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On normal and non-normal holomorphic functions
on complex Banach manifolds

PETER V. DOVBUSH

Abstract. Let X be a complex Banach manifold. A holomorphic function
f : X → C is called a normal function if the family F f = { f ◦ϕ : ϕ ∈ O(�, X)}
forms a normal family in the sense of Montel (here O(�, X) denotes the set of
all holomorphic maps from the complex unit disc into X ). Characterizations of
normal functions are presented. A sufficient condition for the sum of a normal
function and non-normal function to be non-normal is given. Criteria for a holo-
morphic function to be non-normal are obtained.

These results are used to draw one interesting conclusion on the boundary
behavior of normal holomorphic functions in a convex bounded domain D in a
complex Banach space V . Let {xn} be a sequence of points in D which tends to a
boundary point ξ ∈ ∂ D such that limn→∞ f (xn) = L for some L ∈ C. Sufficient
conditions on a sequence {xn} of points in D and a normal holomorphic function
f are given for f to have the admissible limit value L , thus extending the result
obtained by Bagemihl and Seidel.

Mathematics Subject Classification (2000): 32A18 (primary).

1. Introduction

The idea of associating to a meromorphic function f on the complex unit disc
� = {z ∈ C : |z| < 1} a family F = { f ◦ g : g ∈ Aut(�)}, where Aut(�) is
the group of biholomorphic automorphisms of �, and of ascribing to the function
f properties of the family F apparently arose in work of Yosida [16] in 1934 and
was considered by Noshiro [14] in 1937. In 1957, Lehto and Virtanen [12] defined
“normal functions” to be those meromorphic functions f whose associated families
F were normal in the sense of Montel.

Since that time, the subject of normal functions has been studied extensively,
resulting in substantial development in the single complex variable context and in
generalizations to the setting of several complex variables (see lists of references
in [11, 13], and [17]).
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In this paper, we investigate normal holomorphic functions on complex Ba-
nach manifolds. After preliminaries in Section 2, in Section 3 we obtain certain
relations existing between notions of normal functions, and P-sequences. In Sec-
tion 4 we give criteria for a holomorphic function to be a non-normal function. In
Section 5 we give sufficient condition for the sum of a normal function and not a
normal function to be a non-normal function. Finally in Section 6 we investigate
the boundary behavior in a fixed boundary point of a normal function defined on a
convex bounded domain in a complex Banach space.

2. Preliminaries

We refer the reader to the paper [4] and the books [3] and [5] for background on
complex analysis in infinite dimension. The notation we use is essentially the same
as in [4].

Let X be a complex Banach manifold modelled on a complex Banach space
of positive, possibly infinite, dimension; X is assumed to be a connected Hausdorff
space. For each x in X the tangent space to X at point x will be denoted by Tx (X).

The tangent bundle T (X) of X consists of the ordered pairs (y, v) such that x ∈ X
and v ∈ Tx (X). We shall denote the space of all holomorphic maps from the unit
disk � into X by O(�, X).

The infinitesimal Kobayashi pseudometric on the complex Banach manifold X
is the function kX on T (X) defined by the formula

kX (x, v) = inf{|a| : ∃ ϕ ∈ O(�, X), ϕ(0) = x, ϕ∗(0)a = v}
where ϕ∗(0) is the linear map induced by ϕ from T0(�) to Tϕ(0)(X).

We say that kX is a metric if kX (x, v) > 0 for all (x, v) ∈ Tx (X), v �= 0.

The Kobayashi length of a piecewise C1 curve γ : [0, 1] → X in X is defined
to be the upper Riemann integral

Lk(γ ) =
∫ 1

0
kX (γ (t), γ ′(t)) dt

and the pseudometric K̃ X (x, y) is the infimum of the lengths of all piecewise C1

curves joining x to y in X.

For z1, w1 in � the Poincaré distance is expressed by

d�(z1, w1) = 1

2
log

1 +
∣∣∣ z1−w1

1−z1w1

∣∣∣
1 −

∣∣∣ z1−w1
1−z1w1

∣∣∣ = tanh−1
(∣∣∣∣ z1 − w1

1 − z1w1

∣∣∣∣) .

The Kobayashi pseudometric between two points x, y in X is defined as follows.
Consider all finite sequences of points p0 = x, p1, . . . , pk−1, pk = y of X such that
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there exist points z1, . . . , zk, w1, . . . , wk of � and maps ϕ1, . . . , ϕk ∈ O(�, X)

satisfying ϕ j (z j ) = p j−1 and ϕ j (w j ) = p j , j = 1, . . . , k.

The Kobayashi pseudometric K X (x, y) is, by definition,

K X (x, y) = inf
k∑

j=1

d�(z j , w j )

where the infimum is taken over all possible choices of points and maps.
The spherical arc length element ds on the Riemann sphere C is given by

ds(z, dz) = |dz|
1 + |z|2 .

The spherical length

s(γ ) =
∫

γ

ds(z, dz)

of a curve γ in C induces a metric in the following manner.
Given distinct points a, b on the Riemann sphere, define

s(a, b) = inf{s(γ )}

where the infimum is taken over all piecewise C1 curves on C which join a with b.

Then s(a, b) defines a metric on the sphere known as the spherical metric.
Denote by O(X) the set of all holomorphic functions on X. A family F ⊆

O(�) is said to be normal in � if every sequence { fn} ⊂ F has a subsequence
which converges uniformly (with respect to the Euclidean metric) on compacta in
� or diverges uniformly to ∞ on compacta in �.

Definition 2.1. A function f in O(X) is called a normal function if the family
F = { f ◦ ϕ : ϕ ∈ O(�, X)} is normal.

A family F ⊆ O(�) is said to be spherically equicontinuous at a point z0 ∈ �

if for each positive number ε there is a positive number δ such that s( f (z), f (z0)) <

ε for K�(z, z0) < δ and f in F.

Following Gauthier [7] we shall define a sequence {xn} of points in X to be
a P-sequence of f ∈ O(X) if there is a sequence {yn} of points in X such that
K X (xn, yn) → 0 as n → ∞ but s( f (xn), f (yn)) ≥ ε for some ε > 0 for each
positive integer n.

The notion of P-sequence was originally defined by Gavrilov [6] for mero-
morphic functions of the unit disk �. The present version of P-sequence was in-
troduced by Gauthier [7] in which he proved that the two notions are equivalent for
meromorphic functions.

The following lemmas are key tools of this paper.
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Lemma 2.2 (Zalcman’s Lemma [15]). Let F be a family of analytic functions in
�. Then F is not normal in � if and only if there exist (i) a number r with 0 < r <

1; (ii) points zn satisfying |zn| < r; (iii) functions fn ∈ F; (iv) positive numbers
ρn → 0 as n → ∞; such that

fn(zn + ρnξ) → g(ξ) as n → ∞, (2.1)

uniformly on compact subsets of C, where g is a nonconstant entire function in C.

The function g may be taken to satisfy the normalization g	(z)<g	(0)=1 (z ∈C).

Here g	(z) denotes the spherical derivative

g	(z) = |g′(z)|
1 + |g(z)|2 .

Lemma 2.3. Let f be a normal function on a complex Banach manifold X and
suppose kX is a metric. There exists a constant c > 1 such that

log(cµ( f, x)) ≤ log(cµ( f, y)) exp2K X (x,y) for all x, y ∈ X.

Here µ( f, x) := max{1, | f (x)|}.
This result was originally proved by Zaidenberg [17] in the case of complex

manifolds. The proof of this result given in [9, page 39] extends immediately to the
complex Banach manifold case.

3. Normality and P-sequences

In this section we obtain certain relations existing between notions of normal func-
tions, and P-sequences.

Theorem 3.1. Let X be a complex Banach manifold and suppose kX is a metric.
The following statements are equivalent for f ∈ O(X):

(a) f is normal;
(b) there exists a constant Q > 0 such that

Q f (x) := sup
v∈Tx (X)\{0}

ds( f (x), f∗(x)v)

kX (x, v)
< Q for all x ∈ X; (3.1)

(c) there exists a constant L > 0 such that

s( f (x), f (y)) ≤ L · K X (x, y) for all x, y ∈ X; (3.2)

(d) f has no P-sequence.
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Proof. (a) ⇒ (b): Assume that the family F = { f ◦ ϕ : ϕ ∈ O(�, X)} is a normal
family. By Marty’s theorem [15, page 75], there exists a constant L > 0 such that

|( f ◦ ϕ)′(0)|
1 + | f ◦ ϕ(0)|2 < L for all ϕ ∈ O(�, X). (3.3)

By the definition of kX there exists ψ ∈ O(�, X) such that ψ(0) = x, ψ∗(0)a = v

for a > 0 and a/2 < kX (x, v) ≤ a. Therefore, from (3.3),

ds( f (x), f∗(x)v) < 2L · kX (x, v) for all (x, v) ∈ T (X).

Namely, Q f ≤ 2L .

(b) ⇒ (c): Let x and y be distinct points of X. It follows readily from (3.1) that

ds( f (x), f∗(x)v) < Q · kX (x, v).

By integrating both side of the above inequality along the piecewise C1 curves
joining x to y in X and by the definitions we have

s( f (x), f (y)) ≤ L · K̃ X (x, y).

Since K X is the integrated form of the infinitesimal metric kX (see [4, Corollary 3])
we have (3.2).

(c) ⇒ (d): This follows immediately.

(d) ⇒ (a): If (d) holds, then the family F = { f ◦ ϕ : ϕ ∈ O(�, X)} is equicon-
tinuous at each point of �, since otherwise there is a point z0 ∈ �, some ε > 0, a
sequence {zn} of points in � with zn → z0, and a sequence { f ◦ϕn} ⊆ F satisfying

s( f ◦ ϕn(zn), f ◦ ϕn(z0)) ≥ ε, n = 1, 2, . . . . (3.4)

Since K� = d�, and zn → z0 then an application in [3, Proposition 3.2] gives
K�(zn, z0) → 0, as zn → z0. By the contracting property of the Kobayashi metric,

K X (ϕ(zn), ϕ(z0)) ≤ K�(zn, z0) → 0, as zn → z0. (3.5)

From (3.4), (3.5) follows that sequence {ϕn(z0)} of points in X is a P-sequence for
f which contradicts (d).

Therefore, F = { f ◦ ϕ : ϕ ∈ O(�, X)} is spherically equicontinuous family
at each point of �, and hence, by Montel’s theorem [15, page 74], F is normal.
This proves (a).

Remark 3.2. Hahn [8] has also published a similar characterization of a normal
function on a complex hyperbolic manifold M of finite dimension. Unfortunately,
Hahn’s argument is incorrect, because the assumption that F = { f ◦ ϕ : ϕ ∈
O(�, M)} is not a equicontinuous family does not entail that “there exist an ε > 0
such that for all n ∈ N there exist sequences {zn} and {wn} in � with K�(zn, wn) <

1/n but s( f (ψ(zn)), f (ψ(wn))) ≥ ε for some ψ ∈ O(�, M)” (see [8, page 60]).
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Theorem 3.3. Let X and kX be given as in Theorem 3.1 and let f in O(X). If
Q f (xm) → ∞ as m → ∞, then {xm} contains a subsequence which is a P-
sequence of f.

Proof. Since Q f (xm) → ∞ as m → ∞, then by (3.1) there exist a sequences
{vm}, vm ∈ Txm (X), and {rm} ⊂ R, rm → ∞ as m → ∞, with

ds( f (xm), f∗(xm)vm) > rm · kX (xm, vm). (3.6)

By the definition of kX there exists ψm ∈ O(�, X) such that ψm(0) = xm,

ψm∗(0)am = vm for am > 0 and am/2 < kX (xm, vm) ≤ am . Hence, inequality
(3.6) gives,

|( f ◦ ψm)′(0)|
1 + | f ◦ ψm(0)|2 > rm · kX (xm, vm)

am
>

rm

2
→ ∞ as m → ∞.

By Marty’s theorem [15, page 75], the family { f ◦ψm} ⊆ O(�) is not normal in any
disc � 1

n
= {z ∈ C : |z| < 1

n }. Then by a local adaptation of the Zalcman Lemma

[15, page 152], there is a subsequence { f ◦ ϕn} of { f ◦ ψm}, zn → 0, ρn → 0+
and a nonconstant entire function g with f ◦ ϕn(zn + ρnξ) → g(ξ) normally in C.

Passing to a subsequence if necessary, we can assume that { f ◦ ϕn(0)} converges
to a some point β ∈ C. Set gn(ξ) = f ◦ ϕn(zn + ρnξ). The sequence of functions
{gn} converges locally uniformly to g. Let α be any complex number, α �= β, for
which the equation g(ξ) = α has a solution ξ0 which is not a multiple solution,
that is, g	(ξ0) �= 0. By a theorem of Hurwitz [15, page 9], in each neighborhood
of ξ0 all but a finite number of the functions {gn} assume the value α. Thus there
exists a sequence of points {ξn} ⊆ C such that ξn → ξ0 and gn(ξn) = α for n
sufficiently large. It follows s( f ◦ ϕn(zn + ρnξn), f ◦ ϕn(0)) ≥ s(α, β)/2 > 0
for n ≥ N0. The Poincaré metric d� is very closed to the Euclidian metric near
0 so d�(0, zn + ρnξn) → 0 as n → ∞. Hence K X (ϕn(zn + ρnξn), ϕn(0)) ≤
d�(zn + ρnξn, 0) → 0 as n → ∞. Which proves that a subsequence {ϕn(0)}∞n=N0
of {xm} is a P-sequence of f. The proof is complete.

Remark 3.4. The converse to Theorem 3.3 is not true in general, as the follow-
ing example [2, Example (4.3)] shows. Let X = �, f (z) = exp i

1−z ∈ O(�),

zn = n2

1+n2 − i
n+n3 , wn = n2

1+n2 . Here Q f (wn) → ∞, and hence by Theorem
3.3 sequence {wn} contains a subsequence {wm} which is a P-sequence of f. Since
K�(zm, wm) → 0 a subsequence {zm} ⊆ {zn} is a P-sequence of f too, while the
sequence Q f (zm) → 0.

4. Criteria for non-normality

The Zalcman Lemma [18] characterizing normal families of holomorphic functions
on plane domains is the main tool used in proofs of theorems in this and next chap-
ter.
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A relationship between non-normal holomorphic functions and the existence
of a P-sequence is established in the following theorem.

Theorem 4.1. Let X and kX be given as in Theorem 3.1. A function f ∈ O(X) is
not a normal function on X iff f has a P-sequence.

Proof. If f is not normal then the family F = { f ◦ϕ : ϕ ∈ O(�, X)} is not normal
in �. By Zalcman’s Lemma, we can find f ◦ ϕn ∈ H, zn ⊆ �r , zn → z0, and
ρn → 0+ such that f ◦ ϕn(zn + ρnξ) → g(ξ) uniformly on compacta, where g is a
nonconstant entire function on C. Since g is nonconstant in C there is ζ ∈ C such
that g(0) �= g(ζ ). One see at once that

lim
n→∞ s( f ◦ ϕn(zn), f ◦ ϕn(zn + ρnζ )) = s(g(0), g(ζ )) ≥ ε for some ε > 0,

and K X (ϕn(zn), ϕn(zn + ρnζ )) ≤ d�(zn, zn + ρnζ ) → 0 as n → ∞. Hence a
sequence {ϕn(zn)} of points in X is a P-sequence of f.

Conversely, if f have a P-sequence {xn}, then there is a sequence {yn} of
points in X such that limn→∞ K X (xn, yn) = 0 but

s( f (xn), f (yn)) ≥ ε for some ε > 0, n = 1, 2, . . . . (4.1)

Suppose that f is a normal function. By (3.2)

s( f (xn), f (yn)) ≤ L · K X (xn, yn) for all n ≥ 1.

It follows s( f (xn), f (yn)) → 0 as n → ∞ which contradicts (4.1). Therefore f is
not a normal function. This proves the theorem.

A sufficient condition for the non-normality of a holomorphic function in � is
given by Lappan [10, Lemma 3]. For holomorphic functions on a complex Banach
manifold we have the following theorem.

Theorem 4.2. Let X and kX be given as in Theorem 3.1. The following statements
are equivalent for f ∈ O(X):

(a) f is not a normal function;
(b) There exist sequences {ym}, {xm} in X, and a constant M > 0 such that

K X (ym, xm)< M for all m ≥1, limm→∞ f (xm)=∞, and limm→∞ f (ym) =
a ∈ C.

Proof. (a)⇒ (b): Since h is not normal it follows that the family F = { f ◦ ϕ :
ϕ ∈ O(�, X)} is not normal in �. Apply the Zalcman Lemma to F with r, zn, ρn,

f ◦ϕn, and g as given therein. Since g is nonconstant entire function in C it follows
that there exist a sequence {ξm} ⊂ C such that |g(ξm)| > m. In fact, if this were not
the case, g is bounded in C. By Liouville’s theorem g ≡ constant, a contradictions
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with the assumption that g is nonconstant entire function. For fixed ξm chose nm
large enough so that

(i) |znm + ρnm ξm | < (1 + r)/2;
(ii) | f ◦ ϕnm (znm + ρnm ξm)| > m/2.

Put wnm = znm + ρnm ξm, xm = ϕnm (wnm ), and ym = ϕnm (znm ).

By the contracting property of the Kobayashi metric,

K X (ym, xm) = K X (ϕnm (wnm ), ϕnm (znm )) ≤ d�(wnm , znm ).

By the triangle inequality d�(wnm , znm ) ≤ d�(0, znm )+d�(0, wnm ). For any z ∈ �

the Poincaré distance

d�(0, z) = 1

2
log

1 + |z|
1 − |z| .

Since |znm | < r, and |wnm | < (1 + r)/2, we have

d�(wnm , znm ) ≤ 1

2

(
log((1 + r)/(1 − r)) + log((3 + r)/(1 − r))

)
.

Putting the above together we get K X (ym, xm) ≤ M where

2M = log((1 + r)/(1 − r)) + log((3 + r)/(1 − r)) < ∞.

By (ii), we have that

lim
m→∞ f (xm) = lim

m→∞ f ◦ ϕnm (znm + ρnm ξm) = ∞.

By (2.1), we have that

lim
m→∞ f (ym) = lim

m→∞ f ◦ ϕnm (znm + ρnm 0) = g(0) ∈ C.

(b)⇒ (a): Assume, to get a contradiction, that f is normal. By Lemma 2.3,

log(cµ( f, xm)) ≤ log(cµ( f, ym)) exp2K X (xm ,ym) for all m ≥ 1.

The left-hand side of the above inequality tends to infinity as m → ∞ while the
right-hand side tends to a number which is less than log(c max{1, |a|}) exp2r and
we have a contradiction. This contradiction proves the theorem.
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5. Further results

Theorem 5.1. Let X and kX be given as in Theorem 3.1. If f ∈ O(X) is a nor-
mal function and if h is a non-normal holomorphic function on X such that each
sequence {xm} of points in X contains a subsequence {xmk } on which at most one
of f or h is unbounded, then f + h is a non-normal function.

Proof. Since h is not normal on X it follows that the family H = {h ◦ ϕ : ϕ ∈
O(�, X)} is not normal in �. By the Zalcman Lemma, we can find h ◦ ϕn ∈ H,

zn ⊆ �r , and ρn → 0+ such that h ◦ϕn(zn +ρnξ) → g(ξ) uniformly on compacta,
where g is a nonconstant entire function on C. But then

ρn
|h∗(ϕn(zn + ρnξ))ϕ′

n(zn + ρnξ)|
1 + |h(ϕn(zn + ρnξ))|2 → g	(ξ).

We claim that there exist a sequence {ξm}⊂C such that |g(ξm)|>m and g′(ξm) �= 0.

Let us suppose not.

1. If g′(ξ) �= 0 and g is bounded in C by Liouville’s theorem g ≡ constant, a
contradictions with the assumption that g is nonconstant entire function.

2. Let {am} be the zeroes of g′(ξ). Suppose that |g(ξ)| < L < ∞ on C \ {ξ ∈
C : g′(ξ) = 0}. The zeros of g′(ξ) are isolated. Since nonconstant holomorphic
function have no local maxima, we conclude that |g(am)| < L . Therefore g is
bounded in C, hence constant by Liouville’s theorem. But this contradicts with
the assumption that g is nonconstant entire function, and the assertion is proved.

For fixed ξm chose nm large enough so that

(i) |λnm | < (1 + r)/2;
(ii) g	(ξm)/ρnm > m/2;
(iii) ρnm |h∗(xm)vm |/(1 + |h(xm)|2) > g	(ξm)/2;
(iv) |h(xm)| > m/2.

Here λnm = znm +ρnm ξm, xm = ϕnm (λnm ), and vm = ϕ′
nm

(λnm ). If (i), (ii), and (iii)
hold, it is easy to see that

|h∗(xm)vm |
1 + |h(xm)|2 >

g	(ξm)

2ρnm

>
(4 − (1 + r)2)m

16
· 1

1 − |λnm |2 .

By the distance decreasing property of the Kobayashi metric

1

1 − |λnm |2 = k�(λnm , 1) ≥ kX (ϕnm (λnm ), ϕ′
nm

(λnm ) · 1).
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Hence
|h∗(xm)vm |

1 + |h(xm)|2 >
(4 − (1 + r)2)m

16
· kX (xm, vm).

Since |h(xm)| → ∞, as m → ∞, by considering a subsequence if necessary, we
may assume from the hypothesis of the theorem that f is bounded on {xm}, namely
| f (xm)| < M < ∞ for all m ≥ 1, and hence, for m sufficiently large, we have1

|( f + h)∗(xm)vm |
1 + | f (xm) + h(xm)|2 >

|h∗(xm)vm | − | f∗(xm)vm |
2(1 + | f (xm)|2)(1 + |h(xm)|2) ≥

1

2

[
1

1 + |M |2 · |h∗(xm)vm |
1 + |h(xm)|2 − | f∗(xm)vm |

1 + | f (xm)|2
]

.

By hypothesis, f is a normal function on X hence, by Theorem 3.1, there exists
Q > 0 such that Q f (xm) < Q for all m ≥ 1. Thus

Q f +h(xm) ≥ 1

2

[
(4 − (1 + r)2)m

16(1 + |M |2) − Q

]
→ ∞ as m → ∞.

By Theorem 3.1, f +h is not a normal function on X.

Thus the proof is complete.

Lehto and Virtanen [12, page 53] remark that the sum of a normal function and
a bounded function (which is necessary normal) is a normal function. The sum of
two normal holomorphic functions, each omitting the values 0 and 1, need not be
normal (see [10, page 191]).

In the infinite dimensional case we have the following theorem.

Theorem 5.2. If under the conditions of Theorem 3.1, f1, . . . , fl are a finite num-
ber of normal holomorphic function on X such that each sequence {xn} of points
in X contains a subsequence {xnm } on which at most one of f j (1 ≤ j ≤ l) is
unbounded, then h := �l

j=1 f j is a normal function.

Proof. Suppose, on the contrary, that h is not a normal function. By Theorem
4.2, we can find two sequences {xn } and { yn } of points in X , and a positive
constant M such that K X (xm, ym) < M for all m ≥ 1, limm→∞ h(xm) = ∞, and
limm→∞ h(ym) = a ∈ C. Since limm→∞ h(xm) = ∞ then {xm} contains a subse-
quence again denoted by {xm} such that at most one of f j , say f1, is unbounded

1 If a and b in C then

1 + |a + b|2 ≤ 1 + (|a| + |b|)2 < 2(1 + |a|2)(1 + |b|2).
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on {xm}. Since limm→∞ h(ym) = a ∈ C then {ym} contains a subsequence {ymk }
such that either:

(i) at least two of f j (1 ≤ j ≤ l) is unbounded on {ymk };
(ii) or limk→∞ f j (ymk ) = α j ∈ C (1 ≤ j ≤ l).

The case (i) is excluded by the assumption of the corollary.
Hence limk→∞ f1(xmk ) = ∞, limk→∞ f1(ymk ) = α1 ∈ C, and K X (xmk , ymk ) <

M for all k ≥ 1. By Theorem 4.2 f1 is not a normal function, a contradiction which
proves the corollary.

Theorem 5.3. Under the assumption of Theorem 3.1 let {xn} and {yn} be two se-
quences of points in X, and let M be a positive constant such that K X (xm, ym) < M
for all m ≥ 1. If f ∈ O(X) is a normal function which omits l ∈ C in X but
limm→∞ s( f (xm), l) = 0 then limm→∞ s( f (ym), l) = 0.

Proof. Assume first that l ∈ C. Since

1 + | f (x) − l|2
1 + | f (x)|2 < 2(1 + |l|2)

(see footnote 1) it follows from the hypothesis of the theorem and Theorem 3.1 that
g(x) = 1/( f (x) − l) is a normal holomorphic function on X. It is easy to see that
limm→∞ g(xm) = ∞. Therefore, we have limm→∞ g(ym) = ∞ by Theorem 4.2.
Hence limm→∞ s( f (ym), l) = 0 as desired.

If l = ∞ the corollary is an immediate consequence of Theorem 4.2. Thus the
proof is complete.

6. Boundary behavior of normal functions in a fixed boundary point

In [1] F. Bagemihl and W. Seidel posed the following question: Given a sequence
{z j } ⊂ � converging to some ς ∈ ∂� and a holomorphic mapping f ∈ O(�, C)

such that lim j→∞ s( f (z j ), l) = 0 for some l ∈ C, under what conditions on f and
{z j } can f have the limit l along some continuum in � which is asymptotic at ς?

In this section, we give the infinite dimensional analogue of their result. First
we introduce some definitions and prove two lemmas.

In the rest of the paper let D be a bounded and convex domain in a complex
Banach space (V, ‖ · ‖), and K D be the Kobayashi metric for D.

A domain D ⊆ V is called convex (in the real sense) if (1 − t)x + t y ⊂ D for
all x, y ∈ D and 0 ≤ t ≤ 1.

Lemma 6.1. Let D be a bounded and convex (in the real sense) domain in a
complex Banach space (V, ‖ · ‖) and let ξ ∈ ∂ D. Then for all a ∈ D the set
lξ (a) = {y = ξ + t (a − ξ), 0 < t < 1} is contained in D.
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Proof. We have B(a, r) := a + B(0, r) ⊂ D, for some r > 0, where B(0, r) :=
{y ∈ V : ‖y‖ < r}. Put U = [t/(1−t)]B(0, r)+ξ, t �= 1. There is some b ∈ D∩U.

We have b = [t/(1 − t)]u + ξ where u ∈ B(0, r). Since a − u ∈ B(a, r) ⊂ D
and D is convex y = (1 − t)b + t (a − u) = ξ + t (a − ξ) ∈ D. This proves that
lξ (a) ⊂ D.

Definition 6.2. The approach region of aperture α, with vertex ξ ∈ ∂ D, and pole
a ∈ D is the set

Aα(ξ, a) = {x ∈ D : K D(x, lξ (a)) < α}
where K D(x, lξ (a)) = inf{K D(x, y), y ∈ lξ (a)}.
Lemma 6.3. Let D be a bounded and convex (in the real sense) domain in a com-
plex Banach space V and let ξ ∈ ∂ D. If b ∈ D, b �= a, then there exists a positive
constant C such that

Aα(ξ, a) ⊂ Aα+C (ξ, b) ⊂ Aα+2C (ξ, a).

Proof. To prove the lemma it suffices to show that if z ∈ Aα(ξ, a) then z ∈
Aα+C (ξ, b). So let z ∈ Aα(ξ, a). From the definition of Aα(ξ, a) follows that for
every ε > 0 there is a point a1 in lξ (a) such that K D(z, a1) < α+ε. Since a1 ∈ lξ (a)

there exists a τ0 ∈ (0, 1] such that a1 = ξ+τ0(a−ξ). Set b1 = ξ+τ0(b−ξ) ∈ lξ (b).

Let ϕ be a mapping in O(�, D) whose range contains both a and b.2 Suppose
that ϕ(0) = a and ϕ(ζ ) = b for a suitable ζ ∈ �. Define ψ : � → V by

ψ(z) = ξ + τ0(ϕ(z) − ξ).

By Lemma 6.1 ψ maps � into D; hence

K D(a1, b1) = K D(ψ(0), ψ(ζ )) ≤ d�(0, ζ ).

By the triangle inequality of the Kobayashi distance

K D(z, b1) ≤ K D(z, a1) + K D(a1, b1).

It is clear, that

K D(z, lξ (b)) ≤ K D(z, b1) ≤ α + ε + d�(0, ζ ).

2 If D ⊂ C
n then there exists a continuous path φ : [0, 1] → D such that φ(0) = a and

φ(1) = b. An application of the vector-valued Stone-Weierstrass theorem and an end-point ad-
justment shows that we can take φ to be a polynomial. By compactness there exists a convex open
neighborhood O of [0, 1] in C such that φ̃(O) ⊂ D, where φ̃ is the polynomial on C obtained by
replacing the real variable x by the complex variable z. An application of the Riemann mapping
theorem yields the existence of a mapping ϕ ∈ O(�, D) whose range contains both a and b.
Since D is a domain in a Banach space V then any pair of points a and b in D can be joined by a
polygonal curve �. If Y is the finite dimensional subspace of V spanned by the points of � then
the connected component of �∩ D, containing a, is a domain in a finite dimensional space which
contains both a and b. The finite dimensional result can now be applied to show the existence of
a mapping φ ∈ O(�, D) whose range contains both a and b (see [3, page 49]).
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Since ε was arbitrary this gives that

K D(z, lξ (b)) ≤ α + d�(0, ζ ).

It follows
z ∈ Aα+C (ξ, b)

where C = d�(0, ζ ) < ∞.

Remark 6.4. If D is the unit ball in Cn then the approach regions Aα(ξ, a) are
comparable to the admissible approach regions of Koranyi.

Definition 6.5. A function f ∈ O(D) has an admissible limit l ∈ C at ξ ∈ ∂ D, if
for every α > 0 and every sequence of points {xn} ⊂ Aα(ξ, a) which tends to ξ

lim
n→∞ s( f (xn), l) = 0.

Remark 6.6. From Lemma 6.3 follows that the definition of admissible limit is
independent of the choice of the pole a ∈ D.

Theorem 6.7. Let D be a bounded and convex (in the real sense) domain in a
complex Banach space (V, ‖ · ‖). Let {xn} be a sequence of points in lξ (a) which
tends to ξ ∈ ∂ D, such that there exists a constant ε > 0 such that K D(xn, xn+1) <

ε for all n ≥ 1. Suppose that the function f ∈ O(D) is normal on D, omits l ∈ C

in D but
lim

n→∞ s( f (xn), l) = 0.

Then f has an admissible limit l at ξ.

Proof. First of all, we show that for an arbitrary sequence of points {qn} in lξ (a)

which tends to ξ as n → ∞ we have limn→∞ s( f (qn), l) = 0. Indeed, for every
qn there exists an integer jn and a constant tn, tn ∈ [0, 1], such that qn = x jn +
tn(x jn+1 − x jn ). For t ∈ [0, 1] define gt ∈ O((D × D) × (D × D), D × D) by
gt ((x, y), (w, z)) = (t x + (1 − t)y, tw + (1 − t)z). Then by [5, Proposition IV.1.2,
page 83] for all x, y, w, z ∈ D we have

K D×D((x, y), (w, z)) ≥ K D(t x + (1 − t)y, tw + (1 − t)z) . (6.1)

By [5, Proposition V.4.2, page 136]

K D×D((x, y), (w, z)) = max{K D(x, y), K D(w, z)}.
Combining this with (6.1), we see that

K D(t x + (1 − t)y, tw + (1 − t)z) ≤ max[K D(x, w), K D(y, z)]
for all 0 ≤ t ≤ 1 and every choice of x, y, w, z from D. Then we have

K D(x jn , qn) = K D(x jn , x jn + tn(x jn+1 − x jn ) ≤ K D(x jn , x jn+1) < ε.
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As limn→∞ s( f (x jn ), l) = 0 and K D(x jn , qn) < ε for all n ≥ 1, we get

lim
n→∞ s( f (qn), l) = 0

by Corollary 5.3.
Let {yn} be any sequence in Aα(ξ, a) which converges to the point ξ ∈ ∂ D.

For every point yn there exists a point bn ∈ lξ (a) such that 2α > K D(yn, bn) for all
n ≥ 1. Every bn can be write in the form bn = ξ + τn(a − ξ) where τn ∈ [0, 1].
Hence, {bn} has a convergent subsequence {bn j }. Let b = ξ + τ0(a − ξ) be a limit
point of {bn j }.

Assuming τ0 �= 0 we shall derive a contradiction. Choose a positive number r
such that Br (b) = {y ∈ V : ‖y − b‖ < r} ⊂ D. Since sequence {bn j } tends to b as
j → ∞ there exits an integer j0 such that ‖bn j − b‖ < r/2 for all j ≥ j0. By the
inequality (4.3) in [3, page 52]

K D(bn j , b) < tanh−1
(

1

2

)
for all j ≥ j0.

Then for j ≥ j0 we have

K D(yn j , b) < K D(yn j , bn j ) + K D(bn j , b) < 2α + tanh−1
(

1

2

)
.

This contradicts our assumption that sequence {yn} tends to ξ ∈ ∂ D, since every
ball in (D, K D) is bounded away from the boundary (see [3, page 88]). Hence
τ0 = 0 and sequence {bn} ⊂ lξ (a) tends to ξ as n → ∞. As proved above
limn→∞ s( f (bn), l) = 0 and since K D(yn, bn) < α for all n ≥ 1

lim
n→∞ s( f (yn), l) = 0

by Corollary 5.3. Hence f has the admissible limit l at ξ.
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