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Spirallike mappings and univalent subordination chains in Cn

IAN GRAHAM, HIDETAKA HAMADA, GABRIELA KOHR AND MIRELA KOHR

Abstract. In this paper we consider non-normalized univalent subordination
chains and the connection with the Loewner differential equation on the unit ball
in Cn . To this end, we study the most general form of the initial value problem
for the transition mapping, and prove the existence and uniqueness of solutions.
Also we introduce the notion of generalized spirallikeness with respect to a mea-
surable matrix-valued mapping, and investigate this notion from the point of view
of non-normalized univalent subordination chains. We prove that such a spiral-
like mapping can be imbedded as the first element of a univalent subordination
chain, and we present various particular cases and examples. If the matrix-valued
mapping is constant, we obtain the usual notion of spirallikeness with respect to
a linear operator.

Mathematics Subject Classification (2000): 32H02 (primary); 30C45 (secondary).

1. Introduction and preliminaries

Let Cn denote the space of n complex variables z = (z1, . . . , zn) with the Euclidean
inner product 〈z, w〉 = ∑n

j=1 z jw j and the Euclidean norm ‖z‖ = 〈z, z〉1/2. The
open ball {z ∈ Cn : ‖z‖ < r} is denoted by Bn

r and the unit ball Bn
1 is denoted

by Bn . The closed ball {z ∈ Cn : ‖z‖ ≤ r} is denoted by B
n
r . In the case of one

complex variable, B1 is denoted by U .
Let L(Cn, Cm) be the space of linear and continuous operators from Cn into

Cm with the standard operator norm and let In be the identity in L(Cn, Cn). If �

is a domain in Cn , let H(�) be the set of holomorphic mappings from � into Cn .
If � is a domain in Cn which contains the origin and f ∈ H(�), we say that f
is normalized if f (0) = 0 and D f (0) = In . Let S(Bn) be the set of normalized
biholomorphic mappings on Bn . The set S(B1) is denoted by S. Also let S∗(Bn)

be the subset of S(Bn) consisting of starlike mappings on Bn .

G. Kohr and M. Kohr are partially supported by the Romanian Ministry of Education and Re-
search, UEFISCSU Grants PN-II-ID 524/2007 and 525/2007.

Received December 11, 2007; accepted June 18, 2008.



718 IAN GRAHAM, HIDETAKA HAMADA, GABRIELA KOHR AND MIRELA KOHR

If f ∈ H(Bn), we say that f is locally biholomorphic on Bn if J f (z) �= 0,
z ∈ Bn , where J f (z) = det D f (z) and D f (z) is the complex Jacobian matrix of f
at z. Let LSn be the set of normalized locally biholomorphic mappings on Bn .

If f, g ∈ H(Bn), we say that f is subordinate to g ( f ≺ g) if there exists
a Schwarz mapping v (i.e. v ∈ H(Bn) and ‖v(z)‖ ≤ ‖z‖, z ∈ Bn) such that
f = g ◦ v.

Definition 1.1. A mapping f : Bn × [0, ∞) → Cn is called a univalent sub-
ordination chain if f (·, t) is biholomorphic on Bn , f (0, t) = 0 for t ≥ 0, and
f (·, s) ≺ f (·, t), 0 ≤ s ≤ t < ∞.

The above subordination condition is equivalent to the existence of a unique
Schwarz mapping v = v(z, s, t), called the transition mapping associated with
f (z, t), such that f (z, s) = f (v(z, s, t), t), z ∈ Bn , t ≥ s ≥ 0.

If f (z, t) is a univalent subordination chain such that D f (0, t) = et In for t ≥
0, we say that f (z, t) is a normalized univalent subordination chain or a Loewner
chain.

The following class of mappings in H(Bn) is important in our treatment:

N = {h ∈ H(Bn) : h(0) = 0, 
〈h(z), z〉 > 0, z ∈ Bn \ {0}}.
Several applications of this class in the study of biholomorphic mappings and uni-
valent subordination chains on the unit ball in Cn may be found in [6, 9, 11, 19, 26,
29, 30].

For a given operator A ∈ L(Cn, Cn), let us denote by

m(A) = min{
〈A(z), z〉 : ‖z‖ = 1} and k(A) = max{
〈A(z), z〉 : ‖z‖ = 1}.
Also let |V (A)| = max‖z‖=1 |〈A(z), z〉| be the numerical radius of the operator A.
Then |V (A)| ≤ ‖A‖ ≤ 2|V (A)| by [13, Theorem 1.3.1] (see also [1, Theorem 4.1];

cf. [16, 17]). Further, let k+(A) = limt→∞ ln ‖et A‖
t . It is well known that this limit

exists, and for each ω > k+(A), there exists δ = δ(ω) > 0 such that ‖et A‖ ≤ δeωt ,
t ≥ 0. In addition, k+(A) = max{
λ : λ ∈ σ(A)} where σ(A) is the spectrum of
A (see [3, Theorem 4.1], [4]).

To prove our results, we need the following lemma (see [8, Lemma 1.2]; cf. [6,
Theorem 1.2]).

Lemma 1.2. Let h : Bn → Cn be a mapping such that h ∈ N , Dh(0) = A and
m(A) > 0. Then

‖h(z)‖ ≤ 4r

(1 − r)2
|V (A)|, ‖z‖ ≤ r < 1.

Definition 1.3. (cf. [12, 30]) Let A ∈ L(Cn, Cn) be such that m(A) > 0. Also let
� be a domain in Cn which contains the origin. We say that � is spirallike with
respect to A if e−t A(w) ∈ �, for all w ∈ � and t ≥ 0.

A mapping f ∈ S(Bn) is called spirallike with respect to A if f (Bn) is a
spirallike domain with respect to A.
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Remark 1.4.

(i) It is well known that a mapping f ∈ LSn is spirallike with respect to A if and
only if 
〈[D f (z)]−1 A f (z), z〉 > 0, z ∈ Bn \ {0} (see [30]).
Other results related to spirallike mappings with respect to a linear operator
can be found in [5, 12, 26, 27].

(ii) A mapping f is called spirallike of type α ∈ (−π/2, π/2) if f is spirallike
with respect to A = e−iα In (see [14]; cf. [30]). Hence f ∈ S∗(Bn) if and only
if f is spirallike of type zero.

Hamada and Kohr [14] proved that any spirallike mapping f of type α can be
imbedded as the first element of the Loewner chain f (z, t) = e(1−ia)t f (eiat z),
where a = tan α. This Loewner chain has the property that {e−t f (·, t)}t≥0 is a
normal family on Bn . However, if f is a spirallike mapping with respect to a given
linear operator A, then f need not be imbedded in a Loewner chain f (z, t) such that
{e−t f (·, t)}t≥0 is a normal family on Bn . On the other hand, if f is spirallike with
respect to A, then f (z, t) = et A f (z) is a (non-normalized) univalent subordination
chain (see [8]).

We next introduce the notion of generalized parametric representation with
respect to a measurable mapping A : [0, ∞) → L(Cn, Cn).

Definition 1.5. Let A : [0, ∞) → L(Cn, Cn) be a measurable mapping such that
m(A(t)) > 0 for t ≥ 0 and

∫ ∞
0 m(A(t))dt = ∞. Moreover, assume that ‖A(·)‖ is

uniformly bounded on [0, ∞) and

∫ t

s
A(τ )dτ ◦

∫ s

r
A(τ )dτ =

∫ s

r
A(τ )dτ ◦

∫ t

s
A(τ )dτ, t ≥ s ≥ r ≥ 0. (1.1)

Also, let f ∈ H(Bn) be a normalized mapping. We say that f has generalized
parametric representation with respect to A (and we denote the class of such f by
S̃0

A(Bn)) if there exists a mapping h : Bn × [0, ∞) → Cn such that h(·, t) ∈ N ,
Dh(0, t) = A(t) for t ∈ [0, ∞), h(z, ·) is measurable on [0, ∞) for z ∈ Bn , and

f (z) = lim
t→∞ e

∫ t
0 A(τ )dτ v(z, t) (1.2)

locally uniformly on Bn , where v = v(z, t) is the unique locally absolutely contin-
uous solution on [0, ∞) of the initial value problem

∂v

∂t
= −h(v, t) a.e. t ≥ 0, v(z, 0) = z, (1.3)

for all z ∈ Bn .
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Remark 1.6.

(i) The condition (1.1) is satisfied if A(t) is constant or if A(t) is diagonal for
t ≥ 0. Note that the condition (1.1) implies the following equality:

A(t) ◦
∫ t

0
A(τ )dτ =

∫ t

0
A(τ )dτ ◦ A(t), a.e. t ∈ [0, ∞). (1.4)

Indeed, since ‖A(·)‖ is uniformly bounded, we have

lim
ε→0

1

ε

∫ t+ε

t
A(τ )dτ = A(t) a.e. t ≥ s.

Next, let s = t , r = 0, and replace t by t + ε in (1.1). Then

1

ε

∫ t+ε

t
A(τ )dτ ◦

∫ t

0
A(τ )dτ =

∫ t

0
A(τ )dτ ◦ 1

ε

∫ t+ε

t
A(τ )dτ.

Letting ε → 0 in the above equality, we obtain (1.4), as desired.
(ii) The existence and uniqueness of the locally absolutely continuous solution

v(z, t) to the initial value problem (1.3) follows from Theorem 2.1. Moreover,
we shall see that the limit in (1.2) exists if the condition (2.6) holds.

(iii) If A(t) ≡ A ∈ L(Cn, Cn) with m(A) > 0 in Definition 1.5, we obtain the
class of mappings which have A-parametric representation. This class has
been recently introduced in [8]. Further, if A(t) ≡ In , we obtain the usual
class S0(Bn) of mappings which have parametric representation. A number
of properties of mappings which have parametric representation were obtained
in [6, 7, 9, 11, 18]. Poreda ( [24, 25]) originally introduced the notion of para-
metric representation on the unit polydisc in Cn and Kohr [18] introduced this
notion on the Euclidean unit ball in Cn . If n = 1, S0(U ) = S (see [22]), but
S0(Bn) � S(Bn) for n ≥ 2 (see [6]).

(iv) One of the most important properties of mappings which have parametric rep-
resentation is that a normalized mapping f ∈ H(Bn) belongs to S0(Bn) if and
only if f can be imbedded as the first element of a Loewner chain f (z, t) such
that {e−t f (·, t)}t≥0 is a normal family on Bn (see [6, 9, 11]; cf. [24]).

(v) Let A : [0, ∞) → L(Cn, Cn) be a measurable mapping, which satisfies the
assumptions of Definition 1.5. Then

e
∫ t

0 m(A(τ ))dτ ≤ ‖e
∫ t

0 A(τ )dτ‖ ≤ e
∫ t

0 k(A(τ ))dτ , t ∈ [0, ∞), (1.5)

and

e− ∫ t
0 k(A(τ ))dτ ≤ ‖e− ∫ t

0 A(τ )dτ‖ ≤ e− ∫ t
0 m(A(τ ))dτ , t ∈ [0, ∞). (1.6)

Hence limt→∞ ‖e
∫ t

0 A(τ )dτ‖ = ∞.
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Proof. Indeed, fix u ∈ Cn with ‖u‖ = 1, and let qu(t) = ‖e
∫ t

0 A(τ )dτ (u)‖2 for
t ≥ 0. Then qu is a locally Lipschitz continuous function on [0, ∞), since ‖A(·)‖
is uniformly bounded on [0, ∞). Hence qu(t) is differentiable for almost all t ∈
[0, ∞). In view of (1.4), we deduce that

q ′
u(t) = 2
〈A(t)e

∫ t
0 A(τ )dτ (u), e

∫ t
0 A(τ )dτ (u)〉, a.e. t ≥ 0.

Hence
2m(A(t))qu(t) ≤ q ′

u(t) ≤ 2k(A(t))qu(t), a.e. t ≥ 0,

i.e.

2m(A(t)) ≤ q ′
u(t)

qu(t)
≤ 2k(A(t)), a.e. t ≥ 0.

Integrating both sides of the above inequality, we easily obtain the relation (1.5).

The relation limt→∞ ‖e
∫ t

0 A(τ )dτ‖ = ∞ is a direct consequence of (1.5) and the fact
that

∫ ∞
0 m(A(τ ))dτ = ∞. To deduce (1.6), it suffices to apply an argument similar

to that used for (1.5).

In this paper we investigate the connection between generalized parametric
representation with respect to a measurable mapping A : [0, ∞) → L(Cn, Cn)

with m(A(t)) > 0, t ≥ 0, and univalent subordination chains. Also, we intro-
duce the notion of generalized spirallikeness and study this notion from the point of
view of non-normalized univalent subordination chains. Finally we obtain various
examples of generalized spirallike mappings with respect to measurable diagonal
matrices.

2. Parametric representation with respect to a measurable operator
and univalent subordination chains

In this section we study the existence of solutions to the initial value problem (2.1)
in the most general form, i.e. when the mapping h = h(·, t) ∈ N is such that
Dh(0, t) = A(t) ∈ L(Cn, Cn) for t ≥ 0. Particular cases of Theorem 2.1 were
obtained in [19, Theorem 2.1] (in the case that Dh(0, t) = In for t ≥ 0), [26,
Lemma 4.1] (in the case that h(·, t) = q ∈ N for t ≥ 0) and [8, Theorem 2.1] (in
the case that Dh(0, t) = A ∈ L(Cn, Cn) for t ≥ 0, where m(A) > 0).

Theorem 2.1. Let A : [0, ∞) → L(Cn, Cn) be a measurable mapping which
satisfies the assumptions of Definition 1.5. Also let h = h(z, t) : Bn×[0, ∞) → Cn

be a mapping which satisfies the following conditions:

(i) h(·, t) ∈ N , Dh(0, t) = A(t) for t ≥ 0;
(ii) h(z, ·) is measurable on [0, ∞) for z ∈ Bn.
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Then for each s ≥ 0 and z ∈ Bn, the initial value problem

∂v

∂t
= −h(v, t) a.e. t ≥ s, v(z, s, s) = z, (2.1)

has a unique solution v = v(z, s, t) such that v(·, s, t) is a univalent Schwarz
mapping, v(z, s, ·) is Lipschitz continuous on [s, ∞) locally uniformly with respect
to z ∈ Bn, Dv(0, s, t) = exp(− ∫ t

s A(τ )dτ) for t ≥ s ≥ 0, and the following
relations hold:

‖v(z, s, t)‖
(1 − ‖v(z, s, t)‖)2

≤ e− ∫ t
s m(A(τ ))dτ ‖z‖

(1 − ‖z‖)2
, z ∈ Bn, t ≥ s ≥ 0. (2.2)

‖v(z, s, t)‖
(1 + ‖v(z, s, t)‖)2

≥ e− ∫ t
s k(A(τ ))dτ ‖z‖

(1 + ‖z‖)2
, z ∈ Bn, t ≥ s ≥ 0. (2.3)

Proof. As in the proof of [19, Theorem 2.1] (see also the proof of [8, Theorem
2.1]), we may apply the classical method of successive approximations to construct
the unique locally Lipschitz continuous solution on [s, ∞) to the initial value prob-
lem (2.1) (which in this case is globally Lipschitz). We omit the details.

We only prove that Dv(0, s, t) = exp(− ∫ t
s A(τ )dτ). To this end, fix s ≥ 0

and let V (t) = Dv(0, s, t) for t ≥ s. By using the Cauchy integral formula and the
Lipschitz continuity of v(z, s, ·) on [s, ∞) locally uniformly with respect to z ∈ Bn ,
we deduce that for each r ∈ (0, 1), there exists a constant L = L(r) > 0 such that

‖V (t1) − V (t2)‖ ≤ L|t1 − t2|, t1, t2 ∈ [s, ∞).

Thus V is Lipschitz continuous on [s, ∞), and hence ∂V
∂t exists a.e. t ≥ s. More-

over, since Dh(0, t) = A(t) and v(z, s, t) is the solution of (2.1), we deduce that V
satisfies the initial value problem

∂V

∂t
= −A(t)V (t) a.e. t ≥ s, V (s) = In.

Taking into account the condition (1.1) and solving the above initial value problem,
we obtain the unique Lipschitz continuous solution V (t) = exp(− ∫ t

s A(τ )dτ) on
[s, ∞) (compare with [4, page 564], [2] and [31, page 431]). Indeed, since ‖A(t)‖
is bounded, we have

lim
ε→0

1

ε

∫ t+ε

t
A(τ )dτ = A(t) a.e. t ≥ s.

Let t ≥ s be fixed such that the above equality holds. Then there exists M(ε) such
that

1

ε

∫ t+ε

t
A(τ )dτ = A(t) + M(ε)
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and M(ε) → 0 as ε → 0. Therefore, we obtain that

V ′(t) = lim
ε→0

1

ε
{V (t + ε) − V (t)}

= lim
ε→0

1

ε

{
exp

(
−

∫ t+ε

s
A(τ )dτ

)
− exp

(
−

∫ t

s
A(τ )dτ

)}

= lim
ε→0

1

ε

{
exp

(
−

∫ t+ε

t
A(τ )dτ

)
− In

}
V (t)

= lim
ε→0

{−(A(t) + M(ε)) + ε · (bounded)} V (t) = −A(t)V (t).

Finally, it suffices to use arguments similar to those in the proofs of [19, Lemma
2.2] and [12, Lemma 2], to deduce (2.2) and (2.3). Indeed, since h(·, t) ∈ N and
Dh(0, t) = A(t), we deduce as in the proof of [19, Lemma 2.1] that


〈A(t)(z), z〉1 − ‖z‖
1 + ‖z‖ ≤ 
〈h(z, t), z〉 ≤ 
〈A(t)(z), z〉1 + ‖z‖

1 − ‖z‖ ,

for all z ∈ Bn and t ≥ 0. Therefore we obtain that

m(A(t))‖z‖2 1−‖z‖
1+‖z‖ ≤
〈h(z, t), z〉≤k(A(t))‖z‖2 1+‖z‖

1−‖z‖ , z ∈ Bn, t ≥ 0. (2.4)

Next fix z ∈ Bn \ {0} and s ≥ 0. Then v(z, s, t) �= 0 and from (2.4) we obtain that

d‖v(t)‖
dt

=− 1

‖v(t)‖
〈h(v(t), t), v(t)〉 ≤ −m(A(t))‖v(t)‖1 − ‖v(t)‖
1 + ‖v(t)‖ , a.e. t ≥ s.

Therefore, we obtain that

1 + ‖v(t)‖
(1 − ‖v(t)‖)‖v(t)‖

d‖v(t)‖
dt

≤ −m(A(t)), a.e. t ≥ s.

Since ‖v(z, s, ·)‖ is locally Lipschitz continuous on [s, ∞), m(A(·)) and k(A(·))
are measurable functions, we may integrate both sides of the above inequality and
change variables, to deduce (2.2), as claimed. The relation (2.3) follows in a similar
way to (2.2). This completes the proof.

We next prove that the Lipschitz continuous solution of the initial value prob-
lem (2.1) generates a non-normalized univalent subordination chain, if the condi-
tion (2.6) holds (see [26] in the case A(t) ≡ In; cf. [9, Theorem 8.1.5], [8, Theorem
2.3]).
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Remark 2.2.

(i) The condition (2.6) is satisfied if there exists η > 0 such that

‖A(t)‖ − 2m(A(t)) ≤ −η, t ≥ 0.

Indeed, since∫ ∞

s
‖e

∫ t
s [A(τ )−2m(A(τ ))In]dτ‖dt ≤

∫ ∞

s
e
∫ t

s [‖A(τ )‖−2m(A(τ ))]dτ dt

≤
∫ ∞

s
e−η(t−s)dt = 1

η
, s ∈ [0, ∞),

the conclusion follows.
(ii) If A(t) ≡ A ∈ L(Cn, Cn) then the condition (2.6) is equivalent to∫ ∞

0
‖e(A−2m(A)In)t‖dt < ∞,

and this relation is satisfied if k+(A) < 2m(A) (see [8]).
(iii) If A(t) is diagonal with eigenvalues a1(t), . . . , an(t) for t ≥ 0, then the condi-

tion (2.6) is satisfied if there exists δ > 0 such that

max{
a1(t), . . . , 
an(t)} − 2 min{
a1(t), . . . , 
an(t)} ≤ −δ, t ≥ 0. (2.5)

Indeed, elementary computations yield that∫ ∞

s
‖e

∫ t
s [A(τ )−2m(A(τ ))In]dτ‖dt

≤
∫ ∞

s
e
∫ t

s [max{
a1(τ ),...,
an(τ )}−2 min{
a1(τ ),...,
an(τ )}]dτ dt

≤
∫ ∞

s
e−δ(t−s)dt = 1

δ

for s ≥ 0, and hence

sup
s≥0

∫ ∞

s
‖e

∫ t
s [A(τ )−2m(A(τ ))In]dτ‖dt ≤ 1

δ
.

Note that the condition (2.5) is equivalent to

k+(A(t)) − 2m(A(t)) ≤ −δ, t ≥ 0.

It would be interesting to see whether the above condition implies (2.6).
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Theorem 2.3. Let h = h(z, t) : Bn ×[0, ∞) → Cn and A : [0, ∞) → L(Cn, Cn)

satisfy the assumptions of Theorem 2.1 and let v = v(z, s, t) be the Lipschitz con-
tinuous solution on [s, ∞) of the initial value problem (2.1). Also, assume that the
following condition holds:

sup
s≥0

∫ ∞

s
‖e

∫ t
s [A(τ )−2m(A(τ ))In]dτ‖dt < ∞. (2.6)

Then the limit
lim

t→∞ e
∫ t

0 A(τ )dτ v(z, s, t) = f (z, s) (2.7)

exists locally uniformly on Bn for each s ≥ 0. Moreover, f (z, t) is a univalent

subordination chain such that D f (0, t) = e
∫ t

0 A(τ )dτ , {e− ∫ t
0 A(τ )dτ f (·, t)}t≥0 is a

normal family on Bn and f = f (·, 0) has generalized parametric representation
with respect to A.

Proof. We use arguments similar to those in the proof of [8, Theorem 2.3] and [26,

Lemma 4.2]. Fix s ≥ 0 and let u(z, s, t) = e
∫ t

0 A(τ )dτ v(z, s, t) for z ∈ Bn and t ≥ s.
Also let g(z, t) = h(z, t) − A(t)(z) for z ∈ Bn and t ≥ 0. Then g(·, t) ∈ H(Bn),
g(0, t) = 0 and Dg(0, t) = 0.

We first prove that u(z, s, ·) is locally Lipschitz continuous on [s, ∞) locally
uniformly with respect to z ∈ Bn .

Fix s ≥ 0, T > s and r ∈ (0, 1). Also let t1, t2 ∈ [s, T ]. Then

‖u(z, s, t1) − u(z, s, t2)‖

≤ e
∫ t1

0 ‖A(τ )‖dτ‖v(z, s, t1) − v(z, s, t2)‖ + ‖v(z, s, t2)‖‖e
∫ t1

0 A(τ )dτ − e
∫ t2

0 A(τ )dτ‖.
By hypothesis, there exists b > 0 such that ‖A(t)‖ ≤ b for t ≥ 0. Also, since
v(z, s, ·) is Lipschitz continuous on [s, ∞) locally uniformly with respect to z ∈
Bn , we deduce in view of the above relations that there exists N = N (r, b) > 0
such that

‖u(z, s, t1) − u(z, s, t2)‖ ≤ ebT N (r, b)|t1 − t2| + r‖eC(t1) − eC(t2)‖, (2.8)

where C(t) = ∫ t
0 A(τ )dτ for t ≥ s. Since

‖C(t1) − C(t2)‖ ≤ b|t1 − t2|,
we deduce that the mapping C is Lipschitz continuous on [0, ∞). Since the map-
ping q(t) = eC(t) is locally Lipschitz continuous for t ≥ 0 and q ′(t) = A(t)eC(t)

for almost all t ≥ 0, we deduce that

‖eC(t1) − eC(t2)‖ ≤ max
t∈[s,T ] ‖A(t)eC(t)‖ · |t1 − t2| ≤ bebT |t1 − t2|, t1, t2 ∈ [s, T ].
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Taking into account the above relation and (2.8), we deduce that

‖u(z, s, t1)−u(z, s, t2)‖ ≤ ebT N (r, b)|t1−t2|+brebT |t1−t2| = N∗(r, b, T )|t1−t2|.
Thus u(z, s, ·) is Lipschitz continuous on [s, T ] locally uniformly with respect to
z ∈ Bn , and hence ∂u

∂t (z, s, t) exists for almost all t ∈ [s, T ] and for all z ∈ Bn .
Using the relation (2.1), it is not difficult to deduce that u(t) = u(z, s, t) satis-

fies the following relation:

∂u

∂t
= −e

∫ t
0 A(τ )dτ g(e− ∫ t

0 A(τ )dτ u, t) a.e. t ≥ s. (2.9)

We next prove that the limit in (2.7) exists locally uniformly on Bn . In view of the
local Lipschitz continuity of u(z, s, ·) on [s, ∞) locally uniformly with respect to
z ∈ Bn and the relation (2.9), we deduce that

‖u(z, s, t1)−u(z, s, t2)‖≤
∫ t2

t1
‖e

∫ t
0 A(τ )dτ‖·‖g(e− ∫ t

0 A(τ )dτ u(z, s, t), t)‖dt. (2.10)

In view of Lemma 1.2 and the fact that |V (A(t))| ≤ ‖A(t)‖ ≤ b for t ≥ 0, we
deduce that

‖h(z, t)‖ ≤ 4r

(1 − r)2
|V (A(t))| ≤ 4rb

(1 − r)2
= K (r, b), (2.11)

for ‖z‖ ≤ r < 1 and t ≥ 0.
Moreover, using (2.11) and the relations g(0, t) = 0, Dg(0, t) = 0, and

‖g(z, t)‖ ≤ ‖h(z, t)‖ + ‖A(t)(z)‖ ≤ K (r, b) + rb = K ∗(r, b)

for ‖z‖ ≤ r < 1 and t ≥ 0, we obtain in view of the Schwarz lemma that

‖g(z, t)‖ ≤ K ∗(r, b)

r2
‖z‖2, ‖z‖ ≤ r < 1, t ≥ 0.

In view of the above inequality, the relations (2.2) and (2.10), we deduce that

‖u(z, s, t1) − u(z, s, t2)‖ ≤
∫ t2

t1
‖e

∫ t
0 A(τ )dτ‖ · K ∗(r, b)

r2
‖v(z, s, t)‖2dt

≤ K ∗(r, b)

(1 − r)4

∫ t2

t1
‖e

∫ t
0 A(τ )dτ‖e−2

∫ t
s m(A(τ ))dτ dt

≤ K ∗(r, b)

(1 − r)4
e2

∫ s
0 m(A(τ ))dτ

∫ t2

t1
‖e

∫ t
0 [A(τ )−2m(A(τ ))In]dτ‖dt.

Since the integral
∫ ∞

0 ‖e
∫ t

0 [A(τ )−2m(A(τ ))In]dτ‖dt is convergent in view of (2.6), we
deduce from the above inequality that for each ε > 0, there exists t∗0 = t∗0 (r, b, s) >

0 such that

‖u(z, s, t1) − u(z, s, t2)‖ < ε, ‖z‖ ≤ r < 1, t2 ≥ t1 ≥ t∗0 .
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Using the Weierstrass theorem, we deduce that the limit (2.7) exists locally uni-
formly on Bn , as desired.

Finally we prove that f (z, t) given by (2.7) is a univalent subordination chain

such that {e− ∫ t
0 A(τ )dτ f (·, t)}t≥0 is a normal family on Bn . Clearly f (0, t) = 0.

Taking into account the condition (1.1) and the fact that Dv(0, s, t) = e− ∫ t
s A(τ )dτ ,

we deduce that D f (0, t) = e
∫ t

0 A(τ )dτ for t ≥ 0. Hence f (·, t) is a biholomorphic
mapping on Bn for t ≥ 0, by Hurwitz’s theorem. Moreover, in view of uniqueness
of solutions to the initial value problem (2.1), we deduce that v(z, s, t) satisfies the
semigroup property

v(z, s, t) = v(v(z, s, λ), λ, t), 0 ≤ s ≤ λ ≤ t < ∞.

Then (2.7) and the above equality yield that

f (z, s) = lim
t→∞ e

∫ t
0 A(τ )dτ v(z, s, t)

= lim
t→∞ e

∫ t
0 A(τ )dτ v(v(z, s, λ), λ, t) = f (v(z, s, λ), λ).

Concluding the above arguments, we deduce that f (z, t) is a univalent subordina-
tion chain, as claimed.

On the other hand, as in the above proof and using the condition (1.1), we
deduce that for each r ∈ (0, 1) there exists K ∗(r, b) > 0 such that for s ≤ t1 <

t2 < ∞,

‖e− ∫ s
0 A(τ )dτ u(z, s, t1) − e− ∫ s

0 A(τ )dτ u(z, s, t2)‖
≤ K ∗(r, b)

(1 − r)4

∫ t2

t1
‖e

∫ t
s [A(τ )−2m(A(τ ))In]dτ‖dt

≤ K ∗(r, b)

(1 − r)4
· sup

x≥0

∫ ∞

x
‖e

∫ t
x [A(τ )−2m(A(τ ))In]dτ‖dt = L∗(r, A) < ∞, ‖z‖ ≤ r.

Since limt→∞ e− ∫ s
0 A(τ )dτ u(z, s, t) = e− ∫ s

0 A(τ )dτ f (z, s), we obtain in view of the
above relation that

‖e− ∫ s
0 A(τ )dτ f (z, s)‖ ≤ L∗(r, A) + ‖e− ∫ s

0 A(τ )dτ u(z, s, s)‖
≤ L∗(r, A) + r, ‖z‖ ≤ r < 1.

Hence {e− ∫ s
0 A(τ )dτ f (·, s)}s≥0 is a normal family on Bn , as desired.

In view of Theorems 2.1 and 2.3, Definition 1.5 and Remark 1.6, we obtain the
following consequence, which yields that any mapping which has generalized para-
metric representation with respect to a measurable linear operator can be imbedded
in a (non-normalized) univalent subordination chain. If A(t) ≡ A ∈ L(Cn, Cn),
we obtain [8, Corollary 2.5]. Also, if A(t) ≡ In , this result was obtained in [6]
and [11] (cf. [24] in the case of the maximum norm in Cn).
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Corollary 2.4. Let A : [0, ∞) → L(Cn, Cn) be a measurable mapping which
satisfies the assumptions of Definition 1.5 and the condition (2.6). Assume f :
Bn → Cn has generalized parametric representation with respect to A. Then

there exists a univalent subordination chain f (z, t) such that D f (0, t) = e
∫ t

0 A(τ )dτ ,

t ≥ 0, {e− ∫ t
0 A(τ )dτ f (·, t)}t≥0 is a normal family on Bn and f = f (·, 0).

Proof. It suffices to consider the univalent subordination chain f (z,t) given by(2.7).

Since D f (0, t) = e
∫ t

0 A(τ )dτ , {e− ∫ t
0 A(τ )dτ f (·, t)}t≥0 is a normal family on Bn and

f = f (·, 0) by Theorem 2.3, the conclusion follows.

Now we prove that if A : [0, ∞) → L(Cn, Cn) is a measurable mapping
which satisfies the conditions in Definition 1.5 and the assumption (2.6), then the
solutions of the generalized Loewner differential equation (2.12) that satisfy a nor-
mal family condition provide univalent subordination chains which have general-
ized parametric representation with respect to A. This result is a generalization
of [8, Theorem 2.6] (see also [19, Theorems 2.2 and 2.3] and [25, Theorem 6]). In
the case of one complex variable, compare with [21].

Theorem 2.5. Let A : [0, ∞) → L(Cn, Cn) be a measurable mapping which
satisfies the assumptions of Definition 1.5 and the condition (2.6). Also let f =
f (z, t) : Bn ×[0, ∞) → Cn be a mapping such that f (·, t) ∈ H(Bn), f (0, t) = 0,

D f (0, t) = e
∫ t

0 A(τ )dτ for t ≥ 0, and f (z, ·) is locally absolutely continuous on
[0, ∞) locally uniformly with respect to z ∈ Bn. Let h = h(z, t) : Bn × [0, ∞) →
Cn satisfy the assumptions of Theorem 2.1. Assume f (z, t) satisfies the Loewner
differential equation

∂ f

∂t
(z, t) = D f (z, t)h(z, t) a.e. t ≥ 0, ∀z ∈ Bn. (2.12)

Also assume that {e− ∫ t
0 A(τ )dτ f (·, t)}t≥0 is a normal family on Bn. Then f (z, t) is

a univalent subordination chain such that f (z, s) = f (v(z, s, t), t) and

f (z, s) = lim
t→∞ e

∫ t
0 A(τ )dτ v(z, s, t)

locally uniformly on Bn for s ≥ 0, where v = v(z, s, t) is the unique locally
Lipschitz continuous solution on [s, ∞) of the initial value problem

∂v

∂t
= −h(v, t) a.e. t ≥ s, v(z, s, s) = z,

for all s ≥ 0 and z ∈ Bn. Moreover, f (·, 0) has generalized parametric represen-
tation with respect to A.

Proof. Let v = v(z, s, t) be the unique Lipschitz continuous solution of the initial
value problem

∂v

∂t
= −h(v, t) a.e. t ≥ s, v(z, s, s) = z, (2.13)
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for all z ∈ Bn and s ≥ 0. Also let f (z, s, t) = f (v(z, s, t), t) for z ∈ Bn and
t ≥ s ≥ 0. We may prove that f (z, s, t) = f (z, s, s), i.e. f (v(z, s, t), t) = f (z, s)
for z ∈ Bn and t ≥ s ≥ 0, by the same argument as in the proof of [8, Theorem
2.6] (see also the proof of [19, Theorem 2.2]).

We next prove that f (·, t) is biholomorphic on Bn and f (·, 0) has generalized
parametric representation with respect to A. To this end, we prove that there exists
a sequence {tm}m∈N such that 0 < tm → ∞ and

lim
m→∞ e

∫ tm
0 A(τ )dτ v(z, s, tm) = f (z, s) (2.14)

locally uniformly on Bn . Indeed, since {e− ∫ t
0 A(τ )dτ f (·, t)}t≥0 is a normal family

on Bn , we deduce that for each r ∈ (0, 1) there exists a constant K (r) > 0 such
that

‖e− ∫ t
0 A(τ )dτ f (z, t)‖ ≤ K (r), ‖z‖ ≤ r, t ≥ 0.

Hence

‖e− ∫ t
0 A(τ )dτ f (z, t) − z‖ ≤ (K (r) + r)

‖z‖2

r2
, ‖z‖ ≤ r, t ≥ 0.

Replacing z by v(z, s, t) in the above inequality and using the relation (2.2) and the
fact that f (z, s) = f (v(z, s, t), t), we obtain that

‖ f (z, s)−e
∫ t

0 A(τ )dτ v(z, s, t)‖ =‖e
∫ t

0 A(τ )dτ [e− ∫ t
0 A(τ )dτ f (v(z, s, t),t)−v(z, s,t)]‖

≤ ‖e
∫ t

0 A(τ )dτ‖ K (r) + r

r2
‖v(z, s, t)‖2

≤ K (r) + r

(1 − r)4
‖e

∫ t
0 [A(τ )−2m(A(τ ))In]dτ‖e2

∫ s
0 m(A(τ ))dτ .

Since
∫ ∞

0 ‖e
∫ t

0 [A(τ )−2m(A(τ ))In]dτ‖dt < ∞, there exists a sequence {tm}m∈N such

that 0 < tm → ∞ and ‖e
∫ tm

0 [A(τ )−2m(A(τ ))In]dτ‖ → 0 as m → ∞. Hence the rela-
tion (2.14) holds. On the other hand, since the limit limt→∞ e

∫ t
0 A(τ )dτ v(z, s, t) =

g(z, s) exists locally uniformly on Bn by Theorem 2.3 and g(z, s) is a univalent
subordination chain such that g(·, 0) has generalized parametric representation with
respect to A, we deduce from the above relations that f (z, t) = g(z, t), and thus
f (z, t) is a univalent subordination chain such that f (·, 0) has generalized paramet-
ric representation with respect to A. This completes the proof.

We next prove the converse of Theorem 2.3 (cf. [8, Theorem 2.8]; compare
with [6, Theorem 1.10] and [11, Theorem 2.2]).

Theorem 2.6. Let A : [0, ∞) → L(Cn, Cn) be a measurable mapping which
satisfies the assumptions of Definition 1.5 and the relation (2.6). Also let f (z, t)

be a univalent subordination chain such that D f (0, t) = e
∫ t

0 A(τ )dτ for t ≥ 0,
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and let v = v(z, s, t) be the transition mapping associated with f (z, t). Assume

{e− ∫ t
0 A(τ )dτ f (·, t)}t≥0 is a normal family on Bn. Then the limit

lim
t→∞ e

∫ t
0 A(τ )dτ v(z, s, t) = f (z, s)

exists locally uniformly on Bn for s ≥ 0. Moreover, f (·, 0) has generalized para-
metric representation with respect to A.

Proof. Fix r ∈ (0, 1) and t > s ≥ 0. Since ‖A(·)‖ is uniformly bounded on
[0, ∞), it follows that there exists b > 0 such that ‖A(t)‖ ≤ b for t ≥ 0. Let
gs,t (z) = z −v(z, s, t) for z ∈ Bn . Then Dgs,t (0) = In −e− ∫ t

s A(τ )dτ and gs,t ∈ N .

Also m(In − e− ∫ t
s A(τ )dτ ) > 0. Indeed, fix u ∈ Cn such that ‖u‖ = 1 and let

q(τ ) = ‖e− ∫ τ
s A(ξ)dξ (u)‖2 for τ ≥ s. Then q is locally Lipschitz continuous on

[s, ∞), since ‖A(t)‖ ≤ b for t ≥ 0. Hence there exists (dq/dτ)(τ ) for almost all
τ ≥ s. Since m(A(t)) > 0 for t ≥ 0 and the mapping A satisfies the condition
(1.1), we deduce that

A(τ ) ◦ e− ∫ τ
s A(ξ)dξ = e− ∫ τ

s A(ξ)dξ ◦ A(τ ), a.e. τ ≥ s,

and hence

q ′(τ ) = 2

〈

d

dτ
e− ∫ τ

s A(ξ)dξ (u), e− ∫ τ
s A(ξ)dξ (u)

〉
= −2
〈A(τ )e− ∫ τ

s A(ξ)dξ (u), e− ∫ τ
s A(ξ)dξ (u)〉 < 0, a.e. τ ≥ s.

Hence q(τ ) < 1 for τ > s, i.e. ‖e− ∫ τ
s A(ξ)dξ‖ < 1 for τ > s, and thus

m(In − e− ∫ t
s A(τ )dτ ) = min‖z‖=1

{1 − 
〈e− ∫ t
s A(τ )dτ (z), z〉} ≥ 1 − ‖e− ∫ t

s A(τ )dτ‖ > 0,

as desired.
Next, in view of Lemma 1.2, we deduce that

‖gs,t (z)‖ ≤ 4r

(1 − r)2
|V (In − e− ∫ t

s A(τ )dτ )| ≤ 4r

(1 − r)2
‖In − e− ∫ t

s A(τ )dτ‖

for ‖z‖ ≤ r . Now, since ‖A(t)‖ ≤ b for t ≥ 0, we obtain that

‖In − e− ∫ t
s A(τ )dτ‖ ≤ sup

τ∈[s,t]

{
‖A(τ )‖ · ‖e− ∫ τ

s A(ξ)dξ‖
}

(t − s) ≤ b(t − s),

and hence

‖gs,t (z)‖ ≤ 4rb

(1 − r)2
(t − s), ‖z‖ ≤ r, t ≥ s ≥ 0.
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Equivalently

‖z − v(z, s, t)‖ ≤ 4rb

(1 − r)2
(t − s), ‖z‖ ≤ r, t ≥ s ≥ 0. (2.15)

On the other hand, using the Cauchy integral formula and the fact that v(·, s, t) is a
Schwarz mapping, we deduce that for each r ∈ (0, 1) there exists L = L(r) > 0
such that

‖v(z, s, t) − v(w, s, t)‖ ≤ L(r)‖z − w‖, z, w ∈ B
n
r , t ≥ s ≥ 0.

Replacing w by v(z, s1, s2) in the above relation and using the semigroup property
of the transition mapping, we deduce in view of (2.15) that

‖v(z, s2, t) − v(z, s1, t)‖ = ‖v(z, s2, t) − v(v(z, s1, s2), s2, t)‖
≤ L(r)

4rb

(1 − r)2
(s2 − s1) = L∗(r, A)(s2 − s1), 0 ≤ s1 ≤ s2 ≤ t, ‖z‖ ≤ r.

Next, we may prove that f (z, ·) is locally Lipschitz continuous on [0, ∞) locally
uniformly with respect to z ∈ Bn as in the proof of [8, Theorem 2.8]. Finally, using
arguments similar to those in the proof of [6, Theorem 1.10], we deduce that there
exists a mapping h = h(z, t) such that h(·, t) ∈ N , Dh(0, t) = A(t) for t ≥ 0,
h(z, ·) is measurable on [0, ∞) for z ∈ Bn , and

∂ f

∂t
(z, t) = D f (z, t)h(z, t) a.e. t ≥ 0, ∀z ∈ Bn.

Finally, in view of Theorem 2.5, the conclusion follows.

Combining Theorem 2.6 and Corollary 2.4, we deduce the following result,
which yields the equivalence between the notions of generalized parametric repre-
sentation with respect to a measurable linear operator and non-normalized univa-
lent subordination chains (cf. [8, Corollary 2.9]; compare with [11, Corollary 2.5]
and [24]).

Corollary 2.7. Let A : [0, ∞) → L(Cn, Cn) be a measurable mapping which
satisfies the assumptions of Definition 1.5 and the condition (2.6). Also let f ∈
S(Bn). Then f has generalized parametric representation with respect to A if and
only if there exists a univalent subordination chain f (z, t) such that D f (0, t) =
e
∫ t

0 A(τ )dτ , {e− ∫ t
0 A(τ )dτ f (·, t)}t≥0 is a normal family on Bn and f = f (·, 0).

In view of (2.2) and (2.3), we deduce the following growth result for map-
pings in S̃0

A(Bn), where A is a measurable diagonal matrix with its eigenvalues
a1, . . . , an , such that 
a1(t) = · · · = 
an(t) for t ≥ 0 (if A = In , see [23]
and [6]).
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Remark 2.8. Let a j : [0, ∞) → C be uniformly bounded measurable functions
for j = 1, . . . , n, such that 
a1(t) = · · · = 
an(t) ≥ δ for some δ > 0. If
A : [0, ∞) → L(Cn, Cn) is a diagonal matrix with eigenvalues a1, . . . , an and if
f ∈ S̃0

A(Bn), then

‖z‖
(1 + ‖z‖)2

≤ ‖ f (z)‖ ≤ ‖z‖
(1 − ‖z‖)2

, z ∈ Bn.

Proof. It is clear that the matrix-valued mapping A satisfies the assumptions of
Definition 1.5. Since f has generalized parametric representation with respect to
A, there exists a mapping h = h(z, t) : Bn × [0, ∞) → Cn such that h(·, t) ∈ N ,
Dh(0, t) = A(t) for t ≥ 0, h(z, ·) is measurable on [0, ∞) for z ∈ Bn , and
f (z) = limt→∞ e

∫ t
0 A(τ )dτ v(z, t) locally uniformly on Bn , where v = v(z, t) is the

unique locally Lipschitz continuous solution on [0, ∞) of the initial value problem

∂v

∂t
= −h(v, t) a.e. t ≥ 0, v(z, 0) = z.

On the other hand, since A(t) is diagonal and its eigenvalues satisfy the equality

a1(t) = · · · = 
an(t), it follows that

‖ f (z)‖ = lim
t→∞ ‖e

∫ t
0 A(τ )dτ v(z, t)‖ = lim

t→∞ e
∫ t

0 
a1(τ )dτ‖v(z, t)‖, z ∈ Bn.

Finally, taking into account the relations (2.2) and (2.3), the conclusion follows.

3. Generalized spirallike mappings
and non-normalized univalent subordination chains

In this section we apply the above results to introduce a generalization of the usual
notion of spirallikeness on Bn , and to investigate the connection between this notion
and univalent subordination chains.

Definition 3.1. Let A : [0, ∞) → L(Cn, Cn) be a locally Lebesgue integrable
mapping such that m(A(t)) > 0 for t ≥ 0. Also let � be a domain in Cn which
contains the origin. We say that � is generalized spirallike with respect to A if

e− ∫ t
s A(τ )dτ (w) ∈ �, for all w ∈ � and t ≥ s ≥ 0.
A mapping f ∈ S(Bn) is called generalized spirallike with respect to A if

f (Bn) is a generalized spirallike domain with respect to A.

Remark 3.2. Clearly if A(t) is constant, we obtain the usual notion of spirallike-
ness with respect to a given constant operator A. In particular, if A(t) ≡ In in
Definition 3.1, then � is a starlike domain.

We next obtain the following characterization of generalized spirallikeness
with respect to a given measurable operator in terms of univalent subordination
chains.
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Theorem 3.3. Let A : [0, ∞) → L(Cn, Cn) be a locally Lebesgue integrable
mapping such that m(A(t)) > 0 for t ≥ 0 and the condition (1.1) holds. Also let
f ∈ H(Bn) be a normalized mapping. Then f is generalized spirallike with respect

to A if and only if f (z, t) = e
∫ t

0 A(τ )dτ f (z) is a univalent subordination chain.

Proof. It suffices to apply Definition 3.1 and the notion of a univalent subordination
chain.

In view of Theorem 3.3, we deduce the following consequence, which yields
that generalized spirallike mappings with respect to measurable linear operators,
that satisfy the assumptions of Definition 1.5 and the condition (2.6), have general-
ized parametric representation. If A(t) is constant, we obtain [8, Corollary 2.12].
Recall that in dimension n ≥ 2, there exist spirallike mappings with respect to a
given linear operator which do not belong to the class S0(Bn) (see [7]).

Corollary 3.4. Let A : [0, ∞) → L(Cn, Cn) be a measurable mapping which
satisfies the assumptions of Definition 1.5 and the relation (2.6). Also let f : Bn →
Cn be a generalized spirallike mapping with respect to A. Then f has generalized
parametric representation with respect to A.

Proof. Since ‖A(·)‖ is uniformly bounded on [0, ∞) and the mapping A is mea-
surable, it follows that A is locally Lebesgue integrable on [0, ∞). Taking into

account Theorem 3.3, we deduce that f (z, t) = e
∫ t

0 A(τ )dτ f (z) is a univalent sub-

ordination chain, and since f ∈ S(Bn), {e− ∫ t
0 A(τ )dτ f (·, t)}t≥0 is a normal family

on Bn . Consequently, f has generalized parametric representation with respect to
A by Corollary 2.7.

We next obtain the following analytical characterization of generalized spiral-
likeness with respect to a given measurable operator. If A(t) is constant, we obtain
the usual characterization of spirallikeness due to Suffridge [30] (see also [12]).

Theorem 3.5. Let A : [0, ∞) → L(Cn, Cn) be a measurable mapping which
satisfies the assumptions of Definition 1.5. Also let f ∈ LSn. Then f is generalized
spirallike with respect to A if and only if


〈[D f (z)]−1 A(t) f (z), z〉 > 0, a.e. t ≥ 0, ∀z ∈ Bn \ {0}. (3.1)

Proof. First assume that f is generalized spirallike with respect to A. Since ‖A(t)‖
is uniformly bounded, it follows that the mapping qt (τ ) = exp(− ∫ t+τ

t A(ξ)dξ) is
locally Lipschitz continuous on [0, ∞) for each t ≥ 0, and

lim
τ→0+

In − e− ∫ t+τ
t A(ξ)dξ

τ
= A(t), a.e. t ≥ 0.

Fix t ≥ 0 such that the above relation holds, and let F(z, τ ) = e− ∫ t+τ
t A(ξ)dξ f (z)

for z ∈ Bn and τ ≥ 0. Since f is generalized spirallike with respect to A,
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F(Bn, τ ) ⊆ f (Bn) for τ ≥ 0. Also F(z, 0) = f (z), F(0, τ ) = 0 and

lim
τ→0+

F(z, 0) − F(z, τ )

τ
= A(t) f (z)

locally uniformly on Bn . Taking into account [29, Lemma 2], we deduce that


〈[D f (z)]−1 A(t) f (z), z〉 ≥ 0, z ∈ Bn.

Next, fix w ∈ Cn , ‖w‖ = 1, and let r : U → C be given by

r(ζ ) =



1

ζ
〈[D f (ζw)]−1 A(t) f (ζw), w〉, 0 < |ζ | < 1

〈A(t)w, w〉, ζ = 0.

Then r is a holomorphic function on the unit disc, 
r(ζ ) ≥ 0 for 0 < |ζ | < 1, and
since m(A(t)) > 0 it follows that 
r(0) > 0. Taking into account the minimum
principle for harmonic functions, we deduce that 
r(ζ ) > 0 for |ζ | < 1. Therefore


〈[D f (z)]−1 A(t) f (z), z〉 > 0, z ∈ Bn \ {0}.

Conversely, assume that the relation (3.1) holds. Let E ⊂ [0, ∞) be a null set such
that the relation (3.1) holds for all t ∈ [0, ∞) \ E and for all z ∈ Bn . Also let
h = h(z, t) : Bn × [0, ∞) → Cn be given by

h(z, t) =
{[D f (z)]−1 A(t) f (z), z ∈ Bn, t ∈ [0, ∞) \ E

A(t)(z), z ∈ Bn, t ∈ E .

Then h(z, t) satisfies the assumptions of Theorem 2.1. Fix s ≥ 0 and z ∈ Bn , and
let v = v(z, s, t) be the unique solution of the initial value problem

∂v

∂t
= −h(v, t), a.e. t ≥ s, v(z, s, s) = z. (3.2)

Since
∫ ∞

0 m(A(t))dt = ∞, it follows in view of (2.2) that ‖v(z, s, t)‖ → 0 as
t → ∞. On the other hand, f is biholomorphic on Bn , since f is spirallike
with respect to each operator A(t) for almost all t ∈ [0, ∞). Setting u(z, s, t) =
f −1(e− ∫ t

s A(τ )dτ f (z)) for t sufficiently close to s, we obtain that u(z, s, t) is a so-
lution of (3.2). The uniqueness of solutions to (3.2) and the semigroup property
yield the equality u(z, s, t) = v(z, s, t) for all t ≥ s. Thus u(·, s, t) is a Schwarz

mapping, in view of Theorem 2.1. Therefore e− ∫ t
s A(τ )dτ f (Bn) ⊆ f (Bn) for t ≥ s,

as desired. This completes the proof.
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Remark 3.6.

(i) Let A : [0, ∞) → L(Cn, Cn) be a measurable mapping which satisfies the
assumptions of Definition 1.5. In view of Theorem 3.5, we deduce that a map-
ping f ∈ LSn is generalized spirallike with respect to A if and only if f is
spirallike with respect to each operator A(t) for almost all t ≥ 0.

(ii) Let f ∈ S(Bn) be a generalized spirallike mapping with respect to A. Also
let E ⊂ [0, ∞) be such that λ(E) = 0 and f is spirallike with respect to each
operator A(t) for t ∈ [0, ∞) \ E . Here λ is the usual Lebesgue measure on
R. If there exists t0 ∈ [0, ∞) \ E such that A(t0) + [A(t0)]∗ = 2In , then
f ∈ S0(Bn) by [8, Theorem 3.14]. Here [A(t0)]∗ is the adjoint operator of
A(t0).

If A = exp(−iα)In in Theorem 3.5, where α : [0, ∞) → [−δ, δ] is a measurable
function and δ ∈ (0, π/2), then we obtain the following result (cf. [14]):

Corollary 3.7. Let δ ∈ (0, π/2) and α : [0, ∞) → [−δ, δ] be a measurable func-
tion. Also let f ∈ LSn and A(t) = e−iα(t) In for t ≥ 0. Then f is generalized
spirallike with respect to A if and only if


[e−iα(t)〈[D f (z)]−1 f (z), z〉] > 0, a.e. t ≥ 0, ∀z ∈ Bn \ {0}. (3.3)

Proof. Elementary computations yield that ‖A(t)‖ = 1, m(A(t)) = cos α(t) for
t ≥ 0, and

∫ ∞
0 m(A(t))dt = ∞. Therefore the mapping A satisfies the assumptions

of Definition 1.5. In view of Theorem 3.5, we deduce that f is generalized spirallike
with respect to A if and only if the relation (3.3) holds, as desired.

Remark 3.8. Let f be a generalized spirallike mapping with respect to A, where
A(t) = e−iα(t) In for t ≥ 0, and α satisfies the assumptions of Corollary 3.7. Then
f is spirallike of type α(t) for almost all t ≥ 0, and hence

‖z‖
(1 + ‖z‖)2

≤ ‖ f (z)‖ ≤ ‖z‖
(1 − ‖z‖)2

, z ∈ Bn,

by Remark 2.8. However, if f is a spirallike mapping with respect to a given mea-
surable linear operator A, then f does not necessarily satisfy the above growth
result [15].

4. Examples of generalized spirallike mappings
with respect to diagonal operators

We next consider certain examples of generalized spirallike mappings with respect
to measurable diagonal matrices. The proof of the first example is a direct applica-
tion of the notion of generalized spirallikeness.
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Example 4.1. Let α j : [0, ∞) → C be a locally Lebesgue integrable function
on [0, ∞) with 
α j (t) > 0 for t ≥ 0. If f j is a generalized spirallike function
with respect to α j for j = 1, . . . , n, then the mapping f : Bn → Cn given by
f (z) = ( f1(z1), . . . , fn(zn)) is generalized spirallike with respect to A, where
A(t) = diag(α1(t), . . . , αn(t)) for t ≥ 0.

Example 4.2. Let δ ∈ (0, π/2) and α : [0, ∞) → [−δ, δ] be a measurable func-
tion. Also let a(t) = e−iα(t) for t ≥ 0. If λ ∈ C is such that |λ| ≤ cos δ, then the
function f : U → C given by f (z1) = z1/(1 − λz1) is generalized spirallike with
respect to the function a.

Proof. It suffices to apply Theorem 3.5 to show that f (z1) = z1/(1 − λz1) is
generalized spirallike with respect to the function a.

Example 4.3. In view of Examples 4.1 and 4.2, we deduce that if δ j ∈ (0, π/2),
α j : [0, ∞) → [−δ j , δ j ] is a measurable function and |λ j | ≤ cos δ j for j =
1, . . . , n, then the mapping F : Bn → Cn ,

F(z) =
(

z1

1 − λ1z1
, . . . ,

zn

1 − λnzn

)
, z = (z1, . . . , zn) ∈ Bn,

is generalized spirallike with respect to A, where A(t)=diag(e−iα1(t), . . . , e−iαn(t))

for t ≥ 0.

Remark 4.4. Under the same assumptions as in Example 4.3, the mapping G :
Bn → Cn given by G(z) = (z1eλ1z1, . . . , zneλn zn ) is generalized spirallike with
respect to the operator A, where A(t) = diag(α1(t), . . . , αn(t)) for t ≥ 0.

The next example of a generalized spirallike mapping with respect to a measur-
able diagonal matrix is provided by the Roper-Suffridge extension operator. This
operator was introduced by Roper and Suffridge [28], as follows: let �n : LS →
LSn be given by

�n( f )(z) =
(

f (z1), z̃
√

f ′(z1)
)
, z = (z1, z̃) ∈ Bn.

Here we choose the principal branch of the power function. One of the main prop-
erties of the operator �n is that it preserves convexity from dimension one to the
n-dimensional case, i.e. if f is convex on U then �n( f ) is also convex on Bn

(see [28]). We have

Example 4.5. Let b, δ > 0 and α : [0, ∞) → C be a measurable function such that

α(t) ≥ δ and |α(t)| ≤ b for t ≥ 0. Also let f be a generalized spirallike function
with respect to α and let A : [0, ∞) → L(Cn, Cn) be given by A(t) = α(t)In for
t ≥ 0. Then �n( f ) is generalized spirallike with respect to A.

Proof. It is obvious that the mapping A satisfies the assumptions of Definition 1.5.
Since f is generalized spirallike with respect to α, it follows that f is spirallike with
respect to α(t) for almost all t ≥ 0, by Remark 3.6 (i). Then �n( f ) is spirallike
with respect to A(t) for almost all t ≥ 0 by [10, Corollary 2.3]. Hence �n is
generalized spirallike with respect to A, as desired.
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We next consider conditions under which the mapping F : Bn → Cn given
by F(z) = P(z)(z) is generalized spirallike with respect to a measurable diagonal
operator A, where P : Bn → C is a holomorphic function with P(0) = 1. We have
(cf. [20])

Example 4.6.

(i) Let δ ∈ (0, π/2) and α : [0, ∞) → [−δ, δ] be a measurable function. Then
F(z) = P(z)(z) is generalized spirallike with respect to A : [0, ∞) →
L(Cn, Cn) given by A(t) = e−iα(t) In if and only if



[

eiα(t)
{

1 + D P(z)(z)

P(z)

}]
> 0, a.e. t ≥ 0, ∀z ∈ Bn. (4.1)

(ii) In particular, if f j is generalized spirallike on U with respect to the function
a : [0, ∞) → C given by a(t) = e−iα(t) for j = 1, . . . , n, and if λ j ≥ 0,∑n

j=1 λ j = 1, then the mapping F : Bn → Cn , given by

F(z) = z
n∏

j=1

(
f j (z j )

z j

)λ j

, z = (z1, . . . , zn) ∈ Bn,

is generalized spirallike with respect to A given by A(t) = e−iα(t) In .

Proof. Let L(z) = D P(z)/P(z). After elementary computations, we obtain that

[DF(z)]−1 = 1

P(z)

[
In − zL(z)(·)

1 + L(z)(z)

]
, z ∈ Bn.

Then


〈[DF(z)]−1 A(t)F(z), z〉 = 

[

e−iα(t)‖z‖2

1 + L(z)(z)

]
, z ∈ Bn, t ≥ 0.

In view of Theorem 3.5, we deduce that F is generalized spirallike with respect to
A if and only if 
[eiα(t)(1 + L(z)(z))] > 0 for almost all t ≥ 0 and for all z ∈ Bn ,
i.e. if and only if the relation (4.1) holds.

To deduce (ii), it suffices to apply (4.1).

The following result provides other examples of generalized spirallike map-
pings on Bn with respect to a given measurable diagonal operator.

Theorem 4.7. Let α ∈ [0, 1], b, η > 0 and λ : [0, ∞) → C be a measurable
function such that |λ(t)| ≤ b and 
λ(t) ≥ η for t ≥ 0. Also let f : U → C be a
generalized spirallike function with respect to λ and let Fα : Bn → Cn be given by

Fα(z) =
(

f (z1), z̃

(
f (z1)

z1

)α)
, z = (z1, z̃) ∈ Bn.

Then Fα is generalized spirallike with respect to A, where A(t) = λ(t)In.
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Proof. It suffices to assume n = 2. By direct computations we have

[DFα(z)]−1 A(t)Fα(z) =
(

λ(t) f (z1)

f ′(z1)
, λ(t)z2(1 − α) + λ(t)αz2

f (z1)

z1 f ′(z1)

)
.

Hence


〈[DFα(z)]−1 A(t)Fα(z), z〉
= (|z1|2 + α|z2|2)


[
λ(t)

f (z1)

z1 f ′(z1)

]
+ |z2|2(1 − α)
λ(t).

Since f is generalized spirallike with respect to λ and α ∈ [0, 1], we deduce that


〈[DFα(z)]−1 A(t)Fα(z), z〉 > 0, a.e. t ≥ 0, ∀z ∈ B2 \ {0}.
Therefore the relation (3.1) holds. On the other hand, since |λ(t)| ≤ b, we deduce
that ‖A(t)‖ ≤ b for t ≥ 0. Moreover, since 
λ(t) ≥ η > 0, we deduce that∫ ∞

0 m(A(t))dt = ∞. Hence Fα is generalized spirallike with respect to A by
Theorem 3.5. This completes the proof.

We next give an example which shows the difference between spirallikeness
and generalized spirallikeness with respect to a measurable diagonal operator.

Example 4.8. Let α ∈ (−π/2, π/2) and f : U → C be given by

f (z) = z

(1 − z)2e−iα cos α
, z ∈ U.

If f is generalized spirallike with respect to a uniformly bounded measurable func-
tion a : [0, ∞) → C with 
a(t) ≥ δ, t ≥ 0, for some δ > 0, then there exists a
measurable function r(t) such that r(t) > 0 and a(t) = r(t)e−iα for all t ≥ 0.

Proof. Since

f ′(z) = 1 + (2e−iα cos α − 1)z

(1 − z)2e−iα cos α+1
,

we deduce that the function

g(z) = eiα z f ′(z)
f (z)

maps 1 to ∞, −1 to i sin α, −e2iα to 0 and 0 to eiα . Thus, g maps the unit disc onto
the right half plane. This implies that f is a spirallike function of type α and if f
is a generalized spirallike function with respect to a(t), then a(t) = r(t)e−iα with
r(t) > 0 for all t .
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