thus, if we require that s(z1) is positive but small in comparison to the values

attained by s far from z1, then Fr
(
ĝhq(I )

)
approaches z1, for h sufficiently, but not

too, large. It follows that, if we require Tφ(g, q, z1) < λq , then T�(G, hq, x) <

λhq for suitably large h, independent of x ∈ I , and we can take w′ = hq. Of
course, the same properties hold for x in the set J ′ formed by the union of the
(q − 1, G)-orbit of the points in I . In Definition 5.4, [01,g, α1−q,g] stands for I , so
that J ′ is strictly related to the set in (5.4).

Definition 5.4. Suppose g is (m, q, l, p) sf-stable, φ is a C∞ α-caliber. We say
that the (λ, �, J, w, m) oscillating pair (g, φ) is (η, δ)-regular if q > p, η ∈]0, 1],
δ ∈]0, 1[, λ ≥ 1, � ≥ 1 and α ∈ Int

(
U0,g

)
and

α < (z1)−1,g, (5.1)

φ = η on [α, 0m,g], (5.2)

Tφ(g, q, z1) < λq, (5.3)

µ

(
q⋃

h=1

[
0h,g, αh−q,g

])
> 1 − δ. (5.4)

Lemma 5.5. Suppose g is (m, q, l, p) sf-stable and C∞, 1
2 < g′ < 3

2 , φ C∞ α-
caliber, (g, φ) (λ, �, J, w, m) oscillating, (η, δ)-regular. Then for each

ε > 0, δ′
1 > δ, δ′ ∈]0, 1[, �′ ≥ 1,

there exist
η > 0, q ′, w′, p′, J ′, α′, G, r, �η′ ∀η′ ∈]0, η[
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so that

i) q ′ > w′ > q,
ii) G is (q, q ′, p, p′) sf-stable, of class C∞, and 1

2 < G ′ < 3
2 ,

iii) �η′ is a C∞ α′-caliber, �η′ = φ on [α, 1].
iv) 0 < α′ < α

2 ,
v) d1(g, G) < ε

vi) (G, �η′) is (λ, �′, J ′, w′, q) oscillating (η′, δ′)-regular,
vii) µ(J ′) > 1 − δ′

1,

viii) We have
∣∣�(h)

η′
∣∣ ≤ Lhηrh on ]α′, α].

6. Construction of the counterexample

In this section I construct the example using Lemma 5.5. The proof of Lemma 5.5
will be given later.

Theorem 6.1. For some λ > 1 and for every sequence �n ≥ 0, n ≥ 1, there exist
g ∈ D1(T), a function � : R → R, a sequence J (k) of measurable subsets of
[0, 1[, and two sequences mn, wn of positive integers tending to infinity such that

i) 1
2 ≤ g′ ≤ 3

2 ,

ii) � is of class C∞ and 1-periodic, with values in [0, 1],
iii) �(x) = 0 ⇐⇒ x ∈ Z,

iv) µ([0, 1[\J (k)) −→
k→∞ 0,

v) gh(x) /∈ Z for every x ∈ J (k) and h ∈ N,

vi) for all x ∈ J (k)

mn−1∑
h=0

1

�(gh(x))
≥ �nmn,

wn−1∑
h=0

1

�(gh(x))
≤ λwn, ∀ n ≥ k .

Proof. I first construct (g, φ) satisfying Lemma 5.5, such that φ(h)(x) −→
x→1

0 for

each h ∈ N. It suffices to take

g(x) = x + p

q
, m, q, l, p ∈ N \ {0}, mp = lq + 1, q > max{p, m + 1} ,

and φ(x) = ηψ̂
(

x−0m,g
1−0m,g

)
. If we take α and z1 so that (5.1) holds, then (g, φ)

satisfies the hypothesis of Lemma 5.5 for suitable δ and J = ø. Thus, taking
also into account Remark 3.5, we can find inductively a sequence (gn, φn), with
(g0, φ0) = (g, φ), such that,
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a) for n ≥ 1, gn is (mn, qn, ln, pn) sf-stable in D1
1
2
(T),

b) φn is a C∞ αn-caliber,
c) (gn, φn) is (λ − 1, �n + 1, Jn, wn, mn) oscillating, (ηn,

1
2n )-regular,

d) µ(Jn+1) > 1 − 2
2n ,

e) αn −→
n→+∞ 0, ηn −→

n→+∞ 0,

f) mn < wn < mn+1, mn+1 = qn ,

g) d1(gn, gn+1) <
min

{
1, ε(gh, φh), h = 1, 2, ..., n

}
2n

where ε(gh, φh) is as in Prop. 3.6, so that gn is a Cauchy sequence in D1
1
2
(T). Let g

be its limit. We have d1(gn, g) ≤ ε(gn, φn) for each n ≥ 1. Moreover, we can take
ηn so that

Lhηnrh
n −→

n→+∞ 0

for each natural h, where rn corresponds to r in Lemma 5.5 viii, with φn in place of
�η′ . Hence, we can find � extending every φn 1-periodic, and having the deriva-
tives of every order at 0 equal to 0. Using Prop. 3.6, it easily follows that (g, �)

satisfies the required properties with J (k) =
+∞⋂
n=k

Jn .

Corollary 6.2. There exist two sequences mn, wn of naturals tending to +∞ and
B > 0 such that (3.2) holds a.e. in [0, 1].

Once we have (G, �) as in Theorem 6.1, we can construct our example in a
rather standard way. I here sketch a possible construction. I have given the state-
ment of Corollary 6.2, since it is more understandable than Theorem 6.1. However,
it is simpler to deduce our example directly from Theorem 6.1. Choose �n > 0
such that �n −→

n→+∞ +∞. Let β1(y) = ψ̂(1 − y). We can and do assume β ′
1 > 0 on

]0, 1[. Let β2 = ψ 1
4 , 3

4 , 1
8
,

U (x, y) = x + β1(Fr(y))
(
g(x) − x

)
, V (x, y) = (

U (x, y), y
)

on R2. We see that V is of the form Id+Z2-periodic. Moreover, it is a bijection
from R2 into itself, and is a C1 diffeomorphism from R2\(R×Z) onto R2\(R×Z).
As 1

2 ≤ ∂U
∂x (x, y) ≤ 3

2 on R2, we see that V −1 has bounded partial derivatives on
R2 \ (R × Z). Let now � : R2 → R2 be defined by

�(x, y) =
(
β ′

1(Fr(y)) · (g − I d)(V −1
1 (x, y)), 1

)
,

and let f be defined by

f = γ�, γ (x, y) = β2(y)�
(
V −1

1 (x, y)
) + 1 − β2(y) .



A NONHOMOGENIZABLE LINEAR TRANSPORT EQUATION IN R2 189

We have that f : R2 → R2 is C1 and Z2 periodic. Put

Ĵ =
⋃
h∈Z

(([0, 1[\
+∞⋃
k=1

J (k)
) + h

)
, tn = 1

2
�nmn > 0, t ′n = λwn > 0 .

Let Ĵ ′ = V ( Ĵ × R). It is easy to see that µ( Ĵ ′) = 0. Moreover, after some
calculations we get

lim sup
n→+∞

T tn
f ,2

(x, y) − y

tn
≤ lim sup

n→+∞
2

�n
= 0, lim inf

n→+∞
T

t ′n
f ,2

(x, y) − y

t ′n
≥ 1

λ

for each (x, y) ∈ [0, 1[2\ Ĵ ′. As a consequence, (2.1) and (2.2) hold.
Remark 6.3. We can in fact take f of class C∞, as we can choose G to be arbi-
trarily close to g in the C∞ metric in Lemma 5.5. To this aim it suffices to take ς

sufficiently small in the construction of g̃ in Section 7, and ε̂ sufficiently small in
the construction of G in Section 8.

7. Construction of a function of (q, q ′, p, p′) type

The rest of this paper is devoted to prove Lemma 5.5. So, from now on, we will
assume that g is as in Lemma 5.5. In this section I describe the first two steps in
the construction of G, obtaining a function g̃ which is of (q, q ′, p, p′) type, but not
necessarily sf-stable. I preliminarily introduce some constants. Let

M̃ =
µ

(
q⋃

h=1

[
0h,g, αh−q,g

]) − (1 − δ)

q( 3
2 )q−1

.

Note that, in view of (5.4), we have M̃ > 0. In order to introduce the other con-
stants, we have to observe that

01,g < α1−q,g − M̃ < α1−q,g ≤ α1,g < z1 < 0m+1,g .

In fact, we have

µ

(
q⋃

h=1

[
0h,g, αh−q,g

])≤
q∑

h=1

αh−q,g − 0h,g =
q∑

h=1

(
α1−q,g

)
h−1,g − (

01,g
)

h−1,g

=
q∑

h=1

gh−1(α1−q,g
) − gh−1(01,g

)
= (α1−q,g − 01,g)

q∑
h=1

(gh−1)′(ξh)

≤(α1−q,g − 01,g)

q∑
h=1

(
3

2

)h−1

≤(α1−q,g − 01,g)q

(
3

2

)q−1
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for suitable ξh , hence the first inequality holds, the second is trivial, the fourth and
the fitfh follow from Definition 5.3ii, (5.1) and Lemma 4.2vii, and the third follows
from Definition 5.3i (cf. Corollary 7.4iv). Now, let z2 and σ > 0 be so that

01,g < α1−q,g − M̃ < z2 < α1−q,g

≤α1,g < z1 − 2σ < z1 + 2σ < 0m+1,g , (7.1)

Tφ(g, q, x) < λq ∀ x ∈ Ĩ := [z1 − 2σ, z1 + 2σ ] , (7.2)

gq(x) < x + p + σ

4
∀ x ∈ Ĩ . (7.3)

Note that (7.2) holds for sufficiently small σ by (5.3), and (7.3) holds for small σ as
gq − I d takes its minimum at z1, hence (gq − I d)′(z1) = 0. I will use (7.1) without
reference. By the definition of M̃ we have

µ

(
q⋃

h=1

[
0h,g, (z2)h−1,g

])
> 1 − δ . (7.4)

Indeed,

µ

(
q⋃

h=1

[
0h,g, (z2)h−1,g

]) =
q∑

h=1

(z2)h−1,g − (01,g)h−1,g

>

q∑
h=1

(α1−q,g)h−1,g − (01,g)h−1,g

−
q∑

h=1

(α1−q,g)h−1,g − (α1−q,g − M̃)h−1,g

= µ

(
q⋃

h=1

[
0h,g, αh−q,g

])

−
q∑

h=1

(
gh−1(α1−q,g) − gh−1(α1−q,g − M̃)

)
= µ

(
q⋃

h=1

[
0h,g, αh−q,g

]) − M̃
q∑

h=1

(gh−1)′(ξh)

for suitable ξh , and we use, as before, the assumption 1
2 ≤ g′ ≤ 3

2 and the definition
of M̃ to deduce (7.4). I will now introduce a function ĝ, obtained by g summing
a small positive function around U1,g , which is even smaller around z1. In the
following construction, we have to take σ and τ to be small positive numbers, and
τ small in comparison to σ . Let σ̃ > 0 be such that

σ̃ < min
{

01,g − (z1)q−m,g, (z1)m,g − 0m+1,g

}
. (7.5)
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For ς > 0 and τ ∈ [0, ς ], let ψ((1)) = ψ01,g,0m+1,g,σ̃ , ψ((2)) = ψz1,z1,σ ,

(ĝ =)ĝς,τ = g + ςψ((1)) + (τ − ς)ψ((2)) .

Note that, in view of (7.5), ĝ = g on [0, 1[\](z1)q−m,g, (z1)m,g[.
From now on I will assume that ς is sufficiently small, in other words, in every
statement, I will mean: there exists ς > 0 such that the statement holds if 0 < ς <

ς , independently of τ .

I will explicitly say “for small ς” in sentences like: “given ω, for small ς” to
state that there exists ς(ω) > 0 such that the property holds if 0 < ς < ς(ω),
independently of τ . We can assume that 1

2 < ĝ′ < 3
2 , hence ĝ ∈ D1(T). Also,

|ĝ′′(x)| ≤ max |g′′| + 1. (7.6)

Now, the idea of the next lemmas consists in fixing a sufficiently small ς , and
finding a suitable τ useful for our considerations.

Lemma 7.1. ĝq
ς,0(z1) = z1 + p, hence ρ(ĝς,0) = p

q . If τ ∈]0, ς ], then ĝq
ς,τ >

I d + p, hence ρ(ĝς,τ ) >
p
q . Moreover, the map τ �→ ρ(ĝς,τ ) is continuous and

increasing on [0, ς ].
Proof. For each x ∈ U1,g we have ψ((1))(x) = 1, hence ĝς,τ (x) ≥ g(x) + τ . For
x ∈ [0, 1[\U1,g we have ψ((2))(x) = 0, hence ĝς,τ (x) ≥ g(x). If τ > 0, as every
(q − 1, g)-orbit meets U1,g , it follows that ĝq

ς,τ > gq ≥ I d + p as g is sf-stable.
On the other hand, as g = ĝς,0 on B := ([0, 1[\](z1)q−m,g, (z1)m,g[

) ∪ {z1}, and
the (q − 1, g)-orbit of z1 is contained in B, then ĝq

ς,0(z1) = gq(z1) = z1 + p and
ρ(ĝς,0) = p

q . Since ĝς,τ − ĝς,τ ′ = (τ − τ ′)ψ((2)), the last part of the statement
follows from Lemma 5.2.

Lemma 7.2. For each ω > 0 and for each ς > 0 there exist p′ and q ′, and τ ∈
]0, ς [ so that

1

qq ′ = p′

q ′ − p

q
< ω, p′, q ′ ∈ N \ {0}, q ′ > q + 1, (7.7)

τ = max

{
t ∈ [0, ς ] : ρ(ĝς,t ) = p′

q ′

}
. (7.8)

Proof. We have −lq − (−m)p = 1. Put αn = −l + np, βn = −m + nq. Then,
it suffices to take p′ = αn and q ′ = βn for sufficiently large n, and we get (7.7).

Replacing ω by ω∧
(
ρ(ĝς,ς ) − p

q

)
, then τ defined by (7.8) satisfies 0 < τ < ς .
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In the following, I will consider always ς, τ satisfying the previous lemma.
In such a case we will say that τ is ς -regular. Note that ĝ is not necessarily of
(q, q ′, p, p′) type, as we are not guaranteed that ĝq ′

(0) = p′, so that we have to
slightly modify it to obtain a function g̃ of (q, q ′, p, p′) type. I will now define g̃
and prove its main properties. Let ĝa be the function defined by ĝa(x) = ĝ(x +
a) − a for every a ∈ R.

Lemma 7.3. There exists a = aς,τ ∈ [0, ĝq
ς,τ (0) − p[ such that g̃ = ĝa is of

(q, q ′, p, p′) type.

Proof. By Lemma 7.1 ĝq − I d has a minimum > p. Since ρ(ĝ) = p′
q ′ there exists

b ∈ R such that ĝq ′
(b) = b + p′. Then every a of the form (ĝq − p)r (b) satisfies

ĝq ′
(a) = a + p′, so that ĝa is of (q, q ′, p, p′) type. If we take the minimum integer

r such that (ĝq − p)r (b) ≥ 0, then a ∈ [0, ĝq
ς,τ (0) − p[.

Note that g̃ in fact depends on ς, τ , but in order to simplify the notation, I will
write simply g̃ and not g̃ς,τ or similar.

Corollary 7.4. i) g̃ is C∞ and its rotation number amounts to p′
q ′ < 1, thus

x < g̃(x) < x + 1 for each x ∈ R. Moreover, g̃q(x) > x + p for each x ∈ R.
ii) g̃q ′

(x) ≥ x + p′.
iii) 1

2 < g̃′ < 3
2 .

iv) xq ′,g̃ ≥ x for each x ∈ [0, 1[.
v) For each ω > 0 for small ς we have d1(g, g̃) ∨ d1(ĝ, g̃) < ω.

Proof. i) and iii) are trivial. If ii) is false, then the analogous statement for ĝ is
also false and we easily get a contradiction with (7.8). Prove now iv). We have
p′ ≤ x + p′ ≤ g̃q ′

(x) < g̃q ′
(1) = p′ + 1, hence [g̃q ′

(x)] = p′, and we use ii). To
prove v), use the definition of ĝ and g̃ and note that for small ς , aς,τ can be made
as small as possible, as gq(0) = p.

Corollary 7.5. i) For every v > 0 and ς > 0 there exists τ ς -regular such that
τ ∈]0, v[.

ii) For every k > 0 there exists τ(k, ς) > 0 such that for every τ ς -regular in
]0, τ (k, ς)[ we have q ′ > k.

Proof. This follows from Lemma 7.1 and Lemma 7.2.

Corollary 7.6. i) For every ω > 0 and M positive integer, for small ς and for
each h ∈ Z so that |h| ≤ M, we have d1(ĝh, g̃h) ∨ d1(gh, g̃h) < ω.

ii) Given ω > 0, x ∈ [0, 1[, and h ∈ Z such that xh,g �= 0, for small ς we have
[g̃h(x)] = [gh(x)] and |xh,g̃ − xh,g| < ω.

Proof. i) follows from the definition of ĝ and Lemma 3.2, and ii) follows
from i).
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Corollary 7.7. For each k > 0, for small ς we have q ′ > k.

In order to prove Lemma 5.5, I will now introduce the constants α′, z′, nec-
essary for proving that G and � have the required properties, and other constants
which will play an auxiliary role. Let

V1 = 2(max |g′′| + 1), V2 = eV1 .

Then, thanks to (7.6) and Corollary 7.4iii, we have Vg̃ ≤ V1. Let α′, z′, ε̂, u1, be
such that α′

1,g̃, z′ ∈ Int(U1,g̃) and

9

2
V 2

2
0q+1,g̃̂ − z′

µ1,g̃
<

0q+1,g̃̂ − α′
1,g̃

µ1,g̃
<

δ′

V 2
2

, (7.9)

0 < ε̂ < min

{
ε

2(L ′
1 + 1)

,

(
min g′ − 1

2

) ∧ ( 3
2 − max g′)

2L ′
1

}
, (7.10)

u1 = 0q+1,g̃̂ − z′

4V2
> 0 . (7.11)

Recall that L ′
1 is defined in Lemma 5.1. Note that in particular ε̂ < ε

2 . Note also
that the inequality u1 > 0 follows from the definition of z′. I also stress that,
although α′ and z′ could depend on ς and τ , we can and do choose the ratios
0q+1,g̃̂ − z′

µ1,g̃
,

0q+1,g̃̂ − α′
1,g̃

µ1,g̃
not depending on ς and on τ . Note that it follows z′ >

α′
1,g̃ . Formula (7.9) will be used in Lemma 7.9, and (7.10) will be used in Section 8.

An important feature of g is that ghq − I d takes its minimum at 01,g , so that
ghq is a good approximation of the function x + hp, for x close to 01,g . This is the
inspiring idea of the properties described below.

Lemma 7.8. For every integer M1 > 0 and ω1 ∈]0, 1
2 [ for small ς

1 − ω1 < (g̃hq)′(x) < 1 + ω1 if h = 0, ..., M1, x ∈
M1⋃

k=0

Ukq+1,g̃

= [01,g̃, 01+(M1+1)q,g̃̂ [ ,

(7.12)

q ′ > M1q + 1, (7.13)

hp ≤ g̃hq(0) < g̃hq+1(0) < hp + 1, ∀h = 0, ..., M1, (7.14)

and the first inequality in (7.14) is strict if h > 0.
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Proof. For every h ∈ N the function ghq − I d is ≥ hp and amounts to hp at 01,g ,
so that it takes its minimum at 01,g . Therefore, (ghq)′(01,g) = 1. We deduce

|(ghq)′(x) − 1| <
ω1

2
∀h = 0, ..., M1, x ∈]01,g − ω2, 01,g + ω2[ (7.15)

for small ω2 > 0, and (7.13) follows from Corollary 7.7. Thus, if (7.14) is false,
then either ρ(g̃) ≤ p

q <
p′
q ′ or ρ(g̃) ≥ hp+1

hq+1 >
p′
q ′ , a contradiction. As for small ς

the previous formulas hold for M1 + 1 in place of M1 and ω2 ∧ ω1
2 in place of ω1,

in view of Corollary 7.6, we easily get for small ς and h = 0, ..., M1 + 1

|0hq+1,g̃ − 01,g| = |g̃hq+1(0) − ghq+1(0)| ≤ d1(g̃
hq+1, ghq+1) < ω2 .

Hence, for h, k = 0, ..., M1, Ukq+1,g̃ ⊆]01,g − ω2, 01,g + ω2[, hence using (7.15),
and the inequality |(g̃hq)′(x) − (ghq)′(x)| <

ω1
2 valid for each real x , we get

(7.12).

Lemma 7.9. If h = 0, ..., M1, and M1 is as in Lemma 7.8, hence 0 ≤ hq < q ′,
then

i) 0hq+1,g̃ ≤ α′
hq+1,g̃ < z′

hq−q ′,g̃ − 2V2u1 < z′
hq,g̃ + 2V2u1 < 0hq+q+1,g̃̂ .

ii) 0 ≤ z′
hq,g̃ − z′

hq−q ′,g̃ ≤ 6V2(V2 − 1)u1 .

Proof. i) The first inequality is trivial. In order to prove the second inequality, it
suffices to note that in view of Lemma 7.8, Lemma 4.5 ii with k = −q ′, and (7.9)

z′
hq−q ′,g̃ − α′

hq+1,g̃ ≥ 1

2

(
z′
−q ′,g̃ − α′

1,g̃

)
,

0q+1,g̃̂ − α′
1,g̃ > (V2 + 1)

(
0q+1,g̃̂ − z′), 0q+1,g̃̂ − z′

−q ′,g̃ ≤ V2
(
0q+1,g̃̂ − z′).

The third inequality is an immediate consequence of Corollary 7.4iv, and the fourth
follows from Lemma 7.8 and the definition of u1. We have proved i). To prove ii),
note that

z′ − z′
−q ′,g̃ = (

0q+1,g̃̂ − z′
−q ′,g̃

) − (
0q+1,g̃̂ − z′)

and use an argument like the previous one.

8. Construction and properties of G

The function g̃ could appear to be a good candidate for G, but it is not sf-stable
in that it satisfies i), but not necessarily ii) in Definition 5.3. Hence, we have to
make the function smaller by a carefully chosen quantity that allows it to satisfy
both i) and ii) in Definition 5.3. I will define functions G j,ζ by recursion on j ,
starting from g̃, and then I will choose particular j and ζ . At every step we subtract
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functions that have mutually disjoint supports, thus we finally subtract a very small
quantity but in many intervals, and not a relatively big quantity in one interval, in
order to keep the difference small in the distance C1. Define G j,ζ for ζ ∈ [0, ε̂] by
recursion as {

G0,ζ = g̃
G j+1,ζ = G j,ζ − ζu1ψγ j (ζ ),γ j (ζ ),u1 ∀ j ∈ N

where γ̃ j (ζ ) = G jq−1
j,ζ

(
z′) and γ j (ζ ) = Fr(γ̃ j (ζ )). Note that we have G j+1,ζ ≤

G j,ζ ≤ g̃. Also, G j,0 = g̃ for each j ∈ N. In the next lemma I prove the main
properties of G j,ζ .

Lemma 8.1. There exists j > 0 with jq + 1 < q ′ such that for every j = 0, ..., j
we have

a) j G j,ζ is of (q, q ′, p, p′) type and of class C∞,

b) j
1
2 < G ′

j,ζ < 3
2 ,

c) j the map ζ �→ G j,ζ from [0, ε̂] to (D1(T), d0) is continuous,

d) j the map ζ �→ G jq
j,ζ (z

′) from [0, ε̂] to R is decreasing,

e) j u1 + 0 jq,g̃ + j p < g̃−1
(
z′

jq−q ′,g̃
) + j p ≤ γ̃ j (ζ ) ≤ g̃ jq−1

(
z′) < −u1 +

0 jq+q,g̃ + j p, for j < j ,

f) j for j > 0 G j,ζ (x) = G j−1,ζ (x) for each x ∈ [0, 1[\Int
(
U jq−q,g̃

)
,

g) G jq
j,ε̂

(z′) < z′
jq−q ′,g̃ + j p,

h) j G jq
j,ε̂(z

′) ≥ z′
jq−q ′,g̃ + j p for j < j ,

i) j d1(G j,ζ , g) < ε, d1(G j,ζ , g̃) < (1 + L ′
1)ε̂,

l) j For every h, k ∈ Z, x ∈ R we have Gk
j,ζ (0h,g̃) = g̃k(0h,g̃), 0h,g̃ = 0h,G j,ζ ,[

Gk
j,ζ (x)

] = [
g̃k(x)

]
.

Proof. I will prove the lemma by recursion in the following way. For large M1

1st step. a) j , b) j , c) j , d) j , f) j , h) j , i) j , l) j hold for j = 0.
2nd step. If 0 ≤ j < M1 and a)r , b)r , c)r , d)r , f)r , h)r , i)r , l)r , hold for r = 0, ..., j ,

then e)r holds for r = 0, ..., j and a) j+1, b) j+1, c) j+1, d) j+1, f) j+1, i) j+1,
l) j+1 hold.

3rd step. There exists j = 0, ..., M1 such that h) j does not hold. This implies
j ≤ M1.

The first step is trivial (independently of M1). Fix now M1 > 1 and ω1 ∈]0, 1
2 [ so

that

ε̂

M1−1∑
h=1

(1 − ω1)
h > 6V2(V2 − 1) . (8.1)
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I now prove the second step. Let ς be so small that Lemma 7.8 holds. Assume
the hypothesis of second step, fix r = 0, ..., j and prove e)r . Note that, in view of
(7.14), g̃−1(0rq+1,g̃) = 0rq,g̃ , g̃rq−1(0q+1,g̃) = 0rq+q,g̃ + r p. We thus have

γ̃r (ζ ) ≥ g̃−1
(

Grq
r,ζ (z

′)
)

≥ g̃−1
(

Grq
r,ε̂(z

′)
)

≥ g̃−1(z′
rq−q ′,g̃ + r p

) ≥ g̃−1(0rq+1,g̃ + 2V2u1
) + r p

> u1 + g̃−1(0rq+1,g̃
) + r p = u1 + 0rq,g̃ + r p

where I have used Lemma 7.9i and Corollary 7.4iii. On the other hand,

γ̃r (ζ ) = Grq−1
r,ζ (z′) ≤ g̃rq−1(z′)

< g̃rq−1(0q+1,g̃ − 2V2u1) < −2V2u1
1

3
+ g̃rq−1(0q+1,g̃)

< 0rq+q,g̃ + r p − u1

where I have used Lemma 7.8, Corollary 7.4iii and the obvious inequality 2V2 > 3.
In conclusion, e)r holds. As e)r implies γr (ζ ) = γ̃r (ζ ) − r p, we have 0 < u1 +
0 jq,g̃ < γ j (ζ ) < 0 jq+q,g̃ −u1 < 1 and f) j+1 follows from Lemma 5.1. I now prove
b) j+1. Since the sets where Gr+1,ζ − Gr,ζ �= 0 restricted to [0, 1[, being contained
in Urq,g̃ , for r = 0, ..., j , are mutually disjoint by Lemma 4.2iv as 0 ≤ r < q ′, we
have ∣∣G ′

j+1,ζ (x) − g̃′(x)
∣∣ ≤ max

0≤r≤ j
ζu1|ψ ′

γr (ζ ),γr (ζ ),u1
(x)

∣∣ ≤ L ′
1ζ ≤ L ′

1ε̂

so that b) j+1 holds by (7.10) and Corollary 7.4v with ω = L ′
1ε̂. By proceeding in a

similar way, as clearly u1 < 1, we get∣∣G j+1,ζ (x) − g̃(x)
∣∣ ≤ ζu1 ≤ ζ ≤ ε̂ .

Hence, using Corollary 7.4v again we get i) j+1. In view of e) j , we have γ j (ζ ) =
G jq−1

j,ζ (z′) − j p, so that c) j+1 follows from c) j and a simple continuity argument.
We have

Gk
j+1,ζ (0h,g̃) = g̃k(0h,g̃)

for h, k ∈ Z. For k = 1 this follows from f) j+1 as 0h,g̃ /∈ Int(Uk,g̃) for each
k ∈ Z. For k ∈ N use a recursive argument, and finally, the case −k follows from
the case k. In particular, for each h ∈ Z, 0h,g̃ = 0h,G j+1,ζ

. It also follows that

Gq ′
j+1,ζ (0) = g̃q ′

(0) = p′, hence G j+1,ζ is of (q, q ′, p, p′) type and a) j+1 and
l) j+1 easily follow.

Using l) j , for every x ∈ Uh,g̃ we have xk,G j+1,ζ
∈ Uh+k,g̃ for h, k ∈ Z. In

particular, z′
k,G j+1,ζ

∈ U1+k,g̃ . Next, for j > 0 we have G jq−1
j+1,ζ (z

′) = G jq−1
j,ζ (z′)

as the ( jq − 2, G j,ζ )-orbit of z′ does not meet U jq,g̃ . It follows G jq
j+1,ζ (z

′) =
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G jq
j,ζ (z

′) − ζu1. Moreover, even for j = 0, using a similar argument we have

G jq+q
j+1,ζ (z

′) = g̃q
(
G jq

j+1,ζ (z
′)
)
, hence we get d) j+1.

Finally, I prove the third step. Suppose that h) j holds for every j =0, 1, ..., M1.
Then, by the first and the second step, a) j , b) j c) j , d) j , f) j hold for j = 0, 1, ..., M1
and e) j holds for j = 0, 1, ..., M1 − 1. We have for 0 < j < M1

G jq
j+1,ζ (z

′) ≤ G j+1,ζ

(
G jq−1

j,ζ (z′)
) = G jq

j,ζ (z
′) − ζu1 .

I now prove

G jq
j,ε̂(z

′) ≤ g̃ jq(z′) − ε̂u1

j−1∑
h=1

(1 − ω1)
h (8.2)

for 0 < j ≤ M1. Note that (8.2) is trivial for j = 1. Suppose it holds for 0 < j ≤
M1 − 1 and prove that it holds for j + 1 as well. We have

G( j+1)q
j+1,ε̂

(z′) ≤ Gq
j+1,ε̂

(
G jq

j,ε̂(z
′) − ε̂u1

)
≤ Gq

j+1,ε̂

(
c j

) ≤ g̃q(
c j

)
(8.3)

where c j = g̃ jq(z′)−ε̂u1

j−1∑
h=0

(1−ω1)
h . Since 0q+1,g̃ ≤ 0( j+1)q+1,g̃ ≤ z′

( j+1)q−q ′,g̃ ,

we have c j ≥ 01,g̃ + j p, as, in the contrary case using Remark 4.3, we have

G( j+1)q
j+1,ε̂

(z′) < g̃q(01,g̃ + j p) = 0q+1,g̃ + ( j + 1)p ≤ z′
( j+1)q−q ′,g̃ + ( j + 1)p

contrary to h) j+1. We deduce

01,g̃ + j p ≤ c j ≤ g̃ jq(z′) = j p + z′
jq,g̃ < 0( j+1)q+1,g̃̂ + j p < 0(M1+1)q+1,g̃̂ + j p .

Using Lemma 7.8 and (8.3) we deduce (8.2) for j + 1. Using (8.2), Lemma 7.9ii
and (8.1), as [g̃ jq(z′)] = [g̃ jq(01,g̃)] = j p, h) j does not hold for j = M1.

Remark 8.2. It follows from l) j in Lemma 8.1 and its proof that for j = 0, ..., j ,
h ∈ Z, we have Uh,g̃ = Uh,G j,ζ , and for each k, r ∈ Z, g̃k(x) > 0h,g̃ + r if and
only if Gk

j,ζ (x) > 0h,g̃ + r , and the analogs for < and = in place of > hold. Also,
as G j,ζ ≤ g̃, we have xk,G j,ζ ≤ xk,g̃ for each x ∈ [0, 1[ and k ∈ N.

Lemma 8.3. Gq ′
j,ε̂

(z′) < z′ + p′.

Proof. Composing the two hands of the equation in Lemma 8.1g) with Gq ′− jq
j,ε̂

, we
get

Gq ′
j,ε̂

(z′) < z′ + j p − [
g̃ jq−q ′

(z′)
]

and, as z′ ∈ U1,g̃ and q ′ > jq + 1, using Lemma 4.2vii and Remark 4.3, we get[
g̃ jq−q ′

(z′)
] = [

g̃ jq−q ′
(01,g̃)

] = [g̃ jq(01,g̃) − p′] = j p − p′ .
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I now define G. Put

J̃ = J̃ς,τ = [z′
−q ′,g̃ − 2V2u1, z′ + 2V2u1] ,

C = {ζ ∈ [0, ε̂] : Gq ′
j,ζ

(x) ≥ x + p′ ∀ x ∈ J̃ } ,

ζ = ζ ς,τ = sup C, G = G j,ζ .

Note that 0 ∈ C , ε̂ /∈ C . Note also that G depends on ς , τ , and ε̂. However, I
will not mark this dependence and I will mean that ς , τ , and ε̂ are fixed numbers
satisfying the previous assumptions. I am now going to prove that G, unlike g̃ and
G j,ζ , is sf-stable.

Lemma 8.4. If x ∈ U1,g̃ \ Int
(
J̃
)

then Gh(x) = g̃h(x) for each h = 0, ..., q ′.

Proof. Sketch. Note that by Lemma 8.1 e j , [γ j (ζ ) − u1, γ j (ζ ) + u1] ⊆ Int
(
U jq,g̃

)
when 0 ≤ j < j . It follows that the (q ′ − 1, g̃)-orbit of x does not meet [γ j (ζ ) −
u1, γ j (ζ ) + u1], the only nontrivial cases being xi,g̃ with i = q ′ − 1, j = 0, and
i = jq − 1. For the former case it suffices to observe that, in view of Corollary 4.6,∣∣xq ′−1,g̃ − z′

−1,g̃

∣∣ ≥ 1

V2

∣∣x−1,g̃ − z′
−1−q ′,g̃

∣∣ ≥ 2

3V2

∣∣x − z′
−q ′,g̃

∣∣ > u1 ,

for the latter, note that using Lemma 8.1 e j again and Lemma 7.8,

either x jq−1,g̃ ≥ z′
jq−1,g̃ + V2u1 ≥ γ j (ζ ) + V2u1 > γ j (ζ ) + u1 ,

or x jq−1,g̃ < z′
jq−1−q ′,g̃ − u1 ≤ γ j (ζ ) − u1 .

In conclusion, Gh
j,ζ

(x) = g̃h(x) for each h = 0, ..., q ′.

Corollary 8.5. G is (q, q ′, p, p′) sf-stable, more precisely, there exists z′
1 ∈ J̃ ⊆

Int
(
U1,g̃

)
such that Gq ′

(z′
1) = z′

1 + p′.

Proof. I prove i) in Definition 5.3. If x ∈ U1,g̃ \ J̃ , then, in view of Lemma
8.4, we have Gq ′

(x) ≥ x + p′. The same inequality holds for x ∈ J̃ , by the
definition of G. As every x ∈ R has the form k + Gh(y) for some k, h integers and
y ∈ U1,g̃ = U1,G , i) in Definition 5.3 holds for each real x . As ε̂ /∈ C , then ζ < ε̂,
thus, by the definition of ζ , there exists z′

1 ∈ J̃ such that Gq ′
(z′

1) = z′
1 + p′. The

inclusion J̃ ⊆ Int
(
U1,g̃

)
follows from Lemma 7.9i.

Corollary 8.6. α′ < (z′
1)−1,G. Moreover, α′

h−q ′,g̃ ≤ α′
h−q ′,G for every h =

1, ..., q ′.

Proof. The first statement follows from Lemma 7.9i and the definition of J̃ , and the
second follows from Remark 8.2, as h − q ′ ≤ 0.
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9. Proof of Lemma 5.5

In this section I prove Lemma 5.5. I first prove that Gq − I d− p, which is positive as
ρ(G) >

p
q , is in fact greater than a positive constant only depending on ς and not on

τ , at points whose (q−1, G)-orbit does not meet Ĩ . Consequently (Lemma 9.4), the
(q ′ − 1, G)-orbit of x meets Ĩ on every interval of length q apart from a set having
cardinality bounded by a value depending on ς but not on τ , and since q ′ → +∞
as τ → 0, such a set is negligible for small τ . Thanks to (7.2), this will allow us to
prove the analog of (5.3) for (G, �).
Here and in the following, we assume that ε̂ is sufficiently small.

Lemma 9.1. There exists H1(ς) ∈]0, 1[ such that if the (q − 1, G)-orbit of x does
not intersect Ĩ , then

Gq(x) ≥ x + p + H1(ς). (9.1)

Proof. By Corollary 7.6 and Lemma 8.1i, for sufficiently small ς and ε̂, it suffices
to prove (9.1) with ĝ in place of G and 2H1(ς) in place of H1(ς). Moreover, the
(q − 1, ĝ)-orbit of x does not intersect [z1 − σ, z1 + σ ]. As ρ(ĝς,ς ) >

p
q , we have

ĝq
ς,ς (x) > x+ p for each x , and by a compactness argument, there exists H1(ς) > 0

such that ĝq
ς,ς (x) ≥ x + p+2H1(ς) for each x . On the other hand, by the definition

of ĝς,τ , ĝς,τ (x) does not depend on τ if x ∈ [0, 1[\ Ĩ , hence ĝq
ς,ς (x) = ĝq

ς,τ (x), so
that we get (9.1) with ĝ in place of G, and 2H1(ς) in place of H1(ς).

Corollary 9.2. We have µh,G ≥ H1(ς)

2|h| for each h ∈ Z.

Proof. Using Corollary 7.4iii we have µh,G ≥ 1
2|h| 0q,G . On the other hand, for

h = 1, ..., q − 1, we have either 0h,g ≤ 01,g < z1 − 2σ or 0h,g ≥ 0m+1,ĝ >

z1 + 2σ . Hence, for small ς , thanks to Corollary 7.6, 0h,G /∈ Ĩ for h = 0, ..., q − 1.
Therefore, by Lemma 9.1, 0q,G ≥ H1(ς).

For x ∈ [0, 1[ put

Hx (= Hx,ς,τ ) =
{

h ∈ [0, q ′ − 1] ∩ Z : xh,G ∈ Ĩ
}

.

Set Hx = {
hi,x , i = 1, ..., dx

}
with h1,x < h2,x < ... < hdx ,x (dx = 0 if

Hx = ø).

Lemma 9.3. Suppose ø �= K ⊆ Uk,g, k ∈ Z, K compact. Then, for ς and
ω positive and sufficiently small, the image of the set Kω ∩ [0, 1[ via the maps
x �→ xh,G are mutually disjoint for h = 0, ..., q − 1.

Proof. Consider the projection π of R over the circle. As the sets π(gh(K )) are
compact and contained in π

(
Uh+k,g

)
, which are mutually disjoint, the conclusion

follows by a continuity argument.
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Lemma 9.4. Let x ∈ [0, 1[ . Then

i) hi+1,x − hi,x ≥ q for each i = 1, ..., dx − 1.

ii) Let Dx (= Dx,ς,τ ) = [
0, q ′ − 1] ∩ Z \

(
dx −1⋃
i=1

[hi,x , hi,x + q − 1]
)

. Then

#(Dx ) ≤ q

H1(ς)
+ 2q =: H2(ς) .

Proof.

i) This follows from Lemma 9.3 with Ĩ in place of K .
ii) I will prove that #D′

x ≤ 1
H1(ς)

, where D′
x = Dx \ ([0, q − 1] ∪ [hdx ,x , hdx ,x +

q − 1]). Note that, by Lemma 9.1, we have

Gh(x) − (Gh−q(x) + p) ≥ H1(ς) if h − 1 ∈ D′
x ,

Gh(x) − (Gh−q(x) + p) > 0 in any case .

Given k = 0, ..., q − 1, let uk ∈ Z be such that q ′ − q ≤ k + ukq ≤ q ′ − 1.
Setting D′

x,k = D′
x ∩ {k + rq : r ∈ Z}, we have

Gk+1+ukq(x) − (Gk+1(x) + uk p) ≥ #D′
x,k H1(ς) .

On the other hand, as ρ(G) = p′
q ′ = p

q + 1
qq ′ <

uk p+1
ukq , we have Gk+1+ukq(x)−

(Gk+1(x) + uk p) < 1. In conclusion, #D′
x,k ≤ 1

H1(ς)
and #D′

x ≤ q
H1(ς)

.

Next, I estimate the measure of some special sets. First, in Lemma 9.5, I prove
that the function G I will construct satisfies (5.4) (for (q, q ′, p, p′) type functions),
then I define the set J ′ with respect to which (G, �) satisfies the definition of an
oscillating pair. Such a set is a modification of the set defined in (5.4) suitable for G.

Lemma 9.5. µ

(
q ′⋃

h=1
[0h,G, α′

h−q ′,G]
)

> 1 − δ′.

Proof. Let B be the complement in [0, 1[ of the set in brackets. Then, also using
Lemma 4.5 and the second inequality in (7.9), we get

0q+1,g̃̂ − α′
1−q ′,g̃

µ1,g̃
=

0q+1−q ′,g̃̂ − α′
1−q ′,g̃

µ1,g̃
≤ V2

0q+1,g̃̂ − α′
1,g̃

µ1,g̃
<

δ′

V2

so that by Lemma 4.5 again, Lemma 4.2iv and Corollary 8.6, we get

µ(B) ≤
q ′−1∑
h=0

(0q+1+h,g̃̂ − α′
−q ′+1+h,g̃) ≤

(
0q+1,g̃̂ − α′

1−q ′,g̃
)
V2

µ1,g̃

q ′−1∑
h=0

µh+1,g̃ < δ′ .
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Let

J ′ =
q⋃

h=1

D̃h, D̃h := [
0h,g ∨ 0h,g̃, (z2)h−1,g

]
.

Lemma 9.6. We have µ(J ′) > 1 − δ′
1 .

Proof. In view of (7.4) and Corollary 7.6ii, it suffices to prove that, for small ς ,
[g̃q(0)] = [gq(0)]. Now, observe that g̃q(0) > p = gq(0).

Next, I give some estimates for xh,G . I will prove in Lemma 9.9, that when
x ∈ J ′, then xh,G is sufficiently far from 0 and 1, so that 1

�
has a good bound there,

and, on the other hand, it is “frequently” in Ĩ . Then, in Lemma 9.10, I will prove
a similar inequality for x ∈ J̃ . I start with some preliminary results, concerning
estimates of xh,G for special values of h. Note that the upper bound for xh,G in
Lemma 9.9 is independent of ς , τ , and the one in Lemma 9.10 only depends on ς .

Lemma 9.7. If x ∈ D̃h, h = 1, ..., q, k = 0, ..., q − h + 1, then

0h+k,G +[gh+k(0)]−[gh(0)] ≤ Gk(x) <
(
z1 −2σ

)
h+k−1,g +[gh+k(0)]−[gh(0)] .

Proof. We have

gk((z2)h−1,g) = (z2)h+k−1,g + [gk(0h,g)] = (z2)h+k−1,g + [gh+k(0)] − [gh(0)]

and as for x ∈ D̃h we have Gk(x) ≤ Gk((z2)h−1,g) ≤ g̃k((z2)h−1,g) and
(z2)h+k−1,g <

(
z1 − 2σ

)
h+k−1,g , for small ς we get the second inequality. To

prove the first, observe that

Gk(x) ≥ Gk(0h,g̃) = g̃k(0h,g̃) = 0h+k,g̃ + [g̃h+k(0)] − [g̃h(0)]

and that, for small ς we have [g̃h+k(0)] = [gh+k(0)], [g̃h(0)] = [gh(0)]; this can
be seen as in the proof of Lemma 9.6.

Lemma 9.8. If h > 1
H1(ς)

then Ghq(0q+1,G) ≥ hp + z1 − 2σ .

Proof. Let K := [01,g, z1 + 2σ ] ⊆ U1,g , U := [0q+1,G, z1 − 2σ [. As ρ(G) >
p
q ,

then Grq(y) > y + r p for each y ∈ R and r = 1, 2, 3, ... For small ς , we have
U ⊆ Kω ∩ [0, 1[ where ω is so small that we can apply Lemma 9.3, thus for any
y ∈ U the (q − 1, G)-orbit of y does not intersect Ĩ , thus Gq(y) ≥ y + p + H1(ς)

by Lemma 9.1. We easily deduce the assertion of the lemma.
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Lemma 9.9. Given a sufficiently small ς , fix M2 ∈ N \ {0, 1} . Then there exists
τς > 0 such that if 0 < τ < τς

i) For every x ∈ [0q+1,G,
(
z1 − 2σ

)
q,g[, for 0 ≤ h ≤ M2 we have

hp + 0q+1,G ≤ Ghq(x) < hp + z1 + 2σ .

ii) If x ∈ J ′, k = 0, ..., M2q, we have

α′ < 0q,G ≤ xk,G ≤ v1 := max
r=0,...,q

1 + (
z1 + 2σ

)
r,g

2
< 1.

Proof.

i) By Lemma 7.1, ĝhq
ς,0(z1) = z1 + hp for every natural h, and for small ς we

have [0q+1,G,
(
z1 − 2σ

)
q,g[⊆ [0q+1,G, z1 − aς,τ [, independently of τ , and by

a continuity argument and the definition of g̃ and Remark 8.2, we conclude the
proof of i).

ii) Let
x ∈ D̃h, h = 1, ..., q .

If k ≤ q − h + 1 the result follows from Lemma 9.7. Using Lemma 9.7 with
k = q − h + 1 and i), we have xq−h+1+dq,G ∈ S := [0q+1,G, z1 + 2σ [ for
d = 0, ..., M2. It remains to prove

0q,G ≤ yr,G ≤ v1 ∀ y ∈ S ∀ r = 1, ..., q − 1 .

To this aim, note that, for small ς , for such r , 0−r,g̃ /∈ S. In fact, 01−q,g̃ <

0q+1,g̃ , and, if r < q −1, then we have −r �≡ 1 mod q. On the other hand, (for
small ς ) for any h ∈ Z, then 0h,g ∈ S only (possibly) if 0h,g = 01,g , that is if
h ≡ 1 mod q. Hence 0−r,g /∈ S, and by continuity 0−r,g̃ /∈ S. It follows that
g̃r (S) ∩ Z = ø, and, for every y ∈ S, 0q,G ≤ 0q+1+r,g̃ ≤ yr,g̃ ≤ (

z1 + 2σ
)

r,g̃ .
We conclude using Corollary 7.6ii) and Remark 8.2.

Lemma 9.10. Let x ∈ J̃ . Then for all k = 0, ..., q ′ we have

α′ < xk,G ≤ v2(= v2(ς)) := 1 − H1(ς)

2q V2

0q+1,g̃̂ − z′

µ1,g̃
< 1.

Proof. I prove the first inequality. If k �= q ′ − 1, then xk,G /∈ U0,G , so that xk,G ≥
0q,g̃ > α′. Suppose k = q ′ − 1. We have xq ′−1,G ≥ xq ′−1,G = xq ′−1,g̃ by
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Lemma 8.4, where x = z′
−q ′,g̃ − 2V2u1. We thus have to prove xq ′−1,g̃ > α′. We

have
0q,g̃̂ − xq ′−1,g̃ = 0q ′+q,g̃̂ − xq ′−1,g̃

≤ µq ′,g̃
µ1,g̃

V2(0q+1,g̃̂ − x)

≤ 2V2(0q+1,g̃̂ − x) ≤ 3V 2
2 (0q+1,g̃̂ − z′)

<
2

3
(0q+1,g̃̂ − α′

1,g̃) < 0q,g̃̂ − α′

where I have used Lemma 4.5ii, (7.11), Lemma 7.9i, (7.9) and the fact that µq ′,g̃ =
µ0,g̃ ≤ µ1,g̃ max 1

g̃′ . For the second inequality note that xk,G ≤ xk,g̃ ≤ x̃k,g̃ where

x̃ = z′ + 2V2u1, and max
k=0,...,q ′ x̃k,g̃ = x̃q ′−q−1,g̃ . On the other hand, by Lemma 4.5ii

again and Corollary 9.2,

1 − x̃q ′−q−1,g̃ ≥ µ−q,g̃

µ1,g̃

1

V2
(0q+1,g̃̂ − z′) ≥ H1(ς)(0q+1,g̃̂ − z′)

2q V2µ1,g̃
.

Finally, recall that
0q+1,g̃̂ − z′

µ1,g̃
is independent of ς and τ . This has been noted

in the considerations after Corollary 7.7. Hence v2 only depends on ς and not
on τ .

So far, we have only investigated G. In order to prove Lemma 5.5 we now
need also to study �. Let

u2 = α + (z2)q−1,g

2
, u3 = α − (z2)q−1,g

2
> 0 ,

η = min

{
η,

1

�′q

}
.

Define (� =)�η′ : [α′, 1] → R for η′ ∈]0, η[ by

�(x) =
{

ψ̂
(

x−u2
u3

)
(η′ − η) + η if x ∈ [α′, α[

φ(x) if x ∈ [α, 1] .

Lemma 9.11. � is a C∞ α′-caliber extending φ, α′ ∈]0, α
2 [. Moreover, � = η′ on

[α′, u2] ⊇ [α′, 0q,g̃], � ≥ η′ and
∣∣�(h)

∣∣ ≤ Lhη 1
uh

3
on ]α′, α]. Finally, u3 does not

depend on η′.

Proof. Note that for small ς we have p < g̃q(0) < p + u2
2 so that 0 < α′ < 0q,g̃ <

u2
2 < α

2 < α < 1 . The Lemma easily follows.
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In the following proposition I study the oscillation properties of �.

Proposition 9.12. There exists τς > 0 such that if 0 < τ < τς then

i) T�(G, q, x) > �′q for each x ∈ J ′,
ii) There exists w′ := M2q with M2 > 1, M2 integer, M2q < q ′, such that

T�(G, w′, x) < λw′ for each x ∈ J ′,
iii) T�(G, q ′, x) < λq ′ for each x ∈ J̃ .

Proof. For given ς > 0, choose M2 sufficiently large (see proof of ii)) and suppose
0 < τ < τς , so that we can apply Lemma 9.9.

i) J ′ ⊆ O(G, M2q, α′) by Lemma 9.9. Let now x ∈ D̃h , h = 1, ..., q. A simple
verification shows that

gq−h(x) ≥ p − [gh(0)], g̃q−h(x) ≥ p − [g̃h(0)],

so that for small ς , g̃q−h(x) ≥ p − [gh(0)]. Moreover, gq−h(x) ≤ p −
[gh(0)] + (z2)q−1,g . Thus, since (z2)q−1,g < u2, then xq−h,G ≤ xq−h,g̃ < u2,
hence

T�(G, q, x) ≥ 1

�(xq−h,G)
= 1

η′ > �′q .

ii) Let x ∈ D̃h , h = 1, ..., q. Define

k j =


0 if j = 0
q − h + ( j − 1)q + 1 if j = 1, ..., n − 1
nq if j = n

where n = M2. We have xk1,G ∈ [0q+1,G,
(
z1 − 2σ

)
q,g[ by Lemma 9.7, hence

by Lemmas 9.8 and 9.9i we have

xk j ,G ∈ Ĩ if n > j > H3(ς) := 2 +
[

1

H1(ς)

]
.

Put η̂1(= η̂1(ς)) := min
{
η′, min[α,v1]

φ
}

> 0, so that, by Lemma 9.9ii, �(xi,G) ≥
η̂1 for each i = 0, ..., M2q. Now, using (7.2) and a continuity argument, there
exists M ′ < λq such that

T�(G, q, x) ≤ M ′ ∀ x ∈ Ĩ (9.2)
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with M ′ independent of ς (sufficiently small) and τ . Hence supposing M2 ≥
H3(ς) + 3, we get

T�(G, M2q, x)=
n−1∑
j=0

T�(G, k j+1 − k j , xk j ,G)

=
( H3(ς)∑

j=0

T�(G, k j+1 − k j , xk j ,G)

)

+
(

n−2∑
j=H3(ς)+1

T�(G, q, xk j ,G)

)

+ T�(G, kn − kn−1, xkn−1,G)

≤ (
H3(ς) + 1

) q

η̂1
+ M2 M ′ + 2q

η̂1
.

Since M ′ < λq, for sufficiently large M2, say M2 > H4(ς), we have
T�(G,M2q,x)< λM2q.

iii) In view of Lemma 9.4, using the definition of Dx , for q ′ > H2(ς) we have
dx ≥ 2 and q ′ = #(Dx ) + (dx − 1)q. Thus, using Lemma 9.10 and (9.2),

T�(G, q ′, x) =
∑

k∈Dx

1

�(xk,G)
+

dx −1∑
i=1

hi,x +q−1∑
k=hi,x

1

�(xk,G)

≤ H2(ς)

η̂2
+

dx −1∑
i=1

T�(G, q, xhi,x ,G)

≤ H2(ς)

η̂2
+ (dx − 1)M ′ ,

where η̂2(= η̂2(ς)) := min
{
η′, min[α,v2]

φ} > 0. Thus, if q ′ is greater than a

constant H5(ς), then iii) holds. In conclusion, in order that i), ii) and iii) hold,
we have to take M2 > H4(ς), then τς = min{τς , τ (H5(ς), ς)} (see Corollary
7.5ii).

Proof of Lemma 5.5. See Lemma 9.5, Corollary 8.5, Lemma 9.11, Lemma 9.6,
Proposition 9.12, Lemma 8.1.
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