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Sharp upper bounds for a singular perturbation
problem related to micromagnetics

ARKADY POLIAKOVSKY

Abstract. We construct an upper bound for the following family of functionals
{E¢}e~0, which arises in the study of micromagnetics:

2, 1 2
Ec(u) = | &|lVul”+ - |Hyl|”.
Q & JR2

Here  is a bounded domain in R2, u € H'(Q, s!) (corresponding to the mag-
netization) and H,,, the demagnetizing field created by u, is given by

div@i+ H,) =0  inR2,
curl H, =0 in R2,

where # is the extension of u by 0 in R2 \ 2. Our upper bound coincides with the
lower bound obtained by Riviere and Serfaty.

Mathematics Subject Classification (2000): 49J45 (primary); 35B25, 35J20
(secondary).

1. Introduction

In this paper we study the following energy-functional, related to micromagnetics:
- 2 1 2
E.(u):= [ e|Vul”+ |H, |~ (1.1)
Q € JRr?

Here Q is a bounded domain in R? with Lipschitz boundary, u is a unit-valued
vector-field (corresponding to the magnetization) in H (@, SY) and H,, the de-
magnetizing field created by u, is given by

div(i + H,) =0 inRR?

1.2
curl H, =0 inR?, (1.2
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where ii is the extension of u by 0 in R? \ Q. For the physical models related to E,,
we refer to [18] and all the references therein.

We can rewrite (1.1) in the following form. Denoting by A1l the Newtonian
potential of i, we observe that the vector-field H,, := —V(div(A_lﬁ)) belongs to

L%(R?, R?). Moreover,

divH, = —divi in R?
curl H, =0 in R?Z.
So H, = H, and we obtain

2

Ee(u)zf e|w|2+1/ |V (div(a™'d))|". (1.3)
Q & JR2

In [19] T. Riviere and S. Serfaty proved the following theorem, giving compactness
and a lower bound for the energies E,.

Theorem 1.1. Let Q be a bounded simply connected domain in R?. Let &, — 0

and u, € Hl(Q, Sl) with a lifting ¢, € HY(Q,R) ie., u, = €% a.e., and such
that

Eg,(uy) < C (1.4)
lonllLeo) < N . (1.5)

Then, up to extraction of a subsequence, there exists u and ¢ in N g<coL9(82) such
that

Yn —> @in Ng<oo L1(Q)
Up = uin Ngeoo LY(Q).
Moreover, if we consider

{Tf<p(x) = inf (p(x), )

T'u(x) :=e'T'¢0)

then div, T'u is a bounded Radon measure on Q xR, with t — div, T'u continuous
from R to D' (). In addition

2// |divy T'u|dxdt < lim | 2|Ve, - Hy,| < lim E,, (u,) < 0.
RJQ

n—o00JQ n—o00

The main contribution of this paper is to establish the upper bound for E, in the
case where u and its lifting ¢ belong to BV. First of all we observe that if ¢, — 0,
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E., (up) < C, and u, — u in L9, where |u,| = 1 and u € BV then clearly
lim [g2 |Hy,|* = 0, which implies
n—oo

lim [ @, -V6=—lim [ H,  -V6=0 V5§eC R*R).
n—o0 Jp2 n—0o0 fp2

Therefore, div # = 0 as a distribution, i.e.,

lul =1 a.e. in 2,
divu =0 in<, (1.6)
u-n=0 ondf2.

The main result of this paper is the following theorem.

Theorem 1.2. Let Q be a bounded domain in R* with Lipschitz boundary. Con-
sider u € BV (2, SY), satisfying divu = 0in Q and u - n = 0 on 92 and assume
there exist o € BV (2, R), such that u = €'¢ a e. in Q. Then there exists a family
of functions {v;} C C*(RN, R) satisfying

lim ve(x) = @(x) in LY (Q,R)
e—071

and
lim E,(e'") = 2[ / |divy T'u| dx dt .
e—0 RJQ

Moreover, if p € BV (2, R) N L™, then we have

lim v (x) = p(x) in LP(Q,R) Vpell,o0).
E—>

In order to construct {v.} we take the convolution of ¢ with a varying smoothing
kernel, i.e., we set v, (x) := &2 [po n(25, x)@(y)dy where n € C2(R?* x R?)
satisfies [0 7(z, x)dx = 1 for every x € €, and we optimize the choice of the
kernel 1. A similar approach was used in [16] and [17], but a new ingredient is
required here, since the non-local term fR2 |H,|? gives certain difficulties.

1.1. The basic idea

We shall follow essentially the strategy of [16] and [17]. The main new ingredient
here is the calculation of

lim 1/ |V (div(A~ {xae™ )| (1.7)
R2

e—01 &

We first calculate

L() := lim l/2 |V (div(A™ {ge)) .
R

e—0t €



676 ARKADY POLIAKOVSKY

where ¢, (x) 1= g2 Jr2 l(% x)p(y)dy, with | € C2(R? x Q,R?) satisfying
Jp2 1z, x)dx = 0 for every x € . Since V(div(A~!{¢,})) has the same asymp-
totic behavior as & 2 Jr2 s(%, x)e(y)dy, where s(z, x):=V; (diVZ(Az_ll(z, x))),
we can calculate the limit L (/) in a similar way to what was done in [16] and [17]
(see Lemmas 3.1 and 3.2 for the details). Using the results of [17] (see Proposition
2.2 below) it is easy to calculate

1 .
D(l) := lim —/ |e”’€ — e — u|2dx.
e—=0¢€ Jo

Now, given a fixed n and a small § > 0, we choose [ = [s in such a way that
D(ls) < 4. Then, using the estimate

/ |V(diV(A_1{stf}))|2§C/ 712,
R2 Q

we deduce that

1
&

lim
e—0

1 )
= [ v @iva e )|

&

fR i |V(div<A—1{st}>)|2‘

L 1 ) 1/2
< lim c{—f |V (div(A™ {xa (e — @e — u)}))|2} <82,
e—0 & JRr2

Finally, tetting 6 tend to 0, we conclude that the limit in (1.7) should be equal to
limg_,o L(ls). We follow basically this strategy in the proof of Proposition 4.1.

ACKNOWLEDGEMENTS. I am grateful to Prof. Camillo De Lellis for proposing this
problem to me and for some useful suggestions. Part of this research was done dur-
ing a visit at the Laboratoire J. L. Lions of the University Paris VI in the framework
of the RTN-Programme Fronts-Singularities. I am indebted to Prof. Haim Brezis
for the invitation and for many stimulating discussions.

2. Preliminaries
Throughout this section we assume that €2 is a bounded domain in R? with Lipschitz

boundary. We begin by introducing some notation. For every v € S! (the unit
sphere in R?) and R > 0 we denote

B;{(x,v)z{yeRz:ly—xl<R, (y —x)-v >0}, 2.1
Br(x,»)={yeR*:|y—x| <R, (y —x)-v <0}, (2.2)
Hi(x,v)={yeR*>: (y—x)-v >0}, (2.3)

H (x,v)={yeR>:(y—x)-v <0} (2.4)
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and

={yeR*:y.v=0}. 2.5)
Definition 2.1. Consider a function f € BV (2, R™) and a point x € Q.
i) We say that x is a point of approximate continuity of f if there exists z € R™

such that
i fBﬂ(x)|f(y)_Z|dy _
p— 0t L%(B,(x))

In this case z is called an approximate limit of f at x and we denote z by f (x). The
set of points of approximate continuity of f is denoted by G s.

ii) We say that x is an approximate jump point of f if there exist a, b € R™ and
v € S¥~! such that a # b and

S5t S ) —aldy e IFO) —bldy
im =0, lim =
p=0t  L2(B,(x)) p—0t  L2(By(x))

(2.6)

The triple (a, b, v), uniquely determined by (2.6) up to a permutation of (a, b)
and a change of sign of v, is denoted by (fT(x), f~ (x), v(x)). We shall call
v s(x) the approximate jump vector and we shall sometimes write simply v(x) if
the reference to the function f is clear. The set of approximate jump points is
denoted by Jr. A choice of v(x) for every x € Jy (which is unique up to sign)
determines an orientation of J;. At a point of approximate continuity x, we shall

use the convention fH(x) = f~(x) = f(x).

We refer to [2] for the results on BV-functions that we shall use in the sequel.
Consider a function ® = (@1, ¢2,...,94) € BV (2, RY). By [2, Proposi-
tion 3.21] we may extend ® to a function ® € BV (R?%,R?), such that ® = &
a.e. in €2, supp @ is compact and ID®|(82) = 0. From the proof of Proposi-
tion 3.21 in [2] it follows that if ® € BV (2, RY)NL™ then its extension P is also in
BV (R?, RY)NL>®. Consider also a matrix valued function & € C CZ(RZ xR2, RI*4)

For every ¢ > 0 define a function W, (x) : R? > R by

. i =Y . q
W, (x) = = /Rz“< . ,x) D(y)dy

2.7)
2/ E(z,x)  ®(x +e7)dz, Vx e R,
RZ

Thanks to [17, Proposition 3.2], we have the following result. It generalizes Propo-
sition 3.2 from [16] and provides the key tool for the calculation of the upper bound,
both in [17] and in the current paper. In the proof of Lemma 3.2 we shall also follow
the general strategy of its proof in [17].
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Proposition 2.2. Ler W € C(R! x R?, R) satisfying
V.W(a,b) =0 whenever W(a,b) =0. (2.8)
Consider ® € BV(Q,RY) NL*® andu € BV (2, RY) N L™ satisfying

W({/ E(Z,x)dz} - D (x), u(x)) =0 forae x €2,
R2
where B € CCZ(]R2 x R2, RI*4), as above. Let W, be as in (2.7). Then,

. 1
lim EW(\Ifg(x), u(x))dx

=0/
0 400 (2.9)
=/ {/ W(T (@, x), u” (x))dt +/ W(F(t,x),u_(x))dt}dHl(x),
Jo —00 0
where
t +o00
', x)= (/ P(s,x)ds) P (x) + (/ P(s, x) ds) SO (x), (2.10)
—00 t
with
P(t, x) =/O Etv(x) + v, x)dH (y), (2.11)
Hv(x)

v(x) is the jump vector of © and it is assumed that the orientation of J,, coincides
with the orientation of Jo H! a.e. on J, N Jo.

Definition 2.3. Given f € L®(R?, R¥) with compact support, we define its New-
tonian potential

1
—1 o o _
(A7 ) = /Rz o In|x —y[ f(y)dy.
Than it is well known that
/ V(A7 )| dx =/ |f (o) dx, 2.12)
R2 R2

where given v = (vy, ..., vg) : R? — R* we denote by V2y € RF*2x2 the tensor
with /i j-th component Bizj V.

Definition 2.4. Let ) be the class of all functions n € CC2 (R? x R?, R) such that
/ n(z,x)dz=1 Vx e Q. (2.13)
R2
Let U be the class of all functions /(z, x) € C 62 (R? x ©, R?) such that

/Rzl(z,x)dz =0 VxelR?Z. (2.14)
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In [17, Lemma 5.1], we proved the following statement. This statement generalize
Claim 3 of Lemma 3.4 from [16] and was an essential tool in the optimizing the
upper bound in [17].

Lemma 2.5. Let 11 be positive finite Borel measure on Q and vo(x) : Q — R?
a Borel measurable function with |vg| = 1. Let W, denote the set of functions
p(t,x) : R x Q — R satisfying the following conditions:

i) p is Borel measurable and bounded,
ii) there exists M > O such that p(t, x) = 0 for |t| > M and any x € L,
1i1) fR p(t,x)dt =1, Vx € Q.

Then for every p(t,x) € W, there exists a sequence of functions {n,} C V (see
Definition 2.4), such that the sequence of functions {p,(t, x)} defined on R x Q by

Pu(t, X) 2/0 M (tvo(x) + y, X)dH' (),

Hvo(X)
has the following properties:

i) there exists Cqo such that || py||Lc < Co for every n,
ii) there exist M > O such that p, (t, x) = 0 for |t| > M and every x € L, for all
n

i) Timy—oo [y [ [Pn (0, x) = p(t, )| di dpu(x) = 0.
With the same method it is not difficult to prove

Lemma 2.6. Let u be positive finite Borel measure on 2 and vo(x) : 2 — R?
a Borel measurable function with |vo| = 1. Let Wy denote the set of functions
q(t, x) : R x Q — R? satisfying the following conditions:

1) q is Borel measurable and bounded,
i) there exists M > O such that q(t, x) = 0 for |t| > M and every x € Q.
iii) qu(l‘, x)dt =0, Vx € Q.

Then for every q(t,x) € Wy, there exists a sequence of functions {l,} C U (see
Definition 2.4), such that the sequence of functions {q,(t, x)} defined on R x Q by

it = [ (o) + .0 ),

Hl’() (x)

has the following properties:

i) there exists Cq such that ||g, L~ < Co for every n,
i) there exist M > 0 such that q,,(t, x) = 0 for |t| > M and every x € Q, for all
n

iii) lim,— o fg /R lgn(t, x) —q(t,x)|dtdu(x) = 0.
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3. First estimates

Throughout this section we assume that €2 is a bounded domain in R? with Lipschitz
boundary.

Let I € U (see Definition 2.4). Consider r(z, x) = Az_ll(z,x). Then r €
CZ(R? x R2%, R?) with suppr C R2 x K, where K € €. Moreover, since
fRZ I(z,x)dz =0, forevery k = 0, 1,2... we have the estimates

Cr
lz|+ 1
Ck
lz|2+1°
Cy
lzIP+1°

IVEr(z, x)| <

Vi (Var e 0) | <

(3.1

Vi (VirG o) =

where C; > 0 does not depend on z and x.

Lemma 3.1. Let ¢ € BV (2, R) N L and | € U (see Definition 2.4). For every
& > 0 consider the function ¢, € C'(R?, R?) by

1 —
o= [ 1R )emay = [ e vserends 62)
&c Jr2 € R2

where @ is some bounded BV extension of ¢ to R? with compact support. Next
consider r(z, x) := Az_ll(z, x) and set

1 . y
E(x) = 2 /RZ Vl(dlvlr)<

= /2 V. (div, r(z, x))@(x + e2) dz,
R

= x) e dy
(3.3)

where V1 (div| r) is the gradient of divergence of r(z, x) in its first variable, namely
z. Then,

1 2 1
| ivavatonmfa=om+ [ Law-swar. 64
R2 &€ Q€

Proof. Since l(z,x) = 0if x ¢ K, where K is some compact subset of €2, we have,
in particular, ¢ (x) = 0 for every x € R? \ Q. Then, integrating by part two times,
we conclude

/l(v(div(A—%pg))(x)(zdx
R

2 €

= —/ lA(div(A_lgog))(x) - (div(A™ ) (x) dx
R2 &
| (3.5)
= —/ — div s (x) - (div(A™19p)) (x) dx
R2 &€

1 . -1
= / — e (x) - V(le(A gog))(x) dx .
Q€
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Next consider the function ¢, € C!(R?, R?) given by

1 Y-
cwi= [ o

We will prove now that

x,x)cﬁ(y) dy = /Rz r(z, x)¢(x +€2)dz. (3.6)

<Ce?B vxeQ. (3.7)

V2 (x) — /2 V2r(z, x)@(x + e2) dz
R

We shall denote by Vil and V! the gradient of /(z, x) with respect to the variables
z and x respectively. We have,

2V (x) — /2 V2r(z, x)@(x + e2) dz
R

y—Xx _ 1 y—Xx -
=/ Vfr( ,x)ga(y)dy——zf V%”(—,X)(P()’)dy
R2 & I R2 £

| - — X _
:——/ {Vlvzr(y ,x)+V2V1r(y ,x)}(p(y)dy
& Jr2 & g

+ /RZ V%r(?, x)t/_)(y) dy.

Therefore, by the Holder inequality and the estimates in (3.1), we obtain

(3.8)

2V (x) — f2 V2r(z, x)@(x + £2) dz
R

| . 6/5\5/6 1/6
=5 [ A @) [poras)
&7 JR2 R2
1 y—x B\ i 2/3
+82/3(—2 f V%r(—,x)\dy) ( / |<p(y>|3/2dy>
& R2 & R2

2/3 6/5 \° e\
=% </2 ’Vlvzr(z,x) +V2V1r(z,x)‘ dz) <f2 (¥l dy)
R R

3 \!3 2/3
4—(«32/3</R2 )V%F(Z,x)) dz) (/Rz |€5(y)|3/2dy> < e

which gives (3.7). In particular,

ViVor (22 )+ Vo (2
&

2 AL (x) — e (x)

2 AL (x) — /2 Ar(z,x)p(x +ez)dz
R

(3.9

< Coe?/?.



682 ARKADY POLIAKOVSKY

Next by (3.5),

1 . -1 2 1 . —1
/—‘V(dw(A %))(x)‘ dx:/ e (x) - V(div(A " pp)) (x)dx
R2 &€ Q€
(1 v div(e2
_/Qg(pg(x) V(dlv(s g‘g(x)))dx

_/ é(pg(x) . V(div(A_l(82A§5—<pg)>)(X)dx.
& (3.10)

The last integral can be estimated by

1 o
/;2 - e (x) - V(le(A 1(82A{8 — (pg))>(x) dx
1 2\ (1 i 2
< (/ngos(xn ) (g /R v (div(a™ (2A0 = 00) ) ) ) dx)
1 1/2 /5 1/2
< ( / —|<pe<x>|2> (— /
Q¢ & JRr2
1 1/2 2 1/2
=</ —|<ps<x)|2> (/ —!sZA;g(x)—wa(x)\zdx> :
Q€ Q€

Then, since

1 5 1
/—|¢e(x)| SC/ Do)
Q¢ Q€

_ 1
< / !
Q€
56/ l|l(z,x)|(/ \@(x+ez)—<p(x)|dx> dz
Br(0) € Q

i(_TIID@II(RZ)/ [l(z, x)| - |z]dz = O(1),
BR(0)

172

V2<A—1(82A§5 _ (p5)>(x)‘2dx)

dx

/ 1z ) (@ x + £2) — 9(x))dz
Br(0)

(3.11)

using (3.9), from (3.10) we infer

f l‘V(div(A_lgog))(x)‘zdx:08(1)+f l(pg(x).V<div(62{g(x))> dx. (3.12)
R Q€

2 &
Next we remind that &, is defined by (3.3). By (3.7), we have,

‘V(div(z;z{g(x)» — gg(x)( <GP wreq. (3.13)
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Then as before,

1 .9
' fQ ~ge(0) (V(dw(s &) —&(x)) dx

1 12 | 5 172
< ( | —|<as<x)|2) ( [ 27 (@) - s dx)
Q€ Q€

< Cel/®,

Therefore, from (3.12) we infer (3.4). [l

Lemma 3.2. Let ¢ € BV (2, R) N L and | € U (see Definition 2.4). For every
e > 0 and every x € R? consider the function ¢. € C'(R?, R?) as in (3.2). Then,

lim E‘V(div(A_ltpg))(x)‘zdx

e—=0 JR2 €
. . ) (3.14)
=/j {/ ot ()=~ () - | p(x) / q(s, x)ds dt}dHl(X),
» LJ—o0 t
where
q(t, x) :/Ho [(tv(x) + y, x) dH (), (3.15)
v(x)
and v(x) is the jump vector of ¢.
Proof. By Lemma 3.1 we have
1 2 1
/ —‘V(div(A_lgog))(x)‘ dx = o0.(1) +/ —pe(x) - & (x)dx. (3.16)
R2 & Q€

From this point the strategy of the proof is similar to that in [16] and [17] (see also
Proposition 2.2). The only difference is that here &, is defined by a convolution
of ¢ with a kernel whose support is not compact. However, it turns out that this
difference is not crucial and we can use almost the same approach.

Step 1. We prove a useful expression,

1
/ ~@e(x) - e (x) dx
Q€

[ G [ e )25t e ammonfar

R2 QOBRe(¥)

(3.17)
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where &, is as in (3.3) and R > 0 is such that /(z, x) = O whenever |z|] > R.
As before, we shall denote by V{/ and V5[ the gradient of / with respect to the
first and second variables respectively. Denote ((ptg,l (x), (ptg‘z(x)) ‘= @ (x) and

(ll(z, x), Iz, x)) :=[(z, x). Then for every ¢t € (0, 1], every j € {1, 2} and every
x € R? we have

d(pe,j))  d [ 1 y—Xx \_
ISP I I (2—— d
dt dt <t282 /Rz j( te ,x)<p(y) y)
1 y—x y—Xx y—x _
=—— Vil; . 21;
1382/11@: ll']( te ,x) e l’( re ,x>}g0(y)dy
1 ) y—Xx y—x]|_
_—%/delvy {lj( " ,x) " }(p(y)dy

1 y—x y—x -
= — lil=——,x)——-d[D .
t2e _/]Rz J( te x) te [D1)

Therefore, for any p € (0, 1) we have,

(3.18)

1
/Q ;(sog (X) — @pe (X)) - s (x) dx

- [ ew- ( / (Q"’S(’C))>dx

=[] e (e [T o)l
Z/pl{/gsg(x).<ﬂ; [RE==1E= .dwm)})dx}dt
=/pl{f<$ / {Ss(x)-l<%,x>}y;xdx)~d[D</3](y)}dt

R2 QNBRee(y)

From our assumptions on ¢, by (3.1), it follows that there exists a constant C > 0,
independent of p, such that |$p (x)| < C for every p > 0 and every x € Q. There-
fore, letting o tend to zero in (3.19), using the fact that lim,_.¢ [l¢, (x)IILl(Q) =0
(see (3.11)), we get (3.17).
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Step 2. We prove the identity

1
/R”‘ (div(A~"gy) (x)‘ dx

1

=08(l)—|—/</{ / {l(z,x)-ég(x—stz)}zdz}-d[D(p](x))dt 320

0 J, Bg()

I
+O/ </ / I(z,x) - Ee(x —stz)}zdz} -d[D(p](X)>df,

(p Br (O)

where G, is the set of approximate continuity of ¢. By (3.16) and (3.17) we deduce

/Rz 1‘ v (div(Aa~g,) (x)‘ dx

! 1 y—Xx
=og(1>+/0 :/(@ | few(*

R? QNBRre(¥)

! 1 y—x
oo [{ (7 [ faw(3

R2 KNBRee(y)

,x)}y;x dx> - d [D@\(y) bar

5} 2 — dx) -d[DF(y) ydt,

(3.21)

where K @ 2 is a compact set (see Definition 2.4). But, for every ¢ < % dist(K, 0L2)

we have
% / {sa(x) .z(y;x,x)} y;x dx) -d [DF](y)

/

R2 KNBRree(y)

N

I
O—

KﬂBRm())

t“ és(x) l( x,x)}y;xdx)-d[Dq')](y).

R2

[
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Therefore, by (3.21), we obtain

1 2
/ ~ |V (div(a™ )0 dx
R

2 &

1
1 y—x y—x _
o+ [ [( [lew ()] 2 ax) - awwgimar
0 Q R2
1

=o£<1)+0/<9/{

1

:o€(1)+/(/{ / {l(z,x)-Sg(x—etz)}zdz}-d[D(p](x))dt,

0 Q  Br(0)

(3.22)
/ {1 y=ern) & (v-e12)} 2z -d[D¢]<y)>dr

Br(0)

where in the last equality we used the estimate |/(z, x — etz) — [(z, x)| < Cet|z|.
Therefore we obtain (3.20).

Step 3. We will prove that the second integral in the r.h.s of (3.20) vanishes as
& — 0. For every x in G, we have,

. 1 _ =
iim s [ 1800~ dwldy =0,
p=0" 0% JB,(x)

Taking p = Le, for every L > 0, gives

lim |§(x 4+ 2) — p(x)|dz =0, forxinG,. (3.23)

e—=0" J B, (0)

Using (3.1), since fRZ V, (diVZ r(z,x — 8ty))dz =0, forevery x in G, y € Br(0),
t € [0, 1] and L > 0 we have,

& (x — ety)| = ‘ /2 V. (div. r(z, x — e1y))@(x + ez — ety) dz
R

/ V.(div, r(z, x — ety))(¢(x + ez — ety) — ¢(x)) dz
R2

)
BL(0)

V. (div, r(z, x — sty))) @+ ez — ety) — ()| dz

] (3.24)
+/ V. (div, r(z. x —sty))‘ @+ ez — ety) — ()| dz
R2\B, (0)
- 1
= AL/ l(x + ez — ety) —(Z)(x)|dz+B/ —5——dz
B1(0) R2\B(0) 127+ 1

_ = 1
SAL'/‘ |</)(X+SZ)—(p(x)|dz+B/ - dz,
B(+)(0) R2\BL(0) 12I° +1
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where B > 0 is a constant and A7 > 0 depends only on L. Given § > 0 we can
take L > 0 such that

B/ %—dZ < s
R2\B(0) 127+ 1

Then, using (3.24) and (3.23), we infer lim,_, o+ |£,(x — e1y)| < & and since § was
arbitrary,

lim &(x—e1y)=0 Vx Gy, yeBrO), €011 (3.25)
e—

Using (3.1), we also have |[&.(x — ety)| < C, and therefore, plugging (3.25) into
(3.20), we obtain

/l‘v(divml%))(x)‘zdx
R

2 &
1

zog(l)+/</{ / {l(z,x)-ég(x—etz)}zdz}-d[D(p](x))dt. (3.26)

0 J, Bgr(0)
Step 4. Consider l_(z,x) = Vz(divzr(z,x)). For every e,1 € (0,1), x € J, and
z € Bg(0), we have

E(x —stz) = f I(y,x — etz)q_)(x +e(y — tz)) dy
R2

= /[(y + 1z, x — et2)@(x + €y) dy
R2

= / I(y +tz, x — et2)@(x + ey) dy
Hy(0,0(x))

+ / I(y +tz, x — et2)@(x + ey) dy

H_(0,v(x))
i} 27
- / I(y +tz,x —etz)p™ (x)dy 62D
Hy(0,v(x))
+ / I(y +tz,x —etz)p” (x)dy
H_(0,v(x))

+ / I(y+tz,x —etz)(¢(x + ey) — ¢t (x)) dy
Hy (0,9(x)

+ / I(y+tz,x —etz)(¢(x + ey) — ¢~ (x)) dy.
H_(0.v(x))
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By the definition of J,, for every L > 0 we obtain,

lim lp(x 4+ e2) — T (x)|dz = 0,
e=0" JB(0v(x))
forx € J,. (3.28)

lim lp(x +ez) — ¢~ (x)|dz = 0.
e=>0% J B (0,v(x))

Then, by (3.1), for every L > R we have,

‘ / I(y+1tz,x —stz)(q')(x—l—ey) —<p+(x)) dy
Hy(0,v(x))
< / (y +tz,x —&tz)| - |(Z)(x+8y)—(p+(x)|dy

Bf (0.v(x)) (3.29)

+ / Iy + 12,3 — £12)] - [§(x + €9) — @+ ()| dy

Hy (0,v(x)\B} (0,v(x))

1
<AL / |<Z>(x+gy)—<p+(x)|dy+8/

—dy’
r2\B,(0) (Iy] — R)3 + 1

Bf (0,v(x))

where B > 0 is a constant and Ay > 0 depends only on L. Given § > 0 we can
take L > 0 such that

1
B 3
r2\B0) (Y| — R)” +1

Then, using (3.29) and (3.28), we infer

dy <6,

lim / I(y +tz,x —et2)(¢(x + ey) — ot (x)) dy| < 8,
e—071
Ho O,v(x)

and since § was arbitrary,

lim / I(y+tz,x —etz)(¢(x + ey) — ot (x))dy =0

-0t
’ H, (0,v(x)) (3.30)
Vx € Jy, z € BR(0), t € [0, 1].
By the same method,
1im+ / I(y+tz,x — stz)(gb(x +ey) — ga_(x)) dy =0
=0 (3.31)

H_(0,v(x))
Vx € J,, z € BR(0), 1 € [0, 1].
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Therefore, by (3.27) for every ¢, 1 € (0, 1), x € J, and z € Bg(0), we have

Ee(x—etz) = 0:(1) + T (x)
X / l_(y +tz, x—¢etz)dy +¢ (x) / l_(y +tz,x—¢tz)dy

H.(0,v(x)) H_(0,v(x))

=0:(1) + (¢ (x) — 9~ (1)) / I(y +tz,x —etz)dy,

Hy (0,0(x))
(3.32)

where we used the equality fRQ I(y +tz,x — etz)dy = 0. Using (3.1), gives

lim I(y +tz,x —etz)dy =/ I(y +tz,x)dy.
e=>0" JH(0.v(x)) H(0,v(x))

Therefore, by (3.32), for every x € J,, every t € (0, 1) and every z € Br(0), we
obtain,

lim & (x —etz) = (g0+(x) — gp(x))/ I(y +tz,x)dy. (3.33)
e—0F H,(0,v(x))
Note that

/ i(y+tz,x)dy=/ I(y,x)dy
Hy(0,v(x)) Hy(tz,v(x))

+00 _
- / ( / CTev) + v dH 0)de (334)
t H

vix)-z v(x)

+00
=/ q(zr,x)dr,
t

v(x)-z

where

g(t, x) :/0 [(tv(x) + vy, x)dH' (y). (3.35)
H

v(x)

Combining (3.33) and (3.34), for every x € J,, every t € (0, 1) and every z €
Br(0) we obtain,

+00
lir(r)1+ Ec(x —etz) = ((p+(x) — (pf(x)) / q(t,x)dr. (3.36)

tv(x)-z
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Using (3.36) in (3.26), we obtain,

Heo 2
fg}v(dw(A 00)) ()| dx = 0. (1)

R2
1 400
+/</(<p+(x)—(p_(x)){ /(l(z,x)- f cj(r,x)dt)zdz} -d[D(p](}C))dt
0 Jy Br(0) tv(x)z
= 0g(1)
1 +oo
+f|<p+(x)—¢(x)|2{ /(l(z,x) / / q(x, x)dtdt) (v(x) -2 dz}dHl(x).
Jy Bg(0) 0 tv(x)z
(3.37)
Step 5. We prove that
q(t,x) = (q(t,x) . v(x))v(x). (3.38)

Consider (ry(z, x), r2(z,x)) := r(z,x). Then, by (3.1), for every k = 1,2, we
obtain,

82rk

/V?rk(tv(x) +y,x)dH' () =/v(x) ® v(x) 5 (tv(x) +y, x) dH' ()

0 0
HV(X) Hv(x)

A(v(x)

82rk

1
(L) (r) (tv(x) +y, x)dH (y)

+/(v(x) ® vH(x) + i) ® v(x)) ;
HI?(X)
1L 1 8%rk 1
+/v ()@ v(x) ———@v(x) +y,x)dH (y)
/ A(vt(x))
Hv(x)

2
=[v(x) ® v(x) (a ”‘)zav(x) +y,0)dH' (),

a(v(x)

H)
(3.39)
where v+ (x) is the vector orthogonal to v(x) in R? and all derivatives are taken in

the first argument-z of (z, x). In particular

q(t,x) = / I(tv(x) + vy, x) dH (y) = / Ar(tv(x) + y, x) dH' (y)

HO

v(x)

3%r 1
_ / S0 () + y. 1) dH (),
(v (x))
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and

g(t,x) = / [(tv(x) + y, x) dH' (y) = / V. (div, r)(tv(x) + v, x) dH' ()

0 0
Hv(x) HV(")

2
= (v(x)- / o 2(tl)(x)er,x)dHl(y))V(x).
) a(v(x)

v(x)
So, we obtain (3.38).
Step 6. Completing the proof. Plugging (3.38) into (3.37) gives

1 2
/RZ ;‘V(div(A_lgog))(x)‘ dx = 0.(1) + / lot(x) — <ﬂ_(x)|2

J‘P
x{ /(l(z x) - v(x) // q(r,x)-v(x))drdt)(v(x)-z)dz}dHl(x).
BaO) tv(x)-z
(3.40)
Next we have
1 +4oo
/ ((l(z, x) - v(x))/ / (q(z,x) - v(x)) drdt) (v(x)-z)dz
Br(0) 0 tv(x)z
1 400
:/((l(z,x)-v(x))f / (q(r,x) - v(x)) dtdt)(v(x)-z) dz
R2 0 tv(x)z
400 1400
= /s(// (q(r, x) - v(x)) dtdt)( /(l(sv(x) 4+ y,x)- v(x)) dHl(y)>ds
—00 0 ts Hl?(x)
400 1 400
= / s(q(s,x)-v(x))(// q(t,x)-v(x) drdt)d
—00 0 ts
+00 s +00
= / (q(s,x) . v(x))(/ / (q(r,x) . v(x)) drdt) ds
—o0 0 !

(3.41)
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Using the fact that [, ¢ (7, x)dt = 0 and integrating by path, we obtain,

+00 K +o00
f (q(s.x) - v(x))(/ / (q(t,x) - v(x)) d‘[d[) ds
—00 0 Jt

+00 +o00 2 (3.42)
=/ </ (q(z,x) - v(x)) dr) ds .
Therefore, returning to (3.41) we infer
1 p+oo
/ <(l(z, x) - v(x)) / / (q(t.x) - v(x)) drdt) (v(x) - z)dz
0 Jtv(x)z
Br(0) (3.43)
+00 +00 2
=/ (/ (q(s,x) . v(x)) ds) dr.
—0o0 t
Plugging (3.43) in (3.40) gives the desired result (3.14). [l

4. Proof of the main result

As before, throughout this section we assume that € is a bounded domain in R?
with Lipschitz boundary. Next consider u € BV (R, S!), satisfying divu = 0in Q
and u -n = 0 on 92 (n is the unit normal to 92). Let ¢ € BV (2, R) N L>°(2, R),
satisfying u = ¢'¥ ae. in Q. By [2, Proposition 3.21] we may extend ¢ to a function
@ € BV(R?, R) N L®(R?, R) satisfying ¢§ = ¢ a.e. in , supp ¢ is compact and
| D@l|(3€2) = O (from the proof of Proposition 3.21 in [2] it follows that if ¢ is
bounded then its extension is also bounded). We also denote by it := e'?. Then
i€ BV(Q',R?)NL®Q", R?) for some Q" D Q, satisfying it = u a.e. in  and,
by Volpert’s chain rule, || Du||(02) = 0. Consider n € V. For any ¢ > 0 define a
function v (x) : R? — R by

_1 Y~
ws(x).—ngwn(

Proposition 4.1. Let u, ¢, u, ¢ and n be as above. Consider . (x) defined by (4.1).

Then,
lim /
e—0 JR2

:/; {/+OO ‘ v(x) (ei)/(t,x) _ eiw‘(x)) ‘zdt}dHl(x),

x,X)rﬁ(y)dyszzn(z,x)cp(x+sz)dz, VxeR?. (4.1)

2
’dx

Vdiva~! (Xg(x)ei‘pg(x))
4.2)

where . o
y(t,x) = ¢ (x) / p(s, x)ds + o™ (x) / p(s,x)ds, (4.3)
—00 t
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with
p(t,X)=/HO n(tv(x) +y, x)dH' (y), 4.4)

v(x)

and xq is the characteristic function of Q.

Proof. We follow basically the strategy that was described in Subsection 1.1.

Since (ut — u™) - v = 0, the right hand side in (4.2) does not depend on the
orientation of J,, we may assume that v(x) is Borel measurable. Together with
n € V we consider a second kernel 7 € V. Let

plt.x) = / L ) +y, ) dH (). (4.5)

Hv()c)

For any ¢ > 0 define a function u,(x) : R? — R? by

1 _ -
Ug(x) 1= _2/ ’7<y x’x>”_’(y)dy Z/ (z,x) 0T dz vx e R?,
& R2 &€ R2
(4.6)

DeﬁneQ:RxJ(p—Hszy

1 400
Q(t, x) i= €70 — ({/ ps, x)ds}ei‘/’_(x) + {/ (s, x)ds}ei‘/’+(x)> ’
g ;

4.7
where y (1, x) is defined by (4.3). Then define ¢ : R x @ — R? by
1 dQ(, x)
- — x € Jy,
gt,x) =1 @rHx) —¢~(x)) dt (4.8)
0 xeQ\J,.

Then ¢ (z, x) is Borel measurable, ¢ is bounded on R x €2, there exists M > 0 such
that suppg C [-M, M] x Q and qu(z‘, x)dt = 0 Vx € Q. Moreover

+00
(6" () — 9~ () / ¢(s, X)ds = Q1 x) 4.9)
t

Then by Lemma 2.6, there exists a sequence of functions /,, € U (see Defini-
tion 2.4), such that the sequence of functions {g, } defined on R x Q by

it = [ (oo + . 0aH ),

Hvo(X)

has the following properties:

there exists Cg such that ||g, | L~ < Co, (4.10)
there exists M > 0 such that ¢, (¢, x) = O for |[t| > M, and every x € 2, (4.11)

fim /QfR|qn(r,x)—q(z,x>|dzd||D<p||<x>=o. 4.12)

n—oo
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In particular,

lim/ /|<p+(x)—<p—(x)|-|q,,(t,x)—q(z,x)|dth1(x)=o. (4.13)
Jy, JR

n—oo

For every positive integer n and for every ¢ > 0 consider the function ¢, . €
C!(R?, R?) given by

1 —
onei= 5 [ (S )emdr = [ nGonato+ends @
& R2 & R2

Next, we will use the following inequality, valid V f(x), g(x), A(x) € L>(R?, R?),

'/ |f(x)|2dx—f g(x)2dx
R2 R2

< (||f—g—x||Lz+||M|Lz)\/2</ |f(x>|2dx+/ |g<x>|2dx). (4.15)
R2 R2

Therefore, since ¢, (x) = 0 for x € 2 and since diV( XQI/_t) = 0 as a distribution,
we obtain,

J.

< 2(”Vdiv A*I(XQ((;N/E — e — ug))HLz + [V div Al(XQ”s)HL2>

2
x\// dx—l—f
R2 R2

= 2<HVdiV A_l(XQ(ei% — Yne — u8)> HL2 + Hvdiv A_I(XQ(Mg _ b_t))

[

But since for every f € L% (R?, R?) with compact support we have

2
Vdiv A7 (g0 ()| dx

, 2
VdivA_l(XQ(x)e”/fs(x))‘ dx —/
R2

2
dx

Vdiv A~ (xqe'V¢)

Vdiv A~ (¢n¢)

)

(4.16)

2
dx .

2
Vdiv A~ (xq(efVe — e"‘z’))) dx +/ ‘V div A= (@n.¢)
R2

/ Vdiva~! f|2dx 52/ V2 At f[Pdx =2f [/ Pdx.
R2 R2 R2
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by (4.16), we obtain

g/
& JRrR2

V div A (g0 (x)) )de

. 2 1
V div A_l(xg(x)e’%(x))‘ dx — —/
& JR2

1 . 1
§4<\/—/ |etws—<pn,s—ue|2dx+\/—f |us—u|2dx) (4.17)
e Jo € Jq

x \/1/ leive — eiv|dx + l/ |V div A~ (ge) [*dx
& JQ ¢ Jr?

Therefore, setting

Lo:= ‘/Jw { /_;OO ’ v(x) - <eiy(”x) - ei‘/’_(")> lzdt}dﬂl(x),

we have

1 | . 2
—/ VdivA~ ()(Qe””f) dx — Ly| <
& JR2

1 . —1 2
Lo — - |V div A ((pn,g)| dx
& JRrR2

1 . 1
+4(\/—f |etve —(pn,g—ug|2dx—|—\/—/ |u8—u|2dx>
€ Jq € Jq

x\/lf ’ei‘//s—ei<ﬂ|2dx+l/ ’VdivA—l((pn,gszx.
& JQ & Jr2

(4.18)

Using Proposition 2.2 with W (a, b) = W((m ,ap, az), b) "RxR?2xR?) xR —

R, defined by W (a, b) := |eia1 —ap)—as 2, we obtain,

lim l/ \ei% — @One — ug|2dx =D,
e—0¢&
Q
+00 +00 )
— f { / PV X) _ (¢>+(x) — (p_(x)) / qn(s, x)ds — I'(t, x) dt}dHl(x),
J, —00 t
(4.19)

where y (¢, x) is defined by (4.3), and

C(t,x) = {/tooﬁ(s,x)ds}ei‘p_(x) + { /IJFOOﬁ(s,x) ds}ei‘p+(x).
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Using Proposition 2.2 with W (a, b)) = W : R?> x R?> — R, defined by W (a, b) :=

2 .
|a — b|”, we also infer that

e—0

1
lim — / lug — ul?dx = T (7))
&
Q

0 +00
;:/{ / T, x) —ut(x)dr + / |F(t,x)—u‘(x)}2dt}dH1(x)
—00 0

‘,‘ﬂ
0 ‘ 5 (4.20)
= / { / Wt —u) / p(s,)ds| dt
J(p —00 —00
“+00 +00 )
+ / W —u") | ps,-)ds dt}dHl ,
0 t
and
. 1 iV iol2
lim — |e 6—e“’| dx
e—~>0¢ Jo
0 400
=M:= { f ’eiy(t’x)—ei“’+(x)|2dt+/ |eiy(t’x)—ei‘p_(x)|2dt}d7'(1(x).
Jy —00 0
4.21)
By Lemma 3.2 we obtain
. 1 o 2
lim —‘V(le(A (pn,g))(x)‘ dx
e—=0 Jp2 €
+00 5 400 2
=L, = / { / @) — o~ - | v(x) / Gu(s, x)ds dt}dH1<x).
Jo —00 t
(4.22)
Therefore, letting ¢ tend to 0 in (4.18), we get,
— |1 .1 . 2
lim —/ Vdiv A (Xge””s) dx — Lo
e—0t | & JRr2 (4.23)
< |Lo = Lol +4(v/Dy + /TG )V M + L.
Using (4.7), (4.9), (4.13), (4.10) and (4.11) we obtain
lim D, =0, (4.24)

n— oo
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and since (u+(x) — u_(x))J_v(x) (by divu = 0), we also infer

400 . L 2
lim L, =Ly := f {/ ‘v(x) . (e”’(”) —e'? m) ‘ dt}d'Hl(x). (4.25)
n—oo J(p

—00

Therefore, letting n tend to +oo in (4.23), we obtain,
2 — /{ /‘ W 'W)‘zdt}dHl

(4.26)

lim
e—0t

—/‘levA (XQEH’[/S
&

R2

=4yT(mvyM+Lo.

This equation is valid for any 7 € V), and the constants M and L do not depend on
i1. For every 8 > 0 we always can choose 7js € C*(R? x R?, R), satisfying 75 > 0,
supp s € Bs(0) x R? and fRz ns(z,x)dz = 1 for any x € . Then, as before,
define ps(t,x) : R x J, — R by

pott0) = [ is(tv) + v 0 dH ).
v(x)

Since ps > 0 and supp ps(t, x) C [—8, 8] x J, and ffooo ps(t, x)dt = 1, by (4.20)
we infer

T'(ns)

1

v —

2
a’t}a’H1

2 )
e
0

< 25/ lut —uPdH! < 45] lut —u~|dH' < 48||Dul|().

Jo Jo

t +00
" —u") / ps(s, -)ds W —u") / ps(s,-)ds
—00 t

Therefore, by (4.26) we obtain

lim
e—0t

—/‘levA ()(gze”/’S
£

e —/{ /‘ (e 'w)‘zdt}dHl

4.27)

R2

< 8V8/ 1 Dul|(Q)y/M + Ly .

For § — 0, (4.27) gives (4.2). ]
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Let ¢, ¢ and 1 be as in Proposition 4.1 and ¥, be defined by (4.1). Then using [16,
Proposition 3.1], we obtain,

lim/ 8|V1ﬁg(x)|2dx=/ |¢+(x)—¢—(x)|2.</ pz(t,x)dt) dH'(x), (4.28)
e—=0J0 Jy R

where p(z, x) is defined by (4.4). As in [16] and [17] we also easily deduce that
lim ¥.(x) =¢(x) in LP(Q,R) Vpell, ).
e—0t

Combining these facts with the result of Proposition 4.1, we infer the following.

Corollary 4.2. Letu € BV (2, S, satisfying divu = 0in Qandu -n = 0 on 9Q
(n is the unit normal to 32). Let ¢ € BV (2, R) N L™ such that u = €'Y a e. in
Q. Consider a function ¢ € BV (R?, R) N L™ such that ¢ = ¢ a.e. in Q, supp @ is
compact and || D@||(02) = 0. Given n € V, for every ¢ > 0 let ¥, be defined by
(4.1). Then,

. . 2
lim (/ 8\Ve’w8(x)|2dx+/ ‘VdivAfl(XQ(x)e”/’f(x))‘ dx)
Q R2

e—0

+o0
=Y,(n) = f, ot (x) — o~ ()] ( / pz(t,x)dt> dH'(x)  (4.29)

+/ {/+oo ’ p(x) - <ei)’(t,x) _ eiw_(x)) lzdt}d'Hl(x),
7, UJ—

o
where y and p defined by (4.3) and (4.4) respectively. Moreover,
lim+ Ye(x) =@(x) in LP(Q,R) Vpell, ).
e—0
Next we turn to the minimization problem of the term on the right hand side of

(4.29), over all kernels n € )V, analogously to that was done in [16] and [17]. By
the same method, as there, we can obtain the following.

Lemma 4.3. Let Y,(n) : V — R be defined as the right hand side of (4.29). Then,
inf Y, =
Inf] o () = Jolp)

1
=/2|<p+(x)—g0_(x)| /v(x) ( i\so™ (x)+(1— s)go+(x)) tw(x)) ds d'Hl(x)
Ty 0
€Y
= /2 | v(x) - (e” — ei‘p_(x)) |dt dH'(x).
Jo 97 (0)

(4.30)
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By [19, (I1.36)] we infer that

ANEY) o
Joe) = U [v(x) - (" — e @) |dt|dH (x)
(x)

=2// |divy T'u| dx dt
RJQ

where we (as in [19]), consider T'¢ := inf(p, t) and T'u :=e

(4.31)

iT’(p‘

Proof of Theorem 1.2. The case of ¢ € BV (2, R)N L follows easily from Corol-
lary 4.2 and Lemma 4.3 by using a standard diagonal argument as in the proofs
of [17, Theorem 1.1 and Theorem 1.2].

It remains to consider the case of an unbounded ¢ € BV (L2, R), such that
€™ = y(x) ae. in Q. First recall that by [6] there exists g9 € BV (2, R) N
L*>®(2, R) satisfying e — y(x) a.e. in Q. Then p(x) = @o(x) + 27 (x) where
[ € BV(R2, Z). For each integer n > 1 define,

I(x) xeQ, [l(x)]=<n,
[,(x):=13n x e, l(x)>n, On(x) 1= @o(x) + 271, (x) .
-n xe, lx)<-—n,

Clearly ¢, € BV () N L®(Q) and ¢/ = y(x) a.e. in Q. From the case of
a bounded ¢, considered above, it follows that for each n there exists a family
{Uneles0 C C%(22, R) satisfying limy_. Up.e(X) = @p(x) in LY(Q,R) and

e—0

. ivpe(x)]2 . —1 vy, (X) 2
lim 8|Ve . ’ dx + ‘leVA (Xg(x)e e )‘ dx
Q R2

ANEY) . o
/ |va(x) - (e — €' ()‘)) \dt dH'(x).
¢

n ()

= Jo(en) 2/ 2
J

Yn

Since for any x € Q we have |¢, (x)| < |@o(x)| + 27 |l(x)| while ¢, (x) = ¢(x) for
n sufficiently large, we deduce by dominated convergence that

lim ¢,(x) = ¢(x) in LY (Q,R).

Put A, (x) : I(p (x) — ¢, (x)|. For HN =1 almost every x € Jy, U J; we have
An(x) < |<00 (x) — @y (O] + 2|1 (x) — 17 (x)], while &, (x) = [@™ (x) — ¢~ (x)]
for sufficiently large n. Moreover, HN-1 (Jq;n \ (Jgy U Jl)) =0and v,(x) = v(x)
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for HN-lae. x € Jy, N Jy, for each n. Therefore, by dominated convergence,

o () _ -
lim 2‘/ | v, (x) - (€1 — e @) |dr|aH (x)
Sl e @)
¢t ) . o
= / 2‘/ | v(x) - (e —e'? (x)) |dt dH'(x).
Jo o~ (x)
To complete the proof, we apply to {v, .} a standard diagonal argument. O
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