
Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5)
Vol. VIII (2009), 143-174

On the second boundary value problem for Monge-Ampère type
equations and optimal transportation

NEIL S. TRUDINGER AND XU-JIA WANG

Abstract. This paper is concerned with the existence of globally smooth so-
lutions for the second boundary value problem for certain Monge-Ampère type
equations and the application to regularity of potentials in optimal transportation.
In particular we address the fundamental issue of determining conditions on costs
and domains to ensure that optimal mappings are smooth diffeomorphisms. The
cost functions satisfy a weak form of the condition (A3), which was introduced
in a recent paper with Xi-nan Ma, in conjunction with interior regularity. Our
condition is optimal and includes the quadratic cost function case of Caffarelli
and Urbas as well as the various examples in our previous work. The approach is
through the derivation of global estimates for second derivatives of solutions.

Mathematics Subject Classification (2000): 35J65 (primary); 45N60 (secondary).

1. Introduction

This paper is concerned with the global regularity of solutions of the second bound-
ary value problem for equations of Monge-Ampère type and its application to the
regularity of potentials in optimal transportation problems with non-quadratic cost
functions. In particular we resolve, in the context of global regularity, the fun-
damental problem of regularity for more general costs than the quadratic cost, as
highlighted for example in the recent book, [25, Chapter 4].

The Monge-Ampère equations under consideration have the general form

det{D2u − A(·, u, Du)} = B(·, u, Du), (1.1)

where A and B are given n × n matrix and scalar valued function defined on � ×
R × R

n , where � is a domain in Euclidean n-space, R
n . We use (x, z, p) to denote

points in �×R×R
n so that A(x, z, p) ∈ R

n ×R
n , B(x, z, p) ∈ R and (x, z, p) ∈

� × R × R
n . The equation (1.1) will be elliptic (degenerate elliptic), with respect
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to a solution u ∈ C2(�) whenever

D2u − A(·, u, Du) > 0 (≥ 0), (1.2)

whence also B > 0 (≥ 0).
A particular form of (1.1) arises from the prescription of the Jacobian determi-

nant of a mapping T u defined by

T u = Y (·, u, Du), (1.3)

where Y is a given vector valued function on � × R × R
n , namely

det DY (·, u, Du) = ψ(·, u, Du). (1.4)

Assuming that the matrix
Yp = [Dp j Y

i ] (1.5)

is non-singular, we may write (1.4) in the form (1.1), that is,

det{D2u + Y −1
p (Yx + Yz ⊗ Du)} = ψ

|det Yp| , (1.6)

for degenerate elliptic solutions u.
The second boundary value problem for equation (1.4) is to prescribe the image

T u(�) = �∗, (1.7)

where �∗ is a given domain in R
n . When Y and ψ are independent of z and ψ is

separable in the sense that

ψ(x, p) = f (x)/g ◦ Y (x, p) (1.8)

for positive f, g ∈ L1(�), L1(�∗) respectively, then a necessary condition for the
existence of an elliptic solution, for which the mapping T is a diffeomorphism, to
the second boundary value problem (1.4), (1.7) is the mass balance condition∫

�

f =
∫

�∗
g. (1.9)

The second boundary value problem (1.4), (1.7) arises naturally in optimal trans-
portation. Here we are given a cost function c : R

n × R
n → R and the vector field

Y is generated by the equation

cx (x, Y (x, p)) = p, (1.10)

which we assume to be uniquely solvable for p ∈ R
n , with non-vanishing determi-

nant, that is
det cx,y(x, y) �= 0 (1.11)
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for all x, y ∈ � × �∗. Using the notation

ci j ··· ,kl··· = ∂

∂xi

∂

∂x j
· · · ∂

∂yk

∂

∂yl
· · · c (1.12)

we have
Yp(x, p) = [ci, j (x, Y (x, p))], (1.13)

where [ci, j ] is the inverse of [ci, j ]. The corresponding Monge-Ampère equation
can now be written as

det{D2u − cxx (·, Y (·, Du))} = |det cx,y |ψ, (1.14)

that is in the form (1.1) with

A(x, z, p) = cxx (x, Y (x, p)),

B(x, z, p) = |det cx,y(x, Y (x, p))|ψ(x, z, p).
(1.15)

In the case of the (quadratic) cost function

c(x, y) = x · y, (1.16)

we have
Y (x, p) = p, T u = Du, (1.17)

and equation (1.14) reduces to the standard Monge-Ampère equation

det D2u = ψ. (1.18)

For this case, global regularity of solutions was proved by Delanoë [4], Caffarelli
[2] and Urbas [22], with interior regularity obtained earlier by Caffarelli [1]. In
this paper we will prove global estimates and regularity for general cost functions
under corresponding geometric conditions. In particular, we will assume that the
cost function c ∈ C4(Rn × R

n) satisfies the following conditions:
For each p, q ∈ R

n , there exists unique y = Y (x, p), x = X (q, y) such that

cx (x, y) = p ∀ x ∈ �,

cy(x, y) = q ∀ y ∈ �∗. (A1)

det cx,y(x, y) �= 0, ∀ x ∈ �, y ∈ �
∗
. (A2)

F(x, p; ξ, η) : = Dpi p j Akl(x, p)ξiξ jηkηl

≥ 0 ∀ x ∈ �, p ∈ R
n, ξ ⊥ η ∈ R

n.
(A3w)

Conditions (A1) and (A2) are the same conditions as in [15] but condition (A3w) is
the degenerate form of condition (A3) in [15],

F(x, p; ξ, η) ≥ c0|ξ |2|η|2 ∀ x ∈ �, p ∈ R
n, ξ ⊥ η ∈ R

n, (A3)
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where c0 is a positive constant. As will be seen in our examples, we do not neces-
sarily require c to be defined on all of R

n ×R
n and the vectors p and q in conditions

(A1) and (A3w) need only lie in the ranges of cx (x, y) and cy(x, y) on �∗ and �.
Moreover, as done at the outset in [15], we may also write

F(x, p; ξ, η) = (ci j,rs − ck′,l ′ci j,k′cl ′,rs)c
r,kcs,l(x, y)ξiξ jηkηl (1.19)

where y and p are related through (A1). This shows that conditions (A3w), (A3)
are also symmetric in x and y.

In our paper [15], we also introduced a notion of convexity of domains with
respect to cost functions, namely � is c-convex, with respect to �∗, if the image
cy(·, y)(�) is convex in R

n for each y ∈ �∗, while analogously �∗ is c∗-convex,
with respect to �, if the image cx (x, ·)(�∗) is convex for each x in �. For global
regularity we need to strengthen these conditions in the same way that convexity is
strengthened to uniform convexity. Namely we define � to be uniformly c-convex,
with respect to �∗, if � is c-convex, with respect to �∗, ∂� ∈ C2 and there exists
a positive constant δ0 such that

[Diγ j (x) − cl,kci j,l(x, y)γk(x)]τiτ j (x) ≥ δ0 (1.20)

for all x ∈ ∂�, y ∈ �∗, unit tangent vector τ and outer unit normal γ . By pulling
back with the mappings cy(·, y), we see that this is equivalent to the condition
that the image domains cy(·, y)(�) be uniformly convex with respect to y ∈ �∗.
Similarly we call �∗ uniformly c∗-convex, with respect to �, when c∗(x, y) =
c(y, x). Note that if � is connected with boundary ∂� ∈ C2, then � is c-convex if
and only if (1.20) holds for δ0 = 0.

It is also convenient to have a notion of boundedness relative to a cost function.
Namely we say that � is c-bounded, with respect to �∗ if there exists some function
ϕ ∈ C2(�), satisfying

[Di jϕ − cl,kci j,l(·, y)Dkϕ]ξiξ j ≥ δ1|ξ |2, (1.21)

in �, for all y ∈ �∗, for some constant δ1 > 0. Clearly for the quadratic cost
function (1.16), c-boundedness is equivalent to the usual boundedness (take ϕ(x) =
|x |2).

We can now formulate our main estimate.

Theorem 1.1. Let c be a cost function satisfying hypotheses (A1), (A2), (A3w),
with respect to bounded C4 domains �, �∗ ∈ R

n which are respectively uniformly
c-convex, c∗-convex with respect to each other. Assume also that either � is c-
bounded with respect to �∗ or A depends only on p or condition (A3) holds. Let ψ

be a positive function in C2(� × R × R
n). Then any elliptic solution u ∈ C3(�) of

the second boundary value problem (1.14), (1.7) satisfies the a priori estimate

|D2u| ≤ C, (1.22)

where C depends on c, ψ, � , �∗ and sup� |u|.
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As we will indicate later, the smoothness assumption on the solution and the
data may be reduced. Further regularity also follows from the theory of linear ellip-
tic equations for example if c, �, �∗, ψ are C∞ then the solution u ∈ C∞(�).The
dependence of the estimate (1.22) on sup� |u| may be removed if ψ is independent
of u as in (1.8).

As a consequence of Theorem 1.1, we may conclude existence theorems for
classical solutions by the method of continuity.

Theorem 1.2. Suppose in addition to the above hypotheses that the function ψ

satisfies (1.8), (1.9). Then there exists a unique (up to additive constants) elliptic
solution u ∈ C3(�) of the second boundary value problem (1.14), (1.7).

From Theorem 1.2, we also obtain an existence result for classical solutions
of the Monge-Kantorovich problem in optimal transportation. As above we let
c ∈ C4(Rn × R

n) be a cost function and �, �∗ be two bounded domains in R
n

satisfying the hypotheses of Theorem 1.1. Let f > 0, ∈ C2(�), g > 0, ∈ C2(�
∗
)

be positive densities satisfying the mass balance condition (1.9). Then the corre-
sponding optimal transportation problem is to find a measure preserving mapping
T0 : � → �∗ which maximizes the cost functional

C(T ) =
∫

�

f (x)c(x, T (x))dx (1.23)

among all measure preserving mappings T from � to �∗. A mapping T : � → �∗
is called measure preserving if it is Borel measurable and for any Borel set E ⊂ �∗,∫

T −1(E)

f =
∫

E
g. (1.24)

The reader is referred to the texts [16, 25] and the lecture notes [6, 23] for further
information about optimal transportation.

Theorem 1.3. Under the above hypotheses, there exists a unique diffeomorphism
T ∈ [C2(�)]n maximizing the functional (1.23), given by

T (x) = Y (x, Du(x)), (1.25)

where u is an elliptic solution of the boundary problem (1.7), (1.14).

The solution u of (1.7), (1.14) is called a potential. As indicated above, we
also have from elliptic regularity theory that if c, �, �∗, f, g are C∞ smooth, then
the resultant optimal mapping T ∈ [C∞(�)]n . Note that in [15] and elsewhere
the cost functions and potentials are the negatives of those here and the optimal
transportation problem is written (in its usual form), as a minimization problem.

The plan of this paper is as follows. In Section 2, we prove that boundary
conditions of the form (1.7) are oblique with respect to functions for which the Ja-
cobian DT is non-singular and we estimate the obliqueness for elliptic solutions of
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the boundary value problem (1.14), (1.7) under hypotheses (A1) and (A2) (Theo-
rem 2.1). Here the twin assumptions of � and �∗ being uniformly c and c∗-convex
with respect to each other are critical. In Section 3, we prove that second derivatives
of solutions of equation (1.14) can be estimated in terms of their boundary values
under hypothesis (A3w) (Theorem 3.1). This estimation is already immediate from
[15] when the non-degenerate condition (A3) is satisfied. The argument is carried
out for equations of the general form (1.1) (with symmetric A), in the presence of
a global barrier (corresponding to c-boundedness), which is not necessary in the
optimal transportation case, with A = A(p) (Theorem 3.2), where it is avoided
by duality. This estimation also arises in the treatment of the classical Dirichlet
problem [19]. The proof of the global second derivative estimates in Theorem 1.1
for solutions of the boundary value problem (1.14), (1.7) is completed in Section
4. Here the procedure is similar to that in [13] and [24]. We remark here that this
global estimate also extends to the more general prescribed Jacobian equation (1.6)
[19]. In Section 5, we commence the proof of the existence result, Theorem 1.2,
by adapting the method of continuity [7] and establish the result under a stronger
uniform c-convexity hypothesis (employed in earlier versions of this paper). Sec-
tion 6 is devoted to the applications to optimal transportation and the derivation of
Theorem 1.3 from Theorem 1.2, which implies the global regularity of the potential
functions in [15], under condition (A3w). In Section 7, we finally complete the
proof of Theorem 1.2 in its full generality, by showing that there exists a smooth
function satisfying the ellipticity condition (1.2), together with the boundary condi-
tion (1.7) (at least for approximating domains). In the last section, we discuss our
results in the light of examples, most of which are already given in [15]. Note that
when the cost function c is given by c(x, y) = c′(x − y) for some c′ ∈ C2(�×�∗),
then the matrix A depends only on p, namely

A(p) = D2c′[(Dc′)−1(p)
]
. (1.26)

ACKNOWLEDGEMENTS. We thank Jia-kun Liu for pointing out the need to restrict
A in applying the duality argument in Theorem 3.2.

2. Obliqueness

In this section, we prove that the boundary condition (1.7) implies an oblique
boundary condition and estimate the obliqueness. First we recall that a boundary
condition of the form

G(x, u, Du) = 0 on ∂� (2.1)

for a second order partial differential equation in a domain � is called oblique if

G p · γ > 0 (2.2)
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for all (x, z, p) ∈ ∂� × R × R
n , where γ denotes the unit outer normal to ∂�. Let

us now assume that ϕ and ϕ∗ are C2 defining functions for � and �∗ respectively,
with ϕ, ϕ∗ < 0 near ∂�, ∂�∗, ϕ = 0 on ∂�, ϕ∗ = 0 on ∂�∗, ∇ϕ, ∇ϕ∗ �= 0 near
∂�, ∂�∗. Then if u ∈ C2(�) is an elliptic solution of the second boundary value
problem (1.4), (1.7), we must have

ϕ∗(T u) = 0 on ∂�, ϕ∗(T u) < 0 near ∂�. (2.3)

By tangential differentiation, we obtain

ϕ∗
i (D j T

i u)τ j = 0 (2.4)

for all unit tangent vectors τ , whence

ϕ∗
i (D j T

i ) = χγ j (2.5)

for some χ ≥ 0. Consequently

ϕ∗
i ci,k(u jk − c jk) = χγ j ,

that is
ϕ∗

i ci,kw jk = χγ j , (2.6)

where
wi j = ui j − ci j . (2.7)

At this point we observe that χ > 0 on ∂� since |∇ϕ∗| �= 0 on ∂� and det DT �= 0.
Using the ellipticity of (1.14) and letting [wi j ] denote the inverse matrix of [wi j ],
we then have

ϕ∗
i ci,k = χw jkγ j . (2.8)

Now writing
G(x, p) = ϕ∗(Y (x, p)), (2.9)

we have
βk := G pk (·, Du) = χw jkγ j , (2.10)

whence
β · γ = χwi jγiγ j > 0 (2.11)

on ∂�. We obtain a further formula for β · γ , from (2.6), namely

ϕ∗
i ci,kw jkϕ

∗
l cl, j = χϕ∗

l cl, jγ j = χ(β · γ ). (2.12)

Eliminating χ from (2.11) and (2.12), we have

(β · γ )2 = (wi jγiγ j )(wklc
i,kc j,lϕ∗

i ϕ∗
j ). (2.13)

We call (2.13) a formula of Urbas type, as it was proved by Urbas [22] for the
special case, c(x, y) = x · y, Y (ξ, p) = p, of the Monge-Ampère equation. Note
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that to prove (2.13), we only used conditions (A1) and (A2) and moreover (2.13)
continues to hold in the generality of (1.4).

Our main task now is to estimate β · γ from below for solutions of (1.14),
(1.7). For this in addition to conditions (A1), (A2), we also need the uniform c
and c∗ convexity of � and �∗ respectively. Our approach is similar to [22] for
the special case of the Monge-Ampère equation and begins by invoking the key
idea from [17] for estimating double normal derivatives of solution of the Dirichlet
problem. Namely we fix a point x0 on ∂� where β · γ is minimized, for an elliptic
solution u ∈ C3(�), and use a comparison argument to estimate γ · D(β · γ ) from
above. Without some concavity condition in p the quantity β · γ does not satisfy
a nice differential inequality so we will get around this by considering instead the
function

v = β · γ − κϕ∗(T u) (2.14)

for sufficiently large κ , where now the defining function ϕ∗ is chosen so that

(Di jϕ
∗(T u) − ck,l cl,i j (·, T u)Dkϕ

∗(T u)ξiξ j ≥ δ∗
0 |ξ |2 (2.15)

near ∂�, for all ξ ∈ R
n and some positive constant δ∗

0 . Inequality (2.15) is possible
by virtue of the uniform c∗-convexity of �∗, with the function ϕ∗ given, for example
by

ϕ∗ = −ad∗ + b(d∗)2, (2.16)

where a and b are positive constants and d∗ denotes the distance function for �∗,
[7].

By differentiation of equation (1.14), in the form (1.1), we obtain, for r =
1, · · · , n,

wi j {Di j ur − Dpk Ai j (x, Du)Dkur − Dxr Ai j (x, Du)} = Dr logB. (2.17)

Introducing the linearized operator L ,

Lv = wi j (Di jv − Dpk Ai j Dkv), (2.18)

we need to compute Lv for v given by (2.14). Setting

F(x, p) = G p(x, p) · γ (x) − κG(x, p), (2.19)

where G is defined by (2.9), we see that

v(x) = F(x, Du(x)). (2.20)

Writing bi j
k = −Dpk Ai j , we then have

Lv =wi j {Fpr Di j ur + Fpr ps Dir u D jsu

+ Fxi x j + 2Fxi pr D jr u + bi j
k (Fxk + Fpr Dkur )}

(2.21)



MONGE-AMPÈRE TYPE EQUATIONS AND OPTIMAL TRANSPORTATION 151

In the ensuing calculations, we will often employ the following formulae,

ci, j
k (x, y) = Dxk ci, j (x, y) = −ci,l cr, j ckl,r (x, y),

ci, j
,k (x, y) = Dyk ci, j (x, y) = −ci,l cr, j cl,kr (x, y),

(2.22)

as well as (1.13). Indeed, using (1.13) and (2.22), we have

G pi p j = Dp j (ϕ
∗
k ck,i ) = ϕ∗

klc
k,i cl, j − ϕ∗

k cs, j ck,i
,s

= ck,i cl, j {ϕ∗
kl − ϕ∗

r cr,scs,kl}
(2.23)

so that
G pi p j (x, Du)ξiξ j ≥ δ∗

0

∑
|ci, jξ j |2 ≥ κ∗

0 |ξ |2 (2.24)

for a further positive constant κ∗
0 . By choosing κ sufficiently large, we can then

ensure that

Fpi p j (x, Du)ξiξ j ≤ −1

2
κ|ξ |2 (2.25)

near ∂�. Substituting into (2.20) and using (2.16), it follows that

Lv ≤ −1

4
κwi i + C(wi i + 1) + Dpk logB Dkv, (2.26)

where C is a constant depending on c, ψ, � and �∗, as well as κ .
Next we observe that unless the defining function ϕ∗ extends to all of �∗ so

that (2.15) is satisfied for all T u ∈ �∗, we have no control on the neighbourhood
of ∂�, where (2.26) holds. This is remedied by replacing G in (2.19) by a function
satisfying (2.24) in all of � , agreeing with (2.9) near ∂�, for example by taking

G(x, p) = mh{(ϕ∗(Y (x, p)), a1(|p|2 − K 2)}, (2.27)

where a1 and K are positive constants, with a1 sufficiently small and K >max|Du|,
and for h sufficiently small, mh is the mollification of the max-function of two
variables.

A suitable barrier is now provided by the uniform c-convexity of � which
implies, analogously to the case of �∗ above, that there exists a defining function ϕ

for � satisfying

[Di jϕ − cl,kci j,l(x, T u)Dkϕ]ξiξ j ≥ δ0|ξ |2, (2.28)

in a fixed neighbourhood of ∂� (for a constant δ0 > 0). By appropriate choice,
of say the constants a and b in (2.16), without the ∗ (or following the uniformly
convex case in [7, Chapter 14]), we may obtain, by virtue of (2.21),

Lϕ ≥ δ0w
i i + Kwi j DiϕD jϕ, (2.29)
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for a given constant K. Combining (2.26) and (2.29), and using the positivity of B,
we then infer by the usual barrier argument (which entails fixing a small enough
neighbourhood of ∂�, [7]),

γ · Dv(x0) ≤ C, (2.30)

where again C is a constant depending on c, �, �∗ and ψ . From (2.28) and since
x0 is a minimum point of v on ∂�, we can write

Dv(x0) = τγ (x0) (2.31)

where τ ≤ C . To use the information embodied in (2.31), we need to calculate

Di (β · γ ) = Di {ϕ∗
k ck, jγ j }

=ϕ∗
kl Di (T lu)ck, jγ j + ϕ∗

k ck, j Diγ j + ϕ∗
k γ j (c

k, j
i + ck, j

,l Di T
lu)

=ϕ∗
k ck, j (Diγ j − cs,r ci j,sγr ) + (ϕ∗

kl − ϕ∗
r cr,scs,kl)c

k, jγ j Di T
lu .

(2.32)

Multiplying by ϕ∗
t ct,i and summing over i , we obtain

ϕ∗
t ct,i Di (β · γ ) = ϕ∗

k ϕ∗
t ck, j ct,i (Diγ j − cs,r ci j,sγr )

+ ϕ∗
t ct,i ck, jγ j c

l,mwim(ϕ∗
kl − ϕ∗

r cr,scs,kl)

≥ δ0

∑
|ϕ∗

i ci, j |2
(2.33)

by virtue of the uniform c-convexity of �, the c∗-convexity of �∗ and (2.6). Con-
sequently, from (2.19) and (2.31), we obtain at x0,

−κwklc
i,kc j,lϕ∗

i ϕ∗
j ≤ C(β · γ ) − τ0 (2.34)

for positive constants, C and τ0. Hence if β · γ ≤ τ0/2C , we have the lower bound

wklc
i,kc j,lϕ∗

i ϕ∗
j ≥ τ0

2κ
. (2.35)

To complete the estimation of β · γ we may invoke the dual problem to estimate
wi jγiγ j at x0. Assuming for the moment that T u is one to one, we let u∗ denote
the c-transform of u, defined for y = T u(x) ∈ �∗ by

u∗(y) = c(x, y) − u(x). (2.36)

It follows that
Du∗(y) = cy(x, y) = cy(T ∗u∗(y), y), (2.37)

where
T ∗u∗(y) = X (Du∗, y) = (T u)−1(y), (2.38)
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and the second boundary value problem (1.14), (1.7) is equivalent to

|det Dy(T ∗u∗)| = g(y)/ f (T ∗u∗) in �∗, (2.39)

T ∗�∗ = �. (2.40)

Noting that the defining functions ϕ and ϕ∗ may be chosen so that ∇ϕ = γ , ∇ϕ∗ =
γ ∗ on ∂�, ∂�∗ respectively, we clearly have for x ∈ ∂�, y ∈ T u(x) ∈ ∂�∗,

β · γ (x) = ck,i (x, y)ϕiϕ
∗
k (y) = β∗ · γ ∗(y), (2.41)

where
β∗(y) = Dqϕ(Y ∗(Dyu∗, y)). (2.42)

Hence the quantity β∗ · γ ∗ is minimized on ∂�∗ at the point y0 = T u(x0). Further-
more, for y = T u(x), x ∈ ∂�,

wi jγiγ j (x) = w∗
kl(y)ck,i cl, j (x, y)ϕiϕ j (x), (2.43)

where
w∗

kl(y) = u∗
yk yl

(y) − c,kl(x, y). (2.44)

Applying now the estimate (2.35) to u∗ at the point y0 ∈ ∂�∗, we finally conclude
from (2.13) the desired obliqueness estimate

β · γ ≥ δ (2.45)

on ∂� for some positive constant δ depending only on �, �∗, c, and ψ .
The above argument clearly extends to arbitrary positive terms B in (1.15).

Noting also that it suffices in the above argument that T need only be one-to-one
from a neighbourhood of the point x0 to a neighbourhood of y0, we have the fol-
lowing theorem.

Theorem 2.1. Let c ∈ C3(Rn × R
n) be a cost function satisfying hypotheses (A1),

(A2), with respect to bounded C3 domains �, �∗ ⊂ R
n, which are respectively uni-

formly c-convex, c∗-convex with respect to each other. Let ψ be a positive function
in C1(� × R × R

n). Then any elliptic solution u ∈ C3(�), of the second boundary
value problem (1.14), (1.7) satisfies the obliqueness estimate (2.45).

Note that T u is automatically globally one-to-one under the hypotheses of The-
orem 1.2 by virtue of the change of variables formula. We remark that Theorem 2.1
extends to the more general prescribed Jacobian equation (1.4), [19]. The main
difference is that we cannot directly use the c-transform to get the complementary
estimate to (2.35) Instead the quantities there may be transformed using the local
diffeomorphism Tu. Indeed we could also have avoided the use of duality in the
proof of Theorem 2.1, by direct transformation of (2.35); see also [26] for further
simplification and other Hessian type equations.
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3. Global second derivative bounds

In this section we show that the second derivatives of elliptic solutions of equation
(1.14) may be estimated in terms of their boundary values. For this estimation and
the boundary estimates in the next section, it suffices to consider the general form
(1.1) under the assumption that the matrix valued function A ∈ C2(� × R × R

n)

satisfies condition (A3w), that is

Dpk pl Ai j (x, z, p)ξiξ jηkηl ≥ 0 (3.1)

for all (x, z, p) ∈ � × R × R
n , ξ, η ∈ R

n , ξ ⊥ η. We also assume A is symmet-
ric,which is the case for the optimal transportation equation (1.14). When (3.1) is
strengthened to the condition (A3) in [15], that is

Dpk pl Ai j (x, z, p)ξiξ jηkηl ≥ c0|ξ |2|η|2 (3.2)

for some constant δ > 0, for all (x, z, p) ∈ � × R × R
n , ξ, η ∈ R

n , ξ ⊥ η, then
the global second derivative estimate follows immediately from our derivation of
interior estimates in [15]. In the general case the proof is much more complicated
and we need to also assume some kind of barrier condition,(corresponding to c-
boundedness in the optimal transportation case), namely that there exists a function
ϕ̃ ∈ C2(�) satisfying

[Di j ϕ̃(x) − Dpk Ai j (x, z, p)Dk ϕ̃(x)]ξiξ j ≥ |ξ |2 (3.3)

for some positive for all ξ ∈ R
n , x, z, p ∈ some set U ⊂ � × R × R

n , whose
projection on � is �. In general, condition (3.1) implies some restriction on the
domain �, but for the case of equations arising in optimal transportation, it can be
avoided by a duality argument.

Our reduction to the boundary estimation follows the approach in [7], orig-
inating with Pogorelov, with some modification analogous to that in [13]. Let
u ∈ C4(�) be an elliptic solution of equation (1.1), with x, u(x), Du(x) ∈ U
for x ∈ � and ξ a unit vector in R

n . Let v be the auxiliary function given by

v = v(·, ξ) = log(wi jξiξ j ) + τ |Du|2 + κϕ̃, (3.4)

where wi j = Di j u − Ai j . By differentiation of equation (1.1), we have

wi j [Di j uξ − Dξ Ai j − (Dz Ai j )uξ − (Dpk Ai j )Dkuξ

]
=Dξ B̃ + (Dz B̃)uξ + (Dpk B̃)Dkuξ ,

(3.5)
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where B̃ = logB. A further differentiation yields

wi j [Di j uξξ − Dξξ Ai j − (Dzz Ai j )(uξ )
2 − (Dpk pl Ai j )Dkuξ Dluξ

− (Dz Ai j )uξξ − (Dpk Ai j )Dkuξξ − 2(Dξ z Ai j )uξ

− 2(Dξpk Ai j )Dkuξ − 2(Dzpk Ai j )(Dkuξ )uξ

]
− wikw jl Dξwi j Dξwkl

= Dξξ B̃ + (Dzz B̃)u2
ξ + (Dpk pl B̃)Dkuξ Dluξ

+ 2(Dξ z B̃)uξ + 2(Dξpk B̃)Dkuξ + 2(Dzpk B̃)(Dkuξ )uξ

+ (Dz B̃)uξξ + (Dpk B̃)Dkuξξ .

(3.6)

Furthermore differentiating (3.4) we have

Div = Diwξξ

wξξ

+ 2τ Dku Dki u + κ Di ϕ̃, (3.7)

Di jv = Di jwξξ

wξξ

− Diwξξ D jwξξ

w2
ξξ

+ 2τ(Diku D jku + Dku Di jku) + κ Di j ϕ̃,

(3.8)

where we have written wξξ = Di jwξiξ j . Using condition (A3w) in (3.6) and
retaining all terms involving third derivatives, we estimate

Luξξ : = wi j (Di j uξξ + bi j
k Dkuξξ ) − (Dpk B̃)Dkuξξ

≥ wikw jl Dξwi j Dξwkl − C{(1 + wi i )w
i i + (wi i )

2} (3.9)

where, as in the previous section, bi j
k = −Dpk Ai j and C is a constant depending

on the first and second derivatives of A and logB and sup�(|u| + |Du|). To apply
(A3w), we fix a point x ∈ � and choose coordinate vectors as the eigenfunctions
of the matrix [wi j ] corresponding to eigenvalues 0 < λ1 ≤ · · · ≤ λn . Writing
Ai j,kl = Dpk pl Ai j , we then estimate

wi j Ai j,klukξ ulξ ≥ wi j Ai j,klwkξwlξ − Cwi i (1 + wi i )

≥
∑

k or l=r

1

λr
Arr,kl(λkξk)(λlξl) − Cwi i (1 + wi i )

≥ −C{wi i (1 + wi i ) + wi i } .

From (3.9), we obtain also

Lwξξ ≥ wikw jl Dξwi j Dξwkl − C{(1 + wi i )w
i i + w2

i i } (3.10)
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for a further constant C . Here we use equation (3.5) to control the third derivative
term arising from differentiating Aklξkξl . From (3.8) and (3.10), we obtain, after
some reduction,

Lv ≥ 1

wξξ

wikw jl Dξwi j Dξwkl − 1

w2
ξξ

wi j Diwξξ D jwξξ

+ 2τwi i + κwi i − C

{
1

wξξ

[(1 + wi i )w
i i + w2

i i ] + τ + κ

}
.

(3.11)

Now suppose v takes its maximum at a point x0 ∈ � and a vector ξ , which we take
to be e1. We need to control the first two terms on the right hand side of (3.11). To
do this we choose remaining coordinates so that [wi j ] is diagonal at x0. Then we
estimate

1

wξξ

wikw jl Dξwi j Dξwkl − 1

w2
ξξ

wi j Diwξξ D jwξξ

= 1

w11
wi iw j j (D1wi j )

2 − 1

w2
11

wi i (Diw11)
2

≥ 1

w2
11

∑
i>1

[2wi i (D1w
2
1i − wi i (Diw11)

2]

= 1

w2
11

∑
i>1

wi i (Diw11)
2

+ 2

w2
11

∑
i>1

wi i [D1w1i − Diw11] [D1w1i + Diw11]

≥ 1

w2
11

∑
i>1

wi i (Diw11)
2

+ 2

w2
11

∑
i>1

wi i [Di A11 − D1 A1i ] [2Diw11 + Di A11 − D1 A1i ]

≥ −Cwi i .

(3.12)

Combining (3.11) with (3.12), we obtain the estimate, at x0,

Lv ≥ τwi i + κwi i − C{τ + κ}, (3.13)

for either τ or κ sufficiently large. Note that when we use (3.7) in the second last
line of (3.12), we improve (3.13) by retention of the term

∑
i>1 wi i (Diw11)

2 on the
right hand side , which corresponds to the key term in the Pogorelov argument for
interior estimates [7] ; (see [14] for an extension of this argument to the derivation
of interior second order derivative estimates under (A3w)).

From (3.13), we finally obtain an estimate from above for wi i (x0), which we
formulate in the following theorem.
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Theorem 3.1. Let u ∈ C4(�) be an elliptic solution of equation (1.1) in � , with
x, u(x), Du(x) ∈ U , for all x ∈ �. Suppose the conditions (A3w) and (3.3) hold
and B is a positive function in C2(� × R × R

n). Then we have the estimate

sup
�

|D2u| ≤ C(1 + sup
∂�

|D2u|), (3.14)

where the constant C depends on A, B, �, and supU (|z| + |p|).
Note that we only need the condition (A3w) to hold on the set U . When only

the non-degenerate condition (A3) holds then Theorem 3.1 trivially follows by tak-
ing v = wi i , [15].

From the proof of Theorem 3.1 we obtain the corresponding estimate for equa-
tion (1.14), without the barrier condition (3.3).

Theorem 3.2. Let u ∈ C4(�) be an elliptic solution of equation (1.14) in � with
T u(�) ⊂ �∗. Suppose the cost function c satisfies hypotheses (A1), (A2), (A3w),
with A depending only on p and B is a positive function in C2(� × R × R

n). Then
we have the estimate (3.14), with C depending only on C, B, � and �∗.

To prove Theorem 3.2, we take κ = 0 in the proof of Theorem 3.1, to obtain
an estimate for wi i in terms of wi i , that is

wi i ≤ ε sup
�

wi i + Cε

(
1 + sup

∂�

|D2u|), (3.15)

for arbitrary ε > 0, with constant Cε also depending on ε. If T is globally one-to-
one, we then conclude (3.13), in the optimal transportation case, by using the dual
problem (2.37), (2.38). More generally, we consider the dual function v∗ in place
of (3.4), given by

v∗ = v(x, ξ) = log
(
wi j ci,kc j,lξkξl

) + τ |cy(x, T u(x))|2 (3.16)

and suppose it is maximized at a point x∗
0 in �. Since T will now be one-to-one

from a neighborhood N of x∗
0 to a neighbourhood N ∗ of y∗

0 = T u(x∗
0 ), we may

then proceed as before, noting that in N ∗, v∗ is given by (3.4) with u replaced by
its c-transform u∗.

The estimate (3.14) arose from investigation of the classical Dirichlet problem
(see [19]). We remark also that from (3.15), we see that (3.3) is also not needed
when n = 2.

4. Boundary estimates for the second derivatives

This part of our argument is similar to the treatment of the oblique boundary value
problems for Monge-Ampère equations in [13, 24]. The paper [13] concerned the
Neumann problem, utilizing a delicate argument which did not extend to other lin-
ear oblique boundary conditions. For nonlinear oblique conditions of the form (2.1)
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where the function G is uniformly convex in the gradient, the twice tangential dif-
ferentiation of (2.1) yields quadratic terms in second derivatives which compensate
for the deviation of β = G p from the geometric normal and permit some technical
simplification for general inhomogeneous terms ψ [24].

First we deal with the non-tangential second derivatives. Letting F ∈ C2(� ×
R × R

n) and v = F(·, u, Du), where u ∈ C3(�) is an elliptic solution of equation
(1.1), we have from our calculation in Section 2,

|Lv| ≤ C(wi i + wi i + 1), (4.1)

where L is given by (2.18) and C is a constant depending on A, B, G, � and |u|1;�.
Now using the equation (1.1) itself, we may estimate

w
1

n−1
i i ≤ Cwi i , (4.2)

so that, writing M = sup� wi i , we have from (4.1)

|Lv| ≤ C(1 + M)
n−2
n−1 wi i . (4.3)

Hence, if there exists a C2 defining function ϕ satisfying (3.3) near ∂�, together
with ϕ = 0 on ∂�, we obtain by the usual barrier argument, taking F = G,

|D(β · Du)| ≤ C(1 + M)
n−2
n−1 (4.4)

on ∂�, so that in particular

wββ ≤ C(1 + M)
n−2
n−1 (4.5)

on ∂�. Now for any vector ξ ∈ R
n , we have

wξξ = wττ + b(wτβ + wβτ ) + b2wββ, (4.6)

where

b = ξ · γ

β · γ
, τ = ξ − bβ. (4.7)

Suppose wξξ takes its maximum over ∂� and tangential ξ , |ξ | = 1 at x0 ∈ ∂� and
ξ = e1. Then from (4.5) and (4.6) and tangential differentiation of the boundary
condition (2.1) we have on ∂�,

w11 ≤ |e1 − bβ|2w11(0) + bF(·, u, Du) + Cb2(1 + M)
n−2
n−1 , (4.8)

for a given function F ∈ C2(� × R × R
n). Combining (2.26), (3.10), (4.1) and

(4.2) and utilizing a similar barrier argument to that is Section 2, we thus obtain the
third derivative estimate

−Dβw11(x0) ≤ C(1 + M)
2n−3
n−1 . (4.9)
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Differentiating (2.1) twice in a tangential direction τ , with τ(x0) = e1, we obtain
at x0,

(Dpk pl G)u1ku1l + (Dpk G)u11k ≤ C(1 + M), (4.10)

whence we conclude from (4.9)

max
∂�

|D2u| ≤ C(1 + sup
�

|D2u|) 2n−3
2(n−1) (4.11)

by virtue of the uniform convexity of G with respect to p. Taking account of the
global estimate (3.14), we complete the proof of Theorem 1.1.

Once the second derivatives are bounded, the equation (1.1) is effectively uni-
formly elliptic so that from the obliqueness estimate (2.45), we obtain global C2,α

estimates from the theory of oblique boundary value problems for uniformly elliptic
equations in [12]. By the theory of linear elliptic equations with oblique boundary
conditions [7], we then infer estimates in C3,α(�) for any α < 1 from the assumed
smoothness of our data. We may also have assumed that our solution u ∈ C2(�).

As in the previous section, the technicalities are simpler when condition (A3w)
is strengthened to condition (A3) and we also obtain local boundary estimates for
the second derivatives. To see this we estimate the tangential second derivatives
first by differentiating the equation (1.1) and boundary condition (2.1) twice with
respect to a tangential vector field τ near a point y ∈ ∂�. We then obtain an
estimate for ηDττ u, for an appropriately chosen cut-off function η. The mixed
tangential-normal second derivatives Dτnu are estimated as above by a single tan-
gential differentiation of (2.1) so that the double normal derivative may be obtained
either from (4.5) or from the equation (1.1) itself and the estimates in Section 2 for
wi jγiγ j from below, similarly to the Dirichlet problem, see [18].

5. Method of continuity

To complete the proof of Theorem 1.2, we adapt the method of continuity for non-
linear oblique boundary value problems, presented in [7] and already used in the
special case (1.16), (1.17), [22]. The situation here is more complicated unless we
know in advance that there exists a smooth function u0, satisfying the ellipticity
condition (1.2) together with the boundary condition (1.7). Later in Section 7, we
shall prove the existence of such a function (at least for approximating domains).
Otherwise we need to consider families of subdomains. To commence the proce-
dure, we fix a point x0 ∈ �. Then for sufficiently small radius r > 0, the ball
�0 = Br (x0) ⊂ � will be uniformly c-convex with respect to �∗ and the function
u0, given by

u0(x) = κ

2
|x − x0|2 + p0 · (x − x0), (5.1)

will satisfy the ellipticity condition (1.2). Moreover the image �∗
0 = T u0(�0) will

be uniformly c∗-convex with respect to � with T u0 a diffeomorphism from �0 to
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�∗
0. To see this we observe that

cx (x0, �
∗
0) = Bκr (p0), (5.2)

so that by taking κr small enough, we can fulfill condition (1.25) on ∂�∗
0, with

respect to x0 ∈ �, for constant δ0 = 1
κr as large as we wish. Suppose now we can

foliate � − �0 and �∗ − �∗
0 by boundaries of c-convex and c∗- convex domains,

respectively. That is there exist increasing families of domains {�t }, {�∗
t }, 0 ≤ t ≤

1, continuously depending on the parameter t , such that

(i) �t ⊂ �, �∗
t ⊂ �∗,

(ii) �1 = �, �∗
1 = �∗,

(iii) ∂�t , ∂�∗
t ∈ C4, uniformly with respect to t ,

(iv) �t , �
∗
t are uniformly c-convex, c∗-convex with respect to �∗, �, respectively.

The construction of such a family is discussed below.
Given our families of domains �t , �

∗
t , 0 < t ≤ 1, we need to define corre-

sponding equations. Let B be a positive function in C2(� × R
n) and f a positive

function in C2(�) such that

f = −σu0 + log[det{D2u0 − cxx (·, Y (·, Du0)}/B(·, Du0)] (5.3)

in �0, for some fixed constant σ > 0. We then consider the family of boundary
value problems:

F[u] : = det{D2u − cxx (·, Y (·, Du)} = eσu+(1−t) f B(·, Du),

T u(�t ) = Y (·, Du)(�t ) = �∗
t .

(5.4)

From our construction and the obliqueness, we see that u0 is the unique elliptic
solution of (5.4) at t = 0.

From Section 2, we also see that the boundary condition in (5.4) is equivalent
to the oblique condition

Gt (·, Du) := ϕ∗
t (Y (·, Du)) = 0 on ∂�t . (5.5)

To adapt the method of continuity from [7], we fix α ∈ (0, 1) and let � denote
the subset of [0, 1] for which the problem (5.4) is solvable for an elliptic solution
u = ut ∈ C2,α(�t ), with T u invertible. We then need to show that � is both closed
and open in [0, 1]. First we note that the boundary condition (5.4) implies a uniform
bound for Dut . Integrating the equation (5.4), we then obtain uniform bounds for
the quantities ∫

�t

eσut ,

so that the solutions ut will be uniformly bounded for σ > 0. Uniform estimates
in C2,1(�) now follow from our a priori estimates in Section 4, which are also



MONGE-AMPÈRE TYPE EQUATIONS AND OPTIMAL TRANSPORTATION 161

clearly independent of t ∈ [0, 1]. By compactness, we then infer that � is closed.
To show � is open, we use the implicit function theorem and the linear theory of
oblique boundary value problems, as in [7]. The varying domains {�t } may be
handled by means of diffeomorphisms approximating the identity, which transfer
the problem (5.4) for t close to some t0 ∈ � to a problem in �t0 . We then conclude
the solvability of (5.4) for all t ∈ [0, 1], which implies there exists a unique elliptic
solution u = uσ ∈ C3(�) of the boundary value problem

F[u] = eσu B(·, Du),

T u(�) = �∗ (5.6)

for arbitrary σ > 0, with T u one-to-one. To complete the proof of Theorem 1.2,(at
least when the above foliations exist), we assume that B satisfies (1.6), (1.8) and
(1.9). As above we see that the integrals∫

�

eσuσ

are uniformly bounded, with D(σuσ ) → 0 as σ → 0. Consequently σuσ →
constant = 0 by (1.9) and modulo additive constants, uσ → u as σ → 0, where u
is the solution of (1.14), (1.7), as required.

We may construct the family of domains {�t } used above, if we are given a C4

defining function ϕ, satisfying

[Di jϕ(x) − cl,kci j,l(x, y)Dkϕ(x)]ξiξ j ≥ δ0|ξ |2 (5.7)

for all x ∈ �, y ∈ �∗, ξ ∈ R
n , which takes its minimum at x0. Note that the

uniform c-convexity of � implies the existence of a defining function satisfying
(5.7) in a neighbourhood of ∂�, as in (2.28) and if � is also c-bounded, we can
extend to all of �.

There are various ways of constructing suitable families from a global defining
function, ϕ. In particular taking ϕ(x0) = −1, we may choose

�t = {x ∈ � | ϕt (x) < 0}
where ϕt is defined by

ϕt = t (ϕ − a) + (t0 − t)ϕ0, (5.8)

for ϕ0(x) = |x − x0|2 − r2 , t ≤ t0, for some 0 < t0 < 1 and a close to −1 to
first deform to a small sub-level set of ϕ, followed by taking ϕt = (1 − t)a/(1 − t0)
for t ≥ t0. Alternatively, we could have chosen �0 = ϕ < a at the outset and
only used the second deformation.The domains �∗

t may be similarly constructed.
If the curvatures of ∂�∗ are sufficiently large, for example if �∗ is a small ball,
then the existence of a defining function satisfying (5.7) follows by pulling back
from a single image cy(·, y0)(�). As a byproduct, we see that if � is uniformly
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c-convex with respect to a single point y0 ∈ �∗, there at least exists a smooth
function u0 ∈ C3(�) satisfying the ellipticity condition (1.2). Moreover T u0 is a
diffeomorphism from � to a small ball Br (y0) ⊂ �∗.

From the above considerations, we see that the proof of Theorem 1.2 is com-
pleted in the cases where either � or �∗ is a small ball. The general case will then
follow by further use of the method of continuity if there exists a defining function
satisfying (5.7) for either domain. However we will take up a different approach
from this point and use the function u0 constructed above to construct a further
function u1 approximately satisfying our given boundary conditions to which the
method of continuity can be applied without domain variation. Specifically we will
prove:

Lemma 5.1. Let the domains � and �∗ and cost function c satisfy the hypotheses
of Theorem 1.1. Then for any ε > 0, there exists a uniformly c∗-convex approxi-
mating domain, �∗

ε , lying within distance ε of �∗, and satisfying the corresponding
condition (1.20) for fixed δ0, together with a function u1 ∈ C4(�) satisfying the
ellipticity condition (1.2) and the boundary condition (1.7) for �∗

ε .

From Lemma 5.1 we complete the proof of Theorem 1.2. We defer the proof
of Lemma 5.1 to Section 7 as the proof will use some of the same ingredients as
in our discussion of optimal transportation in the next section. In Section 7, we
will also indicate an alternative and direct construction of the function u1, which
avoids domain variation altogether in the method of continuity. The full procedure
in this section is still needed though for extensions to the general prescribed Jaco-
bian equation, (1.4), [19]. Moreover if we remove the invertibility of the mapping
cy from hypothesis (A1), we still conclude Theorems 1.1, 1.2 and 1.3 under the
global uniform c-convexity hypothesis that there exists global defining functions
for � and �∗ satisfying (5.7), [19].

6. Optimal transportation

The interior regularity of solutions to the optimal transportation problem is con-
sidered in [15], under conditions (A1), (A2), (A3) and the c∗- convexity of the
target domain �∗. Our approach is to first show that the Kantorovich potentials are
generalized solutions of the boundary value problem (1.14), (1.7) in the sense of
Aleksandrov and Bakel′man. The c∗-convexity of �∗ is used to show the image of
the generalized normal mapping lies in �

∗
and condition (A3) is employed to ob-

tain a priori second derivative estimates from which the desired regularity follows.
The potential functions u and v solve the dual problem of minimizing the functional

I (u, v) =
∫

�

f u +
∫

�∗
gv (6.1)
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over the set K given by

K = {
(u, v)

∣∣ u, v ∈ C0(�), C0(�∗) resp. u(x) + v(y)

≥ c(x, y) for all x ∈ �, y ∈ �∗}. (6.2)

The potential functions (u, v) satisfy the relations

u(x) = sup
y∈�

{
c(x, y) − v(y)

}
,

v(y) = sup
x∈�

{
c(x, y) − u(y)

}
,

(6.3)

that is they are the c∗ and c transforms of each other. Since c ∈ C1,1, they will be
semi-convex. The optimal mapping T is then given almost everywhere by (1.3) and
the equation (1.14) will be satisfied with elliptic solution u almost everywhere in
�. The functions u and v are respectively c and c∗- convex. A function u ∈ C0(�)

is called c-convex in � if for each x0 ∈ �, there exists y0 ∈ R
n such that

u(x) ≥ u(x0) + c(x, y0) − c(x0, y0) (6.4)

for all x ∈ �. If u is a c-convex function, for which the mapping T given by (1.3)
is measure preserving, then it follows that u is a potential and again T is the unique
optimal mapping. These results hold under the hypotheses (A1) and (A2) and it
suffices to assume the densities f, g ≥ 0, ∈ L1(�), L1(�∗), respectively, whence
the mapping T is only determined almost everywhere on the set where f is positive.
The reader is referred to [3, 5, 6, 15, 23, 25] for further details.

From the above discussion we see that the solution of the boundary value prob-
lem (1.14), (1.7) will automatically furnish a potential for the optimal transportation
problem if it is c-convex. Note that ellipticity only implies that the solution is lo-
cally c-convex and we need a further argument to conclude the global property,
unlike the case of quadratic cost functions and convex solutions. First we recall the
concept of generalized solution introduced in [15]. Let u be a c-convex function on
the domain �. The c-normal mapping, χu , is defined by

χu(x0) = {
y0 ∈ R

n
∣∣ u(x) ≥ u(x0) + c(x, y) − c(x0, y0), for all x ∈ �

}
. (6.5)

Clearly, χu(x0) ⊂ Y (x0, ∂u(x0)) where ∂ denotes the subgradient of u. For g ≥
0, ∈ L1

�oc(R
n), the generalized Monge-Ampère measure µ[u, g] is then defined by

µ[u, g](e) =
∫

χu(e)
g (6.6)

for any Borel set e ∈ �, so that u satisfies equation (1.14) in the generalized sense
if

µ[u, g] = f dx . (6.7)
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The boundary condition (1.7) is satisfied in the generalized sense if

�∗ ⊂ χu(�),
∣∣{ x ∈ �

∣∣ f (x) > 0 and χu(x) − �
∗ �= ∅}∣∣ = 0. (6.8)

The theory of generalized solutions replicates that for the convex case, c(x, y) =
x · y, [13]. If f and g are positive, bounded measurable functions on �, �∗ re-
spectively satisfying the mass balance condition (1.9), and c satisfies (A1), (A2),
then there exists a unique (up to constants) generalized solution of (6.7), (6.8) (with
g = 0 outside �∗), which together with its c transform v, given by (6.3), uniquely
solves the dual problem (6.1), (6.2), [15].

Now let u ∈ C2(�) be an elliptic solution of the boundary value problem (1.7),
(1.14) and v a c-convex solution of the corresponding generalized problem. By
adding constants, we may assume inf�(u − v) = 0. We need to prove u = v in �,
that is the strong comparison principle holds. Let �′ denote the subset of � where
u > v and first suppose that ∂�′ ∩ � �= ∅. Note that if v ∈ C2(�), this situation
is immediately ruled out by the classical strong maximum principle [7]. Otherwise
we may follow the proof of the strong maximum principle as there will exist a point
x0 ∈ ∂�′ ∩ �, where �′ satisfies an interior sphere condition, that is there exists a
ball B ⊂ � − �′ such that x0 ∈ ∂�′ ∩ ∂ B, u(x0) = v(x0) and u > v in B. Since
v is semi-convex, v will be twice differentiable at x0, with Dv(x0) = Du(x0).
Moreover by passing to a smaller ball if necessary we may assume both u and v

are c-convex in B. Since u is a smooth elliptic solution of (1.14), there will exist
a strict supersolution w ∈ C2(B − Bρ), for some concentric ball Bρ of radius
ρ < R, satisfying w(x0) = u(x0), w ≥ v on ∂ B ∪ ∂ Bρ, Dw(x0) �= Du(x0). By
the comparison principle, [15], Lemma 5.2, we have w ≥ v in B − Bρ , and hence
Dw(x0) = Dv(x0), which is a contradiction. Thus we may assume ∂�′ ∩ � = ∅,
that is u > v in � with u(x0) = v(x0) for some point x0 ∈ ∂�. From our argument
above, we obtain a function w ∈ C2(B − Bρ) satisfying w(x0)u(x0) = v(x0),
v ≤ w ≤ u in B − Bρ , together with

u(x) − w(x) ≥ ε|x − x0| (6.9)

for all x ∈ BR − Bρ . Since v ≤ w in BR − Bρ , this contradicts the obliqueness
condition (2.45) if �∗ is c∗−convex.

Alternatively we may proceed directly (and more simply) as follows to show
that the solution u is c-convex, using the property that T u is one-to-one. In fact, as
mentioned previously in Section 2, this would follow automatically from the change
of variables formula by virtue of the mass balance condition (1.9). Let x0 ∈ � and
y0 = T u(x0). Suppose there exists a point x1 ∈ �, where

u(x1) < c(x1, y0) − c(x0, y0). (6.10)

By downwards vertical translation, there exists a point x2 ∈ ∂�, satisfying

u(x) > u(x2) + c(x, y0) − c(x2, y0). (6.11)
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for all x ∈ �. Putting y2 = T u(x2), we must also have

cx (x2, y2).γ (x2) < cx (x2, y0).γ (x2), (6.12)

which again contradicts the c∗−convexity of �∗.

Remark 6.1. In the first proof above, we employed a comparison result that if u
is a classical elliptic supersolution of (1.14) dominating a generalized subsolution
v on the boundary of a subdomain �′, then u ≥ v in �′. In our local uniqueness
argument in [15], we also used implicitly the complementing result that if u is an
elliptic subsolution dominated by a generalized supersolution v on ∂�′, then u ≤ v

in �′. However,in this case,we cannot apply Lemma 5.2 in [15] directly as local
c-convexity of v may not imply global c-convexity in �, unless v ∈ C1(�). This
situation is rectified in [20], under the (A3) hypothesis; (see also [10,21]). However
if � and �∗ lie respectively in domains �0 and �∗

0 satisfying the hypotheses of
Theorem1.2, with �∗ also c∗-convex with respect to �0, and f and g are positive
in L1(�) and L1(�∗) respectively, then it follows directly by approximation from
Theorem 1.3 that the local c-convexity of the potential u solving the Kantorovich
dual problem implies its global c-convexity. Other results, such as the c-convexity
of the contact set under condition (A3w), also follow from Theorem 1.3 by approx-
imation. The reader is referred to Loeper [11] for a full treatment of this approach,
including the sharpness of condition (A3w) for regularity.

We also note that we may alternatively conclude the global c-convexity of el-
liptic solutions of the boundary value problem, (1.14), (1.7), under condition (A3w)
and the c-convexity of �, from [20, Theorem 2.1] (see also [21]).

7. Completion of the proof of Theorem 1.2

In this section, we provide the proof of Lemma 5.1, thereby completing that of
Theorem 1.2. For this purpose, we need to draw on a geometric property of c-
convex domains introduced in [20]. Namely, suppose that � is uniformly c-convex,
with respect to �∗, and that the cost function c satisfies conditions (A1), (A2) and
(A3w). Denoting as before the unit outer normal to ∂� by γ , we see that the level
set E of the function e, given by

e(x) = ey(x) = c(x, y) − c(x, y0), (7.1)

passing through x0, is tangential to ∂� at x0 if

y = Y (x0, p0 + tγ0), (7.2)

for t > 0, p0 = cx (x0, y0), γ0 = γ (x0) that is, y lies on the c∗-segment which is
the image under Y (x0, ·) of the line from p0 with slope γ0. Then it follows from
[20] that � lies strictly on one side of E , whence

c(x, y) − c(x0, y) < c(x, y0) − c(x0, y0), x ∈ � − {x0}. (7.3)
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To prove (7.3) directly from (1.20), we take x0 = 0, set x ′ = (x1, .....xn−1) and
choose coordinates so that γ0 = (0, ......, −1). By Taylor’s formula,

e(x)− e(x0) ≤ −t xn +[Ai j (0, p0 + tγ0)− Ai j (0, p0)]x ′
i x

′
j + t O(|x ||xn| + |x |3).

Using (1.13), (1.20), condition (A3w) and again Taylor’s formula, we have[
Ai j (0, p0 + tγ0) − Ai j (0, p0)

]
x ′

i x
′
j ≤ −tcl,nci j,l(x0, y0)x ′

i x
′
j

≤ t Diγ j (x0)x ′
i x

′
j − tδ0|x ′|2,

so that,

e(x) − e(x0) ≤ −t xn + t Diγ j (x0)x ′
i x

′
j − tδ0|x ′|2 + t O(|x ||xn| + |x |3) < 0,

for x ∈ � − x0, sufficiently small. Consequently � lies locally, strictly on one side
of E . We can then verify the global inequality (7.3) by contradiction, as in [20]. For
if (7.3) is violated, the set

Ua = {x ∈ ∂�; e(x) > −a|}
contains two disjoint components, for sufficiently small a > 0. Increasing a, we
see that these components will meet first at a point x∗ ∈ ∂� at which the level set
of the function e is tangential, contradicting the local inequality at x∗. For another
approach the reader is referred to [21].

Now, to commence the proof of Lemma 5.1, we take u0 to be a function as
constructed in Section 6, that is u0 is a smooth uniformly c-convex function on �,
whose c-normal mapping T u0 = Y (·, Du0) has image ω∗, which is a c∗-convex
subdomain of �∗. Here we call a c-convex function uniformly c-convex if it also
satisfies the ellipticity condition (1.2). We remark that the c-convexity of u0 could
also have been proved from (7.3), using the c-convexity of � and condition (A3w),
instead of the c∗-convexity of �∗ which we used in Section 6. Also by approxima-
tion, we may assume u0 ∈ C∞(�). A function h is called a c-function if it has the
form

h(·) = c(·, y0) + a

for y0 ∈ R
n and some constant a. When c(x, y) = x · y, a c-function is a linear

function. Obviously the c-normal mapping of h is the constant map, T h(x) = y0
for all x ∈ R

n . Let
u1(x) = sup{u0, h(x)}, x ∈ �δ, (7.4)

where the sup is taken over the set S of c-functions h with h ≤ u0 in �, Th(�) ⊂
�∗ and �δ = {x ∈ R

n : dist(x, �) < δ}, for some δ > 0, is a neighbourhood of
�. The following lemma describes the properties of u1.

Lemma 7.1. Assume that the cost function c satisfies (A1), (A2), (A3w) and the
domains � and �∗ are uniformly c-convex with respect to each other. Then, for
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sufficiently small δ, the function u1 is a c-convex extension of u0 to �δ , whose c-
normal image under u1 is �

∗
. Moreover for any point x ∈ �δ − �, there exist

unique points, xb ∈ ∂�, yb ∈ ∂�∗, such that χu1 = yb on the c-segment, �xb ,
joining x to xb, with respect to yb,(except at the endpoint xb) with the resultant
mappings being C2 diffeomorphisms from ∂�r to ∂�, ∂�∗ respectively, for any
r < δ.

Lemma 5.1 will follow from Lemma 7.1 by modification of u1 outside � and
mollification. To prove Lemma 7.1, we first take any c-function in the set S , with
c-normal image y ∈ �∗ − ω∗ and increase it until its graph meets that of u0 on �

at a point xb, which will lie in ∂�, since u0 is uniformly c-convex. Accordingly we
obtain a c-function h ∈ S , given by

h(x) = hxb,y(x) = c(x, y) − c(xb, y) + u0(xb). (7.5)

Since h ≤ u0 in � and h(xb) = u0(xb), we see that the point y must lie on the
c∗-segment �∗

xb
,with respect to xb, starting at y0,b = T u0(xb) and given by

cx (xb, �
∗
xb

) = {Du0(xb) + tγ (xb) : t ≥ 0}. (7.6)

Conversely, for any xb ∈ ∂�, y ∈ �∗
xb

, we have

h ≤ u0 in �, (7.7)

by virtue of (7.3) (taking x0 = xb, y0 = y0,b). This proves that u1 is indeed a
c-convex extension of u0 to �δ .

To proceed further, we let yb be the unique point in ∂�∗, where �∗
xb

intersects
∂�∗. Since ω∗ is also uniformly c∗-convex, �∗

xb
only intersects ∂ω∗ at the initial

point y0,b. Actually, only the uniform c-convexity of u0 is needed to justify this.
Henceforth we restrict �∗

xb
to the segment joining y0,b to yb. From our argument

above, the mapping from xb to yb is onto ∂�∗. From (7.3), it is also one-to-one as
the c-function h = hxb,yb cannot meet ∂� at another point x ′. It follows then that
the mapping from xb to yb is a C3 diffeomorphism from ∂� to ∂�∗. Next, if Br
is a sufficiently small tangent ball of � at xb, it will also be uniformly c-convex so
again by (7.3), we obtain

hxb,yb(x) > hxb,y(x) ∀ x ∈ Br , y ∈ �∗
xb

, (7.8)

and thus we have
u1 = max

xb∈∂�
{u0, hxb,yb}. (7.9)

To complete the proof of Lemma 7.1, we need to show that for each x ∈ �δ − �,
there exists a unique xb ∈ ∂� where the maximum in (7.9) is attained. For this
purpose, we invoke the c-transform of u1,

v0(y) = sup{c(x, y) − u1(x) : x ∈ �δ}, y ∈ �∗, (7.10)



168 NEIL S. TRUDINGER AND XU-JIA WANG

which extends the c-transform of u0 in ω∗. Moreover, by (7.7), we see that for
y ∈ �∗

xb
, the sup is attained at xb. Hence

v0(y) = c(xb, y) − u0(xb) ∀ y ∈ �∗
xb

. (7.11)

One easily verifies that v0 is smooth in �
∗ − ∂ω∗. Using (7.11) and arguing as

before, we infer that for any point x ∈ �δ − � , there exists a unique point yb ∈
∂�∗ such that

h∗
x,yb

(y) = c(x, y) − c(x, yb) + v0(yb) ≤ v0(y) ∀ y ∈ �
∗
. (7.12)

Moreover x lies on the c-segment, �yb given by

cy(�yb , yb) = {Dv0(yb) + tγ ∗(yb) : t ∈ [0, δ]}, (7.13)

where γ ∗ denotes the unit outer normal to ∂�∗ and δ is a small constant. Note that
Dv0(yb) = cy(xb, yb). From (7.12), we see that the maximum in (7.9) is attained
at xb, yb so

u1(x) = c(x, yb) − c(xb, yb) + u0(xb) x ∈ �yb , (7.14)

with χu1(�yb − {xb}) = yb, χu1(xb) = �∗
xb

. From the obliqueness of �yb on ∂�, we
have that the mapping from x ∈ �r to xb is one-to-one for sufficiently small r . This
completes the proof of Lemma 7.1.

From Lemma 7.1, we see that the function u1 is smooth in �δ − ∂�. Further-
more, with δ sufficiently small, u1 will be tangentially uniformly convex on ∂�r ,
that is

[Di j u1 − ci j (·, T u1)]τiτ j ≥ λ0, (7.15)

where τ is the unit tangent vector on ∂�r and λ0 a positive constant. To take care
of the normal direction, we modify u1 in �δ − �, by setting

u = u1 + bd2, (7.16)

where b is a positive constant and d denotes distance from �. Again for δ suffi-
ciently small, we infer that u satisfies

[Di j u − ci j (·, T u)]ξiξ j ≥ λ0,

in �δ − ∂� for a further positive constant λ0, and any unit vector ξ .
We complete the proof of Lemma 5.1 by mollification. Let ρ ∈ C∞

0 (B1(0))

be a mollifier, namely ρ is a smooth, nonnegative, and radially symmetric function
supported in the unit ball B1(0) such that the integral

∫
B1(0)

ρ = 1. We show that a
mollification of u, given by

uε(x) = ρ ∗ u =
∫

Rn
ε−nρ

(
x − y

ε

)
u(y) dy =

∫
Rn

ρ(y)u(x − εy) dy (7.17)
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is uniformly c-convex in �δ/2, provided ε < 1
2δ is sufficiently small and x ∈ �δ/2

(so that the value of u outside �δ is irrelevant). Note that the image of the c-normal
mapping of uε in �δ/2 is a smooth perturbation of �∗, and so is also uniformly
c-convex provided ε > 0 is sufficiently small.

It is easy to verify that

Duε(x) =
∫

Rn
ρ(y)Du(x − εy)dy, (7.18)

D2uε(x)

∫
Rn

ρ(y)D2u(x − εy)dy

+
∫

∂�

1

εn
ρ

(
x − y

ε

)
γ · (D+u − D−u)(y)

≥
∫

Rn
ρ(y)D2u(x − εy)dy,

(7.19)

where
D+u(y) = lim

y′ �∈�,y′→y
Du(y′),

D−u(y) = lim
y′∈�,y′→y

Du(y′).

Since, ω∗ � �∗, we have

D+
γ u − D−

γ u ≥ C0 > 0 on ∂� (7.20)

for some positive constant C0. We divide �δ/2 into three parts: �δ/2 = U1∪U2∪U3,
where

U1 = {x ∈ �δ/2 : dist(x, ∂�) ≥ ε},
U2 = {x ∈ �δ/2 : dist(x, ∂�) ∈ ((1 − σ)ε, ε)},
U3 = {x ∈ �δ/2 : dist(x, ∂�) ≤ ε′},

where σ ∈ ( 1
2 , 1) is a constant close to 1. Since u is smooth, uniformly c-convex

away from ∂�, uε is obviously smooth, uniformly c-convex in U1 provided ε is
sufficiently small. By taking σ > 0 sufficiently close to 1, for any point x0 ∈ U2,
Duε(x0) is a small perturbation of Du(x0). By (7.19), we also see that the matrix

{D2uε(x0) − A(x0, Duε(x0))} > 0, (7.21)

namely uε is smooth, uniformly c-convex in U2.
Finally we verify (7.21) in U3. For any point x0 ∈ U3, we choose a coordinate

system such that x0 = (0, · · · , 0, x0,n), the origin 0 ∈ ∂� and ∂� is tangent to
{xn = 0}. To verify (25), we first consider a tangential direction τ , namely τ

is a unit vector tangential to ∂� at 0. Without loss of generality we assume that
τ = (1, 0, · · · , 0). Then we need to prove that

D11uε(x0) − A11(x0, Duε(x0)) > 0. (7.22)
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By our choice of coordinates, D1uε(x0) is a small perturbation of D1u(x0). Hence
it suffices to verify that

D11uε(x0) − A11(x0, D1u(x0), D′uε(x0)) > 0, (7.23)

where D′uε = (D2uε, · · · , Dnuε). By (A3w), A11 is convex in D′uε, whence it
follows readily that

A11(x0, D1u(x0), D′uε(x0)) ≤
∫

Rn

1

εn
ρ

(
x0 − y

ε

)
A11(x0, D1u(x0), D′u(y))dy.

Inequality (7.22) now follows from (7.19) and (7.23). Note that the argument also
applies to any direction η provided η · γ is sufficiently small. Next we observe
from the second integral in (7.19) that (7.21) holds in the normal direction γ = en .
Furthermore,

Dnnuε(x0) − Ann(x0, Duε(x0)) ≥ K (7.24)

for some K as large as we want, provided ε is sufficiently small. Now suppose the
least eigenvalue of the matrix (7.21) is achieved in direction ξ . We can decompose
ξ = c1τ + c2en . If c2 ≥ c0 for some constant c0 > 0, then the matrix (7.21) in
direction ξ is positive by (7.24). Otherwise the proof of (7.22) applies and we also
see that the matrix (7.21) in direction ξ is positive. By appropriate adjustment of �,
we complete the proof of Lemma 5.1 and consequently also Theorems 1.2 and 1.3.

To conclude this section we show that Lemma 5.1 may be proved indepen-
dently of the arguments in Section 5 by direct construction of a uniformly c-convex
function, u0. To do this we let y0 be a point in �∗ and u0 be the c∗- transform of
the function

ψ(y) = −(r2 − |y − y0|2)1/2, (7.25)

given by

u0(x) = sup{c(x, y) − ψ(y), y ∈ Br (y0)},
for sufficiently small r > 0. Then u0 is a locally uniformly c-convex function
defined in some ball BR(0), with R → ∞ as r → 0, and the image of its c-normal
mapping,

ω∗ := T u0(�) ⊂ Br (y0),

where T u0 is a diffeomorphism between � and ω∗. As T u0 is defined on the ball
BR(0) � �, ω∗ is a smooth domain. Locally u0 is a smooth perturbation of the
c-function

h0(·) = c(·, y0) + a0, (7.26)

for some constant a0.
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8. Examples

We repeat and somewhat expand the examples in [15], taking into account that our
cost functions are the negatives of those there.

Example 1.

c(x, y) = −
√

1 + |x − y|2 . (8.1)

Here the vector field Y and matrix A are given by

Y (x, p) = x + p√
1 − |p|2 ,

A(x, p) = A(p) = −(
1 − |p|2)1/2(

I − p ⊗ p
)
.

(8.2)

The cost function satisfies condition (A3). We remark that condition (A1) is only
satisfied for |p| < 1 but this does not prohibit application of our results as the
boundedness of the target domain �∗ ensures that |Du| < 1 for solutions of (1.7),
(1.14). More generally the conditions p, q ∈ R

n in (A1) may be replaced by p, q ∈
some convex sub-domain.

Example 2.

c(x, y) = −
√

1 − |x − y|2 . (8.3)

Here c is only defined for |x − y| ≤ 1. The vector field Y and matrix A are given
by

Y (x, p) = −x + p√
1 + |p|2 ,

A(x, p) = A(p) = (
1 + |p|2)1/2(

I + p ⊗ p
)
.

(8.4)

The cost function satisfies condition (A3). In order to directly apply our results we
need to assume � and �∗ are strictly contained in a ball of radius 1.

Example 3.
Let f, g ∈ C2(�), C2(�∗) respectively and

c(x, y) = x · y + f (x)g(y) . (8.5)

If |� f.�g| < 1, then c satisfies (A1), (A2). If f, g are convex, then c satisfies
(A3w), while if f, g are uniformly convex, then c satisfies (A3). As indicated in
[15], the function (8.5) is equivalent to the square of the distance between points on
the graphs of f and g. We also note that sublevel sets of f and g will be uniformly
c-convex and c∗-convex respectively if f and g are uniformly c-convex, while the
same is true for sublevel sets of fε, gε if f and g are only convex, for

fε = f + ε
√

(1 + |x |2)
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and positive ε sufficiently small. Also � and �∗ are automatically c-bounded and
c∗-bounded (take ϕ = f or fε).

Example 4. Power costs

c(x, y) = ± 1

m
|x − y|m, m �= 0, log|x − y| , m = 0). (8.6)

For m �= 1 and x �= y, when m < 1, the vector fields Y and matrices A are given
by

Y (x, p) = x ± |p| 2−m
m−1 p,

A(x, p) = A(p) = ±{|p|m−2
m−1 I + (m − 2)|p|− m

m−1 p ⊗ p
}
.

(8.7)

The only cases for which condition (A3w) is satisfied are m = 2(±) and −2 ≤
m < 1 (+ only ). For the latter, condition (A3) holds for −2 < m < 1. To apply
our results directly in the latter cases, we need to assume � and �∗ are disjoint.

In [15] we also considered the cost function

c(x, y) = −(1 + |x − y|2)p/2 (8.8)

for 1 ≤ p ≤ 2, extending Example 1 to p > 1. We point out here that these
functions only satisfy (A3) under the restriction |x − y|2 < 1

p−1 . This condition
was omitted in [15].

Example 5. Reflector antenna problem
Corresponding results and examples may be obtained on other manifolds such as the
sphere Sn . Both the cost function conditions (A1), (A2), (A3w) (or (A3)) and the
domain conditions (1.20) are invariant under local coordinate transformations. In-
deed the considerations in [15] stemmed from the treatment of the reflector antenna
problem by Wang in [27], which may be represented as an optimal transportation
problem on the sphere Sn with cost function

c(x, y) = log(1 − x · y), (8.9)

which is simply the spherical analogue of the case m = 0 in Example 4 above. The
corresponding vector field Y is now given by

Y (x, p) = x − 2

1 + |p|2 (x + p), (8.10)

where now p belongs to the tangent space of Sn at x , while the matrix A is given
by

A = 1

2
(|p|2 − 1)g0 − p × p, (8.11)

where g0 denotes the metric on Sn . See [8, 27, 28] for more details. When the
domains � and �∗ have disjoint closures, and satisfy the appropriate analogues
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of uniform c-convexity, we obtain the global regularity of optimal mappings and
potentials.

We will defer further examination and extensions to intersecting domains and
other cost functions in a future work. We also point out here that Example 4 pro-
vides regularity for quadratic cost functions on spheres, that is c(x, y) = x · y when
the points xand y are sufficiently close, in particular when domains � and �∗ lie in
the same quadrant and are uniformly spherically convex. Further examples of func-
tions on spheres satisfying (A1),(A2) and (A3) are given by the intrinsic quadratic
cost,

c(x, y) = −[argcos(x · y)]2,

for x · y > −1, found by Loeper [11], and a generalized reflector antenna,

c(x, y) = log(1 − kx · y),

for x · y < k ≤ 1, corresponding to a refraction problem treated in [9]. Note that in
all these cases the cost functions are functions of x · y but when we take the same
functions in R

n , they lose the strong (A3) property.
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