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Qualitative properties of coupled parabolic systems
of evolution equations
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Abstract. We apply functional analytical and variational methods in order to
study well-posedness and qualitative properties of evolution equations on product
Hilbert spaces. To this aim we introduce an algebraic formalism for matrices of
sesquilinear mappings. We apply our results to parabolic problems of different
nature: a coupled diffusive system arising in neurobiology, a strongly damped
wave equation, and a heat equation with dynamic boundary conditions.
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1. Introduction

Our aim in this paper is to extend some ideas and techniques introduced by R. Nagel
in [17] to investigate systems of linear partial differential equations by means of op-
erator matrices. In his paper, the basic intuition was that a linear algebraic formal-
ism also for matrices of unbounded operators may help to discuss well-posedness
and spectral issues in analogy to standard matrix analysis. Instead of dealing with
general operator matrices, we introduce suitable matrices of sesquilinear mappings
and then investigate well-posedness of differential systems by the elegant theory of
sesquilinear forms on Hilbert spaces. In order to fix the ideas we first present our
setting.

Assumption 1.1. Throughout this paper we impose the following, for i, j =
1, . . . , m.

(i) Hi , Vi are complex Hilbert spaces such that Vi is continuously and densely
embedded in Hi .

(ii) ai j : Vj × Vi → C are sesquilinear mappings, i.e., mappings that are linear
in the first and antilinear in the second variable.

We always denote by H := ∏m
i=1 Hi and V := ∏m

i=1 Vi the product Hilbert spaces
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endowed with the canonical scalar products

(f | g)H :=
m∑

i=1

( fi | gi )Hi and (f | g)V :=
m∑

i=1

( fi | gi )Vi

for f, g ∈ H and f, g ∈ V , respectively. Here and in the following we write f

for ( f1, . . . , fm)�, and likewise for g, h, etc. Observe that V is continuously and
densely embedded in H.

We introduce a densely defined, sesquilinear form a on V defined by

a(f, g) :=
m∑

i, j=1

ai j ( f j , gi ), f, g ∈ V . (1.1)

Since V = H, there exists a canonical operator A associated with a given by

D(A) := {f ∈ V : ∃g ∈ H s.t. a(f, h) = (g | h)H for all h ∈ V},
Af := −g.

Similarly, we can associate with each mapping ai j : Vj × Vi → C an operator Ai j
from Hj to Hi by

D(Ai j ) := { f j ∈ Vj : ∃gi ∈ Hi s.t. ai j ( f j , hi ) = (gi | hi )Hi for all hi ∈ Vi },
Ai j f j := −gi .

Let us now briefly discuss the special case where for i �= j the mappings ai j can be
extended continuously to the whole product space Hj ×Hi , so that each operator Ai j
is bounded from Hj to Hi . Then it is possible to identify the operator A associated
with a with some ease.

Proposition 1.2. Assume that for i �= j the sesquilinear mappings ai j are contin-
uous on Hj × Hi . Then the operator A associated with a has diagonal domain
D(A) := ∏m

i=1 D(Aii ) and it is given by

Af :=
(

m∑
i=1

A1i fi , . . . ,

m∑
i=1

Ami fi

)�
, f ∈ D(A),

or rather, in matrix form

A =



A11 · · · A1m
...

. . .
...

Am1 · · · Amm


 . (1.2)
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Proof. Let f ∈ V be such that there exists a vector g ∈ H satisfying a(f, h) = (g |
h)H for all h ∈ V . Observe that if the form ai j is associated with Ai j ∈ L(Hj , Hi ),
then

a(f, h) =
m∑

i, j=1

ai j ( f j , hi ) =
m∑

i=1

aii ( fi , hi ) −
∑
i �= j

(Ai j f j | hi )Hi .

On the other hand,

a(f, h) = (g | h)H =
m∑

i=1

(gi | hi )Hi .

In particular, considering vectors of the form h = (0, . . . , h, . . . , 0)� ∈ H, we see
that aii ( fi , h) − ∑

j �=i (Ai j f j | g)Hi = (gi | h)Hi , i.e.,

aii ( fi , h) =
(

gi +
∑
j �=i

Ai j f j | h
)

Hi
=: (g̃i | hi )Hi

holds for some g̃i ∈ Hi and all h ∈ Hi . It follows from the definition of the operator
associated with aii that f ∈ D(Aii ), and Aii fi = −g̃i = −gi − ∑

j �=i Ai j f j .
Summing up,

∑m
j=1 Ai j f j = −gi for all i = 1 . . . , m. It can be proven likewise

that the converse inclusion holds.

Such a casual interpretation of an entrywise interplay between form a and op-
erator matrix A is not always justified. In Section 4.1 we consider the case of
a form whose associated operator is of the type described above although the as-
sumptions of Theorem 1.2 are not satisfied. However, it may as well be that D(A)

is not a product space, or furthermore that some Ai j = 0 although ai j �≡ 0, cf.
Sections 4.2-4.3, respectively. Still, we keep the above identification as a heuristic
motivation for characterizing generator properties of A, as well as some features
of the generated semigroups, by means of the individual mappings ai j . In a certain
sense, this is the same target pursued in [17]. In the spirit of Nagel’s article, in most
of our results we deduce properties of a from individual conditions on ai j .

We believe that there are good reasons to develop a matrix theory for forms.
First, we show in Section 2 that whole classes of differential problems fit our frame-
work, including evolution equations that do not look like systems of parabolic equa-
tions. Furthermore, our matrix formalism allows us to check simple, linear alge-
braic properties of finite-dimensional matrices, instead of dealing with complicated
infinite-dimensional problems.

Another reason to treat systems by means of sesquilinear forms is that in-
variance of subsets of the state space can be obtained by a criterion due to E.M.
Ouhabaz, cf. [19, Theorem 2.2]. We extensively use it in order to investigate invari-
ance properties of sets that, in our opinion, are particularly relevant for systems of
coupled evolution equations.
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Finally, we emphasize that the setting in [17] is more general than ours. In fact,
Nagel considers the case of C0-semigroups, whereas T. Kato has shown that only
analytic, quasi-contractive semigroups (and not even all of them) can be generated
by operator associated with forms. On the other hand, in [17] only very mild forms
of coupling could be treated, cf. the results in [17, Section 3]: in particular, no
well-posedness result was proved for the case where all off-diagonal operators Ai j
in (1.2) are “as unbounded” as the diagonal ones. We consider some possibile
applications in Section 4. A further class of systems that fit our theory is given by
coupled diffusion-ODE problems of FitzHugh-Nagumo type, see e.g. [8].

Our results should be compared with those obtained by H. Amann in [2] and
E.M. Ouhabaz in [18] for parabolic problems with state space L p(�, H), where
H is an arbitrary Hilbert space. Well-posedness for a general class of coupled
diffusion systems has been discussed in [1]. Finally, let us mention that a rich and
elegant theory for operator matrices (both with diagonal and non-diagonal domain),
in particular concerning asymptotics of semigroups, has been developed by K.-J.
Engel in [11].

ACKNOWLEDGEMENTS. The authors wish to express their gratitude to Wolfgang
Arendt and Markus Biegert (Ulm) for helpful discussions. Part of this paper has
been written while the second author was visiting Abdelaziz Rhandi at the Univer-
sity Cadi Ayyad of Marrakech (Morocco), whom he warmly thanks for his hospi-
tality.

2. Matrices of forms

For given Hilbert spaces V, H such that V ↪→ H and numbers M, ω ≥ 0 and
α > 0, a sesquilinear form a : V × V → C is said to be continuous with constant
M and H-elliptic with constants (α, ω) if

|a(u, v)| ≤ M‖u‖V ‖v‖V , u, v ∈ V,

and
Re a(u, u) ≥ α‖u‖2

V − ω‖u‖2
H , u ∈ V,

respectively. It is said to be coercive with constant α if it is H -elliptic with constants
(α, 0), and accretive if Re a(u, u) ≥ 0 for all u ∈ V .

By Kato’s form characterization of sectorial operators, cf. [3, Section 5.3.4],
the operator A associated with a generates an analytic semigroup (ez A)z∈�θ of angle
θ ∈ (0, π

2 ] such that ‖ez A‖L(H) ≤ eω|z|, z ∈ �θ , for some ω ∈ R, if and only if a is
densely defined, continuous, and H -elliptic; such a semigroup is contractive if and
only if a is accretive. Thus, we are interested in continuity and ellipticity properties
for the form a introduced in Section 1.
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To begin with, we recall the following perturbation lemma,cf. [16, Lemma 2.1].
For α ∈ [0, 1) we denote by Hα any interpolation space between V and H , i.e., any
linear space V ↪→ Hα ↪→ H that verifies the interpolation inequality

‖ f ‖Hα ≤ Mα‖ f ‖α
V ‖ f ‖1−α

H , f ∈ V .

Lemma 2.1. Let a : V × V → C be a sesquilinear mapping. Let α ∈ [0, 1)

such that a1 : V × Hα → C and a2 : Hα × V → C are continuous sesquilinear
mappings. Then a is H-elliptic if and only if a+a1 +a2 : V ×V → C is H-elliptic.

Observe that the optimal H -ellipticity constants of a and a + a1 + a2 is in
general different.

In the following immediate consequence of Lemma 2.1, Hiα denotes an inter-
polation space between Vi and Hi .

Corollary 2.2. Let aii be Hi -elliptic for all i = 1, . . . , m. Let all off-diagonal
sesquilinear mappings ai j be continuous on Vj × Hiα or on Hjα × Vi . Then also
the form matrix a is H-elliptic.

Proposition 2.3. The form a is continuous if and only if

• for i = 1, . . . , m the forms aii are continuous with constant Mii , and
• for i, j = 1, . . . , m, i �= j , the forms ai j are continuous in the following sense:

there exist αi j ≤ 0 and ωi j ∈ R such that

|ai j ( f, g)|≤−αi j‖ f ‖Vj ‖g‖Vi+ωi j‖ f ‖Hj ‖g‖Hi , for all ( f, g)∈Vj×Vi . (2.1)

In this case the continuity estimates

|a(f, g)| ≤ (‖M‖ + ‖�0‖e2)‖f‖V‖g‖V .

holds, where the scalar matrices M and �0 are given by

M :=




M11 −α12 · · · −α1m
−α21 M22 −α2m

...
. . .

...

−αm1 −αm2 · · · Mmm


 , �0 :=




0 |ω12| · · · |ω1m |
|ω21| 0 |ω2m |

...
. . .

...

|ωm1| |ωm2| · · · 0


 .

Here and in the following, e stands for the norm of the canonical injection of V
into H.

Proof. Let f, g ∈ V and observe that by assumption

|a(f, g)| ≤
m∑

i=1

|aii ( f j , gi )| +
∑
i �= j

|ai j ( f j , gi )|

≤
(

m∑
i=1

Mii‖ fi‖Vi ‖gi‖Vi −
m∑

i �= j

αi j‖ f j‖Vj ‖gi‖Vi

)

+
m∑

i �= j

|ωi j |‖ f j‖Hj ‖gi‖Hi ≤ ‖M‖‖f‖V‖g‖V + ‖�0‖ ‖f‖H‖g‖H,
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where the last step follows from the Cauchy-Schwarz inequality. This shows one
implication. Assume now that a is continuous but ai0 j0 is not, for some i0, j0. Con-
sider sequences (uk)k∈N ⊂ Vj0 and (vk)k∈N ⊂ Vi0 such that ‖uk‖Vj0

= ‖vk‖Vi0
= 1

for all k ∈ N, but limk→∞ |ai0 j0(uk, vk)| = ∞. Define

uk :=




0
...

uk
...

0


 ← j th

0 row, vk :=




0
...

vk
...

0


 ← i th

0 row, k ∈ N.

One sees that ‖uk‖V = ‖vk‖V = 1 for all k ∈ N, and there holds |a(uk, vk)| =
|ai0 j0(uk, vk)|, a contradiction to the continuity of a.

In the following we focus on the case where off-diagonal mappings ai j are ac-
tually unbounded on Hj × Hi , since Corollary 2.2 and Proposition 2.3 already
suffice to discuss parabolic problems whose associated forms have off-diagonal
bounded entries with respect to some interpolation space.

We recall that a scalar m ×m matrix M = (mi j ) is called positive (respectively
negative) semidefinite if there exists µ ≥ 0 such that (Mξ · ξ) ≥ µ|ξ |2 (respec-
tively, (Mξ · ξ) ≤ −µ|ξ |2) for all ξ ∈ Cm . Further, M is called positive definite
(respectively negative definite) if it is positive (respectively negative) semidefinite
and µ can be chosen > 0.

Proposition 2.4. The following assertions hold for the densely defined form a.

(1) If the form a is H-elliptic with constants (α, ω), then for all i = 1, . . . , m the
forms aii are Hi -elliptic with constants (α, ω), too.

(2) Conversely, assume aii to be Hi -elliptic with constants (αi i , ωi i ), i =1,. . . ,m.
Let (2.1) hold, and assume the matrix A := (αi j )1≤i, j≤m to be positive definite
with constant α > 0. Then the form a is H-elliptic with constants (α, ‖�‖),
where � = (ωi j )1≤i, j≤m.

(3) If a is accretive, then all aii are accretive, i = 1, . . . , m.
(4) Let (2.1) hold and aii be accretive, i = 1, . . . , m. If the matrices A0 :=

A − diag(A) and �0 := � − diag(�) are positive and negative semidefinite,
respectively, then a is accretive.

Proof. Assertions (1) and (3) can be checked in a way that is similar to that used
in the proof of Proposition 2.3, by considering vectors of the form f = (0, . . . ,

f, . . . , 0)�.
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In order to prove (2) and (4), let now (2.1) hold. Then for all f ∈ V

Re a(f, f) = Re
m∑

i=1

aii ( fi , fi ) + Re
m∑

j �=i

ai j ( f j , fi )

≥
m∑

i, j=1

αi j‖ f j‖Vj ‖ fi‖Vi −
m∑

i, j=1

ωi j‖ f j‖Hj ‖ fi‖Hi

≥ α‖f‖2
V − ‖�‖ ‖f‖2

H.

Likewise in (4), if all forms aii are accretive, then

Re a(f, f) = Re
m∑

i=1

aii ( fi , fi ) + Re
m∑

j �=i

ai j ( f j , fi ) ≥ Re
m∑

j �=i

ai j ( f j , fi )

≥
m∑

j �=i

αi j‖ f j‖Vj ‖ fi‖Vi −
m∑

j �=i

ωi j‖ f j‖Hj ‖ fi‖Hi .

This shows that Re a(f, f) ≥ 0 if A0 and �0 are positive and negative semidefinite,
respectively.

Remark 2.5. Assume aii to be Hi -elliptic (respectively, coercive), i = 1, . . . , m.
If furthermore

αi i >
∑
k �=i

|αik + αki |
2

, k = 1, . . . , m, (2.2)

then it follows from Gershgorin’s circle theorem that σ(A+A∗
2 ) is contained in the

open right half plain of C. Since the coercivity of A is equivalent to the strict pos-
itive definiteness of A+A∗

2 , it follows that (2.2) is a sufficient condition for a to be
H−elliptic. In particular, we can always obtain well-posedness by suitably weak-
ening the strength of the internal coupling of the system, i.e., by letting individual
parameters αi j → 0. If in particular ωi j = 0, i, j = 1, . . . , m, then Gershgorin’s
circle theorem also yield a threshold beyond which the semigroup associated with
a is exponentially stable.

The following is motivated by Proposition 2.4.

Assumption 2.6. In the remainder of the paper we impose the following, for i, j =
1, . . . , m, j �= i .

(i) aii is continuous with constant Mi and Hi -elliptic with constants (αi , ωi ).
(ii) ai j satisfies (2.1) for constants ωi j , αi j such that A = (αi j )1≤i, j≤m is positive

definite.

By [19, Proposition 1.51 and Theorem 1.52] we obtain well-posedness for the ab-
stract Cauchy problem {

u̇(t) = Au(t), t ≥ 0,

u(0) = u0.
(ACP)
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Theorem 2.7. The operator A associated with a generates on H an analytic semi-
group of angle π

2 −arctan(‖M‖+‖�0‖e2). This semigroup is compact if and only if
Vi is compactly embedded in Hi for all i = 1, . . . , m. It is uniformly exponentially
stable if for ωi j = 0, i, j = 1 . . . , m, A is positive definite.

The estimate on the analyticity angle obtained in Theorem 2.7 can often be
improved.

Proposition 2.8. The following assertions hold.

(1) Assume that there exists M ≥ 0 such that for all f ∈ Vj and g ∈ Vi one has

(i) |Im aii ( f, f )| ≤ M‖ f ‖Vi ‖ f ‖Hi for all i = 1, . . . , m, and moreover
(ii) either |Im (ai j ( f, g) + a ji (g, f ))| ≤ M‖ f ‖Vj ‖g‖Hi , for all i, j = 1, . . . ,

m s.t. i < j,
or |Im (ai j ( f, g) + a ji (g, f ))| ≤ M‖g‖Hj ‖ f ‖Vi , for all i, j = 1, . . . ,

m s.t. i < j.

Then the operator A associated with a generates a cosine operator function
with associated phase space V × H. In particular, A generates an analytic
semigroup of angle π

2 on H.
(2) Conversely, if A generates a cosine operator function, then for all i =1,. . . ,m

also the operator Aii associated with aii generates a cosine operator function.

Proof. Under the assumptions in (1), we have

|Im a(f, f)| ≤
∣∣∣∣∣

m∑
i=1

Im
(

aii ( fi , fi )

∣∣∣∣∣ +
∣∣∣∣∣
∑
i �= j

Im
(

ai j ( f j , fi )
)∣∣∣∣∣

≤
∣∣∣∣∣

m∑
i=1

Im
(

aii ( fi , fi )

∣∣∣∣∣ +
∣∣∣∣∣
∑
i< j

Im
(

ai j ( f j , fi ) + a ji ( fi , f j )
)∣∣∣∣∣

≤
m∑

i=1

|Im
(

aii ( fi , fi )| +
∑
i< j

|Im
(

ai j ( f j , fi ) + a ji ( fi , f j )
)
|

≤




M‖ fi‖Vi ‖ fi‖Hi + M
m∑

i< j

‖ f j‖Vj ‖ fi‖Hi

M‖ fi‖Vi ‖ fi‖Hi + M
m∑

i< j

‖ fi‖Vi ‖ f j‖Hj

≤ M̃‖f‖V‖f‖H
for some constant M̃ ≥ 0. Applying a result due to Crouzeix-Haase in the version
presented in [12, p. 204], one obtains that A generates a cosine operator function
with associated phase space V × H, hence also an analytic semigroup of angle π

2
on H by [4, Theorem 3.14.17].
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By the above mentioned result of Crouzeix-Haase, A generates a cosine oper-
ator function if and only if there exists an equivalent scalar product ((·|·)) on H such
that the numerical range

W (a) := {a(u, u) ∈ C : u ∈ V and ((u|u)) = 1}
lies in a parabola, cf. [3, Section 5.6.6]. In order to prove (2) consider the equivalent
scalar product on H with respect to which W (a) lies in a parabola. Such a scalar
product on H induces an equivalent scalar product on Hi , too, and therefore also
the numerical range W (aii ) lies in the same parabola, for all i = 1, . . . , m. Thus,
Aii generates a cosine operator function by Crouzeix-Haase’s result.

3. Averaging and invariance properties

Having investigated the well-posedness of the Problem (ACP), we turn our attention
to qualitative properties of the semigroup associated with the form a introduced
in (1.1), which can be described by means of the invariance of suitable subsets of
the state space. In this Section we still impose Assumptions 1.1 and 2.6.

The following result characterizes the invariance of product subspaces. It is a
direct consequence of Corollary 5.2 and we omit its easy proof.

Proposition 3.1. Let Yi be closed subspaces of the Hilbert spaces Hi for each i =
1, . . . , m and denote by Pi the corresponding orthogonal projections. Then the
subspace Y := ∏m

i=1 Yi is invariant under the action of the semigroup (eta)t≥0 if
and only if

• Pj Vj ⊂ Vj for all j = 1, . . . , m, and
• ai j ( f, g) = 0 for all f ∈ Y j ∩ Vj , g ∈ Y ⊥

i ∩ Vi and all i, j = 1, . . . , m.

We can characterize invariance of a special class of subspaces of H = ∏m
i=1 Hi

that cannot be represented as a Cartesian product. In [9] we have also discussed in
detail the interplay between invariance of such kind of subspaces and the notion of
symmetries of a physical system.

Theorem 3.2. Let (X, µ) a σ -finite meausre space such that H1 = . . . = Hm =
L2(X), i.e., H= L2(X)m � L2(X; Cm).Assume furthermore that V1 = . . .=Vm and
the form a to be accretive. Consider an orthogonal projection K = (κi j )1≤i, j≤m ∈
Mm(C) and define the operator

Pf := K f =
(

m∑
j=1

κ1 j f j , . . . ,

m∑
j=1

κmj f j

)�
, f ∈ H.

Let vi = (vi1, . . . , vim)�, i = 1, . . . , m, be an orthonormal basis of eigenvectors
of Cm such that v1, . . . , vr are eigenvectors of K associated with eigenvalue 1, and
vr+1, . . . , vm are eigenvectors of K associated with eigenvalue 0.
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(1) The following assertion are equivalent.

(a) The semigroup (eta)t≥0 leaves invariant the closed subsets CP,α := {f ∈
H : ‖f − Pf‖ ≤ α} for some/all α ≥ 0;

(b) for all f ∈ V , g ∈ ker(I −P)∩V , and h ∈ ker(P)∩V there holds Pf ∈ V
and a(g, h) = 0;

(c) for all g ∈ V there holds

m∑
i, j=1

r∑
�=1

m∑
k=r+1

v�jvki ai j (g�, gk) = 0. (3.1)

(2) Furthermore, the following assertions are also equivalent.

(a′) The semigroup (eta)t≥0 leaves invariant the closed subsets BP,α := {f ∈
H : ‖Pf‖ ≤ α} for some/all α ≥ 0;

(b′) for all f ∈ V , g ∈ ker(I −P)∩V , and h ∈ ker(P)∩V there holds Pf ∈ V
and a(h, g) = 0;

(c′) for all g ∈ V there holds

m∑
i, j=1

r∑
�=1

m∑
k=r+1

v j�vikai j (g�, gk) = 0. (3.2)

Proof. We only show that (1.a)-(1.c) are equivalent, the proof of the equivalences
in (2) being analogous.

First of all, observe that the linear operator P is an orthogonal projection on
H: in fact, it is a contraction that satisfies P = P2, due to the analogous properties
of the matrix K . The equivalence of (1.a)-(1.b) is then a direct consequence of
Corollary 5.2. In order to prove that (1.b) is equivalent to (1.c), observe that each
coordinate of Pf is a linear combination of f1, . . . , fm , thus again a vector of V :
thus, Pf ∈ V . Consider now the projection K in its Jordan nomal form to see that
its eigenvalues are 0 and/or 1, i.e., σ(K ) ⊂ {0, 1}, and that it is diagonalizable.
Thus, it is always possible to find v1, . . . , vm with the required properties.

Let f ∈ H and decompose the vector f(x) ∈ Cm as f(x) = ∑m
j=1 λ

f

i (x)vi .

Observe that λ
f

1, . . . , λ
f
m ∈ L2(X), and in fact λ

f

1, . . . , λ
f
m ∈ V if f ∈ V . Moreover,

Pf(x) =
(

m∑
i, j=1

λ
f

i (x)κ1 jvi j , . . . ,

m∑
i, j=1

λ
f

i (x)κmjvi j

)�

=
(

m∑
i=1

λ
f

i (x)

m∑
j=1

κ1 jvi j , . . . ,

m∑
i=1

λ
f

i (x)

m∑
j=1

κmjvi j

)�

=
(

m∑
i=1

λ
f

i (x)(K vi )1, . . . ,

m∑
i=1

λ
f

i (x)(K vi )m

)�
,
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holds for µ-almost every x ∈ X . Since now K vi = vi , i = 1, . . . , r and K vi = 0,
i = r + 1, . . . , m, there holds

Pf =
(

r∑
i=1

λ
f

ivi1, . . . ,

r∑
i=1

λ
f

ivim

)�
,

(I − P)f =
(

m∑
i=r+1

λ
f

ivi1, . . . ,

m∑
i=r+1

λ
f

ivim

)�
, µ-a.e.

Accordingly, there holds

ker(I − P) =
{
g ∈ H : ∃f ∈ H s.t. g =

r∑
i=1

λ
f

i vi

}

=
{
g ∈ H : ∃λ1, . . . , λr ∈ H s.t. g =

r∑
i=1

λi vi

}

as well as

ker(P) =
{
h ∈ H : ∃f

′ ∈ H s.t. h =
m∑

i=r+1

λ
f′
i vi

}

=
{
g ∈ H : ∃λr+1, . . . , λm ∈ H s.t. g =

m∑
i=r+1

λi vi

}
,

so that

ker(I − P) ∩ V =
{
g ∈ H : ∃λ1, . . . , λr ∈ V s.t. g =

r∑
i=1

λi vi

}

and

ker(P) ∩ V =
{
g ∈ H : ∃λr+1, . . . , λm ∈ V s.t. g =

m∑
i=r+1

λi vi

}
.

We are finally in the position to prove the equivalence of (1.b) and (1.c). In fact, let
g ∈ V and decompose g = g1 ⊕g2, with g1 ∈ ker(I −P)∩V and g2 ∈ ker(P)∩V .
Then by (1.b) one has

0=a(g1, g)=
m∑

i, j=1

ai j

(
r∑

�=1

λ�v�j ,

m∑
k=r+1

λkvki

)
=

m∑
i, j=1

r∑
�=1

m∑
k=r+1

v�jvki ai j (λ�, λk).
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Similarly if g = ∑r
i=1 λi vi ∈ ker(I −P)∩V and h = ∑m

i=r+1 λi vi ∈ ker(P)∩V ,
then

a(g, h)=
m∑

i, j=1

ai j

(
r∑

�=1

λ�v�j ,

m∑
k=r+1

λkvki

)
=

m∑
i, j=1

r∑
�=1

m∑
k=r+1

v�jvki ai j (λ�, λk)=0.

This concludes the proof.

Let us consider again the abstract Cauchy problem (ACP) introduced in Sec-
tion 2. In the case of a system whose state space is L2(X) × L2(X), it seems in-
teresting to consider under which assumptions initial conditions that are “in phase”
(i.e., such that u01 = u02) give rise to solutions to (ACP) that are in phase as well
(i.e., such that u1(t) = u2(t)), cf. Remark 4.1 below. A natural generalization of
this problem is discussed in the following.

Example 3.3. Let (X, µ) be a σ -finite measure space. Consider a Hilbert space V
such that V ↪→ H := L2(X) and H := Hm , V := V m . Consider an accretive form
a and a linear operator P defined by

Pf :=
(

m∑
j=1

fi

m
, . . . ,

m∑
j=1

fi

m

)�
, f ∈ H.

Then the semigroup (eta)t≥0 leaves invariant closed subsets CP,α := {f ∈ H :
‖f − Pf‖ ≤ α} for some/all α ≥ 0 if and only if

m∑
i, j=1

ai j (g, hi ) = 0, for all g, h1, . . . , hm ∈ V s.t.
m∑

i=1

hi ≡ 0. (3.3)

In fact, Pf = K f for all f ∈ H, where K = (κi j )1≤i, j≤m with κi j = 1
m . One checks

that K is an orthogonal projection and f ∈ ker(P) if and only if
∑m

i=1 fi (x) = 0
for µ-a.e. x ∈ X , while f ∈ ker(I − P) if and only if fi (x) = f j (x) =: f (x)

for µ-a.e. x ∈ X and all i, j = 1, . . . , m. Thus we deduce by Theorem 3.2.(1)
that (eta)t≥0 leaves invariant closed subsets CP,α := {f ∈ H : ‖f − Pf‖ ≤ α} for
some/all α ≥ 0 if and only if for all g ∈ ker(I − P) ∩ V and all h ∈ ker(P) ∩ V
there holds a(g, h) = 0, i.e., if and only if

m∑
i, j=1

ai j (g j , hi ) =
m∑

i, j=1

ai j (g, hi ) = 0 for all g, h1 . . . , hm ∈ V s.t.
m∑

i=1

hi ≡ 0.

Likewise one can see that the semigroup (eta)t≥0 leaves invariant the closed subsets
BP,α := {f ∈ H : ‖Pf‖ ≤ α} for some/all α ≥ 0 if and only if

m∑
i, j=1

ai j (g j , h) = 0, for all g1, . . . , gm, h ∈ V s.t.
m∑

i=1

gi ≡ 0. (3.4)
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In the special case of H = L2(X)×L2(X), we have thus characterized under which
assumptions initial conditions “in counterphase” give rise to solutions to (ACP) that
are in counterphase, too.

Theorem 3.2 also allows to study invariance of subsystems.

Example 3.4. Let (X, µ) be a σ -finite measure space. Consider a Hilbert space V
such that V ↪→ H := L2(X) and H := Hm , V := V m . Let the form a be accretive
and consider the linear operator P defined by Pf := ( f1, . . . , fm0, 0, . . . , 0)�, for
some m0 ∈ {2, . . . , m −1}. Then the semigroup (eta)t≥0 leaves invariant the closed
convex set

CP,α :=
m0∏
i=1

Hi ×
m∏

i=m0+1

{ f ∈ Hi : ‖ f ‖Hi ≤ α}

for some/all α ≥ 0 if and only if the forms ai j = 0 for all i = m0 + 1, . . . , m and
all j = 1, . . . , m0.

Indeed, P defined above is the orthogonal projection of H onto
∏m0

i=1 Hi ×
{0}m−m0 . One see that Pf ∈ V for all f ∈ V . In order to apply Theorem 3.2 let

K :=
(

I 0
0 0

)
,

where I is the identity m0 × m0 matrix. Denote with ei , i = 1, . . . , m the vectors
of the canonical basis of Cm and observe that e1, . . . , em0 are eigenvectors of K
associated with eigenvalue 1, whereas em0+1, . . . , em are eigenvectors associated
with eigenvalue 0. This implies that Theorem 3.2.(1) applies with r := m0 and
vi j := δi j , i, j = 1, . . . , m if and only if for all g ∈ V

m∑
i, j=1

m−1∑
�=1

m∑
k=m

δ�jδki ai j (g�, gk) =
m∑

i=m0+1

m0∑
j=1

ai j (g j , gi ) = 0.

This condition is satisfied if and only if ai j = 0 for all i = m0 + 1, . . . , m and all
j = 1, . . . , m0.

In the remaining of this section we prove results that can only be formulated
whenever our Hilbert state space H is an L2-space. Thus, we throughout assume
that Hi = L2(Xi ) for a σ -finite measure space (Xi , µi ), i = 1, . . . , m. Accord-
ingly, we can identify H with L2(X), where (X, µ) is a suitable σ -finite measure
space such that µ = µ1 ⊕ . . . ⊕ µm .

Theorem 3.5. Let Hi = L2(Xi ). Then the following assertions hold.

(1) The semigroup (eta)t≥0 is real, i.e., it leaves invariant the subset of real-
valued functions in H, if and only if

• f ∈ Vi =⇒ Re f ∈ Vi , and aii (Re f, Im f ) ∈ R for all i = 1, . . . , m,
and
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• ai j ( f, g) ∈ R for all real-valued f ∈ Vj , g ∈ Vi , i, j = 1, . . . , m,
i �= j ,

(2) The semigroup (eta)t≥0 is positive, i.e., it leaves invariant the positive cone of
H, if and only if it is real and moreover

• f ∈ Vi =⇒ (Re )+ f ∈ Vi , and aii ((Re f )+, (Re f )−) ≤ 0 for all i =
1, . . . , m, and

• ai j ( f, g) ≤ 0 for all 0 ≤ f ∈ Vj and 0 ≤ g ∈ Vi , i, j = 1, . . . , m,
i �= j .

(3) Let (eta)t≥0 be positive. Consider another densely defined, continuous, H-
elliptic sesquilinear form b := ∑m

i, j=1 bi j : W × W → C, W = ∏m
i=1 Wi .

Then (eta)t≥0 dominates (etb)t≥0 in the sense of positive semigroups if and
only if

• Wi is an ideal of Vi for all i = 1, . . . , m,

• Re bii ( f, g) ≥ aii (| f |, |g|) for all f, g ∈ Vi such that f g ≥ 0, i =
1, . . . , m, and

• |Re bi j ( f, g)| ≤ −ai j (| f |, |g|) for all f ∈ Vj , g ∈ Vi , i = 1, . . . , m.

Proof. By Proposition 2.4 the form a is densely defined, continuous, and H-elliptic.
Thus, by [19, Proposition 2.5 and Theorem 2.6], and taking into account a rescaling
argument, the semigroup (eta)t≥0 is real, positive, and dominating (etb)t≥0, respec-
tively, if and only if

(i) f ∈ V ⇒ Re f ∈ V and a(Re f, Im f) ∈ R, and
(ii) f ∈ V ⇒ (Re f)+ ∈ V, a(Re f, Im f) ∈ R, and a((Re f )+, (Re f )−) ≤ 0,

(iii) W is an ideal of V and Re b(f, g) ≥ a(|f|, |g|) for all f, g ∈ W such that
f g ≥ 0,

respectively. First, let (i) hold. If f ∈ V , then Re f and also Re f+ ∈ V .
Then, by considering vectors of the form f = (0, . . . , f, . . . , 0)� one sees that
ai0i0(Re f, Im f ) ∈ R for all i0 = 1, . . . , m. Take now i0 �= j0 and let us show
that ai0 j0( f, g) ∈ R for all real-valued f ∈ Vj , g ∈ Vi . Construct a vector f so
that all its coordinates besides the i th

0 and the j th
0 ones vanish, and let its i th

0 co-
ordinate agree with ig and its j th

0 coordinate agree with f . Then, it follows that
ai0 j0( f, g) = a(Re f, Im f) ∈ R.

Likewise, let (ii) hold. We show that the conditions on aii and ai j in (2) are
satisfied. Again by considering vectors of the form f = (0, . . . , f, . . . , 0)� one sees
that ai0i0((Re f )+, (Re f )−) ≤ 0 for all i0 = 1, . . . , m. Take now i0 �= j0 and let
0 ≤ f ∈ Vj , 0 ≤ g ∈ Vi . Construct a vector f so that all its coordinates besides
the i th

0 and the j th
0 ones vanish, and let its i th

0 coordinate agree with −g and its j th
0

coordinate agree with f . Then, it follows that ai0 j0( f, g) = a((Re f)+, (Re f)−) ≤
0. It is easy to convince oneself that the converse implications in (1) and (2) hold,
too.
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Finally, let (iii) hold. Since all of its factor spaces Wi are ideal of the spaces
Vi , i = 1, . . . , m, it is clear that W is an ideal of V . In the following, we denote by

f
j0 :=




0
...

f
...

0


 ← j th

0 row and g
i0 :=




0
...

g
...

0


 ← i th

0 row, (3.5)

vectors in V , for given f ∈ Vj0 and g ∈ Vi0 .
Let now i0 = j0 and f g ≥ 0, so that fi0g

i0 ≥ 0. Computing Re bi0i0( f, g) =
Re b(f, g) ≥ a(|f|, |g|) = ai0i0(| f |, |g|) shows that the second condition holds. For

i0 �= j0, let f ∈ Vj0 and g ∈ Vi0 , so that f j0gi0 = 0 = (−f j0)gi0 . Then,

±Rebi0 j0( f, g)=Rebi0 j0(± f, g)=Reb(±f
j0, gi0)≥a(|f j0 |, |gi0 |)=ai0 j0(| f |, |g|),

thus proving that the third condition is necessary. To check the converse implication
let f, g∈W and compute Reb(f,g)=Re

∑m
i, j=1 bi j ( f j , gi )≥∑m

i, j=1 ai j (| f j |,|gi |)=
a(|f|, |g|).

As a direct consequence of Theorem 3.5.(3) we state the following.

Corollary 3.6. Let the semigroup (eta)t≥0 be positive, and assume ai j ( f, g) ≤ 0
for all 0 ≤ f ∈ Vj and 0 ≤ g ∈ Vi , i, j = 1, . . . , m. Let a0 := ∑m

i=1 aii . Then
(eta)t≥0 dominates (eta0)t≥0.

If (X, µ) is a σ -finite measure space and a semigroup (T2(t))t≥0 is contractive
in both L2(X) and L∞(X), then one sees by standard interpolation results that
the semigroup extrapolates to a family (Tp(t))t≥0 of C0-semigroups in all spaces
L p(X), p > 2. Such a family is consistent in the sense that Tp(t) f = Tq(t) f for
all f ∈ L p(X) ∩ Lq(X). This motivates the following.

Theorem 3.7. Let Hi := L2(Xi ). Assume a to be accretive. Then (eta)t≥0 is L∞-
contractive, i.e., it leaves invariant the unit ball of L∞(X), if and only if for all
i = 1, . . . , m there holds

(i) f ∈ Vi =⇒ (1 ∧ | f |)sign f ∈ Vi and
(ii)

∑
j �=i |ai j ( f j , (| fi |−1)+sign fi )| ≤ Re aii ((1∧| fi |)sign fi , (| fi |−1)+sign fi )

for all f ∈ V ∩ C∞
i , where the sets C∞

i are defined in (3.6)

In particular, all semigroups (etaii )t≥0 are L∞-contractive if so is (eta)t≥0.

Here, sign f denotes the generalized (complex-valued) sign function defined by

(sign f )(x) :=



f (x)

| f (x)| if f (x) �= 0,

0 if f (x) = 0.
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Moreover, we denote by B∞
X the unit ball of L∞(X) and by C∞

i the set

C∞
i := B∞

X1
× . . . B∞

Xi−1
× L2(Xi )× B∞

Xi+1
× . . .× B∞

Xm
, i = 1, . . . , m. (3.6)

Proof. By [19, Theorem 2.14] the semigroup is L∞-contractive if and only if

f ∈ V ⇒ (1 ∧ |f|)signf ∈ V and Re a((1 ∧ |f|)signf, (|f| − 1)+signf) ≥ 0. (3.7)

One sees that f ∈ V ⇒ (1∧|f|)signf ∈ V if and only if f ∈ Vi =⇒ (1∧| f |)sign f ∈
Vi for all i = 1, . . . , m. We have to prove the equivalence of the estimates in (ii)
and (3.7). Let first f ∈ C∞

i . Then

(1 ∧ |f|)signf =




f1
...

f j−1
(1 ∧ | fi |)sign fi

f j+1
...

fm




← i th row

and

(|f| − 1)+signf =




0
...

(| fi | − 1)+sign fi
...

0


 ← i th row.

Accordingly,

0 ≤ Re a((1 ∧ |f|)signf, (|f| − 1)+signf)

=
∑
j �=i

Re ai j ( f j , (| fi | − 1)+sign fi ) + Re aii ((1 ∧ | fi |), (| fi | − 1)+sign fi )

for all f ∈ C∞
i ∩ V and all i = 1, . . . , m. Due to the sesquilinearity of ai j , this also

implies

0 ≤
∑
j �=i

Re ai j (± f j , (| fi | − 1)+sign fi ) + Re aii ((1 ∧ | fi |), (| fi | − 1)+sign fi )

for all f ∈ C∞
i ∩ V , all i = 1, . . . , m, and all α ∈ C, |α| ≤ 1. This yields the

claimed criterion. The converse implication can be proven analogously.
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Remark 3.8. (1) As we will see in Section 4, in many applications one has

aii ((1 ∧ | f |)sign f, (| f | − 1)+sign f ) = 0 for all f ∈ Vi , i = 1, . . . , m.

In this case, it follows from the above theorem that a sufficient and necessary con-
dition for L∞-contractivity of (eta)t≥0 is that for all i = 1, . . . , m

(1 ∧ | fi |)sign fi ∈ Vi and ai j ( f j , (| fi | − 1)+sign fi ) = 0

for all f j ∈ B∞
X j

, all fi ∈ Vi , and all j �= i . This is a severe restriction to the

possibility of extrapolating (eta)t≥0 to whole L p-scale whenever our system (ACP)

is actually coupled.
(2) The above result yields an alternative proof of [15, Lemma 6.1]. In fact,

assume the spaces Vi to have the following property: For each f j ∈ Vj one also has
sign f j ∈ Vj . Then, after replacing fi by fi + sign fi in the condition in the above
theorem, one sees that (eta)t≥0 is L∞-contractive if and only if

• f ∈ Vi =⇒ (1 ∧ | f |)sign f ∈ Vi and
• ∑

j �=i |ai j ( f j , fi )| ≤ Re aii (sign fi , fi ) for all f ∈ V ∩ C∞
i .

As already mentioned, the main motivation for investigating L∞-contractivity is
the extrapolation of (eta)t≥0 to L p-spaces. We recall that if a semigroup (T (t))t≥0
extrapolates to a consistent family of contractive C0-semigroups on L p, then it is
called ultracontractive of dimension d if there is a constant c > 0 such that for all
p, q ∈ [1, ∞] and all f ∈ L p the estimate

‖T (t) f ‖Lq ≤ ct−
d
2 |p−1−q−1|‖ f ‖L p t ∈ [0, 1],

holds, cf. [3, Section 7.3.2].

Theorem 3.9. Let Hi := L2(Xi ). Assume a to be accretive. Then the following
assertions hold.

(1) The semigroup (eta)t≥0 extrapolates to a family of contractive C0-semigroups
on L p, p ∈ [1, ∞), which we denote again by (eta)≥0, if and only if for all
i = 1, . . . , m there holds

(i) f ∈ Vi =⇒ (1 ∧ | f |)sign f ∈ Vi ,
(ii)

∑
j �=i |ai j ( f j ,(| fi |−1)+sign fi )|≤Re aii ((1∧| fi |)sign fi ,(| fi |−1)+sign fi )

for all f ∈ V ∩ C∞
i , and

(iii)
∑

j �=i |a ji ((| fi |−1)+sign fi , f j )|≤Re aii ((| fi |−1)+sign fi ,(1∧| fi |)sign fi )

for all f ∈ V ∩ C∞
i .

(2) Let conditions (i)-(ii)-(iii) hold, assume that Vi ∩ L1(Xi ) is dense in L1(Xi ),
and let d > 2 be a real number. Then (eta)t≥0 is ultracontractive of dimension

d if and only if Vi is continuously embedded in L
2d

d−2 (Xi ) for all i = 1, . . . , m.
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Proof. (1) Let us first assume the semigroup (eta)t≥0 to extrapolate to a family
of contractive C0-semigroups on L p(X), p ∈ [1, ∞), and hence in particular to
be L∞-contractive. Moreover, since also the unit ball of L1(X) is left invariant,
it follows by duality that the semigroup (eta∗

)t≥0 is L∞-contractive. Here a∗ de-
notes the adjoint form of a, which by definition is given by a∗(f, g) = a(g, f) =∑m

i, j=1 a ji (gi , f j ), f, g ∈ V . Since a∗ is accretive if and only if a is accretive, we

can apply Theorem 3.7 to (eta)t≥0 and (eta∗
)t≥0 and obtain conditions (i)-(ii)-(iii).

Conversely, since both a and a∗ are accretive, it follows from (i)-(ii) and The-
orem 3.7 that (eta)t≥0 is L∞-contractive. Moreover, since also a∗ is accretive, it
follows from (i)-(iii) and Theorem 3.7 that (eta∗

)t≥0 is L∞-contractive, too. Thus,
by standard interpolation and duality methods one sees that (eta)t≥0 extrapolates to
a family of contractive semigroups on L p(X), p ∈ [1, ∞), that are strongly contin-
uous for all p > 1. Finally, by a result due to Voigt, contractivity implies strongly
continuity of the extrapolated semigroup also in L1(X), cf. [3, Section 7.2.1].

(2) The claim is a direct consequence of (1) and [3, Theorem 7.3.2].

Observe that the extrapolated semigroups are positive in all L p-spaces, p ∈
[1, ∞), if and only if (eta)t≥0 is positive; they are analytic on all L p-spaces, p ∈
(1, ∞); finally, they are compact in all L p-spaces, p ∈ (1, ∞), if Vi is compactly
embedded in L2(Xi ) for all i = 1, . . . , n. We refer the reader to [3, Section 7.3] for
these and further properties of extrapolating semigroups.

4. Applications

4.1. Ephaptical coupling of nerve fibres

Motivated by the neurobiological theory of ephaptic coupling of myelinated fibres,
cf. Remark 4.1, we discuss a system


u̇i (t, x) =

m∑
j=1

(ci j u
′
j (t, ·))′(x) t ≥ 0, x ∈ R, i = 1, . . . , m,

ui (0, x) = ui0(x), x ∈ (0, 1), i = 1, . . . , m,

of coupled diffusion equations on m unbounded, parallel intervals. This case, which
reflects the case of m ephaptically interacting axons of infinite length, see e.g. [6,
13], and [5], fits in the above framework if for i, j = 1, . . . , m we let Hi := L2(R),
Vi := H1(R), and

ai j ( f, g) :=
∫ ∞

−∞
ci j (x) f ′(x)g′(x)dx, f ∈ Vj , g ∈ Vi .

It is known that (4.1) is well-posed whenever the coefficients satisfy a uniform
ellipticity condition, cf. [2], and in fact the results of Section 2 yield non-optimal
criteria. However, assuming a to be accretive we can perform an analysis of some
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qualitative properties of the system applying the theory developed in Section 3.
Let P be defined by

Pf :=
(

m∑
i=1

fi

m
, . . . ,

m∑
i=1

fi

m

)�
.

Then (eta)t≥0 leaves invariant the closed subsets CP,α := {f ∈ H : ‖f − Pf‖ ≤ α},
α ≥ 0, if and only if there exist numbers Rx ∈ C, such that

m∑
j=1

ci j (x) = Rx , for a.e. x ∈ R, i = 1, . . . , m. (4.1)

Let now (4.1) hold. By Theorem 3.2 the invariance of CP,α for some/all α ≥ 0 is
equivalent to

m∑
i, j=1

ai j (g, hi ) = 0, for all g, h1, . . . , hm ∈ V s.t.
m∑

i=1

hi ≡ 0, (4.2)

i.e., to

m∑
i, j=i

∫ ∞

−∞
ci j (x)g′(x)h′

i (x)dx = 0 for all g, h1, . . . , hm ∈ V s.t.
m∑

i=1

hi ≡ 0.

Since now g′ is indipendent of i, j this is equivalent to

∫ ∞

−∞
g′(x)

(
m∑

i, j=i

ci j (x)h′
i (x)

)
dx = 0 for all g, h1, . . . , hm ∈ V s.t.

m∑
i=1

hi ≡ 0.

Then, for a.e. x ∈ R there holds

m∑
i, j=i

ci j (x)h′
i (x) =

m∑
i=1

h′
i (x)

m∑
j=1

ci j (x) = Rx

m∑
i=1

h′
i (x) = 0

for all h1, . . . , hm ∈ V s.t.
m∑

i=1

hi ≡ 0.

This shows that condition (4.1) is sufficient. To see that it is also necessary, let (4.2)
hold. Let g, h ∈ H1(R) and consider the vector h := (h, −h, 0, . . . , 0)� ∈ V .
Since now

∑m
i=1 hi = 0 holds, we have

m∑
i, j=1

ai j (g, hi ) =
∫ ∞

−∞
g′(x)

(
m∑

i, j=i

ci j (x)h′
i (x)

)
dx = 0.
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Because of the arbitrarity of g this yields that

m∑
i, j=i

ci j (x)h′
i (x) = h′(x)

m∑
j=1

c1 j (x) − h′(x)

m∑
j=1

c2 j (x) = 0 for all x ∈ R.

Iterating this procedure shows that (4.2) holds. Similarly, one shows that (eta)t≥0
leaves invariant the closed subsets BP,α := {f ∈ H : ‖Pf‖ ≤ α}, α ≥ 0, if and only
if there exist numbers Cx ∈ C, such that

m∑
i=1

ci j (x) = Cx , a.e. for all j = 1, . . . , m.

Remark 4.1. Let us consider the case of two coupled axons. Several models based
on (4.1) have been proposed in the literature, assuming that c11 = c22 = α − β and
c21 = c12 = −β, cf. [5, Section 4], or else c11 = c22 = α + β, c12 = c21 = −β,
cf. [6], or finally that c11 = c12 = c21 = c22, cf. [13], for some diffusion coefficient
α and some coupling parameter β > 0. Although these models are not equivalent,
in all of them the column and row sums agree, i.e., c11 + c21 = c12 + c22 and
c11 + c12 = c21 + c22. Thus, condition (3.3) applies and the subsets {( f1, f2) ∈
L2(R)×L2(R) : ‖ f1− f2‖L2 ≤ α} and {( f1, f2) ∈ L2(R)×L2(R) : ‖ f1+ f2‖L2 ≤
α} are left invariant for all α ≥ 0 under the action of (eta)t≥0.

4.2. A complete second order problem

The strongly damped wave equation


ü(t, x) = �(αu + u̇)(t, x), t ≥ 0, x ∈ �,
∂u

∂ν
(t, z) = ∂ u̇

∂ν
(t, z) = 0, t ≥ 0, z ∈ ∂�,

u(0, x) = u0(x), x ∈ (0, 1),

u̇(0, x) = v0(x), x ∈ (0, 1),

(4.3)

on a bounded open domain of � ⊂ Rn , whose well-posedness has been proved
in [16] for all α ∈ C, can also be treated with the methods presented in this paper.
The first equation has to be understood in the sense of distributions. We introduce
a form a : V × V → C, where

V1 = V2 = H1 = H1(�), H2 = L2(�),

and

a11( f, g) := 0, a12( f, g) := −( f | g)V = −
∫

�

∇ f · ∇gdx,

a21( f, g) := −α

∫
�

∇ f · ∇gdx, and a22( f, g) :=
∫

�

∇ f · ∇gdx .
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Then a is H-elliptic and continuous due to Corollary 2.2 and Proposition 2.3, re-
spectively, yielding well-posedness of (4.3). As an application of Proposition 3.1
we also mention that any closed subspace Y := Y1 × Y2 of the energy space
H1(�) × L2(�) is invariant under the action of (eta)t≥0 if and only if

• Y2 ∩ V ⊂ Y1,
• Y2 is invariant under the action of (eta22)t≥0 for all t ≥ 0, and
• Re a21( f, g) = 0 for all f ∈ Y1, g ∈ Y 2⊥ ∩ V .

In this way one can e.g. show that the solution u to (4.3) has mean value 0 as soon
as the initial data u0, v0 have mean value 0. Similarly, one can check that if �

is a ball, then u is a radial function provided that the initial data u0, v0 are radial.
Such invariance properties of (eta)t≥0 directly follow from analogous ones of the
Neumann heat semigroup (eta22)t≥0.

4.3. A heat equation with dynamical boundary conditions

Let � be a bounded open domain of Rn with C∞ boundary ∂�. Set

V1 := H1(�), H1 := L2(�), V2 := H1(∂�), H2 := L2(∂�)

and consider the initial-boundary value problem




u̇(t, x) = �u(t, x), t ≥ 0, x ∈ �,

ẇ(t, z) = u(t, z) + �∂�w(t, z), t ≥ 0, z ∈ ∂�,

w(t, z) = ∂u

∂ν
(t, z), t ≥ 0, z ∈ ∂�,

u(0, x) = f (x), x ∈ �,

w(0, z) = h(z), z ∈ ∂�.

(4.4)

The results in this subsection should be compared with [7, Section 3] and [14, Ex-
ample 5.6], where well-posedness and exponential stability of (4.4) have also been
investigated by different methods. In (4.4) �∂� denotes the Laplace-Beltrami op-
erator, which is defined weakly as the operator associated with the form

a22( f, g) :=
∫

∂�

∇ f · ∇gdσ.

Moreover, define the forms

a11( f, g) :=
∫

�

∇ f · ∇gdx, a12( f, g) := −
∫

∂�

f g|∂�dσ,

a21( f, g) := −
∫

∂�

f|∂�gdσ.
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A direct integration by parts shows that the operator A associated with a is the same
one that governs the above problem, i.e.,

A :=
(

� 0
·|∂� �∂�

)
, D(A) =

{(
u
w

)
∈ H2(�) × H2(∂�) : ∂u

∂ν
= w

}
.

We show that A generates a semigroup that is analytic of angle π
2 and positive, but

which does not leave the unit ball of L∞(�) × L∞(∂�) invariant.
First, observe that a11 (respectively a22) are continuous and H1- (respectively

H2-) elliptic. Moreover, due to boundedness from H1(�) to L2(∂�) of the trace
operator, forms a12 and a21 are bounded on H2 × V1 and on H1 × V2, respectively.
Accordingly, a is continuous and by Proposition 2.2 also H1 × H2-elliptic. In order
to apply Proposition 2.8, observe that Im aii ( f, f ) = 0 for all f ∈ Vi , i = 1, 2.
Moreover

|Im (a12( f, g) + a21(g, f )) | =
∣∣∣∣Im

(∫
∂�

f g|∂�dσ +
∫

∂�

g|∂� f dσ

)∣∣∣∣
=

∣∣∣∣∣Im
(∫

∂�

f g|∂�dσ +
∫

∂�

f g|∂�dσ

)∣∣∣∣∣ = 0.

By Theorem 3.5, the semigroup is real. To see that it is positive, observe that a11
is associated with the Laplace operator with Neumann boundary conditions and
a22 with the Laplace-Beltrami operator on ∂�. Therefore they generate positive
semigroups and the first condition of Theorem 3.5.(2) is satisfied. The second con-
dition is also clear since f|∂� is positive whenever f is positive. By Corollary 3.6,
(eta)t≥0 dominates the semigroup (eta0)t≥0, where a0 := a11 + a22, which gov-
erns the uncoupled system of two diffusion equations on � (with homogeneous
Neumann boundary conditions) and ∂�.

It also follows from Theorem 3.7 and Remark 3.8.(1) that (eta)t≥0 is not
L∞(�)×L∞(∂�)-contractive, since for non-constant f ∈ H1(∂�) such that | f | ≤
1 and for g ∈ H1(�) with g|∂� = 1 + f one has a12( f, g) = − ∫

∂�
|∇ f |2dσ < 0,

which contradicts condition (ii) in Theorem 3.7. However, Theorem 3.9 can be used
in order to show L p-well-posedness for (4.4).

We first prove a generation result in all L p-spaces for p ≥ 2. Write A as

A := Ã + B :=
(

� − C∗ 0
·|∂� �∂� − I d

)
+

(
C∗ 0
0 I d

)
.

Here, C∗ is the adjoint of the linear operator from H1(�) to L2(�) defined by

(C f )(x) := ∇ f (x) · ∇ DN 1(x), f ∈ H1(�), x ∈ �,

where DN 1 denotes the unique (modulo constants) solution u of


�u(x) = 0, x ∈ �,
∂u

∂ν
(z) = 1, z ∈ ∂�.
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The operator Ã is associated with the matrix form ã whose entries are given by

ã11( f, g) :=
∫

�

∇ f · ∇gdx +
∫

�

f (∇g · ∇ DN 1)dx,

ã22( f, g) :=
∫

∂�

∇ f · ∇gdσ +
∫

∂�

f gdσ, and

ã12 := a12 as well as ã21 := a21.

One sees that the perturbation ã11 −a11 is bounded on H1 × V1, thus by Lemma 2.1
ã is associated with a semigroup (et ã)t≥0 on H1 × H2. For all g ∈ H1(∂�) such
that |g| ≤ 1 and all f ∈ H1(�) we have

|ã12(g, (| f | − 1)+sign f )| ≤
∫

∂�

|g|(| f | − 1)+dσ ≤
∫

∂�

(| f | − 1)+dσ

=
∫

∂�

∂ DN 1

∂ν
(| f | − 1)+dσ

=
∫

�

∇(| f | − 1)+ · ∇ DN 1dx

=
∫

�

(1 ∧ | f |) (∇(| f | − 1)+ · ∇ DN 1
)

1{| f |≥1}dx

+
∫

�

(1 ∧ | f |) (∇(| f | − 1)+ · ∇ DN 1
)

1{| f |≤1}dx

= Re ã11((1 ∧ | f |)sign f, (| f | − 1)+sign f ).

since ∇(| f | − 1)+ = 0 a.e. on {x ∈ � : | f (x)| ≤ 1}. Likewise, for all f ∈ H1(�)

such that | f | ≤ 1 (so that in particular | f|∂�| ≤ 1) and all g ∈ H1(∂�)

|ã21( f, (|g| − 1)+signg)| ≤
∫

∂�

| f |(|g| − 1)+dσ ≤
∫

∂�

(|g| − 1)+dσ

=
∫

∂�

(1 ∧ |g|)(|g| − 1)+1{|g|≥1}dx

+
∫

∂�

(1 ∧ |g|)(|g| − 1)+1{|g|≤1}dx

= Re ã22((1 ∧ |g|)signg, (|g| − 1)+signg).

Thus, Theorem 3.7 applies and we conclude that (et ã)t≥0 extrapolates to a con-
sistent family of semigroups on L p(�) × L p(∂�), p ≥ 2, the generator of the
semigroup in L p(�) × L p(∂�) being the part of Ã in L p(�) × L p(∂�). Since
now (the part of) B is compact from W 2,p(�)× W 2,p(∂�) to L p(�)× L p(∂�) for
all p = [1, ∞), by the perturbation thorem of Desch-Schappacher (see e.g. [4, The-
orem 3.7.25]) we conclude that (the part of) A = Ã + B generates a semigroup on
L p(�) × L p(∂�), p ≥ 2.
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Introducing a different operator Ã (more precisely, replacing C∗ by C), and
hence a different perturbed form ã, it is also possible to prove in a similar manner
that the semigroup associated with the adjoint ã∗ is L∞-contractive. By duality
we conclude as above that A generates a semigroups on L p(�) × L p(∂�) also for
p ∈ [1, 2], hence for the whole scale of L p-spaces.

Observe, however, that none of these semigroups is ultracontractive. For ex-
ample, in the first considered case, |ã12((|g| − 1)+signg, f )| ≤ Re ã22((|g| −
1)+signg, (1 ∧ |g|)signg) does not hold for all ( f, g) ∈ H1(�) × H1(∂�) such
that | f | ≤ 1, hence condition (iii) in Theorem 3.9.(1) is not satisfied. Thus we
cannot deduce ultracontractivity of (et ã)t≥0 from Theorem 3.9.(2) and the Sobolev

embeddings H1(�) ↪→ L
2n

n−2 (�), H1(∂�) ↪→ L
2n−2
n−3 (∂�).

5. Appendix: Hilbert space projections

In the following we denote by P the orthogonal projection onto a closed subspace
Y of a Hilbert space H, and by CP,α the closed convex subset of H defined as the
strip around Y of thickness 2α, i.e.,

CP,α := { f ∈ H : ‖ f − P f ‖ ≤ α} .

A subset S ⊂ H is said to be invariant under a semigroup (T (t))t≥0, if T (t)S ⊂ S
for all t ≥ 0.

Proposition 5.1. Let (T (t))t≥0 be a C0-semigroup on H. Consider the following
assertions.

(a) CP,α is invariant under (T (t))t≥0 for all α > 0.
(b) CP,β is invariant under (T (t))t≥0 for some β > 0.
(c) Y is invariant under (T (t))t≥0.

Then (a)⇐⇒(b)=⇒(c). If (T (t))t≥0 is contractive, then also (c)=⇒ (a) holds.

Proof. (a) =⇒ (b) is trivial. In order to prove the converse implication, observe
that CY,β = β

α
CP,α for all β > 0, since P is linear. The claim follows from linearity

of (T (t))t≥0.
In order to prove (a) =⇒ (c), let f ∈ Y . Thus, ‖ f − P f ‖ ≤ α for all α > 0.

Since (T (t))t≥0 leaves invariant CP,α , ‖T (t) f − PT (t) f ‖ ≤ α for all α > 0, i.e.,
T (t) f = PT (t) f and T (t) f ∈ Y for all t ≥ 0.

Finally, let (T (t))t≥0 be contractive. To this aim, let f ∈ CP,β and observe that
there exists f0 ∈ Y such that ‖ f − f0‖ ≤ β. Furthermore, due to the contractivity
of (T (t))t≥0 one has ‖T (t) f − T (t) f0‖ ≤ β. Since T (t) leaves Y invariant, one
has T (t) f0 ∈ Y . Since PT (t)y is the element of Y with minimal distance from
T (t)y, we conclude that ‖T (t) f − PT (t) f ‖ ≤ ‖T (t) f − T (t) f0‖ ≤ β, i.e.,
T (t)y ∈ CP,β .
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In the special case of semigroups coming from a sesquilinear form we obtain
the following.

Corollary 5.2. If the semigroup (T (t))t≥0 is associated with a densely defined,
H-elliptic, continuous form a : V × V → C, then the following assertions are
equivalent.

(c) Y is invariant under (T (t))t≥0.
(d) For all f ∈ V , g ∈ ker(I − P) ∩ V , and h ∈ kerP ∩ V there holds P f ∈ V

and a(g, h) = 0.

If in particular a is accretive, then the assertions (a)-(d) above are all equivalent.

Proof. Under the above assumptions we can apply [19, Theorem 2.2] and directly
obtain that (a)-(c) in Proposition 5.1 are equivalent to the condition that for all
f ∈ V there holds P f ∈ V and Re a(P f, f − P f ) ≥ 0. Observe that accretivity
of a, which is an assumption of [19, Theorem 2.2], is not needed while studying
invariance of subspaces. Taking into account the decomposition H = ker(I −P)⊕
kerP and the sesquilinearity of a we obtain that the above condition is equivalent
to the claimed criterion.

Similarly, since I − P is the projection of H onto ker P , then the following
also holds.

Corollary 5.3. Let a : V ×V → C be a densely defined, accretive, H-elliptic, con-
tinuous form. The following assertions are equivalent, where we use the notation
BP,α := { f ∈ H : ‖P f ‖ ≤ α}.

(a) BP,β is invariant under (T (t))t≥0 for some β > 0.
(b) BP,α is invariant under (T (t))t≥0 for all α > 0.
(c) Y is invariant under (T (t))t≥0.
(d) For all f ∈ V , g ∈ ker(I − P) ∩ V , and h ∈ kerP ∩ V there holds P f ∈ V

and a(h, g) = 0.

Remark 5.4. Corollary 5.2 directly follows from [19, Theorem 2.2]. It yields new
proofs of known facts. E.g., let H = L2(�), � an open ball, and Y be the space
of radial functions over �, i.e. of functions f such that f (x) = f (y) if |x | = |y|.
Then switching to polar coordinates and applying Fubini’s theorem yields that Y
is invariant under the semigroup generated by the Laplacian with several “radial”
boundary conditions - including Dirichlet and Neumann ones. Provided that the
boundary coefficient is constant, one can show in this way that radial initial value
give to radial solutions also under Robin, Wentzell-Robin, and those dynamical
boundary conditions considered in Section 4.3.

.
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