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The asymptotic behaviour of surfaces with prescribed mean
curvature near meeting points of fixed and free boundaries

FRANK MÜLLER

Abstract. We study the shape of stationary surfaces with prescribed mean cur-
vature in the Euclidean 3-space near boundary points where Plateau boundaries
meet free boundaries. In deriving asymptotic expansions at such points, we gen-
eralize known results about minimal surfaces due to G. Dziuk. The main difficul-
ties arise from the fact that, contrary to minimal surfaces, surfaces with prescribed
mean curvature do not meet the support manifold perpendicularly along their free
boundary, in general.

Mathematics Subject Classification (2000): 53A10 (primary); 35C20, 35R35,
49Q05 (secondary).

1. Introduction

A typical boundary value problem for minimal surfaces or, more generally, surfaces
with prescribed mean curvature is the following partially free boundary value prob-
lem: Let � ⊂ R3 denote a closed Jordan arc with endpoints p1 �= p2, which lie on
a two-dimensional, differentiable submanifold S ⊂ R3 without boundary such that
� ∩ S = {p1, p2}. Construct a parametrized surface x = x(w) : B+ → R3 with
prescribed mean curvature H = H(x) ∈ C0(R3, R) over the parameter domain

B+ := {
w = (u, v) = u + iv : |w| < 1, v > 0

} ⊂ R
2 � C

and subject to the boundary conditions

x(w) ∈ S for all w ∈ I,

x|C : C → � continuously and monotonic,

x(−1) = p1, x(+1) = p2.

(1.1)

Here we abbreviated

I := (−1, +1) ⊂ ∂ B+, C := ∂ B+ \ I.
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(The parameter domain B+ is chosen appropriately and can be replaced by any sim-
ply connected domain � ⊂ R2.) Such a partially free H-surface can be constructed
as a minimizer or, more generally, stationary point of an associated energy func-
tional. In particular, one obtains a partially free minimal surface (that is H ≡ 0), in
case this functional is Dirichlet’s integral.

As a disadvantage of the variational method, the corresponding minimizing
or stationary surfaces are weak (conformally parametrized) H -surfaces in the an-
alytical and geometrical sense: One has to study their smoothness and immersed
character a posteriori. For instance, one can prove that a minimizer x belongs to
Cµ(B+, R3) for some µ ∈ (0, 1), whenever {�,S} satisfies a chord-arc condition;
see [4, 13]. And if �,S ∈ C2,α , H ∈ Cα(R3) holds true for some α ∈ (0, 1), we
even have

x = x(w) ∈ C2(B+ \ {−1, +1}, R3) ∩ Cµ(B+, R3) ∩ H1
2 (B+, R3),

�x(w) = 2H(x(w)) xu × xv(w), w ∈ B+,

|xu(w)|2 = |xv(w)|2, xu · xv(w) = 0, w ∈ B+;
(1.2)

compare [6, 11]. (H1
2 (B+, R3) denotes the Sobolev space of componentially mea-

surable mappings, which are quadratically integrable together with their first distri-
butional derivatives.)

The aim of the present paper is to investigate the behaviour of stationary, par-
tially free H -surfaces x ∈ C2(B+ \ {−1, +1}, R3) ∩ Cµ(B+, R3) near the corner
points w = ±1, which are mapped onto � ∩ S . In 1981, G. Dziuk [3] could derive
asymptotic expansions for x near these points, provided that x is a minimial surface
or, more exactly, a stationary point of Dirichlet’s integral. Besides the exact asymp-
totic form of x, these expansions provide further information, for instance, the best
possible Hölder exponent and the isolated character of w = ±1 as (geometrically)
singular points.

Below we extend G. Dziuk’s result to stationary, partially free H -surfaces. The
main new difficulty is that H -surfaces do not have to meet the support surface S
perpendicularly along the free trace x(I ), in contrast to minimal surfaces, which are
stationary points of the Dirichlet integral. Therefore, we use a generalized reflection
across I , which was introduced already in [9, 11]. Following Dziuk’s approach, we
then have to generalize the two main ingredients in his proof: A growth estimate
for the gradient of the stationary H -surface x, which was already done in [12], and
a theorem of Hartman-Wintner type, which turns out to be a perturbed version of a
previous result by Dziuk [2].

The paper is organized as follows: In Section 2 we specify our notations and
assumptions, and we state the main results. Section 3 is addressed to the proof of
the Hartman-Wintner type result mentioned just above. In Section 4 we describe
our reflection technique. Sections 5 and 6 contain the proofs of the main results
and some corollaries, distinguished between the regular and the singular case (see
Section 2). Finally, we discuss the branch points of x in Section 7, and we state a
Gauß-Bonnet formula.
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2. Notations and main results

We always write B�(w0) := {w ∈ R2 : |w − w0| < �} for the disc with radius
� > 0 around w0 ∈ R2, and we abbreviate B := B1(0) = B1(0, 0). Moreover, we
set S�(w0) := B+ ∩ B�(w0) and B− := B \ B+. Throughout we identify R2 � C

via w = (u, v) = u + iv, and we often use the Wirtinger operators

∂

∂w
:= 1

2

(
∂

∂u
− i

∂

∂v

)
,

∂

∂w
:= 1

2

(
∂

∂u
+ i

∂

∂v

)
.

Points in R3 are denoted by p = (p1, p2, p3) and identified with column vectors,
whereas pt stands for the corresponding row vector. A ball in R3 is denoted by
Br (p0) := {p ∈ R3 : |p − p0| < r} for p0 ∈ R3, r > 0. Finally, all constants
c appearing in our estimates are understood to be positive and independent of the
particular point w.

Now let x = (x1(w), x2(w), x3(w)) : B+ → R3 be a partially free H -surface,
that means x solves (1.1), (1.2). We call x stationary (with respect to EQ), if it
satisfies the inequality

δEQ(x, φ) := lim
ε→0+

1

ε

{
EQ(xε) − EQ(x)

} ≥ 0.

Here xε = x(·, ε), ε ∈ [0, ε0), denotes an outer variation of x with the direction
∂
∂ε

x(·, ε)∣∣
ε=0 = φ (confer in [1, Definition 2, Section 5.4]). And EQ is the associ-

ated energy functional

EQ(x) :=
∫∫
B+

{1

2
|∇x(w)|2 + Q(x) · xu × xv(w)

}
du dv

with a vector-field Q = Q(x) ∈ C1(R3, R3), which satisfies

div Q(x) ≡ 2H(x) in R3,

|Q(x) · n(x)| < 1 on S
(2.1)

for a unit normal field n = n(x) of S . The natural boundary condition on I , arising
from the stationarity of x = x(w), can be written as

xv(w) + Q(x(w)) × xu(w) ⊥ Tx(w)S, w ∈ I, (2.2)

where TxS denotes the tangential plane of S at x ∈ S; see [11].
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Remark 2.1. The boundary condition (2.2) is equivalent to the possibly more com-
mon relation

Q(x(w)) · n(x(w)) = −N(w) · n(x(w)), w ∈ I. (2.3)

Here N = N(w) := |xu ×xv|−1xu ×xv(w) denotes the surface normal of x. Clearly,
N is defined only at regular points w ∈ B+ \ {−1, +1} with |∇x(w)| �= 0, where
the equivalence follows by taking the cross product with xu . On the other hand,
we can extend N continuously to singular points w ∈ I with |∇x(w)| �= 0, called
branch points, in virtue of Theorem 2 in [11].

Relation (2.3) says that the contact angle between the stationary H -surface x
(with respect to EQ) and the support surface S is prescribed by the normal compo-
nent of the vector-field Q.

In order to state our main results, which examine the behaviour of stationary,
partially free H -surfaces near the corner points w = ±1, we may localize around
one of these points; note the conformal invariance of the problem and the continuity
of x(w). Concerning the boundary configuration we then assume (substitute �,S
by � ∩U , S ∩U with some neighbourhood U of either p1 = x(−1) or p2 = x(+1)

and apply a suitable rotation and translation):

Assumption (A). Let �,S ∈ C2 be true and suppose � ∩ S = {0}, where 0 ∈ � is
an endpoint of �. Furthermore, we have the represention

� = {
x = (γ1(x3), γ2(x3), x3) : x3 ∈ [0, r ]}

with γ1, γ2 ∈ C2([0, r ], [0, +∞)) for some r > 0 and with γ1(0) = γ2(0) = 0 as
well as γ ′

1(0) = γ ′
2(0) = 0. The support surface S can be written as

S = {
x = (x1, x2, ψ(x1, x2)) : (x1, x2) ∈ Br (0, 0)

}
with ψ ∈ C2(Br (0, 0), R), and we assume

n(x1, x2) =
( − ψx1(x1, x2), −ψx2(x1, x2), 1

)
√

1 + ψ2
x1 + ψ2

x2

, (x1, x2) ∈ Br (0, 0),

for the unit normal field n = n(x1, x2) of S , which we trivially extend to n(x) :=
n(x1, x2), x = (x1, x2, x3) ∈ Br (0). Finally, let ψ(0, 0)= 0 as well as ψx1(0, 0) =
a and ψx2(0, 0)= 0 hold true with some number a ∈ [0, +∞).

The angle α ∈ (0, π
2 ] between � and S at 0 is then calculated by

a = cot α. (2.4)

We can (and will do occasionally) diminish r > 0 in order to gain additional prop-
erties of the boundary configuration. For the stationary, partially free H -surface



H -SURFACES NEAR MEETING POINTS OF FIXED AND FREE BOUNDARIES 533

we may suppose (compare the proof of Corollary 7.1 for the necessary conformal
reparametrization):

Assumption (B). The mapping x = x(w) ∈ C2(B+ \ {0}) ∩ Cµ(B+) ∩ H1
2 (B+)

satisfies the differential system (1.2) as well as |x(w)| < r for all w ∈ B+. Setting
I − := (−1, 0), I + := (0, +1), we have the boundary conditions

(i) x|I − : I − → �, x|I + : I + → S , x(0) = 0
(ii) xv + Q(x) × xu ⊥ TxS on I +

with a vector-field Q = Q(x) ∈ C1(R3, R3) satisfying (2.1).

Theorem 2.2. Let x = x(w) : B+ → R3 be a stationary, partially free H-surface
satisfying assumption (B) with a vector-field Q ∈ C1(R3, R3) as in (2.1). Assume
that the boundary configuration {�,S} fulfils assumption (A) and that

|Q(0) · n(0)| < cos α (2.5)

holds true with the angle α ∈ (0, π
2 ) between � and S; compare (2.4).

Then there exists a mapping � = �(w) ∈ C0(B+, C3) and a number m ∈ N ∪ {0}
such that the relation

xw(w) = wm−κ�(w), w ∈ B+ \ {0}, (2.6)

holds true with either κ = 1 − γ0 or κ = γ0; here γ0 ∈ (0, 1
2 ) is given by (5.12)

below. Writing � = (
1, 
2, 
3) we have e−iπκ
3(0) ∈ R \ {0} and moreover


1(0) = ±i

√
1 − [Q(0) · n(0)]2

cos2 α

3(0), 
2(0) = i

Q(0) · n(0)

cos α

3(0). (2.7)

The continuity of � implies that the surface normal of x = x(w) can be extended
to w = 0 continuously, see Theorem 5.4 in Section 5. This property depends on
the assumption (2.5) and is refered to as the regular case. The contrary situation is
named irregular case and included in the following

Theorem 2.3. Let the assumptions of Theorem 2.2 be satisfied except for the rela-
tion (2.5), which has to be replaced by

|Q(0) · n(0)| > cos α > 0. (2.8)

Then there exist an integer m ∈ N ∪ {0} and a function � ∈ C0(B+ \ {0}, C3) such
that the relation

xw(w) = wm− 1
2 �(w), w ∈ B+ \ {0}, (2.9)

is valid. Furthermore, the function � behaves discontinuously for w → 0, and
there exist numbers δ ∈ (0, 1) and c ≥ 1 such that

c−1 ≤ |�(w)| ≤ c for all w ∈ Sδ(0) \ {0}
holds true.
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A remark on the borderline case |Q(0) · n(0)| = cos α is included at the end of
Section 5. Let us note that the irregular case will not appear, whenever the relation
|Q ·n| ≡ 0 is satisfied on S . In particular, this holds true in the minimal surface case
Q ≡ 0 on R3 studied by G. Dziuk [3]; see also [1, Section 8.4]. Now Theorem 2.2
proves (compare Remark 5.3 in Section 5):

Corollary 2.4. Under the assumptions of Theorem 2.2, a stationary, partially free
H-surface behaves near w = ±1 asymptotically like a stationary, partially free
minimal surface, if and only if Q(0) · n(0) = 0 holds true.

Further applications of Theorems 2.2 and 2.3 appear in Sections 5-7.
As mentioned in the introduction, we will follow the arguments of G. Dziuk

[3]. The basic idea is as follows: Reflect xw in an appropriate manner across I , such
that the resulting quantity remains continuous, say, on I +. The unavoidable jump
on I − will be smoothed by multiplication with some matrix-valued function, which
is primarily built by the eigenvalues and eigenvectors of the matrix R�(0) ◦ RS(x);
see the Sections 4-6. Then a theorem of Hartman-Wintner type proved in Section 3
can be applied, according to the gradient estimates of [12].

3. A result of Hartman-Wintner type

In this section we shall prove a perturbed version of Hilfssätze 5-7 in [2] or Theo-
rem 3 in [1, Section 8.1], namely

Lemma 3.1. Let α ∈ (0, 1
2 ] and ν ∈ (0, 1) be given. Then there exists ε0 =

ε0(α, ν) > 0 such that any two functions F, G ∈ C0,1(B \ {0}, C) satisfying

|F(w)| ≤ c|w|ν−α, |G(w)| ≤ c|w|ν−β on B \ {0} (3.1)

as well as

|Fw(w)| ≤ c
{
|w|−β |F(w)|2 + |w|1−3α|G(w)|2

}
,

|Gw(w)| ≤ c
{
|w|1−3β |F(w)|2 + |w|−α|G(w)|2

}
a.e. on B \ {0}

(3.2)

with β := 1 − α + ε and ε ∈ [0, ε0) have the following properties: There is a
number m ∈ N ∪ {0} such that the functions

f m(w) := w−m F(w), gm(w) := w−m G(w)

fulfil f m ∈ Cµ(B, C) for all 0 <µ< min{1, m + α − ε} as well as the alternative:

(i) In the case f m(0) �= 0 we obtain

| f m
w (w)| ≤ c|w|m−β, |gm

w(w)| ≤ c|w|m+1−3β a.e. on B \ {0}. (3.3)

Furthermore, gm is continuous in B provided m > 0 holds true.
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(ii) If f m(0) = 0 is valid, then we find gm ∈ Cµ(B, C) for all 0 < µ < min{1, m+
β − ε} and gm(0) �= 0. In addition, we have the estimates

| f m
w (w)| ≤ c|w|m+1−3α, |gm

w(w)| ≤ c|w|m−α a.e. on B \ {0}. (3.4)

Remark 3.2. Lemma 3.1 clearly remains true if we replace the unit disc B by some
disc Bδ(0) of radius δ ∈ (0, 1).

The proof of Lemma 3.1 will be based on the following:

Proposition 3.3. Let α ∈ (0, 1
2 ], ν ∈ (0, 1) and two functions F, G be given as

in Lemma 3.1. Then there exists ε0 = ε0(α, ν) > 0 such that F ∈ Cµ(B, C) is
satisfied for all µ ∈ (0, α − ε). Moreover, the estimates

|Fw(w)| ≤ c|w|−β, |Gw(w)| ≤ c|w|1−3β a.e. in B \ {0} (3.5)

hold true with β = 1 − α + ε and ε ∈ [0, ε0).
In the case F(0) = 0, we additionally have the regularity G ∈ Cµ(B, C) for

all µ ∈ (0, β − ε), and the improved estimates

|Fw(w)| ≤ c|w|1−3α, |Gw(w)| ≤ c|w|−α a.e. in B \ {0} (3.6)

are satisfied.

In the proof of Proposition 3.3 we will frequently use the following:

Proposition 3.4. (Lemma 6 in [1, Section 8.1])
Let f = f (w) ∈ C0,1(B \ {0}, C) satisfy

| f (w)| ≤ c|w|λ′
and | fw(w)| ≤ c|w|λ

with λ′ > −1, λ > −2. Then the following estimates are valid:

(i) | f (w)| ≤ c|w|1+λ, if λ < −1,
(ii) | f (w)| ≤ c|w|−δ for all δ > 0, if λ = −1,

(iii) f ∈ Cµ(B, C) for all 0 < µ < min(1, 1 + λ), if λ > −1.

Proof of Proposition 3.3.

1. Because (3.1) remains true if we diminish ν ∈ (0, 1), we may assume 2k0ν <

α < 2k0+1ν for some k0 ∈ N∪{0}. Additionally, let α �= 1−2k0+1ν be fulfilled.
Suppose that F, G satisfy the inequalities

|F(w)| ≤ c|w|2kν−α−2(2k−1)ε,

|G(w)| ≤ c|w|2kν−β−2(2k−1)ε in B \ {0}
(3.7)



536 FRANK MÜLLER

for some nonnegative integer k < k0. According to (3.1), formula (3.7) is valid
for k = 0. If we insert (3.7) into (3.2), then we infer

|Fw(w)|≤ c
{
|w|2k+1ν−2α−β−4(2k−1)ε + |w|2k+1ν+1−3α−2β−4(2k−1)ε

}
≤ c|w|2k+1ν−1−α−2(2k+1−1)ε

(3.8)

as well as

|Gw(w)|≤ c
{
|w|2k+1ν+1−2α−3β−4(2k−1)ε + |w|2k+1ν−α−2β−4(2k−1)ε

}
≤ c|w|2k+1ν−1−β−2(2k+1−1)ε.

(3.9)

Note that 2kν − β − 2(2k − 1)ε > −1 holds true for all k ≤ k0 and ε ∈ [0, ε0)

with a sufficiently small ε0 = ε0(α, ν). For k < k0 we also have 2k+1ν − 1 −
α − 2(2k+1 − 1)ε < −1. By virtue of β ≥ α, we thus obtain

|F(w)| ≤ c|w|2k+1ν−α−2(2k+1−1)ε,

|G(w)| ≤ c|w|2k+1ν−β−2(2k+1−1)ε in B \ {0}
from Proposition 3.4, i.e. (3.7) holds true for k + 1 ≤ k0, too. Iterating over
k = 0, . . . , k0, we then find (3.7) and also (3.8)-(3.9) for k = k0.
Next we may choose ε0 = ε0(α, ν) sufficiently small to ensure 2k0+1ν − 1 −
α − 2(2k0+1 − 1)ε − ε > −1 as well as 2k0+1ν − 1 − β − 2(2k0+1 − 1)ε �= −1
for all ε ∈ [0, ε0). From Proposition 3.4 we thus infer

|F(w)| ≤ c, |G(w)| ≤ c
(
1 + |w|2k0+1ν−β−2(2k0+1−1)ε

)
in B \ {0}.

Consequently, we deduce

|Fw| ≤ c
{
|w|−β + |w|1−3α + |w|2[2k0+1ν−α−2(2k0+1−1)ε−ε]+α−1

}
≤ c|w|−β

(3.10)

and

|Gw| ≤ c
{
|w|1−3β + |w|−α + |w|2[2k0+1ν−α−2(2k0+1−1)ε]+α−2β

}
≤ c|w|1−3β,

(3.11)

in virtue of (3.2) and α ≤ 1
2 . Finally, Proposition 3.4 implies F ∈ Cµ(B, C) for

all µ ∈ (0, α − ε), if we suppose ε < ε0 ≤ α.
2. Now let F(0) = 0 hold true. Then we have |F(w)| ≤ |w|µ for 0 < µ < α − ε

and the function f (w) := w−1 F(w) satisfies

| f (w)| ≤ c|w|µ−1 in B \ {0}. (3.12)
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Because of fw(w) = w−1 Fw(w), we obtain

| fw(w)| ≤ c
{
|w|1−β | f (w)|2 + |w|−3α|G(w)|2

}
,

|Gw(w)| ≤ c
{
|w|3(1−β)| f (w)|2 + |w|−α|G(w)|2

}
a.e. in B \ {0}

(3.13)

from the assumption (3.2). We now have to distinguish between three cases:

(a) 1 − 3β > −1, that means α > 1
3 + ε. With the aid of Proposition 3.4 we

find |G(w)| ≤ c according to (3.11). Inserting this and (3.12) into (3.13), we
infer

| fw(w)| ≤ c
{|w|−1−β+2µ + |w|−3α

} ≤ c|w|−3α,

|Gw(w)| ≤ c
{|w|1−3β+2µ + |w|−α

} ≤ c|w|−α a.e. in B \ {0},
since we may choose µ = 1

3 − 1
2ε < α − ε, e.g. This implies (3.6) as well as

G ∈ Cµ(B, C) for µ ∈ (0, β − ε).
(b) 1 − 3β = −1, that is α = 1

3 + ε. From (3.11) and Proposition 3.4 we infer
|G(w)| ≤ c|w|−δ for arbitrary δ > 0. Therefore, formulas (3.12) and (3.13)
yield

| fw(w)| ≤ c
{|w|−1−β+2µ + |w|−3α−2δ

} ≤ c|w|−3α−2δ,

|Gw(w)| ≤ c
{|w|1−3β+2µ + |w|−α−2δ

} ≤ c|w|−α−2δ

a.e. in B \ {0}, in case we choose µ = 1
3 − 1

2ε − δ < α − ε with suffi-
ciently small δ > 0. Now Proposition 3.4 provides the estimates | f (w)| ≤
c|w|1−3α−2δ and |G(w)| ≤ c, which in turn imply

| fw(w)| ≤ c
{|w|1−β+2(1−3α−2δ) + |w|−3α

} ≤ c|w|−3α,

|Gw(w)| ≤ c
{|w|3(1−β)+2(1−3α−2δ) + |w|−α

} ≤ c|w|−α

a.e. in B \ {0}. Here we have taken ε ∈ [0, ε0) and ε0 = ε0(α) > 0, δ > 0
sufficiently small. Thus we find G ∈ Cµ(B, C) for any µ ∈ (0, β − ε), and
the estimates (3.6) are satisfied.

(c) 1 − 3β < −1, hence α < 1
3 + ε. By virtue of (3.11) and Proposition 3.4, we

conclude
|G(w)| ≤ c|w|2−3β ≤ c|w|µ+α−β in B \ {0} (3.14)

for any µ ∈ (0, α −2ε]. If µ > 0 is small enough, then there exists k0 ∈ N∪
{0} such that 2k0(µ+α) < 1−α < 2k0+1(µ+α) as well as 2k0(µ+α) �= 1+α

hold true (again, we may exclude the equalities 2k0(µ + α) = 1 ± α, taking
µ > 0 even smaller). Now let us suppose

| f (w)| ≤ c|w|2k(µ+α)−1−α−2(2k−1)ε,

|G(w)| ≤ c|w|2k(µ+α)−β−2(2k−1)ε in B \ {0}
(3.15)
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for some k ∈ {0, 1, . . . , k0 − 1}. According to (3.12) and (3.14), this is
already true for k = 0. Formulas (3.13) and (3.15) imply

| fw(w)| ≤ c|w|2k+1(µ+α)−1−β−2α−4(2k−1)ε

+c|w|2k+1(µ+α)−3α−2β−4(2k−1)ε

≤ c|w|2k+1(µ+α)−2−α−2(2k+1−1)ε a.e. in B \ {0}
(3.16)

and also

|Gw(w)| ≤ c|w|2k+1(µ+α)+1−2α−3β−4(2k−1)ε

+c|w|2k+1(µ+α)−α−2β−4(2k−1)ε

≤ c|w|2k+1(µ+α)−1−β−2(2k+1−1)ε a.e. in B \ {0}.
(3.17)

Taking ε < ε0(µ, α) sufficiently small, we obtain

| f (w)| ≤ c|w|2k+1(µ+α)−1−α−2(2k+1−1)ε,

|G(w)| ≤ c|w|2k+1(µ+α)−β−2(2k+1−1)ε in B \ {0}
from Proposition 3.4. Hence the estimates (3.15) hold true for k + 1 ≤ k0, as
well. Iteration over k = 0, . . . , k0 yields (3.15)-(3.17) with k = k0, and for
small ε < ε0(µ, α) we infer

| f (w)| ≤ c
(
1 + |w|2k0+1(µ+α)−1−α−2(2k0+1−1)ε

)
, |G(w)| ≤ c (3.18)

in B \ {0} as a consequence of Proposition 3.4. Finally, we insert (3.18) into
(3.13) and conclude

| fw(w)| ≤ c|w|−3α, |Gw(w)| ≤ c|w|−α a.e. B \ {0}
for sufficiently small ε < ε0(µ, α). This completes the proof of (3.6), and
the property G ∈ Cµ(B, C) for all µ ∈ (0, β − ε) follows again from Propo-
sition 3.4.

Now we are able to give the

Proof of Lemma 3.1. Let F(0) �= 0 be valid. Then case (i) of Lemma 3.1 is satisfied
with m = 0, due to the first assertion of Proposition 3.3. On the other hand, in
accordance with the second assertion of Proposition 3.3, the case (ii) is fulfilled
with m = 0, whenever we have F(0) = 0 and G(0) �= 0. Thus the case F(0) =
G(0) = 0 remains to be considered.

Setting f (w) := w−1 F(w) and g(w) := w−1G(w), we infer

| fw(w)| ≤ c|w|−3α, |gw(w)| ≤ c|w|−1−α a.e. in B \ {0}
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from Proposition 3.3, and Proposition 3.4 implies

| f (w)| ≤




c, if α < 1
3

c|w|−δ for all δ > 0, if α = 1
3

c|w|1−3α, if α > 1
3

, |g(w)| ≤ c|w|−α

in B \ {0}. If we distingiush between the three cases α <, =, > 1
3 , we find λ, λ′ ∈

(0, 1) such that the estimates

|h(w)| ≤ c|w|−λ′
in B \ {0},

|hw(w)| ≤ c|w|−λ|h(w)| a.e. in B \ {0}

hold true for the mapping h := ( f, g) ∈ C0,1(B \ {0}, C). Here we have chosen
again ε < ε0(α) sufficiently small. Theorem 1 in [1, Section 8.1] (see also the
original work [5]) now provides the asymptotic relation

h(w) = awm−1 + o(|w|m−1) as w → 0

with some m ∈ N and a vector a = (a1, a2) ∈ C2 \ {0}. For the functions f m =
w−m F , gm = w−m G we find

f m(w) = a1 + o(1), gm(w) = a2 + o(1) as w → 0,

and from (3.2) we derive

| f m
w (w)| ≤ c

{
|w|m−β | f m(w)|2 + |w|m+1−3α|gm(w)|2

}
≤ c|w|m−β,

|gm
w(w)| ≤ c

{
|w|m+1−3β | f m(w)|2 + |w|m−α|gm(w)|2

}
≤ c|w|m+1−3β

(3.19)

using α ≤ 1
2 . Therefore, Proposition 3.4 yields f m ∈ Cµ(B, C) for all µ ∈ (0, 1).

Consequently, we again have proved case (i) in Lemma 3.1 provided f m(0) = a1 �=
0 holds true. Otherwise, we find | f m(w)| ≤ c|w|µ for any µ ∈ (0, 1). Inserting
this into (3.19), we finally obtain

| f m
w (w)| ≤ c

{|w|m−β+2µ + |w|m+1−3α
} ≤ c|w|m+1−3α,

|gm
w(w)| ≤ c

{|w|m+1−3β+2µ + |w|m−α
} ≤ c|w|m−α in B \ {0},

whenever we select µ = 1 − 2α + 3
2ε ∈ (0, 1) with ε < 4

3α. By virtue of Propo-
sition 3.4, we infer gm ∈ Cµ(B, C) for all µ ∈ (0, 1). Because gm(0) = a2 �= 0
must hold true, the case (ii) in Lemma 3.1 is fulfilled. This completes the proof of
Lemma 3.1.
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4. The generalized reflection

Let us suppose that the boundary configuration {�,S} satisfies assumption (A) with
sufficiently small r > 0. Reflecting γk , k = 1, 2, by virtue of

γ̂k(t) :=
{

γk(t), t ∈ [0, r ]
γk(−t), t ∈ [−r, 0] , k = 1, 2,

we obtain functions γ̂1, γ̂2 ∈ C2([−r, r ], R), which describe the extended Jordan
arc �̂. We set

h(x3) := 1

1 + γ̂ ′
1(x3)2 + γ̂ ′

2(x3)2




γ̂ ′
1(x3)

γ̂ ′
2(x3)

1


 , x3 ∈ [−r, r ],

and define the reflection across �̂ by

R�(x3)p := 2
(
h(x3) · p

)
h(x3) − p for p ∈ R

3, x3 ∈ [−r, r ]. (4.1)

Now let x = x(w) : B+ → R3 be a stationary, partially free H -surface, which ful-
fils assumption (B). From the boundary condition x(I −) ⊂ � and the conformality
relations we then infer (see [3, Lemma 1]):

R�(x3(w))xw(w) = xw(w) for all w ∈ I −. (4.2)

As in [3] and [1, Section 8.4], we apply a straightening procedure. However, we
have to restrict ourselfes to �̂ in contrast to the minimal surface case, since the
eigenvalues of the refelction RS = RS(x) depend on the particular point x ∈ Br (0);
compare the considerations below.

Let us define the cone

Cλ := {
x = (x1, x2, x3) ∈ R

3 : (x1)2 + (x2)2 ≤ λ(x3)2}.
For sufficiently small r > 0 and λ > 0 we surely have �̂ ⊂ Cλ and (S \ {0}) ⊂
R3 \ C2λ. Let η = η(x) ∈ C1(R3 \ {0}, [0, 1]) be a function with the properties

η(x) =
{

1, on Cλ

0, on R3 \ C2λ

and
|∇η(x)| ≤ c

|x| on R
3 \ {0}. (4.3)

Setting additionally η(0) = 0, we consider the matrix-valued mapping

T (x) = η(x)(T�(x3) − Id) + Id, x ∈ Br (0). (4.4)
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Here Id denotes the 3 × 3-identity matrix and T� = T�(x3) is defined as fol-
lows: We identify R� = R�(x3) with its matrix representation and write O� ∈
C1([−r, r ], R3×3) for the orthogonal matrix with the property

R�(x3) = O�(x3) ◦ Diag[−1, −1, 1] ◦ O�(x3)t .

(Mt denotes the transposed of a matrix M .) Then T� is defined as

T�(x3) := O�(0) ◦ O�(x3)t , x3 ∈ [−r, r ]. (4.5)

Writing |M | for the l2-Norm of Matrix M , we find

|T�(x3) − Id| ≤ c|x3| for x3 ∈ [−r, r ]. (4.6)

Hence we conclude T = T (x) ∈ C0,1(Br (0), R3×3) according to (4.3). In particu-
lar, we note

lim
x→0

T (x) = Id. (4.7)

Therefore, the function of inverse matrices T −1 ∈ C0,1(Br (0), R3×3) exists for
sufficiently small radius r > 0, and we obtain

|T (x)| + |T (x)−1| + |∇T (x)| ≤ c for all x ∈ Br (0) \ {0}. (4.8)

Because our stationary H -surface will not meet S perpendicularly, in general, re-
flection across S as described in [3, Lemma 1] or [1, Section 8.4] will not be appro-
priate. We rather introduce the generalized reflection matrix RS(x) by

RS(x) := 1

p




1 + q2 − ψ2
1 + ψ2

2 −2(ψ1ψ2 − iq) 2(ψ1 + iqψ2)

−2(ψ1ψ2 + iq) 1 + q2 + ψ2
1 − ψ2

2 2(ψ2 − iqψ1)

2(ψ1 − iqψ2) 2(ψ2 + iqψ1) −1 + q2 + ψ2
1 + ψ2

2


 (4.9)

for |x| < r . In (4.9) we have abbreviated

ψ1 = ψ1(x) := ψx1(x1, x2),

ψ2 = ψ2(x) := ψx2(x1, x2),

q = q(x) := Q3 − ψ1 Q1 − ψ2 Q2,

p = p(x) := 1 − q2 + ψ2
1 + ψ2

2 .

(4.10)

Observe that RS(x) agrees with the usual reflection matrix for q(x) ≡ 0, that is
Q(x) · n(x) = 0 on S . The identities

RS(x)t = RS(x) = RS(x)−1 for x ∈ Br (0) (4.11)

are easily verified, and we note

|RS(x)| + |∇ RS(x)| ≤ c for all x ∈ Br (0). (4.12)

We recall the relation x(B+) ⊂ Br (0) for the considered H -surface x = x(w).
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Proposition 4.1. Let us define the mapping y := T (x)xw : B+ \ {0} → C3. Then
y ∈ C0,1(B+ \ {0}, C3) holds true, and the boundary conditions

R�(0)y(w) = y(w) for all w ∈ I − = (−1, 0),

RS(x(w))y(w) = y(w) for all w ∈ I + = (0, +1)
(4.13)

are satisfied.

Proof. The Lipschitz continuity of y follows from x ∈ C2(B+ \ {0}, R3) and
T ∈ C0,1(Br (0), R3×3). The first boundary condition in (4.13) is an immediate
consequence of (4.2) and the definition of T . Indeed, we calculate

y = T (x)xw = T�(x3)xw = T�(x3) ◦ R�(x3)xw

= O�(0) ◦ Diag[−1, −1, 1] ◦ O�(x3)t xw

= R�(0) ◦ O�(0) ◦ O�(x3)t xw

= R�(0) ◦ T (x)xw = R�(0)y on I −.

In order to verify the second boundary condition, we define the auxiliary function
ζ = (ζ 1, ζ 2, ζ 3) : B+ \ {0} → C3 by

ζ (w) :=

 1 iq(x) ψx1(x1, x2)

−iq(x) 1 ψx2(x1, x2)

−iψx1(x1, x2) −iψx2(x1, x2) i


 xw(w).

We now claim Im ζ = 0 on I + and therefore

ζ (w) = ζ (w) for all w ∈ I +. (4.14)

Indeed, Im ζ 3 vanishes on I + due to x(I +) ∈ S . And evaluating the relation
(2.2) on I + for the tangential vectors (1, 0, ψx1(x1, x2)), (0, 1, ψx2(x1, x2)) yields
Im ζ 1 = Im ζ 2 = 0 on I +; see [9, Lemma 2] for the details.

By virtue of
 1 −iq ψx1

iq 1 ψx2

iψx1 iψx2 −i



−1

= 1

p


 1 + ψ2

x2 −ψx1ψx2 + iq qψx2 − iψx1

−ψx1ψx2 − iq 1 + ψ2
x1 −qψx1 − iψx2

ψx1 − iqψx2 ψx2 + iqψx1 i(1 − q2)


,

we obtain 
 1 −iq ψx1

iq 1 ψx2

iψx1 iψx2 −i




−1

◦

 1 iq ψx1

−iq 1 ψx2

−iψx1 −iψx2 i


 = RS .

Because T (x(w)) = Id holds true for w ∈ I +, the second boundary condition in
(4.13) follows from (4.14).
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Next we reflect y across I via

z(w) :=
{

y(w), w ∈ B+ \ {0}
RS(x(w))y(w), w ∈ B− \ I

. (4.15)

In accordance with Proposition 4.1 and formula (4.11), we infer z = z(w) ∈
C0,1(B \ I −, C3). Moreover, we note the relation

lim
v→0+ z(u, v) = R�(0) ◦ RS(x(u, 0)) lim

v→0− z(u, v) for all u ∈ I −. (4.16)

Formulas (4.8), (4.12) in conjunction with the H -surface system in (1.2), which can
be written as xww = i H(x)xw × xw, imply the estimate

|zw(w)| ≤ c|z(w)|2 on B \ I. (4.17)

Finally, [12, Theorem 1] yields the growth property

|z(w)| ≤ c|w|ν−1, w ∈ B \ {0}, (4.18)

with arbitrary ν ∈ (0, µ) and a constant c > 0 (depending on ν, the data, and
the modulus of continuity of x = x(w), but clearly not on the particular point
w ∈ B \ {0}).

We now consider the matrix R = R(x) := R�(0) ◦ RS(x), which is given by

R(x)= 1

p




−(1+q2− ψ2
1 + ψ2

2 ) 2(ψ1ψ2 − iq) −2(ψ1 + iqψ2)

2(ψ1ψ2 + iq) −(1 + q2 + ψ2
1 − ψ2

2 )−2(ψ2 − iqψ1)

2(ψ1 − iqψ2) 2(ψ2 + iqψ1) −1+q2+ ψ2
1 + ψ2

2


 (4.19)

for |x| < r , compare (4.1) and (4.9). In order to smooth the jump of z on I −, we
multiply z by a singular matrix, which is built up by the eigenvalues and eigenvec-
tors of the jump matrix R. This procedure follows Dziuk’s arguments [2, 3] and
goes back to E. Heinz’s paper [7] on the Marx Shiffman problem. For the prob-
lem at hand, we have to distinguish between two cases and this will be done in the
following sections.

5. The regular case

In the present section we suppose the assumptions of Theorem 2.2 to be satisfied.
Choosing r > 0 sufficiently small, the relation (2.5) implies

|Q(x) · n(x)| <
|∇ψ(x1, x2)|√

1 + |∇ψ(x1, x2)|2 for |x| < r
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and consequently
q(x)2 < |∇ψ(x1, x2)|2, |x| < r;

compare formula (4.10). An elementary calculation shows that R(x) possesses the
eigenvalues

λ1(x) = −1 − q2 + |∇ψ |2 + 2i
√|∇ψ |2 − q2

1 − q2 + |∇ψ |2 ,

λ2(x) = −1,

λ3(x) = −1 − q2 + |∇ψ |2 − 2i
√|∇ψ |2 − q2

1 − q2 + |∇ψ |2 , |x| < r,

(5.1)

and the associated eigenvectors

v1(x) =
(

qψ2 − ψ1
√|∇ψ |2 − q2, −qψ1 − ψ2

√|∇ψ |2 − q2, i |∇ψ |2
)

,

v2(x) = (ψ2, −ψ1, iq) ,

v3(x) =
(

qψ2 + ψ1
√|∇ψ |2 − q2, −qψ1 + ψ2

√|∇ψ |2 − q2, i |∇ψ |2
) (5.2)

for |x| < r . Writing U := (
v1, v2, v3

) ∈ C1(Br (0), C3×3), we easily calculate

det U (x) = 2i |∇ψ(x1, x2)|2(|∇ψ(x1, x2)|2−q(x)2)
3
2 �= 0, |x| < r . Consequently,

the inverse matrix function U−1 ∈ C1(Br (0), C3×3) exists. If we set

γ (x) := 1

2π
arccos

(
−1 − q2 + |∇ψ |2
1 − q2 + |∇ψ |2

)
= 1

π
arccot

(√
|∇ψ |2 − q2

)
∈

(
0,

1

2

)

for |x| < r , the relation

R(x) = U (x) ◦ Diag
[
e2iπ(γ (x)−1), e−iπ , e−2iπγ (x)

] ◦ U (x)−1, |x| < r, (5.3)

follows from (5.1) and the definition of U . Now we reflect x trivially across I by
virtue of

x̂(w) :=
{

x(w), w ∈ B+

x(w), w ∈ B−

and consider the vector-valued function

F(w) := Diag
[
w1−γ (x̂(w)), w

1
2 , wγ (x̂(w))

]◦U (x̂(w))−1z(w), w ∈ B \{0}. (5.4)

Observe that F ∈ C0,1(B \ I −, C3) holds true. This follows from x̂ ∈ C0,1(B \{0}),
z ∈ C0,1(B \ I −), U−1, γ ∈ C1 on |x| < r , and from the analyticity of a function
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wβ , β ∈ (0, 1), in the set B \ I −. Furthermore, we note the relation

lim
v→0+ Diag

[
w1−γ (x̂(w)), w

1
2 , wγ (x̂(w))

]
= Diag

[|u|1−γ (x̂(u))eiπ[1−γ (x̂(u))], |u| 1
2 ei π

2 , |u|γ (x̂(u))eiπγ (x̂(u))
]

= Diag
[|u|1−γ (x̂(u))e−iπ [1−γ (x̂(u))], |u| 1

2 e−i π
2 , |u|γ (x̂(u))e−iπγ (x̂(u))

]
◦ Diag

[
e2iπ [1−γ (x̂(u))], eiπ , e2iπγ (x̂(u))

]
= lim

v→0− Diag
[
w1−γ (x̂(w)), w

1
2 , wγ (x̂(w))

]◦U (x̂(u))−1◦R(x̂(u))−1◦U (x̂(u))

for u ∈ I −. Therefore, the definition of F and the jump-property (4.16) yield

lim
v→0+F(u, v)

= lim
v→0+Diag

[
w1−γ (x̂(w)), w

1
2 , wγ (x̂(w))

] ◦ U (x̂(u))−1 lim
v→0+ z(u, v)

= lim
v→0−Diag

[
w1−γ (x̂(w)), w

1
2 , wγ (x̂(w))

] ◦ U (x̂(u))−1 lim
v→0− z(u, v)

= lim
v→0−F(u, v) for all u ∈ I −.

Hence we conclude F ∈ C0(B \ {0}, C3). And we even see F ∈ C0,1(B \ {0}, C3),
because |∇F(w)| remains bounded for w → u ∈ I −. Moreover, we learn from the
definition of z and the properties of RS and T (see (4.8) and (4.12)) that

|F1
w(w)| ≤ c|w|1−γ̂ (w)−τ |z(w)|2,

|F2
w(w)| ≤ c|w| 1

2 |z(w)|2,
|F3

w(w)| ≤ c|w|γ̂ (w)−τ |z(w)|2 a.e. in B \ {0}
(5.5)

holds true for F = (F1, F2, F3) with an arbitrarily small τ > 0 and a constant
c = c(τ ) > 0. Here we have written γ̂ = γ̂ (w) := γ (x̂(w)). From the definition
(5.4) we infer

|z(w)|2 ≤ c
{
|w|−2+2γ̂ |F1(w)|2 + |w|−1|F2(w)|2 + |w|−2γ̂ |F3(w)|2

}
for w ∈ B \ {0} and this, together with (5.5), gives

|F1
w|≤c

{
|w|−1+γ̂−τ |F1(w)|2+ |w|−γ̂−τ |F2(w)|2+ |w|1−3γ̂−τ |F3(w)|2

}
,

|F2
w|≤c

{
|w|− 3

2 +2γ̂ |F1(w)|2+ |w|− 1
2 |F2(w)|2 + |w| 1

2 −2γ̂ |F3(w)|2
}
,

|F3
w|≤c

{
|w|−2+3γ̂−τ |F1(w)|2+ |w|−1+γ̂−τ |F2(w)|2 + |w|−γ̂−τ |F3(w)|2

} (5.6)

almost everywhere in B \ {0}.
We now intend to apply Lemma 3.1 to the functions F1(w), F3(w). To this

end, we need the following
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Proposition 5.1. There is δ ∈ (0, 1) and a constant c > 0 such that the components
of F = (F1, F2, F3), defined in (5.4), satisfy the estimate

|F2(w)|2 ≤ c
{
|w|−1+2γ̂ (w)|F1(w)|2 + |w|1−2γ̂ (w)|F3(w)|2

}
, w ∈ Bδ(0) \ {0}.

(5.7)

Proof. Let us introduce the vector-valued function

G(w) =



G1(w)

G2(w)

G3(w)


 :=




w−1+γ̂ (w)F1(w)

w− 1
2 F2(w)

w−γ̂ (w)F3(w)


 , w ∈ B \ I .

At first, we note the relation

x̂w(w) =
{

T (x̂)−1 ◦ U (x̂) G(w), w ∈ B+ \ I

T (x̂)−1 ◦ RS(x̂) ◦ U (x̂) G(w), w ∈ B− \ I
. (5.8)

This follows immediately from z = U (x̂) G on B \ {0}, the definitions of z and y,
and from relation (4.11). Formulas (5.8) and (4.11) now imply

x̂t
wT (x̂)t ◦ T (x̂) x̂w = GtU (x̂)t ◦ U (x̂) G on B \ I . (5.9)

According to the relation

T (x)t ◦ T (x) = η(x)
(
1 − η(x)

)[
T�(x3)t + T�(x3) − 2Id

] + Id, |x| < r,

(compare formulas (4.4), (4.5)), we can also write

x̂t
wT (x̂)t ◦ T (x̂) x̂w = η(x̂)

(
1 − η(x̂)

)
x̂t
w

[
T�(x̂3)t + T�(x̂3) − 2Id

]
x̂w

on B \ I , where we have used the conformality relations x̂w · x̂w = 0 on B \ I .
Inserting this into (5.9), we obtain the identity

Gt[U (x̂)t ◦ U (x̂) − M
]
G = 0 on B \ I (5.10)

from (5.8). Here M = (mi j (w))i j denotes a (discontinuous) matrix, which satisfies
the estimate

|M(w)| ≤ c|x̂(w)| for w ∈ B \ I , (5.11)

due to the boundedness of T −1, RS , U , and the inequality (4.6). From (5.10) and
(5.11) we deduce

|G2|2|v2(x̂) · v2(x̂) − m22| ≤ c

{(
1 + 1

ε

) (
|G1|2 + |G3|2

)
+ ε|G2|2

}
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on B \ I with arbitrary ε > 0. By virtue of v2 · v2 = |∇ψ |2 − q2 > 0, the formula
(5.11), x̂(0) = 0, and the continuity of x̂, we may choose δ ∈ (0, 1) small enough
to ensure∣∣v2(x̂) · v2(x̂) − m22

∣∣ ≥ 1

2

[|∇ψ(x̂1, x̂2)|2 − q(x̂)2] on Bδ(0) \ I.

Taking ε > 0 sufficiently small, we arrive at

|G2(w)|2 ≤ c
{|G1(w)|2 + |G3(w)|2}, w ∈ Bδ(0) \ I.

Inequality (5.7) now follows immediately from the definition of G and the continu-
ity of F on B \ {0}.

Let us define

γ0 := γ (0) = 1

π
arccot

(
cot α

√
1 − [Q(0) · n(0)]2

cos2 α

)
∈

(
0,

1

2

)
. (5.12)

Observe that γ0 = α
π

holds true for Q(0) · n(0) = 0.

Lemma 5.2. Define the mapping F = (F1, F2, F3) ∈ C0,1(B \ 0, C3) by (5.4).
Then we may choose m ∈ N∪{0} such that the following holds true with f j,m(w) :=
w−m F j (w), j = 1, 2, 3: Either the mapping

�m
I =




�
1,m
I (w)

�
2,m
I (w)

�
3,m
I (w)


 :=




wγ(x(w))−γ0 f 1,m(w)

w
1
2 −γ0 f 2,m(w)

w1−γ (x(w))−γ0 f 3,m(w)


 , w ∈ B+ \ {0}, (5.13)

can be extended continuously to w = 0 with the properties �
1,m
I (0) �= 0 and

�
2,m
I (0)=�

3,m
I (0)=0. Or the mapping

�m
II =




�
1,m
II (w)

�
2,m
II (w)

�
3,m
II (w)


 :=




w−1+γ (x(w))+γ0 f 1,m(w)

w− 1
2 +γ0 f 2,m(w)

w−γ (x(w))+γ0 f 3,m(w)


 , w ∈ B+ \ {0}, (5.14)

can be extended continuously to w=0 with �
1,m
II (0)=�

2,m
II (0)=0 and �

3,m
II (0) �=0.

Proof.

1. At first, we note the growth estimates

|F1(w)| ≤ |w|ν−γ (x̂(w)),

|F2(w)| ≤ |w|ν− 1
2 ,

|F3(w)| ≤ |w|ν−1+γ (x̂(w)), w ∈ B \ {0},
(5.15)
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with arbitrary ν ∈ (0, µ). These follow immediately from the formulas (4.18)
and (5.4) as well as the boundedness of U−1. Choose ε > 0 and then δ =
δ(ε) > 0 as well as τ = τ(ε) > 0 sufficiently small to ensure

0 < γ0 − ε

2
≤ γ (x̂(w)) − τ ≤ γ (x̂(w)) + τ ≤ γ0 + ε

2
<

1

2
, w ∈ Bδ(0).

From (5.15) we then infer

|F1(w)| ≤ |w|ν−γ0− ε
2 , |F3(w)| ≤ |w|ν−1+γ0− ε

2 , w ∈ Bδ(0) \ {0}. (5.16)

Furthermore, Proposition 5.1 and formula (5.6) yield

|F1
w(w)| ≤ c

{
|w|−1+γ0− ε

2 |F1(w)|2 + |w|1−3γ0− 3
2 ε|F3(w)|2

}
,

|F3
w(w)| ≤ c

{
|w|−2+3γ0− 3

2 ε|F1(w)|2 + |w|−γ0− ε
2 |F3(w)|2

} (5.17)

a.e. on Bδ(0) \ {0} with possibly diminished δ(ε) > 0. (In the sequel we may
have to choose ε > 0 and consequently δ(ε), τ (ε) > 0 even smaller; we will
indicate this at the respective points in the proof.)
Setting α := γ0 + ε

2 ∈ (0, 1
2 ), β := 1 − α + ε as well as F := F1, G := F2,

formulas (5.16) and (5.17) have the form (3.1) and (3.2), respectively. If we
assume ε < ε0 additionally, we may therefore apply Lemma 3.1 with ε0 =
ε0(α, ν) > 0 chosen as in the cited Lemma. We deduce the existence of a
number m ∈ N ∪ {0} such that the functions f j,m(w) = w−m F j (w), j = 1, 3,
satisfy f 1,m ∈ Cµ(Bδ(0), C) for all 0 < µ < min{1, m + γ0 − ε

2 } as well as
one of the following conditions:

(i) f 1,m(0) �= 0 and

| f 1,m
w (w)| ≤ c|w|m−1+γ0− ε

2 ,

| f 3,m
w (w)| ≤ c|w|m−2+3γ0− 3

2 ε a.e. on Bδ(0) \ {0}.
(5.18)

If m > 0 holds true, then f 3,m is also continuous in Bδ(0).
(ii) f 1,m(0) = 0, f 3,m ∈ Cµ(Bδ(0), C) for all µ < min{1, m + 1 − γ0 − ε

2 },
f 3,m(0) �= 0, and

| f 1,m
w (w)| ≤ c|w|m+1−3γ0− 3

2 ε,

| f 3,m
w (w)| ≤ c|w|m−γ0− ε

2 a.e. on Bδ(0) \ {0}.
(5.19)

2. Suppose that case (i) in the above alternative is fulfilled. Then we consider �m
I .

Note that ζ(w) := [γ (x(w)) − γ0] log w is continuous in B+ with ζ(w) → 0
for w → 0, because γ is of class C1(Br (0)) and x is of class Cµ(B+). Conse-
quently, we infer

�
1,m
I = eζ f 1,m ∈ C0(B+)

with �
1,m
I (0) = f 1,m(0) �= 0.
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Next we show �
3,m
I ∈ C0(B+) and �

3,m
I (0) = 0. Observe that w f 3,m(w) is

continuous on Bδ(0) and satisfies w f 3,m(w) → 0 for w → 0 (see (5.16) if
m = 0). Because (5.18) implies∣∣[w f 3,m(w)]w

∣∣ ≤ c|w|m−1+3γ0− 3
2 ε a.e. on Bδ(0) \ {0},

Proposition 3.4 yields

|w f 3,m(w)| ≤ c|w|µ for any µ < min
{

1, m + 3γ0 − 3

2
ε
}
. (5.20)

Thus we find |�3,m
I (w)| ≤ c|w|µ−2γ0− ε

2 → 0 for w → 0, whenever ε > 0 is
sufficiently small.
Concerning �

2,m
I we note the estimates

| f 2,m(w)| ≤ c|w|− 1
2 +γ0− ε

2 , | f 2,m
w (w)| ≤ c|w|m− 3

2 +2γ0−ε

a.e. on Bδ(0)\{0}; compare (5.6), (5.7), and (5.20). By applying Proposition 3.4
to w f 2,m(w), we deduce

|w f 2,m(w)| ≤ c|w|µ for any µ < min
{

1, m + 1

2
+ 2γ0 − ε

}
.

Therefore, we arrive at �
2,m
I ∈ C0(B+) and �

2,m
I (0) = 0.

3. Now assume case (ii) to be valid and consider �m
II . As above we have

w−γ (x(w))+γ0 → 1 for w → 0 and consequently �
3,m
II ∈ C0(B+), �3,m

II (0) �= 0.
Furthermore, the estimate (5.19) and the fact f 1,m(0) = 0 render

| f 1,m(w)| ≤ c|w|µ for all µ < min

{
1, m + 2 − 3γ0 − 3

2
ε

}
, (5.21)

according to Proposition 3.4. This yields

|�1,m
II (w)| ≤ c|w|−1+2γ0− ε

2 +µ → 0 for w → 0

as asserted. Finally, the formulas (5.6), (5.7), (5.21) imply

| f 2,m(w)| ≤ c|w| 1
2 −γ0− ε

2 , | f 2,m
w (w)| ≤ c|w|m+ 1

2 −2γ0−ε

a.e. on Bδ(0) \ {0}, and we infer

| f 2,m(w)| ≤ c|w|µ for any µ <

{
1, m + 3

2
− 2γ0 − ε

}
,

again by virtue of Proposition 3.4. The definition (5.14) therefore yields �
2,m
II ∈

C0(B+) and �
2,m
II (0) = 0, which completes the proof of Lemma 5.2.
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Now we are able to give the

Proof of Theorem 2.2. The definitions of y, z, and F imply the relation

xw(w) = T (x(w))−1 ◦ U (x(w))




w−1+γ (x(w))F1(w)

w− 1
2 F2(w)

w−γ (x(w))F3(w)


 , w ∈ B+ \ {0}. (5.22)

Observe that the matrix-valued function T (x)−1 ◦ U (x) is continuous on B+ and
we have T (0)−1 = Id; confer (4.7). Define �m

I and �m
II by (5.13) and (5.14),

respectively.
At first, let us assume �m

I ∈ C0(B+, C3) as well as �
1,m
I (0) �= 0, �

2,m
I (0) =

�
3,m
I (0) = 0 with some m ∈ N ∪ {0}; see Lemma 5.2. If we set

�I := T (x)−1 ◦ U (x)�m
I ∈ C0(B+, C

3),

the representation

xw(w) = wm−1+γ0�I (w), w ∈ B+ \ {0},
follows, i.e. (2.6) holds true with κ = 1 − γ0 and � := �I . Recalling U =
(v1, v2, v3) and (5.2), we find

�I (0) = �
1,m
I (0)v1(0) = �

1,m
I (0)




−a
√

a2 − q(0)2

−q(0)a

ia2


 .

If we utilize q(0) = √
1 + a2 Q(0) · n(0) and a = cot α with α ∈ (0, π

2 ), we
arrive at

�(0) = �I (0) = �
1,m
I (0)

cos α

sin2 α




−√
cos2 α − [Q(0) · n(0)]2

−Q(0) · n(0)

i cos α


 . (5.23)

Consequently, we have deduced the relations (2.7).
On the other hand, if the mapping �m

II is continuous on B+ and if �
1,m
II (0) =

�
2,m
II (0) = 0, �

3,m
II (0) �= 0 hold true with some m ∈ N ∪ {0}, then we define

�II := T (x)−1 ◦ U (x)�m
II ∈ C0(B+, C

3).

Relation (5.22) yields

xw(w) = wm−γ0�II (w), w ∈ B+ \ {0},
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that means we have found (2.6) with κ = γ0 and � := �II . Furthermore, similar
arguments as above imply

�(0) = �II (0) = �
3,m
II (0)

cos α

sin2 α




√
cos2 α − [Q(0) · n(0)]2

−Q(0) · n(0)

i cos α


 (5.24)

and (2.7) follows again.
In both cases the relation e−iπκ
3(0) ∈ R\{0} is a consequence of the bound-

ary condition (4.2). Indeed, if we employ (2.6) and let w ∈ I − tend to 0, then we
infer the identity

e−iπκ R�(0)�(0) = eiπκ�(0).

Because we have R�(0) = Diag[−1, −1, 1], it follows e−iπκ
3(0) ∈ R and (5.23)
or (5.24) implies 
3(0) �= 0. This completes the proof of Theorem 2.2.

Remark 5.3. Observe that 
2(0) = 0 holds true if and only if Q(0) · n(0) = 0
is satisfied. Then we also have 
1(0) = ±i
3(0) as well as γ0 = α

π
. This is

exactly the situation described in [3] and [1, Section 8.4] for the minimal surface
case. There the authors also considered the case α = π

2 , which is excluded in Theo-
rem 2.2 according to assumption (2.5). Furthermore, it was shown in [3, Section 7]
that the mapping � is Hölder-continuous on B+. By similar estimates this can also
be proved in the situation considered here. We left the details to the reader.
Let us conclude this section with some geometric consequences of Theorem 2.2,
collected in the following

Theorem 5.4. Let the assumptions of Theorem 2.2 be satisfied and define

ϑ := Q(0) · n(0)

cos α
∈ [0, 1).

Then there exists a number s > 0 and an integer k ∈ N ∪ {0} such that the compo-
nents x1, x2, x3 of the given H-surface x satisfy one of the four expansions

(
x1+i

√
1−ϑ2x3)(w)= is




w2k+γ0
[√

1− ϑ2e−iπγ0 + o(1)
]
, w → 0

w2k+1+γ0
[−√

1 − ϑ2e−iπγ0 + o(1)
]
, w → 0

w2k+1−γ0
[−√

1− ϑ2e−iπγ0 + o(1)
]
, w → 0

w2k+2−γ0
[√

1− ϑ2e−iπγ0 + o(1)
]
, w → 0

(5.25)

and

(
x2 + iϑx3)(w) = is




w2k+γ0
[
ϑe−iπγ0 + o(1)

]
, w → 0

w2k+1+γ0
[ − ϑe−iπγ0 + o(1)

]
, w → 0

w2k+1−γ0
[ − ϑeiπγ0 + o(1)

]
, w → 0

w2k+2−γ0
[
ϑeiπγ0 + o(1)

]
, w → 0.

(5.26)
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The l-th expansion in (5.26) occurs if and only if we have the l-th expansion in (5.25).
Furthermore, the surface normal N = |xu × xv|−1xu × xv can be extended to

a mapping of class C0(Sδ(0), R3) for small δ > 0, and N(w) tends to the limit

lim
w→0

N(w) = 1

cos α




Q(0) · n(0)

±√
cos2 α − [Q(0) · n(0)]2

0


 =




ϑ

±√
1 − ϑ2

0


 . (5.27)

Finally, the oriented tangential vector T(u) = |xu(u)|−1xu(u), u ∈ I + ∩ Bδ(0),
can be extended to a C0(I + ∩ Bδ(0), R3)-mapping, and we have

lim
u→0+ T(u) = ±




√
1 − ϑ2 sin(πγ0)

±ϑ sin(πγ0)

cos(πγ0)


 . (5.28)

Proof.

1. According to x(0) = 0 and � ∈ C0(B+, C3), we obtain

x(w) = 2

1∫
0

Re
{
wxw(tw)

}
dt

= wm+1−κ
[
�(0) + o(1)

] + wm+1−κ
[
�(0) + o(1)

]
, w → 0,

with κ = γ0 or κ = 1−γ0 and m ∈ N∪{0} from (2.6). Formulas (2.7) therefore
imply

(
x1 + i

√
1 − ϑ2x3)(w) =




wm+1−κ
[
2i

√
1 − ϑ2 
3(0) + o(1)

]
wm+1−κ

[
2i

√
1 − ϑ2 
3(0) + o(1)

] (5.29)

as well as (
x2 + iϑx3)(w) = wm+1−κ

[
2iϑ
3(0) + o(1)

]
(5.30)

for w → 0. The proof of Theorem 2.2 shows that the first expansion in (5.29)
occurs for κ = 1 − γ0, whereas κ = γ0 holds true in the second expansion of
(5.29). Distinguishing between the cases m = 2k, m = 2k + 1 and recalling
x(u) ∈ � for u ∈ I − as well as the property e−iπκ
3(0) ∈ R \ {0}, we arrive at
the alternatives (5.25) and (5.26).

2. Due to |�(0)| = √
2|
3(0)| > 0, there exists a number δ > 0 such that �(w) �=

0 is valid for w ∈ Sδ(0). Consequently, the relation

N(w) = −i
xw × xw(w)

|xw × xw(w)| = −i
�(w) × �(w)

|�(w) × �(w)| , w ∈ Sδ(0) \ {0},

implies the announced regularity of N. Furthermore, a direct computation yields
(5.27), if one employs the relations (2.7) or, alternatively, one of the identities
(5.23) and (5.24).
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3. Similarly, we deduce the regularity of T = T(u) and the asymptotic behaviour
(5.28). Indeed, one just has to use the relation

T(u) = Re(�(u))

|Re(�(u))| , u ∈ I + ∩ Bδ(0),

the property e−iπκ
3(0) ∈ R \ {0}, and one of the formulas (5.23) or (5.24).

Remark 5.5. In Figure 1 below, we have plotted the four possible asymptotic
shapes of a stationary H -surface prescribed by (5.25) and (5.26) with k = 0. The
wire netting, which forms a disc, represents the tangential plane TxS at x = 0, and
the positive x3-axis is tangential to � there; compare assumption (A). In the case
k > 0, the surface simply wraps k-times around x = 0, such that there appears a
multiply covered disc, asymptotically. Figure 1 was produced with MAPLE 10 for
the values α = π

3 and Q(0) · n(0) = − 2
5 .

Figure 1. Asymptotic shape of an H -surface for k = 0.

Remark 5.6. Let us conclude this subsection with a note on the borderline case

|Q(0) · n(0)| = cos α.

For α = π
2 one may apply the method above, whenever we have

|Q(x) · n(x)| = |∇ψ(x1, x2)|√
1 + |∇ψ(x1, x2)|2 for |x| < r (5.31)

with small r > 0 and if both sides vanish there. But this situation was already stud-
ied by G. Dziuk [3], at least for minimal surfaces. For α < π

2 the above technique
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seems not to be applicable even if the more restrictive relation (5.31) is fulfilled.
Indeed, the matrix R(x), |x| < r , possesses the triple eigenvalue λ = −1 in that
case, but the corresponding eigenspace is 1-dimensional. Consequently, we cannot
decompose R(x) as in (5.3) for α < π

2 and a Jordan decomposition seems not to be
useful for our purposes.

6. The irregular case

In contrast to the preceding section, we now suppose the assumptions of Theo-
rem 2.3 to be fulfilled. From (2.8) we then infer

|Q(x) · n(x)| >
|∇ψ(x1, x2)|√

1 + |∇ψ(x1, x2)|2 > 0 for |x| < r (6.1)

for sufficiently small r > 0. Note that the surface normal N of our stationary,
partially free H -surface cannot be expected to be continuous up to w = 0 in that
case. Indeed, this would imply the relations N(0) · (0, 0, 1) = 0 and N(0) · n(0) =
−Q(0) · n(0), according to the boundary conditions in assumption (B). Because we
have n(0) = (− cos α, 0, sin α), these relations would imply

|N 1(0)| = |Q(0) · n(0)|
cos α

> 1

contrary to |N| ≡ 1.
Let the assumption (6.1) be satisfied. Define the matrix-valued function R as in

(4.19) with the abbreviations (4.10). Then R(x), |x| < r , possesses the eigenvalues

λ1(x) = −1 − √
q2 − |∇ψ |2

1 + √
q2 − |∇ψ |2 ,

λ2(x) = −1,

λ3(x) = −1 + √
q2 − |∇ψ |2

1 − √
q2 − |∇ψ |2

and the eigenvectors

v1(x) =
(

qψ2 − iψ1
√

q2 − |∇ψ |2, −qψ1 − iψ2
√

q2 − |∇ψ |2, i |∇ψ |2
)
,

v2(x) =
(
ψ2, −ψ1, iq

)
,

v3(x) =
(

qψ2 + iψ1
√

q2 − |∇ψ |2, −qψ1 + iψ2
√

q2 − |∇ψ |2, i |∇ψ |2
)
,

which we collect to the matrix U := (v1, v2, v3) ∈ C1(Br (0), C3×3). Due to
det U = 2|∇ψ |2(q2 − |∇ψ |2) 3

2 �= 0 on Br (0), the inverse matrix function U−1 ∈
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C1(Br (0), C3×3) exists. Defining

σ(x) := 1 + i

π
ln

(
1 − √

q2 − |∇ψ |2
1 + √

q2 − |∇ψ |2
)

, |x| < r, (6.2)

we therefore find

R(x) = U (x) ◦ Diag
[
e−iπσ(x), e−iπ , e−iπσ(x)

] ◦ U (x)−1, |x| < r. (6.3)

Now we consider the function

F(w) := Diag
[
w

1
2 σ(x̂(w)), w

1
2 , w

1
2 σ(x̂(w))

]◦U (x̂(w))−1z(w), w ∈ B\{0}, (6.4)

and claim F ∈ C0,1(B \ {0}, C3). Because we know x̂ ∈ C0,1(B \ {0}), z ∈
C0,1(B \ I −) as well as U−1, σ ∈ C1 on |x| < r , the behaviour of F near I −
remains to be studied. To this aim, we note the relation

lim
v→0+ w

1
2 σ(x̂(w)) = exp

[σ(x̂(u))

2

(
ln |u| + iπ

)] = eiπσ(x̂(u)) lim
v→0− w

1
2 σ(x̂(w))

for any u ∈ I −. Taking (6.3) and the jump-property (4.16) into consideration, we
consequently find

lim
v→0+ F(w) = lim

v→0− Diag
[
w

1
2 σ(x̂(w)), w

1
2 , w

1
2 σ(x̂(w))

]
◦ U (x̂(u))−1 ◦ R(x̂(u))−1 lim

v→0+ z(w)

= lim
v→0− F(w),

when we recall the definition R�(0) ◦ RS(x) =: R(x). This reveals F ∈ C0(B \
{0}, C3), and since |∇F(w)| remains bounded for w → u ∈ I −, the function F is
even Lipschitz continuous in B \ {0}. Furthermore, we estimate

|Fw(w)| ≤ c|w| 1
2 −τ |z(w)|2 a.e. on B (6.5)

with an arbitrarily small τ > 0 and a constant c = c(τ ) > 0. This follows directly
from the definition (6.4) and from the relation

√
λ(x̂(w))|w| 1

2 ≤ ∣∣w 1
2 σ(x̂(w))

∣∣, ∣∣w 1
2 σ(x̂(w))

∣∣ ≤ 1√
λ(x̂(w))

|w| 1
2 on B \ {0}. (6.6)

Here we have abbreviated

λ(x) := 1 − √
q(x)2 − |∇ψ(x1, x2)|2

1 + √
q(x)2 − |∇ψ(x1, x2)|2 , |x| < r. (6.7)
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Furthermore, formula (6.4) yields

|z(w)| ≤ c|w|− 1
2 |F(w)| on B \ {0},

again with the aid of (6.6). Together with (4.18) and (6.5) we deduce

|Fw(w)| ≤ c|w|ν−1|F(w)| a.e. on B \ {0} (6.8)

with arbitrary ν ∈ (0, µ). In addition, we infer the inequality

|F(w)| ≤ c|w|ν− 1
2 on B \ {0} (6.9)

from (6.4), (6.6), and (4.18). According to Theorem 1 in [1, Section 8.1], the for-
mulas (6.8) and (6.9) imply the existence of an integer m ∈ N ∪ {0} and a complex
vector a ∈ C3 \ {0} such that the asymptotic relation

F(w) = a wm + o(|w|m) as w → 0 (6.10)

is satisfied.

Proof of Theorem 2.3. The relation (2.9) with

�(w) := T (x(w))−1 ◦ U (x(w))




w− i
2π

ln λ(x(w)) f 1,m(w)

f 2,m(w)

w
i

2π
ln λ(x(w)) f 3,m(w)


 (6.11)

is immediate from (6.4), (6.2), and the identity z(w) = T (x(w))xw(w) on B+ \{0}.
In (6.11) we have defined λ(x) as in (6.7), and we have abbreviated

fm = (
f 1,m(w), f 2,m(w), f 3,m(w)

) := w−mF(w) ∈ C0(B, C
3)

with m ∈ N∪{0} chosen as in (6.10). As in Proposition 5.1, we prove the inequality∣∣w− 1
2 F2(w)

∣∣2 ≤ c
{∣∣w− 1

2 σ(x̂(w))F1(w)
∣∣2 + ∣∣w− 1

2 σ(x̂(w))F3(w)
∣∣2

}
on Bδ(0) \ {0} with sufficiently small δ > 0. According to (6.6) and the continuity
of fm on Bδ(0), this relation implies

| f 2,m(w)|2 ≤ c
{| f 1,m(w)|2 + | f 3,m(w)|2}, w ∈ Bδ(0),

with some constant c > 0. By virtue of fm(0) = a �= 0, we conclude that
f 1,m(0), f 3,m(0) cannot vanish simultaneously. On the other hand, the functions

w± i
2π

ln λ(x(w)) behave discontinuously for w → 0, and we note that

0 <
√

λ(x(w)) ≤ ∣∣w± i
2π

ln λ(x(w))
∣∣ ≤ 1√

λ(x(w))
, w ∈ B+ \ {0}.

Because T (x)−1 ◦ U (x) is invertible, the assertions concerning � follow immedi-
ately.
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7. Finiteness of branch points and a Gauß-Bonnet formula

We call a point w0 ∈ B+ branch point of an H -surface x : B+ → R3, if the
limit lim

w→w0
|∇x(w)| exists and vanishes. Observe that, under the assumptions of

Theorem 2.2 or 2.3, w0 = 0 is a branch point, if and only if m ∈ N \ {0} holds true
in the asymptotic expansion (2.6) or (2.9), respectively. Then m = m(w0) is called
the order of the branch point w0 = 0.

We will now apply the local results of the Theorems 2.2 and 2.3 to station-
ary solutions x of (1.1), (1.2). Here {�,S} with �,S ∈ C2 denotes a partially
free boundary configuration as described in the introduction, and the prescribed
mean curvature function H ∈ C0(R3, R) is generated by some vector-field Q ∈
C1(R3, R3) with the properties (2.1).

At first, we find the following

Corollary 7.1. Let x = x(w) be a stationary, partially free H-surface as described
just above. Suppose that |Q(pk) · n(pk)| �= cos αk holds true for k = 1, 2, where
αk ∈ (0, π

2 ) denote the angles between � and S at the meeting points pk , k = 1, 2.

Then x possesses at most finitely many branch points in B+.

Proof. The asymptotic expansions in B+, on C \ {−1, +1}, and on I imply that
branch points have to lie isolated in B+ \ {−1, +1}; see [6, 8, 11]. Consequently,
there are at most finitely many branch points in the compact set �ε := B+ \(
Bε(−1) ∪ Bε(+1)

)
for arbitrary ε > 0.

Writing H+ := {ζ = ξ + iη ∈ C : η > 0}, we next apply the conformal
mappings w = fk(ζ ) : H+ → B+, k = 1, 2, which are given by their inverses
f −1
1 (w) = (w+1

w−1 )2 : B+ → H+ and f −1
2 (w) = −(w−1

w+1 )2 : B+ → H+. After
a suitable translation and rotation - which do not affect the size of Q(pk) · n(pk)

and αk -, the mappings yk(ζ ) := x( fk(σζ )), ζ ∈ B+, can be supposed to satisfy
assumption (B) by choosing σ > 0 sufficiently small. According to Theorem 2.2 or
Theorem 2.3, we infer the asymptotic representations

xw(w) = (w − wk)
2(mk−κk)�k(w), w ∈ B+ \ {0}, k = 1, 2, (7.1)

with w1 = −1, w2 = +1. Here the functions �k = �k(w) are continuous in
Sε(wk) with �k(wk) �= 0 (see Theorem 2.2), or we have at least c−1 ≤ |�k(w)| ≤
c on Sε(wk) \ {1} with a constant c ≥ 1 and some ε > 0 (compare Theorem 2.3).
Furthermore, mk ∈ N ∪ {0} are nonnegative integers and we have defined κk :=
1
2 ± τk ∈ (0, 1) with

τk =



1

2
− 1

π
arccot

(
cot αk

√
1 − ϑ2

k

)
, if |ϑk | < 1

0, if |ϑk | > 1
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and

ϑk := Q(pk) · n(pk)

cos αk
, k = 1, 2.

Due to (7.1), branch points cannot accumulate at w = wk = ±1, and this completes
the proof.

Next we present a formula of Gauß-Bonnet type in the regular case, that is
|Q(pk) · n(pk)| < cos αk for k = 1, 2. By virtue of Corollary 7.1, any stationary,
partially free H -surface x then possesses at most finitely many branch points in B+.
Using the asymptotic expansions at branch points, we prove the following

Theorem 7.2. Let x be a stationary H-surface solving (1.1), (1.2) as described at
the beginning of this section. We assume

|Q(pk) · n(pk)| < cos αk, k = 1, 2,

for the angles αk ∈ (0, π
2 ) between � and S at the meeting points pk , k = 1, 2. Let

us denote the finitely many branch points in B+ \ {−1, +1} by w3, . . . , wM+2 ∈
∂ B+ \ {−1, +1} and wM+3, . . . , wM+N+2 ∈ B+, where M, N ∈ N ∪ {0} are
integers. Finally, we write w1 = −1, w2 = +1 and define the sets C◦ := C \
{w1, . . . , wM+2}, I ◦ := I \ {w3, . . . , wM+2}, B◦ := B+ \ {wM+3, . . . , wM+N+2}.
Then the identity

∫∫
B◦

K E du dv = π + π

2∑
j=1

(m j − κ j ) + 2π

M+2∑
j=3

m j + π

M+N+2∑
j=M+3

m j

−
∫

C◦
kg

√
E ds −

∫
I ◦

kg
√

E du,

(7.2)

holds true, whenever the integral
∫∫

B◦ K E du dv exists as a Cauchy principle value.
Here K = K (w) denotes the Gaussian curvature of x|B◦ , kg is the geodesic cur-
vature of the family of surface curves x|I ◦∪C◦ , the numbers m j = m(w j ) ∈ N,
j = 3, . . . , M + N + 2, denote the order of the branch points w j , and m j , κ j ,
j = 1, 2, are taken from (7.1).

Proof. We refer to [1, Section 7.11]. The additional exception points w1 = −1,
w2 = +1 can be handled as the other branch points by using Lemma 2 there. Here
one has to employ the representations (7.1). Formula (7.2) then follows by the
Gaussian integral theorem applied to the domains

Bl := {
w ∈ B+ : |w − w j | > ε

(l)
j for all j = 1, . . . , M + N + 2

}
with suitable ε

(l)
j ↓ 0 (l → ∞) and an obvious limit procedure, whenever the

integral on the left-hand side exists.
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Remark 7.3. If one succeeds in estimating the integrals in the Gauß-Bonnet for-
mula (7.2) adequately, this formula may serve to exclude (or estimate the number
of) branch points in B+. But there seems to arise some complications from the sec-
ond integral on the right-hand side: It is not clear how to estimate |kg| with the aid
of the given data, since x(w) does not meet S perpendicularly along I . This is also
the reason for the additional assumption that the curvatura integra

∫∫
B◦ K E du dv

exists as a Cauchy principle value.
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[11] F. MÜLLER, On the regularity of H-surfaces with free boundaries on a smooth support
manifold, BTU Cottbus (2007), preprint.
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